Jump to content

Search the Community

Showing results for tags 'Cortisol'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Welcome!
    • News Items and Research
    • Announcements
    • Cushing's Basics
    • Guest Questions
  • Questions about how these boards work?
    • Avatars, Images and Skins
    • Blogs
    • Chatroom
    • Fonts, colors, bold, italics
    • Practice Pages
    • Suggestion Box
    • Timezones
    • Everything Else
  • Get Active!
    • Meetings, events and information
    • Fundraising Ideas
    • Cushing's Awareness Day, April 8
    • Spread the Word
    • Marathons
    • Cushing's Clothes Closet
    • Cushing's Library
    • Cushing's Store
  • Cushing's
    • Resources
    • Types of Cushing's
    • Symptoms
    • Tests
    • Treatments
  • Miscellaneous
    • Other Diseases
    • Good News / Attitude of Gratitude
    • Inspirational / Motivational
    • Quotes and Affirmations
    • Lighten Up!
    • Word Games
    • Miscellaneous Chit Chat
    • Current Events
    • Cushie Commerce
    • Internet Classes
    • Recipes

Blogs

  • MaryO'Blog
  • Christy Smith's Blog
  • rooon55's Blog
  • LLMart's Blog
  • regina from florida's Blog
  • terri's Blog
  • Canasa's Blog
  • Tberry's Blog
  • LisaMK's Blog
  • diane177432's Blog
  • Jen1978's Blog
  • GreenGal's Blog
  • Yada Yada Yada
  • Jinxie's Blog
  • SherryC's Blog
  • stjfs' Blog
  • kalimae7371's Blog
  • Kristy's Blog
  • kathieb1's Blog
  • Yavanna's Blog
  • Johnni's Blog
  • AutumnOMA's Blog
  • Will Power
  • dropsofjupiter's Blog
  • Lorrie's Blog
  • DebMV's Blog
  • FarWind's Blog
  • sallyt's Blog
  • dseefeldt's Blog
  • ladylena's Blog
  • steffie's Blog
  • Lori L's Blog
  • mysticalsusan1's Blog
  • cathy442's Blog
  • Kathy711's Blog
  • Shannonsmom's Blog
  • jack's Blog
  • Kandy66's Blog
  • mars72's Blog
  • singlesweetness33's Blog
  • michelletm's Blog
  • JC_Adair's Blog
  • Lisa-A's Blog
  • Jen3's Blog
  • tammi's Blog
  • Ramblin' Rose (Maggie's)
  • monicaroni77's Blog
  • monicaroni's Blog
  • Saz's Blog
  • alison
  • Thankful for the Journey
  • Judy from Pgh's Blog
  • Addiegirl's Blog
  • candlelite2000's Blog
  • Courtney likes to talk......
  • Tanya's Blog
  • smoketooash's Blog
  • meyerfamily8's Blog
  • Sheila1366's Blog
  • A Guide to Blogging...
  • Karen's Blog
  • barbj222222's Blog
  • Amdy's Blog
  • Jesh's Blog
  • pumpkin's Blog
  • Jazlady's Blog
  • Cristalrose's Blog
  • kikicee's Blog
  • bordergirl's Blog
  • Shelby's Blog
  • terry.t's Blog
  • CanadianGuy's Blog
  • Mar's Cushie Couch
  • leanne's Blog
  • honeybee30's Blog
  • cat lady's Blog
  • Denarea's Blog
  • Caroline's Blog
  • NatalieC's Blog
  • Ahnjhnsn's Blog
  • A journey around my brain!
  • wisconsin's Blog
  • sonda's Blog
  • Siobhan2007's Blog
  • mariahjo's Blog
  • garcia9's Blog
  • Jessie's Blog
  • Elise T.'s Blog
  • glandular-mass' Blog
  • Rachel Bridgewater's Blog
  • judycolby's Blog
  • CathyM's Blog
  • MelissaTX's Blog
  • nessie21's Blog
  • crzycarin's Blog
  • Drenfro's Blog
  • CathyMc's Blog
  • joanna27's Blog
  • Just my thoughts!
  • copacabana's Blog
  • msmith3033's Blog
  • EyeRishGrl's Blog
  • SaintPaul's Blog
  • joyce's Blog
  • Tara Lou's Blog
  • penybobeny's Blog
  • From Where I Sit
  • Questions..
  • jennsarad's Blog
  • looking4answers2's Blog
  • julie's blog
  • cushiemom's Blog
  • greydragon's Blog
  • AmandaL's Blog
  • KWDesigns: My Cushings Journey
  • cushieleigh's Blog
  • chelser245's Blog
  • melissa1375's Blog
  • MissClaudie's Blog
  • missclaudie92's Blog
  • EEYORETJBD's Blog
  • Courtney's Blog
  • Dawn's Blog
  • Lindsay's Blog
  • rosa's Blog
  • Marva's Blog
  • kimmy's Blog
  • Cheryl's Blog
  • MissingMe's Blog
  • FerolV's Blog
  • Audrey's (phil1088) Blog
  • sugarbakerqueen's Blog
  • KathyBair's Blog
  • Jenn's Blog
  • LisaE's Blog
  • qpdoll's Blog
  • blogs_blog_140
  • beach's Blog
  • Reillmommy is Looking for Answers...
  • natashac's Blog
  • Lisa72's Blog
  • medcats10's Blog
  • KaitlynElissa's Blog
  • shygirlxoxo's Blog
  • kerrim's Blog
  • Nicki's Blog
  • MOPPSEY's Blog
  • Betty's Blog
  • And the beat goes on...
  • Lynn's Blog
  • marionstar's Blog
  • floweroscotland's Blog
  • SleepyTimeTea's Blog
  • Shelly3's Blog
  • fatnsassy's Blog
  • gaga's Blog
  • Jewels' Blog
  • SusieQ's Blog
  • kayc6751's Blog
  • moonlight's Blog
  • Sick of Being Sick
  • Peggy's Blog
  • kouta5m's Blog
  • TerryC's Blog
  • snowii's Blog
  • azZ9's Blog
  • MaMaT333's Blog
  • missaf's Blog
  • libertybell's Blog
  • LyssaFace's Blog
  • suzypar2002's Blog
  • Mutley's Blog
  • superc's Blog
  • lisajo42's Blog
  • alaustin's Blog
  • Tina1962's Blog
  • Ill never complain a single word about anything.. If I get rid of Cushings disease.
  • puddingtoast's Blog
  • AmberC's Blog
  • annacox
  • justwaiting's Blog
  • RachaelB's Blog
  • MelanieW's Blog
  • My Blog
  • FLHeather's Blog
  • HollieK's Blog
  • Bonny777's Blog
  • KatieO's Blog
  • LilDickens' Mini World
  • MelissaG's Blog
  • KelseyMichelle's Blog
  • Synergy's Blog
  • Carolyn1435's Blog
  • Disease is ugly! Do I have to be?
  • A journey of a thousand miles begins with a single wobble
  • MichelleK's Blog
  • lenalee's Blog
  • DebGal's Blog
  • Needed Answers
  • Dannetts Blog
  • Marisa's Blog
  • Is this cushings?
  • alicia26's Blog
  • happymish's Blog
  • mileymo's Blog
  • It's a Cushie Life!
  • The Weary Zebra
  • mthrgonenuts' Blog
  • LoriW's Blog
  • WendyG's Blog
  • khmood's Blog
  • Finding Answers and Pissing Everyone Off Along the Way
  • elainewwjd's Blog
  • brie's Blog
  • dturner242's Blog
  • dturner242's Blog
  • dturner242's Blog
  • Stop the Violins
  • FerolV's Internal Blog
  • beelzebubble's Blog
  • RingetteLUVR
  • Eaglemtnlake's Blog
  • mck25's Blog
  • vicki11's Blog
  • vicki11's Blog
  • ChrissyL's Blog
  • tpatterson757's Blog
  • Falling2Grace's Blog
  • meeks089's Blog
  • JustCurious' Blog
  • Squeak's Blog
  • Kill Bill
  • So It Begins ! Cushings / Pituitary Microadenoma
  • Crystal34's Blog
  • Janice Barrett

Categories

  • Helpful Articles
    • Links
    • Research and News
    • Useful Information
  • Pages
  • Miscellaneous
    • Databases
    • Templates
    • Media

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests

  1. Abstract In Cushing syndrome (CS), prolonged exposure to high cortisol levels results in a wide range of devastating effects causing multisystem morbidity. Despite the efficacy of treatment leading to disease remission and clinical improvement, hypercortisolism-induced complications may persist. Since glucocorticoids use the epigenetic machinery as a mechanism of action to modulate gene expression, the persistence of some comorbidities may be mediated by hypercortisolism-induced long-lasting epigenetic changes. Additionally, glucocorticoids influence microRNA expression, which is an important epigenetic regulator as it modulates gene expression without changing the DNA sequence. Evidence suggests that chronically elevated glucocorticoid levels may induce aberrant microRNA expression which may impact several cellular processes resulting in cardiometabolic disorders. The present article reviews the evidence on epigenetic changes induced by (long-term) glucocorticoid exposure. Key aspects of some glucocorticoid-target genes and their implications in the context of CS are described. Lastly, the effects of epigenetic drugs influencing glucocorticoid effects are discussed for their ability to be potentially used as adjunctive therapy in CS. epigenetic, glucocorticoids, Cushing syndrome Issue Section: Mini-review In Cushing syndrome (CS), adrenocorticotropic hormone (ACTH) hypersecretion by a pituitary adenoma or an ectopic source, or autonomous cortisol hypersecretion by an adrenal tumor, induces chronic endogenous hypercortisolism with loss of the cortisol circadian rhythm (1). CS is more prevalent in women than men and frequently occurs in the fourth to sixth decades of life (2). Glucocorticoids (GC) have extensive physiological actions and regulate up to 20% of the expressed genome, mainly related to the immune system, metabolic homeostasis, and cognition. Therefore, the prolonged exposure to high cortisol levels results in a wide range of devastating effects, including major changes in body composition (obesity, muscle atrophy, osteoporosis), neuropsychiatric disturbances (impaired cognition, depression, sleep disturbances), the metabolic syndrome (obesity, hypertension, insulin resistance, and dyslipidemia), hypercoagulability, and immune suppression (3, 4). The consequences of hypercortisolism lead to compromised quality of life and increased mortality rate (5). The mortality rate in patients with CS is 4 times higher than the healthy control population (6). Risk factors such as obesity, diabetes, and hypertension contribute to the increased risk of myocardial infarction, stroke, and cardiac insufficiency. As a result, cardiovascular disease is the leading cause of the premature death in CS (5). Infectious disease is also an important cause of death in CS (5). Therefore, prompt treatment to control hypercortisolism is imperative to prevent complications and an increased mortality rate. Despite the efficacy of treatment leading to disease remission, the clinical burden of CS improves, but does not completely revert, in every patient (7). Indeed, obesity, neuropsychiatric disturbances, hypertension, diabetes, and osteoporosis persist in a substantial number of biochemically cured patients. For instance, in a study involving 118 CS patients in remission for about 7.8 years (median), resolution of comorbidities such as diabetes occurred in only 36% of cases, hypertension in 23% of cases, and depression in 52% of the cases (8). It has been proposed that epigenetic changes as a consequence of hypercortisolism is a mechanism of the persistence of some comorbidities (9-12). Epigenetics is a reversible process that modifies gene expression without any alterations in DNA sequence; frequently it is mediated by histone modification and DNA methylation together with microRNAs (13-15). GCs use the epigenetic machinery as a mechanism of action to regulate gene expression in physiological circumstances, such as metabolic actions and stress response. Its networks involve DNA and histone modifying enzymes, such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs) (16). (Fig. 1) The DNA methylation process catalyzed by DNMTs is usually associated with downregulation of gene expression (17). Histone modifications catalyzed by HAT enzymes induce gene transcription, while those by HDAC enzymes induce transcriptional repression (17). Drugs interfering with these enzymes (so-called epigenetic drugs) may affect the GC genomic actions confirming the interaction between GC and the epigenetic system (18, 19). Furthermore, GC can modulate HDAC and DNMT expression and activity (16, 19, 20). Based on these data it might be speculated that in CS, epigenetic modifications induced by long-term GC exposure plays a role in the development of the disease-specific morbidity (9, 10). Figure 1. Open in new tabDownload slide Glucocorticoid (GC) and its epigenetic machinery. GC through its receptor interacts with DNA and histone modifying enzymes, such as DNA methyltransferases (DNMTs), histone acetyl transferases (HATs), and histone deacetylases (HDAC) to modulate gene expression. In this review we provide an overview of epigenetic aspects of GC action in physiological conditions and in the context of CS. We start with a detailed characterization of how GC, using the epigenetic system, can change chromatin structure in order to activate or silence gene expression. (Fig. 2) Subsequently, we describe the role of epigenetic mechanisms in the regulation of expression of several GC-target genes related to CS. Finally, we present the current evidence of epigenetic changes caused by the long-term of GC exposure and the potential use of epidrugs influencing GC actions. Figure 2. Open in new tabDownload slide Epigenetic mechanisms of the glucocorticoid action to regulate gene expression. The GR is located in cytoplasm in a multi-protein complex; after GC binding, GR dissociates from the multi-protein complex, crosses the nuclear membrane, dimerizes, and binds to the GRE of the target gene. One of the mechanisms of action of GC is through the recruitment of co-regulators together with epigenetic enzymes, such as HAT, to change the chromatin structure, resulting in activation of gene transcription. Also, GR decreases gene expression by tethering other transcriptional factors and recruiting HDAC2, causing histone deacetylation, which leads to a repressed chromatin. GC can cause hypomethylation through downregulation in the expression of DNMT1. Abbreviations: Ac, acetylation; DNMT1, DNA methyltransferase 1; GC, glucocorticoid; GR, glucocorticoid receptor; GRE, glucocorticoid responsive elements; HAT, histone acetyltransferase; HDAC, histone deacetylases; Me: methylation. Search Strategy A search of the PubMed database was conducted using the advanced search builder tool for articles in the English language on the following terms “glucocorticoids,” “glucocorticoid receptor,” “Cushing,” “hypercortisolism,” “epigenetic,” “DNA methylation,” “histone deacetylase,” “histone acetyltransferase,” “microRNA” “fkbp5,” “clock genes,” and “POMC.” Moreover, references were identified directly from the articles included in this manuscript. The articles were selected by the authors after being carefully analyzed regarding their importance and impact. Epigenetic Aspects of Genomic Action of Glucocorticoids GCs regulate gene expression positively or negatively. GC-responsive genes include genes encoding for proteins associated with inflammation, metabolic processes, blood pressure and fluid homeostasis, apoptosis, cell cycle progression, circadian rhythm, and intracellular signaling (21). The GC actions are cell type–specific (22). For instance, in an in vitro study, the comparison of GC-expressed genes between 2 cell lines, corticotroph (AtT20) and mammary (3134) cell lines, showed a different set of GC-regulated genes, revealing the cell type–specific nature of GC effects (23). GC function depends on the accessibility of glucocorticoid receptor (GR)-binding sites in the DNA of the target tissue, which in turn is mostly established during cell differentiation. Therefore, different chromatin organization explains the distinct GR-binding sites among different tissues (22, 24, 25). The chromatin accessibility is determined by histone modifications such as acetylation, methylation, phosphorylation, and/or DNA methylation, processes that are both dynamic and reversible (26). Furthermore, gene expression is regulated in a GC-concentration-dependent manner which is tissue-specific. Only a few genes can be upregulated or downregulated at low concentrations of GC. For example, a dose of dexamethasone (Dex) as low as 0.5 nM selectively activated PER1 (period 1, transcription factor related to circadian rhythm) expression in lung cancer (A549) cells (21, 27). Additionally, continuous GC exposure or pulsed GC (cortisol fluctuation during circadian rhythm) may cause different responses with respect to gene expression (26, 28). For example, constant treatment with corticosterone induced higher levels of PER1 clock gene mRNA expression compared with pulsatile treatment, as demonstrated in an in vitro study using 3134 cell line (28). The time course for gene expression in response to Dex is fast, with repression occurring slightly slower compared to activation. Half of activated and repressed genes are detected within, respectively, about 40 minutes and 53 minutes following Dex exposure (21). In short, the transcriptional output in response to GC depends on cell type, as well as on the duration and intensity of GC exposure (21, 24, 26, 27). GCs act as a transcriptional regulatory factor resulting in activating or repressing the expression of genes. The GC exerts its function through binding to corticosteroid receptors, specifically, the mineralocorticoid receptor and the GR, members of the nuclear receptor superfamily (29, 30). Glucocorticoid Receptor The GR is located in the cytoplasm in a chaperone complex which includes heat-shock proteins (70 and 90) and immunophilins (such as FK506 binding protein [FKBP5]). Cortisol diffuses across the cell membrane and binds with high affinity to the GR. The activated GR bound to GC dissociates of the multi-protein complex and is transferred to the nucleus, where it ultimately regulates gene expression (26, 31). GR is a transcription factor encoded by nuclear receptor subfamily 3, group C member 1 (NR3C1) gene, located in chromosome 5, and consisting of 9 exons. It is composed of 3 major functional domains, namely a DNA binding domain (DBD), the C-terminal ligand-binding domain (LBD) and the N-terminal domain (NTB). The LBD recognizes and joins the GC. NTB contains an activation function-1 (AF1) which connects with co-regulators and the members of the general transcription machinery to activate target genes. The DBD comprises 2 zinc fingers motifs that are able to identify and bind to glucocorticoid responsive elements (GREs) (32, 33). GRα is the most expressed and functionally active GR. GRβ is another isoform which is the result of an alternative splicing in exon 9 of the GR transcript. The difference between the 2 isoforms is the distinct ligand-binding domain in GRβ. This variance prevents the GRβ from binding to GC. In fact, the GRβ counteracts GRα function by interfering with its binding to a GRE in the target gene, and GRβ expression is associated with GC resistance (32). In addition, GRβ has its own transcriptional activity which is independent and distinct from GRα (34). Another splice variant of human GR, GRγ, is associated with GC resistance in lung cell carcinoma and childhood acute lymphoblastic leukemia (33, 35). There is an additional amino acid (arginine) in the DBD of the GRγ that reduces, by about half, the capacity to activate or suppress the transcription of the target gene, as compared with GRα (32). One study identified GRγ in a small series of corticotroph adenomas (36). Glucocorticoid Mechanism of Action The GR-GC complex induces or represses gene expression directly by binding to DNA, indirectly by tethering other transcription factors or yet in a composite manner that consists in binding DNA in association with binding to other co-regulators (35, 37). The GR has the ability to reorganize the chromatin structure to become more or less accessible to the transcriptional machinery. In the classical mechanism of direct induction of gene expression, the GR dimerizes and binds to a GRE in DNA. The receptor recruits co-regulators, such as CREB binding protein, which has intrinsic histone acetyltransferase (HAT) activity that modifies the chromatin structure from an inactive to an active state. This model, called transactivation, upregulates the expression of some genes related to glucose, protein, and fat metabolism. Gene repression, on the other hand, is accomplished by GR binding to a negative GRE (nGRE) leading to the formation of a chromatin remodeling complex composed by co-repressor factors, such as NCOR1 and SMRT, and histone deacetylases (HDACs), that ultimately turn chromatin less accessible and suppress gene transcription. The gene repression through direct binding events occurs less frequently when compared to gene induction (25, 35, 38). Another mechanism of GC action is through binding to other transcription factors (tethering). In case of switching off inflammatory genes, GR binds to transcriptional co-activator molecules, such as CREB binding protein with intrinsic HAT activity, and subsequently recruits HDAC2 to reverse histone acetylation, thus resulting in a suppression of the activated inflammatory gene (39). In the same model, GC interacts with other cofactors, such as the STAT family, to induce chromatin modifications resulting in increased gene expression (26). Furthermore, the transcriptional dynamics of some genes follow a composite manner. In this model, GR, in conjunction with binding to GRE, also interacts with cofactors in order to enhance or reduce gene expression (35). GCs can also modulate gene expression by influencing the transcription of epigenetic modifiers. An experimental study demonstrated that GC mediated the upregulation of HDAC2 in rats exposed to chronic stress, which in turn decreased the transcription of histone methyltransferase (Ehmt2) that ultimately upregulated the expression of Nedd4. Nedd4 is a ubiquitin ligase, expression of which has been related to cognitive impairment (40). Additionally, GC was found to interact with another epigenetic eraser, namely JMJD3, a histone demethylase, suppressing its transcription in endothelial cells treated with TNFα that led to decreased expression of other genes related to the blood-brain barrier (41). GCs have the ability to induce (de)methylation changes in DNA, ultimately affecting gene expression. The DNA methylation process triggered by GC involves the family of DNA methyltransferases (DNMT) and ten-eleven translocation (TET) protein (20, 42-44). The DNMT, DNMT1, DNMT3A, and DNMT3B are able to transfer a methyl group to a cytosine residue in DNA, forming 5-methylcytosine (5mC), which negatively impacts gene expression. In contrast, TET protein chemically modifies the 5mC to form 5-hydroxymethylcytosine (5hmC), which ultimately leads to unmethylated cytosine, positively influencing gene expression (45). Glucocorticoids mainly induce loss of methylation events rather than gain of methylation across the genome (11, 46). The DNA demethylation process can be either active or passive. The active mechanism is linked to the upregulation of TET enzyme expression that follows GC treatment, which was described in retinal and osteocyte cell line model studies (42, 43). The passive demethylation event involves the downregulation (Fig. 2) or dysfunction of DNMT1. DNMT1 is responsible for maintaining the methylation process in dividing cells (45). In case of GC exposure, GC can cause hypomethylation through downregulation in the expression of DNMT1, a process described in the AtT20 corticotroph tumor cell model, or through GC hindering DNMT activity, particularly DNMT1, as demonstrated in the retinal cell (RPE) line (20, 42, 44). Glucocorticoid-Induced Epigenetic Changes There are several molecular mechanisms connecting GR activation and epigenetic modifications ultimately affecting gene expression (Fig. 2). As described above, GC uses epigenetic machinery, such as DNA and histone modifying enzymes, to restructure the chromatin in order to induce or silence gene transcription (16, 47). In an in vitro study using murine AtT20 corticotroph tumor and neuronal cell lines, after chronic GC exposure followed by a recovery period in the absence of GC, the cells retained an “epigenetic memory” with persistence of loss of methylation content in FKBP5 gene but with no increased gene expression at baseline. The functionality of this “epigenetic memory” only became evident in a second exposure to GC, when the cells responded sharply with a more robust expression of FKBP5 gene compared to the cells without previous exposure to GC (44). Another in vitro study, using a human fetal hippocampal cell line, confirmed long-lasting DNA methylation changes induced by GC. The cells were treated for 10 days with dexamethasone, during the proliferative and cell differentiation phases of the cell line, followed by 20 days without any treatment. The second exposure to GC resulted in an enhanced gene expression of a subset of GC-target genes (48). Additionally, using an animal model subjected to chronic stress, a distinct gene expression profile was demonstrated in response to acute GC challenge compared to those without chronic stress history. The proposed mechanism was that chronic stress resulted in GC-induced enduring epigenetic changes in target genes, altering the responsiveness to a subsequent GC exposure (49). In general, it seems that the majority of differential methylation regions (DMRs) induced by GC are loss of methylation rather than gain of methylation. In an experimental study, an association between hypomethylation and GC exposure was demonstrated in mice previously exposed to high levels of GC. Further analysis demonstrated that the genes linked with DMR were mostly related to metabolism, the immune system, and neurodevelopment (11). Human studies have also shown that excess of cortisol can induce modifications in DNA methylation. DNA methylation data obtained from whole blood samples from patients with chronic obstructive pulmonary disease (COPD) treated with GC revealed DMR at specific CpG dinucleotides across the genome. These DMR were confirmed by pyrosequencing and annotated to genes, such as SCNN1A, encoding the α subunit of the epithelial sodium channel, GPR97, encoding G protein coupled receptor 97, and LRP3, encoding low-density lipoprotein receptor-related protein 3 (50). Furthermore, it has been proposed that the negative impact of chronic GC exposure on the immune system, which increases the risk of opportunistically infections, may be epigenetically mediated (51). In a clinical study, using whole blood samples, an analysis of genome-wide DNA methylation was performed on patients before and after exposure to GC (51). Long-term GC exposure disrupts, through a persistent modification of the cytosine methylation pattern, the mTORC1 pathway which affects CD4+ T cell biology (51). Taken together, these data clearly show the interplay between GC signaling and methylation and histone modifications processes suggesting that GC interferes in the epigenetic landscape modulating gene expression. It is possible that most of these GC-induced epigenetic events are dynamic and temporary, while others may persist leading to long-lasting disorders. Further research to provide insight into what makes some events reversible is warranted. Epigenetic Changes as a Consequence of Long-Term Glucocorticoid Exposure in Cushing Syndrome The comorbidities associated with CS are associated with increased mortality mainly due to cardiovascular events (52). GC-induced comorbidities in CS may be at least in part epigenetically mediated. Previous study using whole blood methylation profile demonstrated that specific hypomethylated CpG sites induced by GC were associated with Cushing comorbidities, such as hypertension and osteoporosis (46). The study identified a methylator predictor of GC excess which could be used as a biomarker to monitor GC status (46). The long-term exposure to high cortisol levels may be crucial for the persistence of some morbidities in CS through epigenetic changes. Hypercortisolism-induced persistent changes in visceral adipose tissue gene expression through epigenetic modifications was investigated in a translational study (12). This study combined data from patients with active CS and data from an animal model of CS in active and remitted phase. Interestingly, the study demonstrated long-lasting changes in the transcriptome of adipose tissue that were associated with histone modifications induced by GC. Therefore, these epigenetic fingerprints observed even after the resolution of hypercortisolism may elucidate the mechanism of persistent modifications in gene expression in the visceral adipose tissue (12). With regard to the persistence of GC-induced DMR, a genome-wide DNA methylation analysis showed a lower average of DNA methylation in patients in remission of CS compared to controls. Interestingly, the most common biologically relevant affected genes were retinoic acid receptors, thyroid hormone receptors, or hormone/nuclear receptors, important genes related to intracellular pathways and regulators of gene expression (9). In summary, this large body of evidence supports the concept that prolonged GC exposure modulates the epigenetic landscape across the genome by inducing DMR and histone modifications. Some epigenetic modifications are persistent, and this may partially explain the incomplete reversibility of some of CS features following clinical remission. Glucocorticoid-Target Genes in Cushing Syndrome A detailed identification and characterization of GC-target genes may shed light in the understanding of the pathophysiology and treatment response in patients with CS. For instance, the GC regulation of pro-opiomelanocortin (POMC) expression as part of the physiologic GC negative feedback may be impaired in Cushing disease (CD), which is an important mechanism for the maintenance of high GC levels (53). Another example is the interaction between GC and clock genes, which may interfere in the loss of the GC circadian rhythm and may contribute to metabolic disorders in CS (54). Furthermore, the suppressive action of GC on drug targets, such as the somatostatin receptor (subtype 2), may influence the efficacy of first-generation somatostatin receptor ligands in normalizing cortisol levels in CD (55). Here we describe how GCs using epigenetic machinery influence the expression of important target genes and their implications in CS. FKBP5 FK506 binding protein (FKBP5) plays an important role in the regulation of hypothalamic-pituitary-adrenal (HPA) system (56). As part of the GC negative feedback loop, GC binds to hypothalamic and pituitary GR. In the cytoplasm, GR is bound to a multi-protein complex including FKBP5. FKBP5 modulates GR action by decreasing GR binding affinity to GC and by preventing GR translocation from cytoplasm to nucleus (57, 58). In other words, an increase of FKBP5 expression is inversely correlated with GR activity and results in GC resistance leading to an impaired negative feedback regulation in the HPA axis (59). FKBP5 is a GC-responsive gene; its upregulation by GC is part of an intracellular negative short-feedback loop (60). The mechanism by which GC regulates FKBP5 expression was shown to include inhibition of DNA methylation (44). In a model for CS, mice treated with corticosterone for 4 weeks had a reduced level of DNA methylation of FKBP5 in DNA extracted from whole blood, which was strongly correlated in a negative manner with GC concentration. Interestingly, a negative correlation was also observed between the degree of FKBP5 gene methylation measured at 4 weeks of GC exposure and the percentage of mice visceral fat (61). Accordingly, previous studies have provided compelling evidence of decreased methylation in the FKBP5 gene in patients with active CS compared to healthy control (10, 46). Even in patients with CS in remission, previous data have suggested a small decrease in FKBP5 methylation levels compared to healthy controls (9, 10). In an in vitro study, it was demonstrated that, by decreasing DNMT1 expression, GC is able to reduce FKBP5 methylation levels and, therefore, increase its expression (44). Likewise, FKBP5 mRNA is also sensitive to GC exposure. A time-dependent increase in blood FKBP5 mRNA after single-dose prednisone administration has been demonstrated in healthy humans (62). Accordingly, patients with ACTH-dependent CS had higher blood FKBP5 mRNA levels compared with healthy controls, and after a successful surgery, FKBP5 mRNA returned to baseline levels (63). Furthermore, in another study, blood FKBP5 mRNA was inversely correlated with FKBP5 promoter methylation and positively correlated with 24-hour urine free cortisol (UFC) levels in patients with CS (46). Taken together, this fine-tuning of FKBP5 DNA methylation and mRNA according to the level of GC suggests that FKBP5 can be used as a biomarker to infer the magnitude of GC exposure. POMC and Corticotropin-Releasing Hormone The partial resistance of the corticotroph adenoma to GC negative feedback is a hallmark of CD. Indeed, the lack of this inhibitory effect constitutes a method to diagnose CD, that is, with the dexamethasone suppression test. One of the mechanisms related to the insensitivity to GC can be attributed to GR mutations which are, however, rarely found in corticotrophinomas (64). Another mechanism that was uncovered in corticotroph adenomas is an overexpression of the HSP90 chaperone resulting in reduced affinity of GR to its ligand and consequently GR resistance (53, 65). In addition, the loss of protein expression of either Brg1, ATPase component of the SWI/SNF chromatin remodeling complex, or HDAC2 has been linked to GC resistance in about 50% of some adenomas (66). The trans-repression process on POMC transcription achieved by GC involves both the histone deacetylation enzyme and Brg1. One mechanism of corticotropin-releasing hormone (CRH)-induced POMC expression is through an orphan nuclear receptor (NR) related to NGFI-B (Nur77). NGFI-B binds to the NurRE sequence in the promoter region of POMC gene and recruits a co-activator to mediate its transcription. In a tethering mechanism, the GR directly interacts with NGFI-B to form a trans-repression complex, which contains the GR itself, Brg1, the nuclear receptor, and HDAC2; the latter being essential to block the gene expression through chromatin remodeling process (53, 66). In CD, hypercortisolism exerts a negative feedback at CRH secretion from the hypothalamus (67). The mechanism involved in GR-induced suppression of CRH expression is through direct binding to a nGRE in the promoter region of CRH gene and subsequent recruitment of repressor complexes. In a rat hypothalamic cell line, it was demonstrated that Dex-induced CRH repression occurs through coordinated actions of corepressors involving Methyl-CpG-binding protein 2 (MeCP2), HDAC1, and DNA methyltransferase 3B (DNMT3B). Possibly, GR bound to nGRE recruits DNMT3B to the promoter in order to methylate a specific region, subsequently binding MeCP2 on these methylated sites followed by the recruitment of chromatin modify corepressor HDAC1, ultimately resulting in CRH suppression. Another possibility is that 2 independent complexes, one consisting of GR with DNMT3 for the methylation and the other the MeCP2, bound to methylated region, interact with HDAC1 to induce repression (68). Clock Genes The clock system and the HPA axis are interconnected regulatory systems. Cortisol circadian rhythm is modulated by the interaction between a central pacemaker, located in the hypothalamic suprachiasmatic nuclei, and the HPA axis (69). At the molecular level, mediators of the clock system and cortisol also communicate with each other, both acting as transcription factors of many genes to influence cellular functions. In CS, the impact of chronic GC exposure on clock genes expression was recently evaluated using peripheral blood samples from patients with active disease compared with healthy subjects. The circadian rhythm of peripheral clock gene expression (CLOCK, BMAL, PER1-3, and CRY1) was abolished as a result of hypercortisolism, and that may contribute to metabolic disorders observed in Cushing patients (70). Another study, which investigated persistent changes induced by hypercortisolism in visceral adipose tissue, found that the expression of clock genes, such as PER1, remained altered in association with persistent epigenetic changes in both H3K4me3 and H3K27ac induced by hypercortisolism even after the resolution of hypercortisolism (12). This suggests that chronic exposure to GC may induce sustained epigenetic changes that can influence clock genes expression. Nevertheless, further studies are warranted to better elucidate how long-term exposure to GC impacts clock genes expression using the epigenetic machinery. Glucocorticoid Effects on MicroRNAs Along with histone modification and DNA methylation, microRNAs (miRNAs) have emerged as an epigenetic mechanism capable of impacting gene expression without changing DNA sequence (15). Interestingly, miRNA expression itself is also under the influence of epigenetic modifications through promoter methylation like any other protein-encoding genes (71). MicroRNAs are small (about 20-25 nucleotides in length) non-coding RNAs that are important in transcriptional silencing of messenger RNA (mRNA). By partially pairing with mRNA, miRNAs can either induce mRNA degradation or inhibit mRNA translation to protein. MiRNAs regulate the translation of about 50% of the transcriptome, allowing them to play an important role in a wide range of biological functions, such as cell differentiation, proliferation, metabolism, and apoptosis under normal physiological and pathological situations. Some miRNAs can be classified as oncogenes or tumor suppressing genes, and aberrant expression of miRNAs may be implicated in tumor pathogenesis (71-73). Insight into the regulation of miRNA expression is, therefore, crucial for a better understanding of tumor development and other human diseases, including cardiac, metabolic, and neurological disorders (73, 74). There are different regulatory mechanisms involved in miRNA expression, including transcriptional factors such as GR-GC. GC may modulate miRNA expression through direct binding to GRE in the promoter region of the host gene, as observed in hemopoietic tumor cells (75). In addition to transcriptional activation, in vascular smooth muscle cells, Dex treatment induces downregulation of DNMT1 and DNMT3a protein levels and reduces the methylation of miRNA-29c promoter, resulting in an increased expression of miRNA-29c (76). Interestingly, it was demonstrated that the increased expression of miRNA-29 family (miRNA-29a, -29b, and -29c) associates with metabolic dysfunction, such as obesity and insulin resistance, which pertains to CS (77, 78). With regard to metabolic dysfunction, miRNA-379 expression was shown to be upregulated by GC and its overexpression in the liver resulted in elevated levels of serum triglycerides associated with very low-density lipoprotein (VLDL) fraction in mice (79). In obese patients, the level of hepatic miRNA-379 expression was higher compared to nonobese patients and positively correlated with serum cortisol and triglycerides (79). Hence, GC-responsive miRNA may be, at least in part, a mediator to GC-driven metabolic conditions in CS. In pathological conditions, such as seen in CS, prolonged exposure to an elevated cortisol level results in a wide range of comorbidities. It can be hypothesized that the chronic and excessive glucocorticoid levels may induce an aberrant miRNA expression that might impact several cellular processes related to bone and cardiometabolic disorders. A recent study addressed the impact of hypercortisolism on bone miRNA of patients with active CD compared to patients with nonfunctional pituitary adenomas. Significant changes in bone miRNA expression levels were observed, suggesting that the disruption of miRNA may be partially responsible for reduced bone formation and osteoblastogenesis (80). Similarly, altered expression levels of selected miRNAs related to endothelial biology in patients with CS may point to a contribution to a high incidence of cardiovascular disorders in Cushing patients (81). Therefore, dysregulated miRNAs as a consequence of high cortisol levels may underpin the development and progression of comorbidities related to CS. To the best of our knowledge, it is currently not clear whether miRNA dysregulation persists after resolution of hypercortisolism, thus contributing to the persistence of some comorbidities. This hypothesis needs to be further investigated. MicroRNA can also be used as a diagnostic tool in CS. A study was performed to identify circulating miRNA as a biomarker to differentiate patients with CS from patients with suspected CS who had failed diagnostic tests (the control group) (82). It was observed that miRNA182-5p was differentially expressed in the CS cohort compared to the control group; therefore, it may be used as a biomarker (82). However, a large cohort is necessary to validate this finding (82). In corticotroph tumors, downregulation of miRNA 16-1 expression was observed relative to normal pituitary tissue (83). In contrast, the plasma level of miRNA16-5p was found to be significantly higher in CD compared to ectopic Cushing (EAS) and healthy controls (84). This finding suggests that miRNA16-5p may be a biomarker capable to differentiate the 2 forms of ACTH-dependent Cushing (84). Epidrugs and Glucocorticoid Action in Cushing's Syndrome The interest in understanding the epigenetic mechanism of GC action in the context of CS is based on reversibility of epi-marks, such as DNA methylation and histone modifications, using epidrugs (85, 86). The biological characteristics of epigenetic drugs and their target have been extensively explored. Their effectiveness as antitumor drugs have been tested on corticotroph tumors using in vitro studies (87-89). However, a limited number of studies have explored the role of epidrugs as a therapeutic tool in reversing the genomic action of GC in CS, particularly in comorbidities induced by hypercortisolism (90, 91). The use of histone deacetylase inhibitors (HDACi) may reduce the genomic action of GC (90-92). It has been demonstrated that the use of the HDAC inhibitor valproic acid increases the acetylation level of GR, consequently attenuating the genomic action of GC. In an experimental Cushing model in rats, the use of valproic acid decreased expression of genes related to lipogenesis, gluconeogenesis, and ion regulators in the kidney that ultimately reduces hepatic steatosis, hyperglycemia, and hypertension in ACTH-infused rats (90, 91). More studies evaluating the effects of epidrugs influencing the GC actions are warranted to further elucidate the underlying mechanisms and to explore potential treatment modalities to reverse long-lasting consequences of chronic corticoid exposure. Conclusions In physiologic conditions, GC are secreted in pulses following a circadian rhythm pattern, as opposed to a constant, chronic, and high GC exposure in CS. This pathological pattern may account for numerous devastating effects observed in CS (7). Yet, the expressed genome in response to chronic GC exposure may potentially be abnormal, leading to dysregulation in clock genes, among other effects. GC levels may return to a normal circadian pattern in response to a successful treatment, but with incomplete reversibility of some CS features, which may in part be explained by epigenetic changes. The epigenetic machinery is used by GC to induce dynamic changes in chromatin to modulate gene expression. (Fig. 2) It seems that most of chromatin modifications are reversible, but some may persist resulting in long-term epigenetic changes. (Table 1) Table 1. Evidence of interaction between glucocorticoid and epigenetic machinery Epigenetic changes/epigenetic enzymes Action Histone acetylation (HAT) Glucocorticoid receptors (GR) recruit co-regulators, such as CREB binding protein (CBP), which has intrinsic histone acetyltransferase (HAT) activity that modifies the chromatin structure from an inactive to an active state (25, 33, 35). Histone deacetylation (HDAC) GR recruit histone deacetylases (HDACs) to turn chromatin less accessible and suppress gene transcription (25, 35). The trans-repression process on POMC transcription achieved by glucocorticoids (GC) involves the histone deacetylation enzyme (HDAC2). GC mediates the upregulation of HDAC2 in rats exposed to chronic stress (40). Histone demethylase (JMJD3) GC suppress transcription of JMJD3 in endothelial cells treated with TNFα (41). Histone modifications Using ChIP-seq, a study in mice treated for 5 weeks with corticosterone showed higher levels of histone modifications (H3K4me3, H3K27ac) compared to control mice. In mice after a 10-week washout period, persistence of this epigenetic fingerprint was observed, which was associated with long-lasting changes in gene expression (12). DNA methylation (DNMT3B) and histone deacetylation (HDAC1) GC mediates CRH downregulation through DNMT3B to the promoter in order to methylate a specific region and recruitment of chromatin modify corepressor HDAC (68). DNA hypomethylation GC induces downregulation of DNMT1 in AtT20 (mouse corticotroph adenoma cell line) (20). GC induces upregulation of TET enzyme expression which was described in retinal and osteocyte cell line model (42, 43). An experimental study in mice previously exposed to high levels of GC showed differentially methylated regions (DMR) induced by GC treatment, of which the majority was loss of the methylation (11). Reduced DNA methylation in FKBP5 gene was found in patients in active disease and also in remission state of Cushing syndrome (CS) as compared to a healthy control group (10). A genome-wide DNA methylation analysis showed a lower average of DNA methylation in patients in remission of CS compared to controls (9). A study using whole blood methylation profile demonstrated an association between cortisol excess and DNA hypomethylation in patients with CS (46). Open in new tab Further studies are needed to elucidate how chronic exposure to GC leads to incomplete reversibility of CS morbidities via sustained modulation of the epigenetic machinery and possibly other mechanisms. Subsequent identification of therapeutic targets may offer new perspective for treatments, for example, with epidrugs, aiming to reverse hypercortisolism-related comorbidities. Funding The authors received no financial support for this manuscript. Disclosures T.P., R.A.F., and L.J.H. have nothing to declare. Data Availability Data sharing is not applicable to this article, as no datasets were generated or analyzed during the current study. From https://academic.oup.com/jcem/advance-article/doi/10.1210/clinem/dgae151/7633538?searchresult=1
  2. Abstract Cushing’s syndrome is a constellation of features occurring due to high blood cortisol levels. We report a case of a 47-year-old male with a history of recurrent olfactory neuroblastoma (ONB). He presented with bilateral lower limb weakness and anosmia and was found to have Cushing’s syndrome due to high adrenocorticotropic hormone (ACTH) levels from an ectopic source, ONB in this case. Serum cortisol and ACTH levels declined after tumor removal. Introduction Olfactory neuroblastoma (ONB), or esthesioneuroblastoma, is a rare malignancy arising from neuroepithelium in the upper nasal cavity. It represents approximately 2% of all nasal passage tumors, with an incidence of approximately 0.4 per 2.5 million individuals [1]. ONB shares similar histological features with small round blue cell neoplasms of the nose. Ectopic hormone secretion is a very rare feature associated with these tumors. Five-year overall survival is reported to be between 60% and 80% [2,3]. The age distribution is either in the fifth to sixth decade of life [4,5], or in the second and sixth decades [6]. Features of Cushing’s syndrome (moon face, buffalo hump, central obesity hypertension, fragile skin, easy bruising, fatigue, muscle weakness) are due to high blood cortisol levels [7]. It can be either primary (cortisol-secreting adrenal tumor), secondary (adrenocorticotropic hormone (ACTH)-secreting pituitary tumor, also called Cushing disease), or ectopic ACTH secretion (from a non-pituitary source). All three types share similar features [8]. Ectopic ACTH syndrome (EAS) is due to an extra pituitary tumor, producing ACTH. It accounts for 12-17% of Cushing's syndrome cases [9]. Most cases of EAS-producing tumors are in the lungs, mediastinum, neuroendocrine tumors of the gastrointestinal tract, and pheochromocytomas [9]. Ectopic ACTH secretion from an ONB is very rare. As of 2015, only 18 cases were reported in the literature [10]. Here, we report such a case. Case Presentation Our patient is a 47-year-old Bangladeshi male, with a history of recurrent ONB that was resected twice in the past (transsphenoidal resection in 2016 and 2019) with adjuvant radiotherapy, no chemotherapy was given. He also had diabetes mellitus type 1 (poorly controlled) and hypertension. He presented with bilateral lower limb weakness, anosmia, decreased oral intake, loss of taste for one week, and bilateral submandibular swelling that increased in size gradually over the past two years. There was no history of fever, cough, abdominal pain, or exposure to sick contacts. The patient reported past episodes of similar symptoms, but details are unclear. The patient's family history is positive for diabetes mellitus type 1 in both parents. Lab tests in the emergency department showed hypokalemia and hyperglycemia as detailed in Table 1. He was admitted for further workup of the above complaints. Test Patient Results Reference Range Unit Status Hemoglobin 14.7 13-17 g/dL Normal White blood cell (WBC) 17.9 4-10 10*9/L High Neutrophils 15.89 2-7 10*9/L High Lymphocytes 1.07 1-3 10*9/L Normal Sodium 141 136-145 mmol/L Normal Potassium 2.49 3.5-5.1 mmol/L Low (Panic) Chloride 95 98-107 mmol/L Low Glucose 6.52 4.11-5.89 mmol/L Elevated C-reactive protein (CRP) 0.64 Less than 5 mg/L Normal Erythrocyte sedimentation rate (ESR) 2 0-30 mm/h Normal Creatinine 73 62-106 µmol/L Normal Uric acid 197 202.3-416.5 µmol/L Normal Alanine aminotransferase (ALT) 33.2 0-41 U/L Normal Aspartate aminotransferase (AST) 18.6 0-40 U/L Normal International Normalised Ratio (INR) 1.21 0.8-1.2 sec High Prothrombin time (PT) 15.7 12.3-14.7 sec High Lactate dehydrogenase (LDH) 491 135-225 U/L High Thyroid-stimulating hormone (TSH) 0.222 0.27-4.20 mIU/L Low Adrenocorticotropic hormone (ACTH) 106 ≤50 ng/L Elevated Cortisol (after dexamethasone suppression) 1750 Morning hours (6-10 am): 172-497 nmol, Afternoon hours (4-8 pm): 74.1-286 nmol nmol/L Elevated (failure of suppression) 24-hour urine cortisol (after dexamethasone suppression) 5959.1 <120 nmol/24 hrs nmol/24hr Elevated (failure of suppression) Table 1: Results of blood test at the time of hospitalization. Hypokalemia and high values of adrenocorticotropic hormone and cortisol were confirmed. On examination, the patient's vital signs were as follows: blood pressure was 154/77 mmHg, heart rate of 60 beats per minute, respiratory rate was 18 breaths per minute, oxygen saturation of 98% on room air, and a temperature of 36.7°C. The patient had a typical Cushingoid appearance with a moon face, buffalo hump, purple striae on the abdomen, central obesity, and hyperpigmentation of the skin. Submandibular lymph nodes were enlarged bilaterally. The examination of the submandibular lymph nodes showed a firm, fixed mass extending from the angle of the mandible to the submental space on the left side. Neurological examination showed weakness in both legs bilaterally (strength 3/5) and anosmia (checked by orthonasal smell test). The rest of the neurological exam was normal. Laboratory findings revealed (in Table 1) a marked hypokalemia of 2.49 mmol/L and hyperglycemia of 6.52 mmol/L. The serum cortisol level was elevated at 1587 nmol/L. Serum ACTH levels were raised at 106 ng/L (normal value ≤50 ng/L). Moreover, the high-dose dexamethasone suppression test failed to lower the serum ACTH levels and serum and urine cortisol. Serum cortisol level after the suppression test was 1750 nmol/L, while 24-hour urine cortisol after the test was 5959.1 nmol/24hr. Serum ACTH levels after the test also remained high at 100mg/L. This indicated failure of ACTH suppression by high-dose dexamethasone, which points towards ectopic ACTH production. Other blood tests (complete blood count, liver function tests) were insignificant. A computed tomography scan with contrast (CT scan) of the chest, abdomen, and pelvis, with a special focus on the adrenals, was negative for any malignancy or masses. CT scan of the neck showed bilaterally enlarged submandibular lymph nodes and an enlarged right lobe of the thyroid with nodules. Fine needle aspiration (FNA) of the thyroid nodules revealed a benign nature. Magnetic resonance imaging (MRI) of the brain showed a contrast-enhancing soft tissue lesion (18x18x10mm) in the midline olfactory groove area with extension into the frontal dura and superior sagittal sinus, suggesting recurrence of the previous ONB. There was evidence of previous surgery also. The pituitary gland was normal (Figures 1-2). Figure 1: A brain MRI (T1-weighted; without contrast; sagittal plane) shows a soft tissue lesion located in the midline olfactory groove area. Dural surface with extension into anterior frontal dura. MRI: Magnetic resonance imaging Figure 2: A brain MRI (T2-weighted; without contrast; axial plane) shows a soft tissue lesion located in the midline olfactory groove area. MRI: Magnetic resonance imaging Octreotide scintigraphy showed three focal abnormal uptakes in the submandibular cervical nodes. Additionally, there was a moderate abnormal uptake at the midline olfactory groove with bilateral extension (Figure 3). Figure 3: Whole-body octreotide scan (15 mCi 99mTc-Octreotide IV) demonstrates three focal abnormal uptakes: the largest (5.2 x 2.4 cm) in the left submandibular region, and two smaller ones on the right, suggestive of lymph node uptake. Additional abnormal uptake was seen along the midline of the olfactory groove region with bilateral extension. No other significant abnormal uptake was identified. On microscopic examination, an excisional biopsy after the transcranial resection surgery of the frontal skull base tumor showed nests and lobules of round to oval cells with clear cytoplasm, separated by vascular and hyalinized fibrous stroma (Figures 4A-4B). Tumor cells show mild to moderate nuclear pleomorphism, and fine chromatin (Figure 4C). A fibrillary neural matrix is also present. Some mitotic figures can be seen. Immunohistochemical stains revealed positive staining for synaptophysin (Figure 4D) and chromogranin (Figure 4E). Stains for CK (AE1/AE3), CD45, Desmin, and Myogenin are negative. Immunostaining for ACTH was focally positive (Figure 4F), while the specimen of the cervical lymph nodes showed the same staining, indicating metastases. The cytomorphologic and immunophenotypic features observed are consistent with a Hyams grade II ONB, with ectopic ACTH production. Figure 4: Histopathological and immunohistochemical findings of olfactory neuroblastoma. A (100x magnification) and B (200x magnification) - hematoxylin and eosin (H-E) staining shows cellular nests of round blue cells separated by hyalinized stroma. C (400x magnification) - nuclei show mild to moderate pleomorphism with fine chromatin. D (100x magnification) - an immunohistochemical stain for synaptophysin shows diffuse, strong cytoplasmic positivity within tumor cells. E (200x magnification) - tumor cells are positive for chromogranin. F (400x magnification) - ACTH cytoplasmic expression in tumor cells. ACTH: adrenocorticotropic hormone For his resistant hypokalemia, he had to be given intravenous (IV) and oral potassium chloride (KCL) repeatedly. The patient underwent transcranial resection of the frontal skull base tumor. The patient received cefazolin for seven days, and hydrocortisone for four days. After transcranial resection, his cortisol level decreased to 700 nmol/L. Furthermore, ACTH dropped, and serum potassium also normalized. Subsequently, the patient was transferred to the intensive care unit (ICU) for meticulous monitoring and continued care. In the ICU, the patient developed one episode of a generalized tonic-clonic seizure, which aborted spontaneously, and the patient received phenytoin and levetiracetam to prevent other episodes. A right-sided internal jugular vein and left transverse sinus thrombosis were also developed and treated with enoxaparin sodium. Following surgery, his low potassium levels improved, resulting in an improvement in his limb weakness. His other symptoms also gradually improved after surgery. Three weeks following the primary tumor resection, he underwent bilateral neck dissection with right hemithyroidectomy, for removal of the metastases. The patient opted out of chemotherapy and planned for an international transfer to his home country for further management. Other treatments that he received during hospitalization were ceftriaxone, azithromycin, and Augmentin®. Insulin was used to manage his diabetes, perindopril to regulate his blood pressure, and spironolactone to increase potassium retention. Omeprazole was administered to prevent GI bleeding and heartburn/gastroesophageal reflux disease relief after discharge. Discussion ONB was first described in 1924, and it is a rare neuroectodermal tumor that accounts for 2% of tumors affecting the nasal cavity [11]. Even though ONB has a good survival rate, long-term follow-up is necessary due to the disease's high recurrence rate [2]. ONB recurrence has been approximated to range between 30% and 60% after successful treatment of the primary tumor [12]. Recurrent disease is usually locoregional and tends to have a long interval to relapse with a mean of six years [12]. The first reported case of ectopic ACTH syndrome caused by ONB was in 1987 by M Reznik et al., who reported a 48-year-old woman with ONB who developed a Cushing-like syndrome 28 months before her death [13]. The occurrence of Cushing’s syndrome due to ectopic ACTH can occur either in the initial tumor or even years later during its course or after recurrence [3,6,9,14]. Similar to the case of Abe et al. [3], our patient also presented with muscle weakness due to hypokalemia, which is a feature of Cushing’s syndrome. Hypokalemia is present at diagnosis in 64% to 86% of cases of EAS and is resistant to treatment [9,14], as seen in our case. In our patient, the exact time of development of Cushing’s syndrome could not be ascertained due to the non-availability of previous records. However, according to the patient, he started developing abdominal obesity, pigmentation, and buffalo hump in 2021 about two years after his second surgery for ONB. The distinction between pituitary ACTH and ectopic ACTH involves utilizing CT/MRI of the pituitary, corticotropin-releasing hormone (CRH) stimulation test with petrosal sinus blood sampling, high dose dexamethasone suppression test, and checking serum K+ (more commonly low in ectopic ACTH) [2,15,16]. In our case, a CRH stimulation test was not available but CT/MRI brain, dexamethasone test, low serum potassium, plus the postoperative fall in cortisol levels, all pointed towards an ectopic ACTH source. Conclusions In conclusion, this case highlights the rare association between ONB and ectopic ACTH syndrome, which developed after tumor recurrence. The patient's unique presentation of bilateral lower limb weakness and hypokalemia can cause diagnostic challenges, emphasizing the need for comprehensive diagnostic measures. Surgical intervention proved crucial, with postoperative cortisol values becoming normal, highlighting the efficacy of this approach. The occurrence of ectopic ACTH production in ONB patients, although very rare, is emphasized, so that healthcare professionals who deal with these tumors are aware of this complication. This report contributes valuable insights shedding light on the unique ONB manifestation causing ectopic ACTH syndrome. The ongoing monitoring of the patient's clinical features will further enrich the understanding of the course of this uncommon phenomenon in the medical literature. References Thompson LD: Olfactory neuroblastoma. Head Neck Pathol. 2009, 3:252-9. 10.1007/s12105-009-0125-2 Abdelmeguid AS: Olfactory neuroblastoma. Curr Oncol Rep. 2018, 20:7. 10.1007/s11912-018-0661-6 Abe H, Suwanai H, Kambara N, et al.: A rare case of ectopic adrenocorticotropic hormone syndrome with recurrent olfactory neuroblastoma. Intern Med. 2021, 60:105-9. 10.2169/internalmedicine.2897-19 Yin Z, Wang Y, Wu Y, et al.: Age distribution and age-related outcomes of olfactory neuroblastoma: a population-based analysis. Cancer Manag Res. 2018, 10:1359-64. 10.2147/CMAR.S151945 Platek ME, Merzianu M, Mashtare TL, Popat SR, Rigual NR, Warren GW, Singh AK: Improved survival following surgery and radiation therapy for olfactory neuroblastoma: analysis of the SEER database. Radiat Oncol. 2011, 6:41. 10.1186/1748-717X-6-41 Elkon D, Hightower SI, Lim ML, Cantrell RW, Constable WC: Esthesioneuroblastoma. Cancer. 1979, 44:3-1087. 10.1002/1097-0142(197909)44:3<1087::aid-cncr2820440343>3.0.co;2-a Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM: The diagnosis of Cushing's syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2008, 93:1526-40. 10.1210/jc.2008-0125 Chabre O: Cushing syndrome: physiopathology, etiology and principles of therapy [Article in French]. Presse Med. 2014, 43:376-92. 10.1016/j.lpm.2014.02.001 Isidori AM, Lenzi A: Ectopic ACTH syndrome. Arq Bras Endocrinol Metabol. 2007, 51:1217-25. 10.1590/s0004-27302007000800007 Kunc M, Gabrych A, Czapiewski P, Sworczak K: Paraneoplastic syndromes in olfactory neuroblastoma. Contemp Oncol (Pozn). 2015, 19:6-16. 10.5114/wo.2015.46283 Finlay JB, Abi Hachem R, Jang DW, Osazuwa-Peters N, Goldstein BJ: Deconstructing olfactory epithelium developmental pathways in olfactory neuroblastoma. Cancer Res Commun. 2023, 3:980-90. 10.1158/2767-9764.CRC-23-0013 Ni G, Pinheiro-Neto CD, Iyoha E, et al.: Recurrent esthesioneuroblastoma: long-term outcomes of salvage therapy. Cancers (Basel). 2023, 15:1506. 10.3390/cancers15051506 Reznik M, Melon J, Lambricht M, Kaschten B, Beckers A: Neuroendocrine tumor of the nasal cavity (esthesioneuroblastoma). Apropos of a case with paraneoplastic Cushing's syndrome [Article in French]. Ann Pathol. 1987, 7:137-42. Kadoya M, Kurajoh M, Miyoshi A, et al.: Ectopic adrenocorticotropic hormone syndrome associated with olfactory neuroblastoma: acquirement of adrenocorticotropic hormone expression during disease course as shown by serial immunohistochemistry examinations. J Int Med Res. 2018, 46:4760-8. 10.1177/0300060517754026 Clotman K, Twickler MTB, Dirinck E, et al.: An endocrine picture in disguise: a progressive olfactory neuroblastoma complicated with ectopic Cushing syndrome. AACE Clin Case Rep. 2017, 3:278-83. 10.4158/EP161729.CR Chung YS, Na M, Ku CR, Kim SH, Kim EH: Adrenocorticotropic hormone-secreting esthesioneuroblastoma with ectopic Cushing’s syndrome. Yonsei Med J. 2020, 61:257-61. 10.3349/ymj.2020.61.3.257 From https://www.cureus.com/articles/226080-olfactory-neuroblastoma-causing-cushings-syndrome-due-to-the-ectopic-adrenocorticotropic-hormone-acth-secretion-a-case-report?score_article=true#!/
  3. Lydia, a 28-year-old Florida resident, wife, and mother of two, first noticed a drastic increase in her weight around Easter of 2022 in a family photo. She was shocked by how different she looked despite not making any drastic changes to her diet. “While those I loved would say ‘you look beautiful’, to me I looked like a completely different person,” recalled Lydia. When Lydia asked her mother, Jeanne, if she had noticed her weight gain, her mother observed that some days Lydia’s face looked swollen. They both recognized that this was not normal, and decided, like many pituitary patients, to make an appointment with a primary care provider. “I remember her saying to me ‘something is wrong with me’ and ‘something is not right’”, recalled Jeanne. Lydia’s weight gain was most noticeable in her face and around her abdomen. “She was exercising all the time and trying to watch what she ate and cut down on sugars,” said Jeanne. “But she kept putting on more weight. We knew something was not right.” Lydia scheduled the first of what would be many doctor appointments hoping for answers. Her primary care provider recognized that her rapid weight gain was abnormal and ordered standard blood work. When that blood work came back normal, her doctor referred her to an endocrinologist and to her OBGYN. In addition to her weight gain, Lydia had begun developing other symptoms including excessive sweating day and night, severe acne, hair loss, hair gain on her face, insomnia, thin skin, and brittle nails. “The worst symptom was the constant feeling of fight or flight,” recalled Lydia. “I always felt on edge and was letting things bother me.” Lydia would later learn that this feeling was caused by the drastic increase of cortisol in her body. When Lydia first met with her OBGYN to address her weight gain and the overall feeling that something was wrong with her body, her concerns were quickly dismissed. “He told me ‘You’re almost 30 and you’ve had two kids, no wonder you feel the way that you do,’” said Lydia. “He blew me off and told me that I needed more diet and exercise. He didn’t order other tests.” Figure illustrates the drastic physical changes and symptoms caused by a pituitary tumor and Cushing’s disease. (Medical illustration by Mark Schornak, MS, CMI) A couple of months later, Lydia went to see an endocrinologist. Despite watching her calories and exercising almost every day of the week, she had gained more weight and felt more miserable. When her labs came back, Lydia’s cortisol levels were so high that the endocrinologist thought there had been a lab error. A 24-hour urine test confirmed that Lydia’s cortisol levels were off the charts. “I was in full panic mode at this point,” said Lydia. Lydia could not get back in to see her endocrinologist in a timely manner, so she ended up back at her primary care provider’s office. Her primary care provider suggested that it could be a tumor on her adrenal glands and that it was probably not in her brain since she was not experiencing headaches. A CT scan of the adrenal glands came back clean. “I remember telling my primary care doctor ‘I just don’t feel normal’”, recalls Lydia. “His response was ‘everyone’s normal is different’ and I told him ‘I’m not normal for me.’” At this point, Lydia was desperate for answers. “All these doctors were telling me it could be in my head or because I was almost 30,” said Lydia. “I kept getting shut down. I told friends and family that there was something seriously wrong with me and no one was believing me.” Finally, a friend sent Lydia information on another endocrinologist in Florida. “He was the first doctor to care about me,” said Lydia. “He said, ‘I’m so sorry you’ve been treated like this. Everyone you have seen before me is an idiot.’” More specific bloodwork and an MRI confirmed that Lydia had a macroadenoma, a benign tumor in the pituitary gland, and Cushing’s disease. After the diagnosis, Lydia was told that she would need to have the tumor removed. “He told me, ‘Find where you want to go and I’ll refer you,’” said Lydia. Lydia and her mother Jeanne began searching online for the right pituitary tumor surgeon. “Once I realized how serious it was, we started researching different doctors,” recalled Jeanne. Both Lydia and Jeanne spent time researching different doctors, but could not find a doctor that had experience treating Cushing’s disease. “We researched all kinds of surgeons to find the best one,” said Jeanne. “Then we found Dr. Oyesiku. He understood Cushing’s disease. That was important to me.” Jeanne is the one who found world-renowned pituitary tumor surgeon, Dr. Nelson Oyesiku. “I called him and said, ‘I have a 28-year-old daughter with a pituitary tumor and Cushing’s disease and I need you to operate on her,’” said Jeanne. Dr. Oyesiku has performed over 4,000 pituitary tumor operations and is currently the Chair of the Department of Neurosurgery at UNC Health. “Cushing’s is a rare disease so not many surgeons have a lot of experience with the various technical nuances required to achieve a high likelihood of cure and reduce the incidence of re-operations and complications,” said Dr. Oyesiku. Since Lydia lives in Florida, her initial consultation with Dr. Oyesiku was over Zoom. “I Zoomed with another local neurosurgeon and I was going back and forth,” said Lydia. “Dr. Oyesiku told me that he looks at the whole picture and what the tumor is doing to you. He said that he wanted to get the tumor out and then cure the Cushing’s disease.” Jeanne was also with her daughter during the initial Zoom appointment with Dr. Oyesiku. “I couldn’t find anyone else that had that background knowledge for Cushing’s disease,” said Jeanne. Dr. Oyesiku ordered more labs. “He told me ‘I want to measure twice and cut once,’” recalled Lydia. “That phrase is something my dad always said growing up and that felt like fate. So that made my decision for me and made me want to see him.” After her initial consultation with Dr. Oyesiku, both Lydia and her mother felt confident that they had found the right surgeon. Lydia met with Dr.Oyesiku in December of 2022, then had her surgery on January 23, 2023. “I called UNC and made sure that I could go in with her and stay while she was recovering,” said Jeanne. “We had contacted a different hospital early on, and I would have had to drop her off and not see her until after her surgery and only during visiting hours.” Patient coordinator David Baker, who also played an important role in Lydia’s care, helped Lydia and Jeanne find a local hotel for them to stay in before surgery at a discounted rate. After surgery, UNC Health endocrinologist Dr. Atil Kargi spoke with Lydia and her mom to help them understand the severity of Cushing’s disease and the importance of monitoring Lydia closely. “Dr. Kargi and David Baker really helped us to truly understand Cushing’s disease,” said Jeanne. Jeanne was impressed with the level of patient care that Lydia experienced during her surgery at UNC Health. “Lydia had her own nurse that would text me or call me to let me know how things were progressing.” Jeanne said. Jeanne explained that the same nurse was with her daughter going into the surgery and when she woke up after the surgery. She was also able to stay with Lydia in the hospital while she recovered from the surgery. “UNC was such an uplifting place. All these residents, they all love what they’re doing,” said Jeanne. Lydia stayed in the hospital for six days so Dr. Oyesiku and the endocrine team could monitor her levels. “I was in the normal range, and then I started to tank,” said Lydia. “I had read that a lot of patients are sent home right after surgery. If they would have sent me, I would have been adrenally insufficient.” Lydia also expressed gratitude for ENT surgeon, Dr. Brian Thorp. “During my surgery, Dr. Thorp also repaired my deviated septum,” said Lydia. “Even after surgery when I was home miles away in Florida, he was always available to me. I appreciate Dr. Oyesiku and everyone at UNC,” said Lydia. “I can’t imagine going anywhere else for this. Dr. Oyesiku truly saved my life.” After her discharge, Jeanne drove Lydia back to Florida. “Dr. Oyesiku followed-up after surgery with the Cushing’s disease treatment,” said Jeanne. “Our local endocrinologist could not believe how fast she recovered.” Jeanne also noted that she was always able to get ahold of Dr. Oyesiku, Dr. Thorp, or David Baker to answer her questions. “You feel like you’re their only patient,” said Jeanne. “We are 8-9 hours away, and it didn’t feel like it.” After Lydia weaned off of her medication, she started to lose weight, her face changed, and her body started to feel “normal” again. “My biggest symptom that I am thankful went away was my literally going crazy feeling,” said Lydia. “I am very thankful that I was able to catch it early enough so that this awful disease didn’t leave me with any lifelong complications.” Lydia, like many pituitary tumor patients, still has lingering feelings of anxiety and frustration with the long road from initial symptoms to diagnosis. It takes the average pituitary tumor patient 5-8 years to be properly diagnosed. Lydia and her mother were extremely proactive and still spent 18 months looking for answers. Lydia went to her primary care provider, her OB, a second OB, and two endocrinologists before she had a proper diagnosis. “Cushing’s disease can mimic many other vastly common medical disorders and is often misdiagnosed or mistaken for something else such as diabetes, hypertension, obesity, infertility, depression, or autoimmune disorders,” said Dr. Oyesiku. “Making the diagnosis requires expert clinical acumen supported by sophisticated medical tests, and many of these tests have to be repeated to confirm the diagnosis.” Because Cushing’s disease is so rare, many of the providers that initially saw Lydia dismissed it. After her surgery, Lydia returned to her OB office in Florida for her annual exam and was seen by the OB that told her that her symptoms were “all in her head”. “I told him, ‘Remember that you blew me off? I had a brain tumor that caused Cushing’s disease,’” said Lydia. “He told me that in all his years practicing, he had never had a patient with an endocrine disorder caused by a pituitary tumor.” Lydia’s story and other pituitary tumor patient stories serve as a reminder that while Cushing’s disease is rare, it is worth ruling out when a patient complains of these symptoms. “Part of the problem is that people just do not have access to good doctors,” said Jeanne. “If we had not had that endocrinologist, I don’t know how much longer it would have taken. It makes me sad that other women and even men can have it for so long because they cannot figure out what is going on.” Both Jeanne and Lydia are thankful that the surgery was a success, but the symptoms and long road to a diagnosis left Lydia with a few emotional scars. “I’m fine and healthy on paper, but still battling the mental aspects and the toll it took on me,” said Lydia. “Sometimes I feel resentful because it took away a year and a half of my life. I feel very blessed to be on the other side of this disease, but I’m ready to not be a patient anymore.” From https://www.med.unc.edu/neurosurgery/i-dont-feel-normal-the-diagnosis-of-a-pituitary-tumor-cushings-disease/?fbclid=IwAR1I12ND084Ato5lloDalTEcIFycV5HpLiR7S1brNxr7Lux1BZ6g_vySHOA
  4. In this study, we will investigate the possible side effects of psoriasis patients using long-term topical corticosteroids (TCS) such as adrenal insufficiency, Cushing’s Syndrome (CS) and osteoporosis and determine how these side effects develop. Forty-nine patients were included in the study. The patients were divided into two groups based on the potency of the topical steroid they took and the patients’ ACTH, cortisol and bone densitometer values were evaluated. There was no significant difference between the two groups regarding the development of surrenal insufficiency, CS and osteoporosis. One patient in group 1 and 4 patients in group 2 were evaluated as iatrogenic CS. ACTH stimulation tests of these patients in group 2 showed consistent results with adrenal insufficiency, while no adrenal insufficiency was detected in the patient in Group 1. Patients who used more than 50g of superpotent topical steroids per week compared to patients who used 50g of superpotent topical steroids per week. It was identified that patients who used more than 50g of superpotent topical steroids had significantly lower cortisol levels, with a negatively significant correlation between cortisol level and the amount of topical steroid use ( < .01).Osteoporosis was detected in 3 patients in group 1 and 8 patients in Group 2. Because of the low number of patients between two groups, statistical analysis could not be performed to determine the risk factors. Our study is the first study that we know of that investigated these three side effects. We have shown that the development of CS, adrenal insufficiency and osteoporosis in patients who use topical steroids for a long time depends on the weekly TCS dosage and the risk increases when it exceeds the threshold of 50 grams per week. therefore, our recommendation would be to avoid long-term use of superpotent steroids and to choose from the medium-potent group if it is to be used. ABOUT THE CONTRIBUTORS Betul Erdem Department of Dermatology, Van Training and Research Hospital, Van, Turkey. Muzeyyen Gonul Department of Dermatology, Ministry of Health, Ankara Etlik City Hospital, Ankara, Turkey. Ilknur Ozturk Unsal Department of Endocrine and Metabolic Disease, Ministry of Health, Ankara Etlik City Hospital, Ankara, Turkey. Seyda Ozdemir Sahingoz Department of Biochemistry, Ministry of Health, Ankara Etlik City Hospital, Ankara, Turkey. From https://www.physiciansweekly.com/evaluation-of-psoriasis-patients-with-long-term-topical-corticosteroids-for-their-risk-of-developing-adrenal-insufficiency-cushings-syndrome-and-osteoporosis/
  5. Answered by Dr. Howard E. Lewine M.D. Chief Medical Editor, Harvard Health Publishing · 40 years of experience · USA Cushing’s syndrome refers to an excess amount of cortisol in the body. This happens most commonly when a person needs to take a high dose of a corticosteroid like prednisone for an extended period of time. Much less commonly, a hormonal problem arising from either the pituitary gland in the brain or the adrenal gland in the abdomen leads to excess cortisol production. Because these situations can be corrected, life expectancy will likely not be directly related to the Cushing’s syndrome itself. Answered by Dr. Shobha S Reddy MBBS, Masters in Diabetology, General Practitioner & Diabetologist · 15 years of experience · India Cushing's syndrome is a disorder in which cortisol hormone (the stress hormone that helps the body in stress) levels in the blood are excess (maybe due to endogenous or exogenous causes). This hormone helps in maintaining blood pressure, blood sugar, reduce inflammation. This hormone is secreted by the adrenal glands in our body. Complications of Cushing's syndrome include Hypertension, DM, infection, Bone fracture, mood swings, memory loss. If left untreated then life expectancy would be around 5 years. Answered by Dr. Sharath Chandra MBBS Spl in ENT, Head Neck Surgery from AIIM · 8 years of experience · India Cushing's syndrome is the condition where the adrenal glands in our body produce excessive cortisol hormones. Symptoms like 1) weight loss. 2)purple striae. 3)Acne, fatigue. Life expectancy in various studies indicates the mean survival would not be more than 4. 5 years in untreated Cushing's syndrome. Answered by Dr. Mohan P. Abraham M.D., FAAFP (Family Physician) · 40 years of experience · USA The life expectancy is very normal when treated, but uncontrolled it may be 4 - 5 years. Disclaimer: This is for information purpose only, and should not be considered as a substitute for medical expertise. These are opinions from an external panel of individual doctors, and not to be considered as opinion of Microsoft. Please seek professional help regarding any health conditions or concerns. From https://www.msn.com/en-au/health/medical/advice-from-harvard-health-publishing-and-3-more-doctors-what-is-the-life-expectancy-of-someone-with-cushing-s-syndrome/ar-AA1m2Fdw
  6. Dr. Theodore Friedman (the Wiz) will be giving a webinar on Optimal replacement for Hypopituitarism and Sheehan’s: Oxytocin, testosterone, growth hormone, stimulants and beyond Learn what most Endocrinologists don’t know about but will improve your quality of life Topics to be discussed include: • Oxytocin-the love hormone • Testosterone, not just for men • Stimulants to treat pituitary apathy • Growth hormone, not just for kids • Thyroid optimization • Cortisol, the right and wrong way to give • Learn about the common medicine you should never take if on growth hormone Wednesday • December 6th• 6 PM PST Via Zoom Click here to join the meeting or https://us02web.zoom.us/j/4209687343?pwd=amw4UzJLRDhBRXk1cS9ITU02V1pEQT09&omn=84521530646 OR +16699006833,,4209687343#,,,,*111116# Slides will be available before the webinar and recording after the meeting at slides or on Dr. Friedman’s YouTube channel OR Join on Facebook Live https://www.facebook.com/goodhormonehealth at 6 PM PST Meeting ID: 420 968 7343 Passcode: 111116 Your phone/computer will be muted on entry. There will be plenty of time for questions using the chat button. For more information, email us at mail@goodhormonehealth.com
  7. Abstract Cushing’s syndrome is a condition leading to overproducing of cortisol by the adrenal glands. If the pituitary gland overproduces cortisol, it is called Cushing’s disease. Cushing’s syndrome and even Cushing’s disease during and after pregnancy are rare events. There is not enough literature and guidance for managing and treating these patients. The diagnosis of Cushing’s syndrome in pregnancy is often delayed because the symptoms overlap. We presented a thin 31-year-old woman, admitted 2 months after a normal-term delivery, with an atypical presentation of Cushing’s disease, unusual clinical features, and a challenging clinical course. She had no clinical discriminatory features of Cushing’s syndrome. Given that the patient only presented with psychosis and proximal myopathy and had an uncomplicated pregnancy, our case was considered unusual. The patients also had hyperpigmentation and severe muscle weakness which are among the less common presentations of Cushing’s syndrome. Our findings suggest that an early diagnosis of Cushing’s disease is important in pregnancy period for its prevalent fetal and maternal complications, and it should be treated early to optimize fetal and maternal outcomes as there is an increasing trend toward live births in treated participants. Introduction Cushing’s syndrome is a condition that originates from excessive production of glucocorticoids. The condition is most common in women of childbearing age and is characterized by altered distribution of the adipose tissue to the central and upper regions of the trunk (central obesity and buffalo hump), face (moon face), capillary wall integrity (easy bruising), hyperglycemia, hypertension, mental status changes and psychiatric symptoms, muscle weakness, signs associated with hyperandrogenism (acne and hirsutism), and violaceous striae among other signs. Hypercortisolism and hyperandrogenism suppress the production of the pituitary gonadotropins, which in turn leads to menstrual irregularities and infertility.1-3 Moreover, the main common cause of developing Cushing’s syndrome is the use of exogenic steroid.3 Cushing’s disease is a form of Cushing’s syndrome with overproduction of adrenocorticotropic hormone (ACTH) due to pituitary adenoma. The diagnosis is made using clinical features and paraclinical tests including urinary free cortisol (UFC), serum ACTH, dexamethasone suppression tests (DSTs), pituitary magnetic resonance imaging (MRI), and sometimes by inferior petrosal sinus sampling (IPSS).4 Although women with Cushing’s disease are less likely to become pregnant, timely diagnosis and appropriate management are especially important during possible pregnancy, preventing neonatal and maternal complications and death. The diagnosis is challenging due to the overlap of the disease symptoms with the changes associated with a normal pregnancy. Moreover, the hormonal milieu during pregnancy has recently been proposed as a potential trigger for Cushing’s disease in some cases; hence, the term “pregnancy-associated Cushing’s disease” has been used for the disease in the recent literature. In this study, we presented a thin 31-year-old woman who was referred to our clinic 2 months after a normal delivery, with an atypical presentation of Cushing’s disease, unusual clinical features, and a challenging clinical course. Case Presentation Our patient was a 31-year-old woman who presented 2 months after the delivery of her second child. She had a history of type 2 diabetes mellitus and hypertension in the past 2 years prior to her presentation. She had been admitted to another center following an episode of falling and muscle weakness. Two weeks later, she was admitted to our center with an impression of pulmonary thromboembolism due to tachypnea, tachycardia, and dyspnea. During follow-up, she was found to have leukocytosis, hyperglycemia (random blood sugar: 415 mg/d; normal level: up to 180 mg/dL) and hypokalemic metabolic alkalosis (PH: 7.5, HCO3 [bicarbonate]: 44.7 mEq/L, paO2 [partial pressure of oxygen]: 73 mm Hg, pCO2: 51.7 mm Hg, potassium: 2.7 mEq/L [normal range: 3.5-5.1 mEq/L]), which was refractory to the treatment; therefore, an endocrinology consultation was first requested. On physical examination, the patient was agitated, confused, and psychotic. Her vital signs were: blood pressure 155/100 mm Hg, heart rate: 130 bpm, and respiratory rate: 22 bpm, temperature: 39°C. As it has shown in Figure 1A, her face is not typical for moon face of Cushing’s syndrome, but facial hirsutism (Figure 1A) and generalized hyperpigmentation is obvious (Figure 1A-C). She was a thin lady and had a normal weight and distribution of adiposity (Body Mass Index [BMI] = 16.4 kg/m2; weight: 40 kg, and height: 156 cm). Aside from thinness of skin, she did not have the cutaneous features of Cushing’s syndrome (e.g. purpura, acne, and violaceous striae) and did not have supraclavicular and dorsocervical fat pad (buffalo hump), or plethora. In other words, she had no clinical discriminatory features of Cushing’s syndrome despite the high levels of cortisol, as confirmed by severely elevated UFC (5000 μg/24 h and 8000 μg/24 h; normal level: 4-40 μg/24 h). In addition, as will be mentioned later, the patient had axonal neuropathy which is a very rare finding in Cushing’s syndrome. Figure 1. Clinical finding of our case with Cushing’s disease. (A) Hirsutism, (B) muscle atrophy seen in proximal portion of lower limbs, and (C) hyperpigmentation specially on the skin of the abdominal region. OPEN IN VIEWER She had a markedly diminished proximal muscle force of 1 out of 5 across all extremities; the rest of the physical examinations revealed no significant abnormalities (Figure 1B). On the contrary, based on her muscle weakness, hirsutism, psychosis and hyperpigmentation and refractory hypokalemic alkalosis, hyperglycemia, and hypertension, Cushing’s syndrome was suspected; therefore, 24-hour UFC level was checked that the results showed a severely elevated urinary cortisol (5000 μg/24 h and 8000 μg/24 h; normal level: 4-40 μg/24 h). Serum ACTH level was also inappropriately elevated (45 pg/mL; normal range: 10-60 pg/mL). High-dose dexamethasone failed to suppress plasma cortisol level and 24-hour urine cortisol level. A subsequent pituitary MRI showed an 8-mm pituitary mass, making a diagnosis of Cushing’s disease more probable. Meanwhile, the patient was suffering from severe muscle weakness that did not improve after the correction of hypokalemia. Then, a neurology consultation was requested. The neurology team evaluated laboratory data as well as EMG (Electromyography) and NCV (Nerve Conduction Velocity) of the patient, and based on their findings, “axonal neuropathy” was diagnosed for her weakness; so they ruled out the other neuromuscular diseases. A 5-day course of intravenous immunoglobulin (IVIG) was started for her neuropathy; however, the treatment did not improve her symptoms and the patient developed fungal sepsis and septic shock. Therefore, she was processed with broad-spectrum antibiotics and antifungal agents and recovered from the infection. Mitotane was started for the patient before definitive surgical treatment to suppress hormonal production due to her poor general condition. Despite the 8-mm size of the pituitary mass which is likely to be a source of ACTH, our patient was underweight and showed the atypical clinical presentation of Cushing’s disease, making us suspect an ectopic source for the ACTH. Therefore, a Gallium dotatate scan was performed to find any probable ectopic sources; however, the results were unremarkable. The patient underwent Trans-Sphenoidal Surgery (TSS) to resect the pituitary adenoma because it was not possible to perform IPSS in our center. Finally, the patient’s condition including electrolyte imbalance, muscle weakness, blood pressure, and hyperglycemia started to improve significantly. The pathologist confirmed the diagnosis of a corticotropic adenoma. Nevertheless, the patient suddenly died while having her meal a week after her surgery; most likely due to a thromboembolic event causing a cardiac accident. Discussion Our patient was significantly different from other patients with Cushing’s disease because of her atypical phenotype. She was unexpectedly thin and had psychosis, hyperpigmentation, proximal myopathy, axonal neuropathy and no clinical discriminatory features of Cushing’s syndrome such as central adiposity, dorsocervical or supraclavicular fat pad, plethora or striae. She had also a history of type 2 diabetes and hypertension 2 years before her admission. The patient was diagnosed with Cushing’s later. From what was presented, the patient did not know she had Cushing’s until after her delivery and despite the highly elevated UFC, and she completed a normal-term delivery. Given that she only presented with psychosis and proximal myopathy, her pregnancy was considered unusual. Her clinical features such as hyperpigmentation and severe muscle weakness are among less common presentations.5 11β-hydroxysteroid dehydrogenase type 1 (11-βHSD1) is an enzyme responsible for converting cortisone (inactive glucocorticoid) into cortisol (active). It is speculated that this enzyme has a role in obesity (Figure 2).6,7 Figure 2. The enzymatic actions of 11β-hydroxysteroid dehydrogenase on its substrate interconverting inactive and active glucocorticoid. OPEN IN VIEWER In a case reported by Tomlinson, a 20-year-old female was diagnosed with Cushing’s disease despite not having the classical features of the disease. It has been suggested that the mechanism is a partial defect in 11β-HSD1 activity and concomitant increase in cortisol clearance rate. Thus, the patient did not have a classic phenotype; the defect in the conversion of cortisone to cortisol rises cortisol clearance and protects the patient from the effects of cortisol excess. This observation may help explain individual susceptibility to the side effects of glucocorticoids.6 Further studies of Tomlinson et al showed that a deficit in the function of (and not a mutation related to) 11β-HSD2 might have been responsible for the absence of typical Cushing’s symptoms. 11-HSD2 keeps safe the mineralocorticoid receptor from excess cortisol. Mutation in the HSD11B2 gene explains an inherited form of hypertension, apparent mineralocorticoid excess syndrome, in which Cushing’s disease results in cortisol-mediated mineralocorticoid excess affecting the kidney and leads to both hypokalemia and hypertension.8 It is frequent in Cushing’s syndrome that the patients usually have no mineralocorticoid hypertension; however, it is still proposed that a defect in 11β-HSD1 can be responsible for the presence of mineralocorticoid hypertension in a subgroup of patients. In fact, 11β-HSD1 is expressed in several tissues like the liver, kidneys, placenta, fatty tissues and gonads,9 meaning that this enzyme may potentially affect the results of cortisol excess in Cushing’s syndrome/disease. Abnormality in the function of this enzyme could explain the absence of the symptoms like central obesity, easy bruising, and typical striae during Cushing’s disease. Several factors affect the action of glucocorticoids. In this regard, the impact of the different types and levels of impairment in glucocorticoid receptors have been highlighted in some studies, as it can lead to different levels of response to glucocorticoids10 as well as a variety in the symptoms observed in Cushing’s disease. The predominant reaction of the NADP(H)-dependent enzyme 11-Tukey’s honestly significant difference (HSD)1 happens through the catalysis of the conversion of inactive cortisol into receptor-active cortisol. The reverse reaction is mediated through the unidirectional NAD-dependent 11-HSD type 2 (Figure 2).11 In another case reported by Ved V. Gossein, a 41-year-old female was evaluated for hirsutism and irregular menstrual cycles. Her BMI was 22.6 kg/m2. The patient had no signs or symptoms of overnight recurrent Cushing’s syndrome, the 48-hour DST failed to suppress cortisol levels, and 24-hour urinary cortisol levels were persistently elevated on multiple occasions. Adrenocorticotropic hormone levels were unreasonably normal, suggesting ACTH-dependent hypercortisolism. Despite these disorders, she had 2 children. Magnetic resonance imaging (MRI) of the pituitary did not show any abnormalities. Moreover, abdominal MRI did not show adrenal mass or enlargement. Genetic testing to determine glucocorticoid resistance syndrome showed no mutation.12 Primary generalized glucocorticoid resistance is a rare genetic disorder characterized by generalized or partial insensitivity of target tissues to glucocorticoids.13-17 There is a compensatory increase in hypothalamic-pituitary activity due to decreased sensitivity of peripheral tissues to glucocorticoids systems.13-17 Excessive ACTH secretion leads to high secretion of cortisol and mineralocorticoids and/or androgens. However, the clinical features of Cushing’s syndrome do not develop after resistance to the effects of cortisol. Generalized glucocorticoid resistance is a rare condition characterized by high cortisol levels but no scarring of Cushing’s syndrome.18 An important aspect of our case was her pregnancy. Our patient had a history of hypertension and diabetes type 2, 2 years before her presentation to our center that could be because of an undiagnosed Cushing’s disease. The patient’s pregnancy terminated 2 months prior the admission and she had a normal vaginal delivery. So, we suspect that she become pregnant while involved with the disease. Aside from focusing on how this can happen in a patient with such high levels of glucocorticoids, more attention should be paid to occurring pregnancy in the background of Cushing’s disease. In fact, up to 250 patients were reported, of which less than 100 were actively treated.19-22 Cushing’s disease is associated with serious complications in up to 70% of the cases coinciding with pregnancy.21 The most frequent maternal complications reported in the literature are hypertension and impaired glucose tolerance, followed by preeclampsia, osteoporosis, severe psychiatric complications, and maternal death (in about 2% of the cases). Prematurity and intrauterine growth retardation account for the most prevalent fetal complications. Stillbirth, intrauterine deaths, intrauterine hemorrhage, and hypoadrenalism have also been reported.23 Early diagnosis is especially challenging during pregnancy because of many clinical and biochemical shared features of the 2 conditions.23,24 These features include an increase in ACTH production, corticosteroid-binding globulin (CBG) 1 level, level of cortisol (urinary, plasma and free), hyperglycemia, weight gain, and an increased chance for occurrence of bruising, hypertension (mistaken with preeclampsia), gestational diabetes mellitus, weight gain, and mood swings.3 There are some suggestions proposed in the studies that help in screening and differentiation of Cushing’s from the normal and abnormal effects of pregnancy and Cushing’s disease from Cushing’s syndrome in suspected pregnant patients. Contrary to Cushing’s syndrome, the nocturnal minimum level of cortisol is preserved in pregnancy.23,25 There is not yet a diagnostic cut-off determined on mentioned level; however, a few studies elucidate the evaluation of hypercortisolemia in a pregnant patient.26-28 Urinary free cortisol, a measure that reflects the amount of free cortisol in circulation, normally increases during pregnancy, and it can increase up to 8 times the normal level with Cushing’s disease during the second and the third trimesters,23,29 which is a useful tool to evaluate cortisol levels in a suspected pregnant woman. Because the suppression of both UFC and plasma cortisol is decreased in pregnancy,23,30 a low-dose DST is not very helpful for screening Cushing’s disease in pregnant patients. However, a high-dose DST with a <80% cortisol suppression might only indicate Cushing’s disease.3,31 Thus, it helps differentiating between ectopic ACTH syndrome and Cushing’s disease.32 The use of high-dose DST can distinguish between adrenal and pituitary sources of CS in pregnancy. Owing to the limited evidence available and the lack of data on normal pregnancies, the use of corticotropin-releasing hormone (CRH), desmopressin, and high-dose DST in pregnancy is not recommended yet.33 More timely diagnosis as well as timely intervention may have saved the life of our patient. To differentiate between ectopic ACTH syndrome and Cushing’s disease, adrenal imaging should be considered. For higher plasma levels, combined employment of CRH stimulation test and an 8-mg DST can be helpful.3 Bilateral inferior petrosal sinus sampling (B-IPSS) might be needed when the findings are not in accordance with other results, but it is recommended to perform B-IPSS only if the noninvasive studies are inconclusive and only if there is enough expertise, experience, and technique for its performance.3 Although axonal neuropathy has been reported as a rare syndrome associated with paraneoplastic ectopic Cushing’s syndrome and exogenous Cushing’s syndrome, its association with Cushing’s disease has not been reported.5,32 Our patient had severe muscle weakness that we initially attributed it to myopathy and hypokalemia associated with Cushing’s syndrome. In our study, the diagnosis of axonal neuropathy was made based on electrophysiological studies by a neurology consultant and then IVIG was administered; however, the patient’s weakness did not improve after this treatment. The co-occurrence of Guillain-Barré syndrome which may also be classified as axonal neuropathy has also been reported in a pregnant woman with ectopic Cushing’s syndrome.34,35 Whether this finding is coincidental or the result of complex immune reactions driven by Cushing’s disease, or the direct effect of steroids, these results cannot be deduced from current data.36 Some data suggest that the fluctuations and inferior petrosal sinus sampling may trigger the flare of autoimmune processes, specifically when the cortisol levels start to decline during the course of Cushing’s syndrome.35,8 Also, due to COVID-19 pandemic affecting vital organs like kidney, paying attention to COVID-19 is suggested.37-40 Conclusions We presented a thin young female with psychosis, proximal myopathy, and axonal neuropathy with Cushing’s disease who had a recent pregnancy that was terminated without any fetal or maternal complications despite the repeated elevated serum cortisol and 24-hour UFC; therefore, we suggest that she might have glucocorticoid resistance. Glucocorticoid resistance is a rare disease in which the majority, but not all, of patients have a genetic mutation in the hGR-NR3C1 gene. As we did not perform genetic testing for our patient, the data are lacking. Another clue to the absence of the classic Cushing’s disease phenotype in our case is the role of isoenzymes of 11-HSD1 and 11-HSD2. Other mechanisms, such as the defect somewhere in the glucocorticoid pathway of action such as a decreased number of receptors, a reduction in ligand affinity, or a postreceptor defect, play an important role in nonclassical clinical manifestations of Cushing’s syndrome. Acknowledgments The authors thank the patient for allowing us to publish this case report. The authors show their gratitude to the of the staff of the Rasool Akram Medical Complex Clinical Research Development Center (RCRDC) specially Mrs. Farahnaz Nikkhah for its technical and editorial assists. Ethics Approval Our institution does not require ethical approval for reporting individual cases or case series. Informed Consent Written informed consent was obtained from the patient and for her anonymized information to be published in this article. Declaration of Conflicting Interests The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. Funding The author(s) received no financial support for the research, authorship, and/or publication of this article. References 1. Guilhaume B, Sanson ML, Billaud L, Bertagna X, Laudat MH, Luton JP. Cushing’s syndrome and pregnancy: aetiologies and prognosis in twenty-two patients. Eur J Med. 1992; 1(2):83-89. GO TO REFERENCE PubMed Google Scholar 2. Lin W, Huang HB, Wen JP, et al. Approach to Cushing’s syndrome in pregnancy: two cases of Cushing’s syndrome in pregnancy and a review of the literature. Ann Transl Med. 2019; 7(18):490. Crossref PubMed Google Scholar 3. Vilar L, Freitas MdC, Lima LHC, Lyra R, Kater CE. Cushing’s syndrome in pregnancy: an overview. Arq Bras Endocrinol Metabol. 2007;51(8):1293-1302. Crossref PubMed Google Scholar 4. Pecori Giraldi F, Cavallo LM, P, et al. The role of inferior petrosal sinus sampling in ACTH-dependent Cushing’s syndrome: review and joint opinion statement by members of the Italian Society for Endocrinology, Italian Society for Neurosurgery, and Italian Society for Neuroradiology. Neurosurg Focus. 2015;38(2):E5. GO TO REFERENCE PubMed Google Scholar 5. Molina Garrido MJ, Guillén Ponce C, Maciá Escalante S, Pons Sanz V, Carrato Mena A. Cushing’s paraneoplastic syndrome as first manifestation of an adenocarcinoma of unknown origin. Clin Transl Oncol. 2006;8(8):621-623. Crossref PubMed Google Scholar 6. Tomlinson JW, Draper N, Mackie J, et al. Absence of Cushingoid phenotype in a patient with Cushing’s disease due to defective cortisone to cortisol conversion. J Clin Endocrinol Metab. 2002;87(1):57-62. PubMed Google Scholar 7. Kobayashi T, Matsumoto T, Kamata K. IGF-I-induced enhancement of contractile response in organ-cultured aortae from diabetic rats is mediated by sustained thromboxane A2 release from endothelial cells. J Endocrinol. 2005;186(2): 367-376. GO TO REFERENCE Crossref PubMed Google Scholar 8. Stewart PM. Tissue-specific Cushing’s syndrome, 11β-hydroxysteroid dehydrogenases and the redefinition of corticosteroid hormone action. Eur J Endocrinol. 2003;149:163-168. Crossref PubMed Google Scholar 9. Ricketts ML, Verhaeg JM, Bujalska I, et al. Immunohistochemical localization of type 1 11β-hydroxysteroid dehydrogenase in human tissues. J Clinl Endocrinol Metabol. 1998;83:1325-1335. GO TO REFERENCE PubMed ISI Google Scholar 10. Huizenga NA, Koper JW, De Lange P, et al. A polymorphism in the glucocorticoid receptor gene may be associated with and increased sensitivity to glucocorticoids in vivo. J Clin Endocrinol Metab. 1998;83(1):144-151. GO TO REFERENCE PubMed Google Scholar 11. Hintzpeter J, Stapelfeld C, Loerz C, Martin HJ, Maser E. Green tea and one of its constituents, Epigallocatechine-3-gallate, are potent inhibitors of human 11β-hydroxysteroid dehydrogenase type 1. PLoS ONE. 2014;9(1):e84468. GO TO REFERENCE Crossref PubMed Google Scholar 12. Gossain VV, El-Rifai M, Krishnan P, Bhavsar B. Cushing’s syndrome with no clinical stigmata—a variant of glucocorticoid resistance syndrome. Clin Diabetes Endocrinol. 2018;4:23-25. GO TO REFERENCE Crossref PubMed Google Scholar 13. Charmandari E, Kino T, Ichijo T, Chrousos GP. Generalized glucocorticoid resistance: clinical aspects, molecular mechanisms, and implications of a rare genetic disorder. J Clin Endocrinol Metab. 2008;93(5):1563-1572. Crossref PubMed Google Scholar 14. Cidlowski JA, Malchoff CD, Malchoff DM. Glucocorticoid receptors, their mechanism of action, and glucocorticoid resistance. In: Jameson JL, De Groot LJ, eds. Endocrinology: Adult and Pediatric. Saunders; 2016:1717-1726. Google Scholar 15. Charmandari E, Kino T. Chrousos syndrome: a seminal report, a phylogenetic enigma and the clinical implications of glucocorticoid signaling changes. Eur J Clin Investig. 2010;40: 932-942. Crossref PubMed Google Scholar 16. Nicolaides NC, Charmandari E. Chrousos syndrome: from molecular pathogenesis to therapeutic management. Eur J Clin Invest. 2015;45(5):504-514. Crossref PubMed Google Scholar 17. Nicolaides N, Lamprokostopoulou A, Sertedaki A, Charmandari E. Recent advances in the molecular mechanisms causing primary generalized glucocorticoid resistance. Hormones. 2016;15(1): 23-34. Crossref PubMed Google Scholar 18. Huizenga NATM De Lange P, Koper JW, et al. Five patients with biochemical and/or clinical generalized glucocorticoid resistance without alterations in the glucocorticoid receptor gene. J Clin Endocrinol Metab. 2000;85:2076-2081. GO TO REFERENCE PubMed Google Scholar 19. Luger A, Broersen LHA, Biermasz NR, et al. ESE clinical practice guideline on functioning and nonfunctioning pituitary adenomas in pregnancy. Eur J Endocrinol. 2021;185: G1-G33. GO TO REFERENCE Crossref PubMed Google Scholar 20. Sridharan K, Sahoo J, Palui R, et al. Diagnosis and treatment outcomes of Cushing’s disease during pregnancy. Pituitary. 2021;24(5):670-680. Crossref PubMed Google Scholar 21. Caimari F, Valassi E, Garbayo P, et al. Cushing’s syndrome and pregnancy outcomes: a systematic review of published cases. Endocrine. 2017;55(2):555-563. GO TO REFERENCE Crossref PubMed Google Scholar 22. Lindsay JR, Jonklaas J, Oldfield EH, Nieman LK. Cushing’s syndrome during pregnancy: personal experience and review of the literature. J Clin Endocrinol Metab. 2005;90(5):3077-3083. GO TO REFERENCE Crossref PubMed Google Scholar 23. Lindsay JR, Nieman LK. The hypothalamic-pituitary-adrenal axis in pregnancy: challenges in disease detection and treatment. Endocr Rev. 2005;26(6):775-799. Crossref PubMed Google Scholar 24. Buescher MA, McClamrock HD, Adashi EY. Cushing syndrome in pregnancy. Obstetr Gynecol. 1992;79:130-137. GO TO REFERENCE PubMed Google Scholar 25. Carr BR, Parker CR Jr, Madden JD, et al. Maternal plasma adrenocorticotropin and cortisol relationships throughout human pregnancy. Am J Obstetr Gynecol. 1981;139:416-422. GO TO REFERENCE Crossref PubMed ISI Google Scholar 26. Mellor A, Harvey RD, Pobereskin LH, Sneyd JR. Cushing’s disease treated by trans-sphenoidal selective adenomectomy in mid-pregnancy. Br J Anaesth. 1998;80(6):850-852. GO TO REFERENCE Crossref PubMed Google Scholar 27. Doshi S, Bhat A, Lim K. Cushing’s syndrome in pregnancy. J Obstetr Gynaecol. 2003;23:568-569. Crossref Google Scholar 28. Wood PJ, Barth JH, Freedman DB, Perry L, Sheridan B. Evidence for the low dose dexamethasone suppression test to screen for Cushing’s syndrome—recommendations for a protocol for biochemistry laboratories. Ann Clin Biochem. 1997;34(pt 3):222-229. GO TO REFERENCE Crossref PubMed Google Scholar 29. Lindsay JR, Jonklaas J, Oldfield EH, Nieman LK. Cushing’s syndrome during pregnancy: personal experience and review of the literature. J Clin Endocrinol Metab. 2005;90(5): 3077-3083. GO TO REFERENCE Crossref PubMed Google Scholar 30. Wallace C, Toth EL, Lewanczuk RZ, Siminoski K. Pregnancy-induced Cushing’s syndrome in multiple pregnancies. J Clin Endocrinol Metab. 1996;81(1):15-21. GO TO REFERENCE PubMed Google Scholar 31. Invitti C, Pecori Giraldi F, de Martin M, Cavagnini F. Diagnosis and management of Cushing’s syndrome: results of an Italian multicentre study. Study Group of the Italian Society of Endocrinology on the Pathophysiology of the Hypothalamic-Pituitary-Adrenal Axis. J Clin Endocrinol Metab. 1999;84(2):440-448. GO TO REFERENCE PubMed Google Scholar 32. Vilar L, Naves LA, Freitas MdC, et al. Endogenous Cushing’s syndrome: clinical and laboratorial features in 73 cases. Arq Bras Endocrinol Metabol. 2007;51(4):566-574. Crossref PubMed Google Scholar 33. Hamblin R, Coulden A, Fountas A, Karavitaki N. The diagnosis and management of Cushing’s syndrome in pregnancy. J Neuroendocrinol. 2022;34(8):e13118. GO TO REFERENCE Crossref PubMed Google Scholar 34. Bressler R, Johnson CT. Cushing’s syndrome and the Guillain-Barré syndrome. Ann Intern Med. 1959;50:1298-1303. GO TO REFERENCE Crossref PubMed Google Scholar 35. Moeindarbary S, Abbasi dalooei M, Ghahremani S, et al. Guillain-Barré syndrome following Cushing’s syndrome in a pregnant woman: a case report. Int J Pediatr. 2019;7:10651-10657. Google Scholar 36. Hasenmajer V, Sbardella E, Sciarra F, Minnetti M, Isidori AM, Venneri MA. The immune system in Cushing’s syndrome. Trends Endocrinol Metab. 2020;31(9):655-669. GO TO REFERENCE Crossref PubMed Google Scholar 37. Besharat S, Alamda NM, Dadashzadeh N, et al. Clinical and demographic characteristics of patients with COVID-19 who died in Modarres Hospital. Open Access Maced J Med Sci. 2020;8:144-149. GO TO REFERENCE Crossref Google Scholar 38. Lotfi B, Farshid S, Dadashzadeh N, Valizadeh R, Rahimi MM. Is Coronavirus Disease 2019 (COVID-19) associated with renal involvement? A review of century infection. Jundishapur J Microbiol. 2020;13:e102899. Crossref Google Scholar 39. Dadashzadeh N, Farshid S, Valizadeh R, Nanbakhsh M, Rahimi MM. Acute respiratory distress syndrome in COVId-19 disease. Immunopathol Persa. 2020;6:e16. Crossref Google Scholar 40. Petramala L, Olmati F, Conforti MG, et al. Autoimmune diseases in patients with Cushing’s syndrome after resolution of hypercortisolism: case reports and literature review. Int J Endocrinol. 2018;2018:1464967. GO TO REFERENCE Crossref PubMed Google Scholar Related content Similar articles: Open Access Ectopic ACTH Production Leading to Diagnosis of Underlying Medullary Thyroid Carcinoma Show details Open Access Muscle Weakness: A Misleading Presentation in Children With Distinctive Syndromic Entities (Clinical Case Reports) Show details Open Access A Pitfall of Falsely Elevated ACTH: A Case Report and Literature Review Show details View more Sage recommends: SAGE Knowledge Entry Hypothalamic-Pituitary-Adrenal Axis Show details SAGE Knowledge Entry Congenital Adrenal Hyperplasia Show details SAGE Knowledge Entry Guillain-Barré Syndrome Show details View more From https://journals.sagepub.com/doi/full/10.1177/23247096231204732
  8. Ball-and-stick model of the cortisol (hydrocortisone) molecule. Credit: Public Domain A first-of-its kind hormone replacement therapy that more closely replicates the natural circadian and ultradian rhythms of our hormones has shown to improve symptoms in patients with adrenal conditions. Results from the University of Bristol-led clinical trial are published today in the Journal of Internal Medicine. Low levels of a key hormone called cortisol is typically a result of conditions such as Addison's and congenital adrenal hyperplasia. The hormone regulates a range of vital processes, from cognitive processes such as memory formation, metabolism and immune responses, through to blood pressure and blood sugar levels. When low, it can trigger symptoms of debilitating fatigue, nausea, muscle weakness, dangerously low blood pressure and depression. Although rare, these adrenal conditions require lifelong daily hydrocortisone replacement therapy. Although existing oral hormone replacement treatment can restore cortisol levels, it is still associated with an impaired quality of life for patients. Scientists believe this is because the current treatment does not mimic the body's normal physiological timing, missing cortisol's anticipatory rise and lacking its underlying ultradian and circadian rhythms. The new "pulsatility" therapy, the culmination of ten years' research by the Bristol team, is designed to deliver standard hydrocortisone replacement to patients via a pump which replicates more closely cortisol's natural rhythmic secretion pattern. The pulsatile subcutaneous pump has now revealed promising results in its first clinical trial. Twenty participants aged 18 to 64 years with adrenal insufficiency conditions were assessed during the double-blinded PULSES six-week trial and treated with usual dose hydrocortisone replacement therapy administered either via the pump or the standard three times daily oral treatment. While only psychological and metabolic symptoms were assessed during the trial, results revealed the pump therapy decreased fatigue by approximately 10%, improved mood and increased patient energy levels by 30% first thing in the morning—a key time frame when many patients struggle. Patient MRI scans also revealed alteration in the way that the brain processes emotional information. Dr. Georgina Russell, Honorary Lecturer at the University's Bristol Medical School, and the lead author, explained, "Patients on cortisol replacement therapy often have side effects which makes it difficult for them to lead normal lives. We hope this new therapy will offer greater hope for the thousands of people living with hormone insufficiency conditions." Stafford Lightman, a neuroendocrinology expert and Professor of Medicine at Bristol Medical School: Translational Health Sciences (THS), and the study's joint lead author, added, "Besides reduction in dosage, cortisol replacement has remained unchanged for many decades. It is widely recognized that current replacement therapy is unphysiological due to its lack of pre-awakening surge, ultradian rhythmicity, and post dose supraphysiological peaks. The new therapy clearly shows that the timing of cortisol delivery- in line with the body's own rhythmic pattern of cortisol secretion—is important for normal cognition and behavior. "Our findings support the administration of hormone therapy that mimics natural physiology, and is one of the first major advances in adrenal insufficiency treatment to date." Joe Miles, a participant on the PULSES trial, explained, "The Crono P pump has been life-changing. I noticed a very quick improvement compared to tablets when I was on the PULSES study. I went from feeling tired all the time to having sudden energy. "When the PULSES study ended and I had to return the pump, I simply couldn't cope with going back to how I used to be, so I made it my mission to write to as many doctors to have it prescribed privately. "I've now been on it for six years and have introduced a number of other people with Addison's disease to the pump, and all of them have said it's life changing. Some have gone from being seriously ill to feeling better than they have done for years." Dr. Russell said, "Approximately 1% of the UK population is taking steroids at any moment in time; these individuals can experience debilitating psychological side effects. This trial has shown that even at physiological levels, brain functioning is disrupted and that we need to explore not only the dose but the pattern of steroids delivery when considering any type of steroid treatment." More information: Ultradian hydrocortisone replacement alters neuronal processing, emotional ambiguity, affect and fatigue in adrenal insufficiency: The PULSES trial, Journal of Internal Medicine (2023). DOI: 10.1111/joim.13721 Journal information: Journal of Internal Medicine Provided by University of Bristol From https://medicalxpress.com/news/2023-10-first-of-its-kind-hormone-treatment-patient.html
  9. Jessica Rotham, National Center for Health Research What is it? Cushing’s syndrome is a condition you probably have never heard of, but for those who have it, the symptoms can be quite scary. Worse still, getting it diagnosed can take a while. Cushing’s syndrome occurs when the tissues of the body are exposed to high levels of cortisol for an extended amount of time. Cortisol is the hormone the body produces to help you in times of stress. It is good to have cortisol at normal levels, but when those levels get too high it causes health problems. Although cortisol is related to stress, there is no evidence that Cushing’s syndrome is directly or indirectly caused by stress. Cushing’s syndrome is considered rare, but that may be because it is under-reported. As a result, we don’t have good estimates for how many people have it, which is why the estimates for the actual number of cases vary so much–from 5 to 28 million people.[1] The most common age group that Cushing’s affects are those 20 to 50 years old. It is thought that obesity, type 2 diabetes, and high blood pressure may increase your risk of developing this syndrome.[2] What causes Cushing’s Syndrome? Cushing’s syndrome is caused by high cortisol levels. Cushing’s disease is a specific form of Cushing’s syndrome. People with Cushing’s disease have high levels of cortisol because they have a non-cancerous (benign) tumor in the pituitary gland. The tumor releases adrenocorticotropin hormone (ACTH), which causes the adrenal glands to produce excessive cortisol. Cushing’s syndrome that is not Cushing’s disease can be also caused by high cortisol levels that result from tumors in other parts of the body. One of the causes is “ectopic ACTH syndrome.” This means that the hormone-releasing tumor is growing in an abnormal place, such as the lungs or elsewhere. The tumors can be benign, but most frequently they are cancerous. Other causes of Cushing’s syndrome are benign tumors on the adrenal gland (adrenal adenomas) and less commonly, cancerous adrenal tumors (adrenocortical carcinomas). Both secrete cortisol, causing cortisol levels to get too high. In some cases, a person can develop Cushing’s syndrome from taking steroid medications, such as prednisone. These drugs, known as corticosteroids, mimic the cortisol produced by the body. People who have Cushing’s syndrome from steroid medications do not develop a tumor.[3] What are the signs and symptoms of Cushing’s Syndrome? The appearance of people with Cushing’s syndrome starts to change as cortisol levels build up. Regardless of what kind of tumor they have or where the tumor is located, people tend to put on weight in the upper body and abdomen, with their arms and legs remaining thin; their face grows rounder (“moon face”); they develop fat around the neck; and purple or pink stretch marks appear on the abdomen, thighs, buttocks or arms. Individuals with the syndrome usually experience one or more of the following symptoms: fatigue, muscle weakness, high glucose levels, anxiety, depression, and high blood pressure. Women are more likely than men to develop Cushing’s syndrome, and when they do they may have excess hair growth, irregular or absent periods, and decreased fertility.[4] Why is Cushing’s Syndrome so frequently misdiagnosed? These symptoms seem distinctive, yet it is often difficult for those with Cushing’s syndrome to get an accurate diagnosis. Why? While Cushing’s is relatively rare, the signs and symptoms are common to many other diseases. For instance, females with excess hair growth, irregular or absent periods, decreased fertility, and high glucose levels could have polycystic ovarian syndrome, a disease that affects many more women than Cushing’s. Also, people with metabolism problems (metabolic syndrome), who are at higher than average risk for diabetes and heart disease, also tend to have abdominal fat, high glucose levels and high blood pressure.[5] Problems in testing for Cushing’s When Cushing’s syndrome is suspected, a test is given to measure cortisol in the urine. This test measures the amount of free or unbound cortisol filtered by the kidneys and then released over a 24 hour period through the urine. Since the amount of urinary free cortisol (UFC) can vary a lot from one test to another—even in people who don’t have Cushing’s—experts recommend that the test be repeated 3 times. A diagnosis of Cushing’s is given when a person’s UFC level is 4 times the upper limit of normal. One study found this test to be highly accurate, with a sensitivity of 95% (meaning that 95% of people who have the disease will be correctly diagnosed by this test) and a specificity of 98% (meaning that 98% of people who do not have the disease will have a test score confirming that).[6] However, a more 2010 study estimated the sensitivity as only between 45%-71%, but with 100% specificity.[7] This means that the test is very accurate at telling people who don’t have Cushing’s that they don’t have it, but not so good at identifying the people who really do have Cushing’s. The authors that have analyzed these studies advise that patients use the UFC test together with other tests to confirm the diagnosis, but not as the initial screening test.[8] Other common tests that may be used to diagnose Cushing’s syndrome are: 1) the midnight plasma cortisol and late-night salivary cortisol measurements, and 2) the low-dose dexamethasone suppression test (LDDST). The first test measures the amount of cortisol levels in the blood and saliva at night. For most people, their cortisol levels drop at night, but people with Cushing’s syndrome have cortisol levels that remain high all night. In the LDDST, dexamethasone is given to stop the production of ACTH. Since ACTH produces cortisol, people who don’t have Cushing’s syndrome will get lower cortisol levels in the blood and urine. If after giving dexamethasone, the person’s cortisol levels remain high, then they are diagnosed with Cushing’s.[9] Even when these tests, alone or in combination, are used to diagnose Cushing’s, they don’t explain the cause. They also don’t distinguish between Cushing’s syndrome, and something called pseudo-Cushing state. Pseudo-Cushing state Some people have an abnormal amount of cortisol that is caused by something unrelated to Cushing’s syndrome such as polycystic ovarian syndrome, depression, pregnancy, and obesity. This is called pseudo-Cushing state. Their high levels of cortisol and resulting Cushing-like symptoms can be reversed by treating whatever disease is causing the abnormal cortisol levels. In their study, Dr. Giacomo Tirabassi and colleagues recommend using the desmopressin (DDAVP) test to differentiate between pseudo-Cushing state and Cushing’s. The DDAVP test is especially helpful in people who, after being given dexamethasone to stop cortisol production, continue to have moderate levels of urinary free cortisol (UFC) and midnight serum cortisol.[10] An additional test that is often used to determine if one has pseudo-Cushing state or Cushing’s syndrome is the dexamethasone-corticotropin-releasing hormone (CRH) test. Patients are injected with a hormone that causes cortisol to be produced while also being given another hormone to stop cortisol from being produced. This combination of hormones should make the patient have low cortisol levels, and this is what happens in people with pseudo-Cushing state. People with Cushing’s syndrome, however, will still have high levels of cortisol after being given this combination of hormones.[11] How can Cushing’s be treated? Perhaps because Cushing’s is rare or under-diagnosed, few treatments are available. There are several medications that are typically the first line of treatment. None of the medications can cure Cushing’s, so they are usually taken until other treatments are given to cure Cushing’s, and only after that if the other treatment fails. The most common treatment for Cushing’s disease is transsphenoidal surgery, which requires the surgeon to reach the pituitary gland through the nostril or upper lip and remove the tumor. Radiation may also be used instead of surgery to shrink the tumor. In patients whose Cushing’s is caused by ectopic ACTH syndrome, all cancerous cells need to be wiped out through surgery, chemotherapy, radiation or a variety of other methods, depending on the location of the tumor. Surgery is also recommended for adrenal tumors. If Cushing’s syndrome is being caused by corticosteroid (steroid medications) usage, the treatment is to stop or lower your dosage.[12] Medications to control Cushing’s (before treatment or if treatment fails) According to a 2014 study in the Journal of Clinical Endocrinology and Metabolism, almost no new treatment options have been introduced in the last decade. Researchers and doctors have focused most of their efforts on improving existing treatments aimed at curing Cushing’s. Unfortunately, medications used to control Cushing’s prior to treatment and when treatment fails are not very effective. Many of the medications approved by the FDA for Cushing’s syndrome and Cushing’s disease, such as pasireotide, metyrapone, and mitotane, have not been extensively studied. The research presented to the FDA by the makers of these three drugs did not even make clear what an optimal dose was.[13] In another 2014 study, published in Clinical Epidemiology, researchers examined these three same drugs, along with ten others, and found that only pasireotide had moderate evidence to support its approval. The other drugs, many of which are not FDA approved for Cushing’s patients, had little or no available evidence to show that they work.[14] They can be sold, however, because the FDA has approved them for other diseases. Unfortunately, that means that neither the FDA nor anyone else has proven the drugs are safe or effective for Cushing patients. Pasireotide, the one medication with moderate evidence supporting its approval, caused hyperglycemia (high blood sugar) in 75% of patients who participated in the main study for the medication’s approval for Cushing’s. As a result of developing hyperglycemia, almost half (46%) of the participants had to go on blood-sugar lowering medications. The drug was approved by the FDA for Cushing’s anyway because of the lack of other effective treatments. Other treatments used for Cushing’s have other risks. Ketoconazole, believed to be the most commonly prescribed medications for Cushing’s syndrome, has a black box warning due to its effect on the liver that can lead to a liver transplant or death. Other side effects include: headache, nausea, irregular periods, impotence, and decreased libido. Metyrapone can cause acne, hirsutism, and hypertension. Mitotane can cause neurological and gastrointestinal symptoms such as dizziness, nausea, and diarrhea and can cause an abortion in pregnant women.[15] So, what should you do if you suspect you have Cushing’s Syndrome? Cushing’s syndrome is a serious disease that needs to be treated, but there are treatment options available for you if you are diagnosed with the disease. If the symptoms in this article sound familiar, it’s time for you to go see your doctor. Make an appointment with your general practitioner, and explain your symptoms to him or her. You will most likely be referred to an endocrinologist, who will be able to better understand your symptoms and recommend an appropriate course of action. All articles are reviewed and approved by Dr. Diana Zuckerman and other senior staff. Nieman, Lynette K. Epidemiology and clinical manifestations of Cushing’s syndrome, 2014. UpToDate: Wolters Kluwer Health Cushing’s syndrome/ disease, 2013. American Association of Neurological Surgeons. http://www.aans.org/Patient Information/Conditions and Treatments/Cushings Disease.aspx Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment Newell-Price, John, Peter Trainer, Michael Besser and Ashley Grossman. The diagnosis and differential diagnosis of Cushing’s syndrome and pseudo-Cushing’s states, 1998. Endocrine Reviews: Endocrine Society Carroll, TB and JW Findling. The diagnosis of Cushing’s syndrome, 2010. Reviews in Endocrinology and Metabolic Disorders: Springer Ifedayo, AO and AF Olufemi. Urinary free cortisol in the diagnosis of Cushing’s syndrome: How useful?, 2013. Nigerian Journal of Clinical Practice: Medknow. Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment Tirabassi, Giacomo, Emanuela Faloia, Roberta Papa, Giorgio Furlani, Marco Boscaro, and Giorgio Arnaldi. Use of the Desmopressin test in the differential diagnosis of pseudo-Cushing state from Cushing’s disease, 2013. The Journal of Clinical Endocrinology & Metabolism: Endocrine Society. Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment Tirabassi, Giacomo, Emanuela Faloia, Roberta Papa, Giorgio Furlani, Marco Boscaro, and Giorgio Arnaldi. Use of the Desmopressin test in the differential diagnosis of pseudo-Cushing state from Cushing’s disease, 2013. The Journal of Clinical Endocrinology & Metabolism: Endocrine Society. Galdelha, Monica R. and Leonardo Vieira Neto. Efficacy of medical treatment in Cushing’s disease: a systematic review, 2014. Clinical Endocrinology: John Wiley & Sons. Adler, Gail. Cushing syndrome treatment & management, 2014. MedScape: WebMD. Adapted from https://www.center4research.org/cushings-syndrome-frequent-misdiagnosis/?fbclid=IwAR1lfJPilmaTl1BhR-Esi69eU7Xjm3RlO4f8lmFBIviCtHHXmVoyRxOlJqE
  10. Bridget Houser felt despairing. In the months before her 2018 wedding, Houser, who had never struggled with her weight, noticed that it inexplicably began to creep up. In response she doubled the length of her runs to eight miles, took back-to-back high intensity workout classes and often consumed only water, coffee and fruit during the day before a spartan, mostly vegetable, dinner. Yet no matter what Houser did, her weight stubbornly increased and her oval face grew round, a transformation that was glaringly obvious in comparison with her identical twin sister. Houser wondered whether the five pounds she gained despite her herculean effort was a corollary of other problems. For the previous two years she had battled a string of maladies: first daily headaches, then crippling anxiety, followed by insomnia, hair loss and acne, something she’d never endured as a teenager. “Stress was the universal explanation,” recalled Houser, a controller for a small business in Chicago. When doctors suggested that her upcoming marriage might be a cause of her problems, Houser considered, then rejected, the theory. It just didn’t jibe with her feelings. In early 2019, about six months after her wedding, Houser insisted that her doctors perform several tests. They ultimately revealed that her symptoms weren’t the result of stress or marital misgivings but of a serious illness that had been smoldering for years. After successful treatment followed by a long recovery Houser, now 34, feels far better than she did during those miserable years in her late 20s. “I wish I’d been nicer to myself and not blamed myself for what was going on,” she said. Getting through the wedding In 2016 Houser began experiencing daily pain in the back of her head, a common spot for tension headaches. When the headaches failed to improve with dietary changes or nonprescription pain relievers, she consulted her primary care doctor, followed by a neurologist who told her she had migraines. Houser, then 27, noticed that the headaches were worse when she wore contact lenses. “It was affecting my daily life and I talked myself into thinking the problem was my contacts,” she said. She decided Lasik surgery might help and in October 2017 underwent the procedure, which uses a laser to reshape the cornea, reducing or eliminating dependence on contacts or glasses. Her vision improved and the pain disappeared — briefly. A week after eye surgery, her headaches returned. “I wasn’t overly concerned,” Houser said. “I know a lot of people have headaches.” A few months later for no apparent reason Houser developed “really bad anxiety. It wasn’t just like I was anxious,” she recalled. “I couldn’t function. I’m Type A so I knew what anxiety is, but not to this degree.” One weekday morning in early 2018 she felt so overwhelmed that she took a sick day, then called her twin, Molly, and their mother and told them she needed help immediately. They managed to schedule a same-day appointment with a psychiatrist whom Houser began seeing regularly, along with a therapist. The psychiatrist zeroed in on her impending wedding and told Houser that the event can cause “huge anxiety.” She began taking an antidepressant along with Ativan, an anti-anxiety drug she used when things got really bad. She also ramped up her yoga practice, hoping it might calm her. Houser vividly remembers riding the escalator to her office one morning “and in my head I kept saying, ‘I’m in trouble, I’m in trouble,’” although she didn’t know what was wrong. Her changing appearance had become a source of great unhappiness. Although her weight remained in the normal range, Houser couldn’t figure out why she was gaining weight after drastically slashing her food intake and dramatically ramping up exercise. Her normally thick hair had thinned so noticeably that her hairdresser gently advised her to consult a doctor. Houser’s psychiatrist thought her hair loss might be caused by her antidepressant and switched medications. That didn’t seem to help. Houser was particularly bothered by her newly chubby face. “It was like a joke in my family,” she said, adding that she was teased about being overly sensitive. Even her wedding day was colored by unhappiness about her appearance and the intense amorphous anxiety that seemed omnipresent. “Rather than think about how excited I was,” Houser recalled, “it was ‘How can I get through this day?’” Normal thyroid After her wedding Houser felt worse. She developed severe insomnia, night sweats and acne. In February 2019 a nurse practitioner in her primary care practice ordered tests of her thyroid, which were normal. When Houser pressed for additional testing, she was referred to an endocrinologist. He told her she was stressed. Dissatisfied, she saw a second endocrinologist who agreed with the first. “She said ‘I don’t think there’s anything wrong with you’” metabolically, Houser recalled. The second endocrinologist’s nurse even revisited the marriage question in the presence of Houser’s husband, Doug, who had accompanied her to the appointment. “She said ‘I knew on my honeymoon I shouldn’t have gotten married,’” Houser remembered her saying. “‘Are you in a happy marriage?’ I couldn’t believe it.” Months earlier, the nurse practitioner who ordered the thyroid tests briefly mentioned measuring levels of cortisol, a hormone involved in the body’s response to stress and other functions. Elevated levels of cortisol can indicate Cushing’s syndrome, an uncommon hormonal disorder that occurs when the body produces too much of the hormone over a prolonged period. “She had thrown cortisol testing out there and I think it was always in the back of my mind,” Houser said. She asked the second endocrinologist to order cortisol tests. The doctor agreed, but not before telling Houser that she didn’t think she had Cushing’s because she lacked the classic symptoms: major weight gain, purple stretch marks and a fatty hump between the shoulders. Houser did have the “moon face” characteristic of Cushing’s that is also seen in people who take high doses of steroids for long periods to treat various illnesses — but Houser wasn’t taking steroids. Insomnia, headaches, acne and anxiety can be symptoms of Cushing’s. There are several forms of Cushing’s syndrome, which typically results from a tumor — usually benign but sometimes cancerous — in the pituitary or adrenal gland that pumps out excess cortisol. Sometimes tumors develop elsewhere in the body such as the lungs or pancreas. Cushing’s affects roughly five times as many women as men and typically occurs between the ages of 30 and 50. If left untreated, it can be fatal. A trio of tests measuring cortisol levels in Houser’s blood, urine and saliva were significantly elevated; the amount in her urine was eight times higher than normal. The formerly skeptical Chicago endocrinologist told Houser she had Cushing’s and referred her to James Findling, a Milwaukee endocrinologist who is internationally recognized for his treatment of the disease. “I was just so happy to have a diagnosis,” Houser recalled. Revealing photos Findling asked Houser to bring photographs taken several years earlier to her October 2018 appointment. It is a request he makes of patients as a way of spotting telltale physical manifestations. In Houser’s case, the facial change was particularly striking because she is an identical twin. Findling noted that delayed diagnosis is typical, because physical changes and other symptoms tend to occur gradually and insidiously. Houser, he added, “didn’t look like the typical Cushing’s patient. She wasn’t obese and she didn’t have diabetes or hypertension. It was more subtle than many cases.” The next step was determining the location of the tiny tumor. Tests found nothing in Houser’s pituitary or adrenal glands, and CT scans of her pelvis, chest and abdomen were clean. Findling ordered a dotatate PET scan, a highly sensitive CT scan that can find tumors that elude conventional imaging. The scan revealed a nodule in Houser’s left lung. Houser sought a second opinion from a thoracic surgeon in Chicago. While Findling and a thoracic surgeon at Milwaukee’s Froedtert Hospital strongly recommended that she undergo surgery to remove the tumor, the Chicago doctor disagreed. He said he didn’t think the lung nodule was causing Cushing’s and recommended that Houser continue therapy and anti-anxiety medication. “Do you know what it’s like to wake up from surgery and to not be better?” she remembers him asking her. After deliberating with her husband and conferring with her Milwaukee doctors, Houser opted for surgery performed Oct. 30, which removed part of her left lung. A pathologist determined that the nodule was a rare, slow-growing neuroendocrine lung cancer known as a bronchial carcinoid, which can cause Cushing’s. The Stage 2 cancer had spread to a nearby lymph node. “Fortunately I think we got it early,” Findling said. “She’s had a sustained remission and a cure of her Cushing’s.” “The cancer didn’t rock my world,” said Houser, who had previously had a melanoma skin cancer removed. (Doctors have told her they don’t think the cancers are related.) “It was about not having Cushing’s anymore, which was more important.” So why didn’t Houser’s doctors, among them endocrinologists, suspect Cushing’s? Findling, who estimates he has treated as many as 2,000 people with the disease in his 40-year career, said that while doctors are taught that Cushing’s is rare, it’s not. He cites a 2016 study, which that found that 26 of 353 endocrinology patients were found to have the disease. Textbook descriptions, which include the presence of purple stretch marks and a hump, are “almost a caricature,” Findling observed. “It’s pretty well recognized that Cushing’s is more subtle than that … and can cause neuropsychiatric and neurocognitive problems.” Houser’s normal weight and the fact that she didn’t have high blood pressure or diabetes may have misled doctors. “I think we’ve moved the needle a little bit, especially among endocrinologists,” he continued, adding that “the threshold for screening has got to change. Once you tell a primary care doctor that it’s a rare disorder, it goes in one ear and out the other. They think they’ll never see it.” “When you make this diagnosis it can have fabulous outcomes,” he added, citing Houser’s case. “That’s why I’m still doing this at my age.” Houser considers Findling to be her “literal lifesaver.” She spent the next year seeing him as she was slowly weaned off medications to normalize her hormone levels and recover her strength. She is monitored for Cushing’s annually, remains cancer-free and, other than residual fatigue, feels well. In October 2021 she gave birth to a daughter. Her son was born eight weeks ago. Houser regards the help provided by her family, particularly her husband whom she called “my biggest supporter,” as essential. That seems especially ironic because stress about their marriage had been blamed for symptoms that were actually caused by a cancer. “He was a huge help in calling doctors and making the necessary appointments when I didn’t have the energy to fight anymore.” His unwavering love, she said, was “a testament to our strong marriage.” From https://www.washingtonpost.com/wellness/2023/10/07/weight-anxiety-wedding-medical-mysteries/
  11. Adrenal incidentalomas (AI) are associated with an increased risk of cardiometabolic complications due to adrenal hyperfunction. Obtaining accurate prevalence estimates of distinct types of functioning AIs is crucial for efficient resource allocation and effective management strategies. For a study, researchers sought to ascertain the prevalence of various forms of autonomous hormone secretion in individuals diagnosed with adrenal incidentaloma, including autonomous/possible autonomous cortisol secretion (ACS), primary aldosteronism (PA), pheochromocytoma (PHEO), and Cushing syndrome (CS). A comprehensive and systematic search was conducted across multiple databases (PubMed, Ovid MEDLINE, Web of Science) up to February 2022. Among the 1,661 publications initially screened at the title and abstract levels, 161 articles underwent full-text examination, and ultimately, 36 studies were included for analysis. Three independent reviewers meticulously extracted clinical data from these selected studies. The overarching prevalence of functioning adrenal incidentalomas was 27.5% (95% CI 23.0, 32.5). The highest prevalence was observed for ACS/possible ACS, with a rate of 11.7% (95% CI 8.6, 15.7), followed by PA at 4.4% (95% CI 3.1, 6.2). Subgroup analysis unveiled a greater prevalence of PA in patients from Asian regions than those from Europe/America. Conversely, the prevalence of ACS/possible ACS was comparatively lower in Asian countries. Meta-regression analysis elucidated that the proportion of female patients influenced the prevalence of ACS/possible ACS, while PA prevalence positively correlated with the proportion of patients with hypertension and the publication year. PHEO and CS demonstrated prevalences of 3.8% (95% CI 2.8, 5.0) and 3.1% (95% CI 2.3, 4.3), respectively. The comprehensive meta-analysis offered valuable insights into the prevalence rates of diverse types of functioning adrenal incidentalomas and identified influential factors contributing to heterogeneity in these estimates. The findings contributed significantly to understanding clinical implications and aided in devising effective management strategies for individuals diagnosed with these adrenal disorders. Source: academic.oup.com/jcem/article-abstract/108/7/1813/7015785?redirectedFrom=fulltext
  12. Cushing syndrome is a metabolic disease caused by chronic exposure to high levels of glucocorticoids. It can present as an endocrine emergency due to a rapid increase in circulating cortisol leading to increased risk of cardiovascular disease and infection. Etomidate rapidly reduces plasma cortisol levels by inhibiting the action of 11β-hidroxilase. We report the case of a patient with severe hypercortisolaemia accompanied by metabolic and psychiatric disorders in whom administration of etomidate reduced preoperative levels of cortisol. Introduction Cushing’s syndrome is a metabolic disease caused by chronic exposure to high levels of glucocorticoids. The main causes are ectopic ACTH secretion, adrenal tumours (adenomas or carcinomas), adrenal hyperplasia, and administration of exognous glucocorticoids—the latter being the most common aetiology.1 In most cases, Cushing’s syndrome presents an indolent course for years before diagnosis is made, although it can sometime present as an endocrine emergency due to a rapid increase in circulating cortisol levels.2 In these cases, treatment to control hypercortisolaemia must be started quickly due to the high morbidity and mortality associated with the potentially life-threatening metabolic, infectious, and neuropsychiatric alterations that occur in this syndrome.1, 2, 3, 4 The options for treating Cushing’s syndrome include surgery, radiotherapy, and pharmacological treatment. The most commonly used drugs are adrenal steroidogenesis inhibitors (ketoconazole, metyrapone),3 but this treatment is not always well tolerated and its efficacy is limited.2 Etomidate is a drug from the imidazole family that inhibits the enzyme 11β-hydroxylase, and can reduce cortisol secretion within 48−72 h.2 Section snippets Case report Our patient was a 27-year-old woman with no known drug allergies or personal history of interest. She was studied in April 2021 for anxious-depressive symptoms with rapidly evolving paranoid ideation and hirsutism. A Nugent test was performed, which was positive (46.1 mcg/dl), and cortisol in urine was measured (2715 mcg/24 h), leading to a diagnosis of Cushing's syndrome. A CT scan showed a large mass on the right adrenal gland, compatible with a primary adrenal gland tumour (Fig. 1). Discussion Endogenous Cushing's syndrome is characterized by over-production of cortisol. In patients such as ours, the syndrome presents in its most serious form, with very high hypercortisolaemia and metabolic, cardiovascular, and neuropsychiatric disorders. Cushing's syndrome is a medical emergency due to its association with several comorbidities and its high rate of mortality.5 The first therapeutic option is surgical resection of the underlying tumour; however, the accompanying hypercortisolaemia Conclusion In its severe form, Cushing's syndrome is a medical emergency that must be rapidly controlled. Etomidate is both safe and effective, and has shown promising results in the treatment of severe hypercortisolaemia. We believe that these patients should be admitted to the Anaesthesia Intensive Care Unit during etomidate therapy in order to monitor their level of consciousness, lung function, and haemodynamics, and to closely monitor cortisol and electrolyte levels. Ethical considerations Informed consent was obtained for the use of patient information for teaching and research purposes in accordance with our hospital protocol. Conflict of interests None. Funding The authors have not received any funding for this manuscript. References (8) A. Ferriere et al. Cushing’s syndrome: Treatment and new therapeutic approaches Best Pract Res Clin Endocrinol Metab (2020) Juszczak A, Morris D, Grossman A. Cushing's Syndrome [Internet]. South Dartmouth (MA): MDText.com, Inc; 2000 [revised... T.B. Carroll et al. Continuous Etomidate Infusion for the Management of Severe Cushing Syndrome: Validation of a Standard Protocol J Endocr Soc (2018) V.A. Preda et al. Etomidate in the management of hypercortisolaemia in Cushing’s syndrome: a review Eur J Endocrinol (2012) There are more references available in the full text version of this article. Cited by (0) Recommended articles (6) Research article Patients’ and health care providers’ perspectives on quality of hemophilia care in the Netherlands: a questionnaire and interview study Research and Practice in Thrombosis and Haemostasis, Volume 7, Issue 4, 2023, Article 100159 Show abstract Research article Utilization of bilateral percutaneous microwave ablation of the adrenal glands in ectopic Cushing's syndrome Radiology Case Reports, Volume 17, Issue 12, 2022, pp. 4647-4651 Show abstract Research article Large subcutaneous tumor of the left shoulder European Journal of Internal Medicine, Volume 42, 2017, pp. e1-e2 Research article Atypical haemolytic uraemic syndrome in the era of terminal complement inhibition - An observational cohort study An observational cohort study Blood, 2023 Show abstract Research article Iatrogenic Cushing syndrome in a child due to erroneous compounding of omeprazole containing glucocorticoid: A case report and literature review Archives de Pédiatrie, Volume 30, Issue 4, 2023, pp. 247-250 Show abstract Research article A lethal case of massive hemorrhage after percutaneous liver biopsy in a patient with thrombasthenia Legal Medicine, Volume 65, 2023, Article 102315 Show abstract View full text © 2023 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España, S.L.U. All rights reserved. Read more at https://www.sciencedirect.com/science/article/abs/pii/S2341192923001415?via%3Dihub
  13. Abstract Cushing’s syndrome with concurrent primary aldosteronism (PA) is a rare presentation, and establishing an early diagnosis is imperative to preventing morbidity and long-term sequelae. The diagnosis is established by sequential lab work, showing an elevated cortisol and aldosterone level. Taking the above into consideration, it is evident that repeatedly negative results on all three tests can present an extremely challenging case. In this report, we discuss a female who presented with an adrenal incidentaloma and features suggestive of primary hyperaldosteronism as well as Cushing’s syndrome but no elevations in serum, urine, or salivary cortisol. In this study, we present a 37-year-old female with resistant hypertension and tachycardia. She had several features suggestive of Cushing’s syndrome including resistant hypertension, proximal muscle weakness, weight gain, easy bruising, hair loss, and a history of tachycardia and chest pain. Examination revealed an obese female with thin silvery abdominal striae. The patient’s labs revealed normal serum cortisol, urine-free cortisol (UFC), late-night salivary cortisol, and a normal dexamethasone suppression test. An abdominal computed tomography (CT) scan revealed a right adrenal mass measuring 2.1 x 1.5 x 2.5 cm. Due to a high index of suspicion, adrenal venous sampling was performed, which revealed high levels of cortisol and aldosterone in the right vein, confirming the diagnosis. The patient subsequently underwent a right adrenalectomy. She developed hypotension post-op, leading to the diagnosis of glucocorticoid-remediable aldosteronism. Introduction Primary aldosteronism (PA) is the excess production of aldosterone by the adrenal glands, despite a low serum renin level. The presentation of hyperaldosteronism can be vague and include symptoms such as muscle weakness, fatigue, headaches, numbness, and cramps. More specific findings include resistant hypertension, low serum potassium, and metabolic alkalosis. The etiologies are variable and can include an adrenal adenoma (Conn syndrome) or bilateral adrenal hyperplasia [1]. Cushing’s syndrome is also caused by excess hormone secretion by the adrenal glands. The etiologies include a primary adrenal adenoma, hyperplasia, carcinoma, or exogenous corticosteroid use. It can also be caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma or as a result of paraneoplastic ACTH secretion. The clinical presentation is highly variable and leads to difficulties in establishing a diagnosis. The concurrent existence of primary hyperaldosteronism and Cushing’s syndrome creates additional hindrances in diagnosis, yet further obscured in a patient with a repeatedly negative workup for both conditions. Case Presentation A 37-year-old female presented to her primary care physician with complaints of proximal muscle weakness, tachycardia, and chest pain. Repeated blood pressure readings revealed that she was hypertensive, and she was started on amlodipine and benazepril, which elevated her blood pressure further. A computed tomography (CT) scan (Figure 1) of the abdomen was performed due to resistant hypertension, which revealed an adrenal incidentaloma (right adrenal gland measuring 2.1 x 1.5 x 2.5 cm). Precontract density was 5 Hounsfield units, and a 15-minute delayed washout showed 11 Hounsfield units for a 72% washout. She was thus referred to endocrinology. Figure 1: Abdominal CT scan showing a nodule in the right adrenal gland measuring 2.1 x 1.5 x 2.5 cm She presented to the endocrinology clinic on March 12, 2021. A thorough physical examination was performed, which revealed a well-appearing obese female (BMI of 38.86 kg/m2) with no acute distress. Her blood pressure was 144/108 mmHg, her pulse was 95, and she was afebrile. Thin silvery striations were present on the abdomen, and alopecia was present on the crown. A review of all other systems was unremarkable. A detailed family history revealed early-onset hypertension in her brother (age: 35 years) and her mother (age: 30 years). Personal history included elevated anxiety, weight gain, headaches (frontal band distribution), increased thirst, easy bruising as well as delayed clearance of bruises, and proximal muscle weakness presenting as difficulty in climbing stairs and inability to lift heavy objects. She reported no change in menstrual cycles. There was no history of exogenous corticosteroid use. Serum biochemistries were sent (Table 1), which showed normal levels of thyroid stimulating hormone (TSH), creatinine, liver function tests, and serum electrolytes. However, mildly elevated aldosterone (23 ng/dl), mild hypokalemia (3.3 mEq/L), and suppressed ACTH and dehydroepiandrosterone (DHEA) sulfate were discovered. The aldosterone to renin ratio was also elevated at 59.9 on spironolactone and was 71.4 three months later when spironolactone was discontinued. These findings lead to a preliminary diagnosis of primary hyperaldosteronism. Test Result Calcium 9.1 mmol/L Sodium 137 mmol/L Potassium 4.1 mmol/L Chloride 106 mmol/L CO2 27 BUN 15 mmol/L Glucose 95 mmol/L Creatinine 1.1 μmol/L AST 24 U/L ALT 20 U/L Albumin 4.4 g/L Total protein 7.0 g/L Total bilirubin 0.4 μmol/L Alkaline phosphatase 40 U/L Renin 0.44 Table 1: Patient serum biochemistries BUN: Blood urea nitrogen; AST: Aspartate transaminase; ALT: Alanine transaminase. A workup for elevated cortisol was also performed as the patient was phenotypically Cushingoid, and the following biochemistries were sent sequentially: serum cortisol, 24-hour urine-free cortisol (UFC), salivary cortisol, and a low-dose dexamethasone suppression test (Table 2). The bloodwork was hence nonconfirmatory. Endocrine workup Serum cortisol 4.5 mcg/dL Urine-free cortisol 1.57 g/24 h Salivary cortisol <0.03 μg/dL Dexamethasone suppression test 1.5 mcg/dL Aldosterone <4.0 Table 2: Patient follow-up bloodwork Despite a repeatedly negative workup for Cushing's syndrome, adrenal venous sampling was performed due to a high index of suspicion. The results revealed an inferior vena cava (IVC) cortisol of 20, left adrenal venous (LAV) cortisol of 81, and right adrenal vein (RAV) cortisol of 1280. The results of the IVC aldosterone were 24, LAV aldosterone was 660 and RAV aldosterone was 1500. The elevated levels of cortisol in the RAV were in complete contradiction to the aforementioned workup. A diagnosis of Cushing’s syndrome and concurrent PA was determined. Adrenal veinous sampling was instrumental in establishing the diagnosis but was equivocal and did not lateralize aldosterone and cortisol excess. However, the amount of aldosterone and cortisol were both significantly higher on the right side. After a panel discussion with doctors from several disciplines, a laparoscopic adrenalectomy was planned. The procedure was successful, and the patient was initially showing clinical improvement. The specimen was sent for pathological evaluation and revealed an adrenal cortical adenoma. After initial improvement, the patient developed hypotension, which was likely due to adrenal insufficiency. The patient was supplemented with 1-mg dexamethasone tablets, which stabilized her condition, and a diagnosis of glucocorticoid-remediable-aldosteronism was made. Based on a strong family history of early onset-resistant hypertension, a genetic component was suspected. Several genes associated with PA with autosomal dominant inheritance have been identified [2], such as CYP11B2, CLCN2, KCNJ5, CACNA1D, and CACNA1H. The patient was offered genetic testing but was unable to follow through due to financial reasons. Discussion This patient presented as an extremely rare example of PA and Cushing’s syndrome, with negative serum cortisol, 24-hour UFC, late-night salivary cortisol, and a dexamethasone suppression test. Despite repeatedly negative lab results, the patient presented with a markedly elevated cortisol on adrenal venous sampling. In our literature search, we found an instance of a patient with several negative UFCs [3]; however, to the best of our knowledge, there have been no reported instances of a completely negative workup in a patient who is positive for Cushing’s syndrome. In fact, in the practice guidelines published by the Journal of Clinical Endocrinology & Metabolism [4], it is recommended that patients with a suspected diagnosis of Cushing’s syndrome or an adrenal incidentaloma and two concordant negative test results need not undergo further investigations. One proposed mechanism for the misleading workup could be assay interference. Interference occurs when a substance or process falsely alters an assay result [5]. This can lead to incorrect diagnosis and subsequent treatment and poses a threat to the patient. Another suggested mechanism causing false negative test results could be the hook effect [6]. The hook effect is described as a phenomenon that leads to falsely low results due to the presence of excessive analyte. In a study by Friedman et al. [7], it was noted that patients with “episodic Cushing’s syndrome” or those with mild symptoms had a negative workup. The study recommended serial monitoring for the disease. The interesting fact is that our patient had several features suggestive of active Cushing’s syndrome, and the hypotension seen postoperatively was a testament to the fact that there was in fact a cortisol excess, which led to adrenal insufficiency. In light of the above, a consistently negative workup is perplexing. Zhang et al. suggested performing a low-dose dexamethasone suppression test in individuals presenting with PA, prior to adrenal vein sampling (AVS) and surgery due to the high prevalence of Cushing’s syndrome in patients with PA [8]. A positive test result can lead to a straightforward diagnosis; however, in this rare case where the patient had severe negative tests, it can present as a challenge in diagnosis and treatment. Conclusions The presence of PA and concurrent Cushing’s syndrome can present as a diagnostic challenge. It is recommended to follow up on the signs of Cushing's syndrome with preliminary tests and to presume its absence if two concordant tests are negative. Our patient, however, was an exceptional case. This case highlighted the importance of maintaining a high index of suspicion for patients presenting with several signs and symptoms of the disease and a negative workup. More attention should be paid to the patient's history, and a thorough physical examination should be conducted. In those with an uncertain diagnosis, adrenal venous sampling can provide a clearer picture and lead to a more accurate understanding of the case. References Reincke M, Bancos I, Mulatero P, Scholl UI, Stowasser M, Williams TA: Diagnosis and treatment of primary aldosteronism. Lancet Diabetes Endocrinol. 2021, 9:876-92. 10.1016/S2213-8587(21)00210-2 Dutta RK, Söderkvist P, Gimm O: Genetics of primary hyperaldosteronism. Endocr Relat Cancer. 2016, 23:R437-54. 10.1530/ERC-16-0055 Moloney KJ, Mercado JU, Ludlam WH, Broyles FE: Diagnosis of Cushing's disease in a patient with consistently normal urinary free cortisol levels: a case report. Clin Case Rep. 2016, 4:1181-3. 10.1002/ccr3.647 Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM: The diagnosis of Cushing's syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2008, 93:1526-40. 10.1210/jc.2008-0125 Dimeski G: Interference testing. Clin Biochem Rev. 2008, 29:S43-8. The hook effect. (2014). Accessed: June 19, 2023: https://www.aacc.org/science-and-research/clinical-chemistry-trainee-council/trainee-council-in-english/pearls-of-lab.... Friedman TC, Ghods DE, Shahinian HK, et al.: High prevalence of normal tests assessing hypercortisolism in subjects with mild and episodic Cushing's syndrome suggests that the paradigm for diagnosis and exclusion of Cushing's syndrome requires multiple testing. Horm Metab Res. 2010, 42:874-81. 10.1055/s-0030-1263128 Zhang Y, Tan J, Yang Q, et al.: Primary aldosteronism concurrent with subclinical Cushing's syndrome: a case report and review of the literature. J Med Case Rep. 2020, 14:32. 10.1186/s13256-020-2353-8 From https://www.cureus.com/articles/170896-rare-challenges-in-diagnosing-cushings-syndrome-and-primary-aldosteronism-a-case-report-of-a-female-with-a-negative-workup#!/
  14. Objective: To evaluate the long-term efficacy and safety of osilodrostat in patients with Cushing’s disease. Methods: The multicenter, 48-week, Phase III LINC 4 clinical trial had an optional extension period that was initially intended to continue to week 96. Patients could continue in the extension until a managed-access program or alternative treatment became available locally, or until a protocol amendment was approved at their site that specified that patients should come for an end-of-treatment visit within 4 weeks or by week 96, whichever occurred first. Study outcomes assessed in the extension included: mean urinary free cortisol (mUFC) response rates; changes in mUFC, serum cortisol and late-night salivary cortisol (LNSC); changes in cardiovascular and metabolic-related parameters; blood pressure, waist circumference and weight; changes in physical manifestations of Cushing’s disease; changes in patient-reported outcomes for health-related quality of life; changes in tumor volume; and adverse events. Results were analyzed descriptively; no formal statistical testing was performed. Results: Of 60 patients who entered, 53 completed the extension, with 29 patients receiving osilodrostat for more than 96 weeks (median osilodrostat duration: 87.1 weeks). The proportion of patients with normalized mUFC observed in the core period was maintained throughout the extension. At their end-of-trial visit, 72.4% of patients had achieved normal mUFC. Substantial reductions in serum cortisol and LNSC were also observed. Improvements in most cardiovascular and metabolic-related parameters, as well as physical manifestations of Cushing’s disease, observed in the core period were maintained or continued to improve in the extension. Osilodrostat was generally well tolerated; the safety profile was consistent with previous reports. Conclusion: Osilodrostat provided long-term control of cortisol secretion that was associated with sustained improvements in clinical signs and physical manifestations of hypercortisolism. Osilodrostat is an effective long-term treatment for patients with Cushing’s disease. Clinical trial registration: ClinicalTrials.gov, identifier NCT02180217 Introduction Cushing’s disease is a rare but serious disorder resulting from an adrenocorticotropic hormone (ACTH)-producing pituitary adenoma that, in turn, promotes excess adrenal cortisol (1). Chronic exposure to excess cortisol is associated with numerous comorbidities, including hypertension, muscle weakness, hirsutism, central obesity, hypercoagulability and diabetes mellitus, all of which lead to an increased risk of mortality and poor health-related quality of life (HRQoL) (1–3). The longer the exposure to excess cortisol, the lower the chance of reversing morbidity (2). Although transsphenoidal surgery is the recommended first-line treatment, approximately one-third of patients experience persistent or recurrent disease following surgery (4), and some patients are ineligible for or refuse surgery (4–6). Steroidogenesis inhibitors are usually the first choice for medical treatment (6). The effect of medical treatment can be easily monitored by measurement of serum and urine cortisol. Owing to the unremitting nature of Cushing’s disease, patients often require continued medical therapy to maintain long-term control of cortisol excretion. To date, long-term efficacy and safety data for steroidogenesis inhibitors from prospective clinical trials are limited (7, 8). Osilodrostat is a potent oral inhibitor of 11β-hydroxylase and is approved for the treatment of adult patients with Cushing’s disease (USA) or endogenous Cushing’s syndrome (EU and Japan) who are eligible for medical therapy (9–12). The LINC 4 study was a multicenter, 48-week, Phase III clinical trial in patients with Cushing’s disease that included an upfront 12-week randomized, double-blind, placebo-controlled period. Osilodrostat led to rapid normalization of mean urinary free cortisol (mUFC) excretion and was significantly superior to placebo at week 12; normal mUFC excretion was sustained in most patients throughout the 48-week core period (13). Following the 48-week core period, patients could enter an optional open-label extension period intended to run for an additional 48 weeks. Here, we report the long-term efficacy and safety data from the extension of LINC 4. These data augment the existing efficacy and safety profile of osilodrostat (7, 8, 13, 14). Methods Patients Eligibility criteria have been described previously (13). Briefly, the study enrolled adult patients with a confirmed diagnosis of persistent or recurrent Cushing’s disease after pituitary surgery and/or irradiation, or de novo Cushing’s disease (if not surgical candidates), with mUFC >1.3 times the upper limit of normal (ULN; 138 nmol/24 h or 50 μg/24 h; calculated from three samples collected on three consecutive days, with ≥2 values >1.3 x ULN). Patients who continued to receive clinical benefit from osilodrostat, as assessed by the study investigator, could enter the extension phase. The study was conducted in accordance with the Declaration of Helsinki, with an independent ethics committee/institutional review board at each site approving the study protocol; patients provided written informed consent to participate and consented again at week 48 to taking part in the extension phase. The trial is registered at ClinicalTrials.gov (NCT02180217). Study design Data from the 48-week core period of this Phase III study, consisting of a 12-week randomized, placebo-controlled, double-blind period followed by a 36-week open-label treatment period, have been published previously (13). The optional open-label extension phase was initially planned to run for an additional 48 weeks (to week 96 for the last patient enrolled). However, patients could continue in the extension only until a managed-access program or alternative treatment became available locally, or until a protocol amendment was approved at their site that specified that patients enrolled in the optional extension phase should come for an end-of-treatment (EOT) visit within 4 weeks or by week 96, whichever occurred first. Patients still receiving clinical benefit from osilodrostat at their EOT visit were eligible to join a separate long-term safety follow-up study (NCT03606408). Consequently, the extension phase ended when all patients had transitioned to the long-term safety follow-up study, if eligible, or had discontinued from the study. Patients continued to receive open-label osilodrostat at the established effective dose from the core phase (dose adjustments were permitted based on efficacy and tolerability; the maximum dose was 30 mg twice daily [bid]). Outcomes Study outcomes assessed during the extension phase were as follows: complete (mUFC ≤ULN), partial (mUFC decrease ≥50% from baseline and >ULN) and mUFC response rate at weeks 60, 72, 84, 96 and 108, then every 24 weeks until the extension EOT visit; change in mUFC, serum cortisol and late-night salivary cortisol (LNSC) at weeks 60, 72, 84, 96 and 108, then every 24 weeks until the extension EOT visit; time to loss of mUFC control, defined as the time (in weeks) from the first collection of post-baseline normal mUFC (≤ULN) to the first mUFC >1.3 x ULN on two consecutive scheduled visits on the highest tolerated dose of osilodrostat and not related to a dose interruption or reduction for safety reasons after week 26; change in cardiovascular/metabolic-related parameters associated with Cushing’s disease (fasting plasma glucose [FPG] and glycated hemoglobin [HbA1c]) at weeks 60, 72, 84, 96 and 108, then every 24 weeks until the extension EOT visit; blood pressure, waist circumference and weight every 4 weeks until week 72, then every 12 weeks until week 108, then every 24 weeks until the extension EOT visit; change from baseline in physical manifestations of hypercortisolism at weeks 72, 96 and 108, then every 24 weeks until the extension EOT visit; changes in HRQoL (determined by Cushing’s Quality of Life Questionnaire [CushingQoL] and Beck Depression Inventory II [BDI-II]) at weeks 72 and 96 and the extension EOT visit; and proportion of patients with ≥20% decrease or increase in tumor volume. mUFC (mean of two or three 24-hour urine samples), serum cortisol (measured between 08:00 and 10:00) and LNSC (measured from two samples collected between 22:00 and 23:00) were evaluated using liquid chromatography-tandem mass spectrometry and assessed centrally. Pituitary magnetic resonance imaging with and without gadolinium enhancement was performed locally at weeks 72 and 96 and the extension EOT visit; images were assessed centrally for change in tumor size. Safety was continually assessed from core study baseline throughout the extension for all enrolled patients by monitoring for adverse events (AEs); all AEs from first patient first visit to last patient last visit are reported. AEs of special interest (AESIs) included events related to hypocortisolism, accumulation of adrenal hormone precursors, arrhythmogenic potential and QT prolongation, and enlargement of the pituitary tumor. Statistical methods Analyses presented here are based on cumulative data generated for the full analysis set (all patients enrolled at core study start who received at least one dose of osilodrostat) up to last patient last visit. Safety analyses included all enrolled patients who received at least one dose of osilodrostat and had at least one valid post-baseline safety assessment. All analyses excluded data for patients in the placebo arm collected during the placebo-controlled period. Results were analyzed descriptively, and no formal statistical testing was performed. Correlations were evaluated using the Pearson’s correlation coefficient; extreme outliers were defined as >(Q3 + 3 x IQR) or <(Q1 − 3 x IQR), where Q1 and Q3 are the first and third quartiles and IQR is the interquartile range (Q3 − Q1). Results Patient disposition and baseline characteristics LINC 4 was conducted from October 3, 2016 to December 31, 2020. Of the 73 patients who were enrolled and received treatment in the core phase, 65 completed the core phase and 60 (82.2%) opted to enter the extension; 53 (72.6%) patients completed the extension (Figure 1). At core study baseline, most patients had undergone previous pituitary surgery (87.7%) or received prior medical therapy (61.6%; Table 1). Patients had a variety of comorbidities at core study baseline, most commonly hypertension (61.6%); physical manifestations of hypercortisolism were common (Table 1). Figure 1 Figure 1 Patient disposition. *Patient was randomly allocated to osilodrostat but did not receive any study treatment because of a serious AE (grade 4 pituitary apoplexy that required hospitalization prior to receiving any study drug) that was not considered related to treatment. Table 1 Table 1 Core study patient baseline characteristics. Exposure to osilodrostat From core baseline to study end, median (range) osilodrostat exposure was 87.1 (2.0–126.6) weeks; 29 (39.7%) patients were exposed to osilodrostat for more than 96 weeks. The median (25th–75th percentiles) average osilodrostat dose received during the overall study period was 4.6 (3.7–9.2) mg/day; during the core study, median (25th–75th percentiles) average dose was 5.0 (3.8–9.2) mg/day (13). The osilodrostat dose being taken for the longest duration was most frequently 4.0 mg/day (27.4%). Following titration, daily osilodrostat dose remained stable during long-term treatment (Figure 2). Figure 2 Figure 2 (A) Mean and (B) median osilodrostat dose over time. Shaded areas indicate the randomized, double-blind period and the open-label period of the core phase. According to the study protocol, all patients restarted the open-label period on osilodrostat 2 mg bid unless they were on a lower dose at week 12. All patients on <2 mg bid osilodrostat (or matched placebo) at week 12 continued to receive the same dose, regardless of initial treatment allocation. n is the number of patients who contributed to the mean/median. Long-term efficacy of osilodrostat treatment Of patients who had received at least one dose of osilodrostat, 68.5% (n=50/73) had mUFC ≤ULN at the end of the core period, and 54.8% (n=40/73) had mUFC ≤ULN at week 72. Of patients who opted to enter the extension, 66.7% had mUFC ≤ULN (n=40/60) and 8.3% (n=5/60) had mUFC decreased by ≥50% from baseline and >ULN at week 72 (Figure 3A). Of patients with an assessment at their extension EOT visit, 72.4% (n=42/58) had mUFC ≤ULN and 8.6% (n=5/58) had mUFC decreased by ≥50% from baseline and >ULN. Figure 3 Figure 3 (A) Proportion of patients with mUFC response over time, (B) mean mUFC over time, and (C) individual patient changes in mUFC. (A) Patients with missing mUFC at any visit, including those who had discontinued treatment, were counted as non-responders. Shaded area represents the 48-week core phase; excludes data in placebo arm collected during placebo-control period. *The proportion of patients with mUFC ≤ULN at week 48 was calculated using the full analysis set (patients who had discontinued treatment were classified as non-responders). †Discontinued, n=12; missing because of the COVID-19 pandemic, n=4; mUFC not meeting response criteria, n=3; missing (any other reason), n=1. ‡mUFC not meeting response criteria, n=8; missing because of the COVID-19 pandemic, n=2; missing (any other reason), n=1. (B) Shaded areas indicate the randomized, double-blind period and the open-label period of the core phase. n is the number of patients who contributed to the mean. Analysis includes scheduled visits only. (B, C) Dashed line is the ULN for UFC (138 nmol/24 h). Mean mUFC excretion for the 48-week core period of the study has been reported previously (13); mUFC excretion normalized in patients who received osilodrostat, either during the 12-week randomized period (osilodrostat arm) or during the subsequent 36-week open-label period (all patients) (13). Mean mUFC excretion was maintained within the normal range in the extension period (week 72 (n=48), 90.5 [SD 122.6] nmol/24 h; 0.7 [0.9] x ULN; Figure 3B). Median (range) mUFC excretion is shown in Supplementary Figure 1A. Individual patient changes in mUFC from core study baseline to their last observed visit are shown in Figure 3C. There were no escape-from-response events during the extension phase following the primary analysis cut-off (February 25, 2020) (13). During the core period, mean (SD) serum cortisol levels decreased from 538.1 (182.3) nmol/L (0.9 [0.3] x ULN) at baseline to 353.9 (124.9) nmol/L (0.6 [0.2] x ULN) at week 48. Serum cortisol levels then remained stable throughout the extension period (week 72: 319.1 [129.8] nmol/L, 0.6 [0.2] x ULN; Figure 4A). LNSC also decreased and then remained stable, although >ULN, throughout the study (baseline: 10.8 [23.5] nmol/L, 4.3 [9.4] x ULN; week 48: 3.7 [2.6] nmol/L, 1.5 [1.0] x ULN; week 72: 3.8 [3.0] nmol/L, 1.5 [1.2] x ULN; Figure 4B). Median serum cortisol and LNSC are shown in Supplementary Figures 1B, C. Of patients with baseline and last observed value (LOV) measurements, 25.0% had normal LNSC at baseline (n=6/24) and 47.8% had normal LNSC at their last visit (n=11/23). Interpretation of this result is limited by the high degree of missing data (baseline: 67.1%, n=49/73; LOV: 68.5%, n=50/73). Figure 4 Figure 4 (A) Mean serum cortisol and (B) mean LNSC from baseline to the end of treatment. Shaded areas indicate the randomized, double-blind period and the open-label period of the core phase. n is the number of patients who contributed to the mean. Dashed line in (A) indicates reference serum cortisol range for males and females ≥18 years old (127–567 nmol/L). Dashed line in (B) indicates reference LNSC (22:00–23:00) range for males and females ≥18 years old (≤2.5 nmol/L). Changes in cardiovascular and metabolic parameters, physical manifestations of Cushing’s disease and patient-reported outcomes As previously reported, improvements from baseline occurred in most cardiovascular and metabolic-related parameters in the core period following osilodrostat treatment (9). This trend continued during the extension phase and included a reduction in FPG, HbA1c, cholesterol, systolic and diastolic blood pressure, waist circumference, and weight (Figure 5). Similarly, the improvements from baseline in physical features of hypercortisolism observed by week 48 were maintained for most parameters throughout the extension (Figure 6A), with either no change or improvement observed from baseline in ≥90% patients for all parameters at week 72. Facial rubor, supraclavicular fat pad, dorsal fat pad and central obesity had a favorable shift from baseline in ≥40% of patients at week 72. Few patients reported worsening from baseline of specific manifestations (Figure 6A). Figure 5 Figure 5 Changes in cardiovascular-related metabolic parameters. Shaded area indicates the core phase. n is the number of patients who contributed to the mean. Error bars indicate standard deviation. DBP, diastolic blood pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein; SBP, systolic blood pressure. Figure 6 Figure 6 Changes in (A) physical manifestations of Cushing’s disease and (B) patient-reported outcomes. Shaded area indicates the core phase. n is the number of patients who contributed to the mean. Improvements were also observed in scores for patient quality of life (QoL). Both standardized CushingQoL and BDI-II scores improved steadily during the core phase. QoL scores continued to improve further during the extension. At week 72 and EOT, mean (SD) standardized CushingQoL score was 66.4 (19.6) and 69.0 (20.9), and mean (SD) BDI-II score was 6.5 (7.0) and 6.2 (7.1), representing a mean (SD) change from baseline of 15.2 (19.0) and 17.1 (17.1) and −4.1 (9.3) and −4.5 (7.9), respectively (Figure 6B). Adverse events AEs that occurred in >20% of patients, irrespective of study-drug relationship, during the entire study period (median [range] osilodrostat exposure for all patients: 87.1 [2.0–126.6] weeks; excluding data collected in the placebo arm during the placebo-controlled period) are shown in Table 2. The most common AEs were decreased appetite (46.6%), arthralgia (45.2%) and fatigue (39.7%). Most AEs were mild or moderate; 60.3% were reported as grade 1/2 (Table 2). Table 2 Table 2 Summary of adverse events during LINC 4 core and extension periods. Overall, 10 AEs (adrenal insufficiency, n=3; hyperbilirubinemia, hypokalemia, headache, arthralgia, pituitary tumor, benign pituitary tumor, and depression, n=1 each) in nine patients (12.3%; one patient experienced both arthralgia and headache) led to treatment discontinuation. For two patients (2.7%), those AEs were reported as grade 3 (hyperbilirubinemia and hypokalemia). One patient discontinued following the primary analysis cut-off date (February 25, 2020). The most common AESIs in both the core and extension periods were those related to adrenal hormone precursors. However, the proportion of patients reporting these AESIs was lower in the extension than in the core period (Figure 7). AESIs related to hypocortisolism were most frequent during the core period but did occur throughout the remainder of the study, albeit at lower frequency (Figure 7). Hypocortisolism-related AEs were most frequently managed with temporary osilodrostat interruption (n=20) or dose adjustment (n=6), and with concomitant glucocorticoids (n=15). There were no new occurrences of AESIs related to arrhythmogenic potential and QT prolongation, or to pituitary tumor enlargement, in the extension (Figure 7). During the entire study period from core baseline to the end of the extension, AESIs led to osilodrostat discontinuation in six (8.2%) patients (n=1, related to accumulation of adrenal hormone precursors [hypokalemia]; n=3, related to hypocortisolism [all adrenal insufficiency]; n=2, related to pituitary tumor enlargement [pituitary tumor and pituitary tumor benign]). Figure 7 Figure 7 Occurrence of AESIs by time interval. The denominator for each time period only included patients who had at least one scheduled visit, or at least one observed AE, during that period. From baseline to week 12, the denominator only included patients randomized to osilodrostat. A patient with multiple occurrences of an AE within the same period is counted only once in that period. However, if an AE ends and occurs again in a different period, it is then counted in both periods. Shaded areas indicate the randomized, double-blind period and the open-label period of the core phase. *Maximum duration of follow-up was 127 weeks. Following an increase in 11-deoxycortisol and 11-deoxycorticosterone during the core study, levels tended to decrease during longer-term treatment (Figure 8). From baseline to LOV, the proportion of patients with elevated 11-deoxycorticosterone and 11-deoxycortisol levels increased from 10.0% (n=1/10) to 90.0% (n=9/10) and from 57.9% (n=33/57) to 86.7% (n=5 and 2/60), respectively. In female patients, mean (SD) testosterone levels increased from 1.1 (0.6) nmol/L at baseline to 2.5 (2.6) nmol/L at the end of the core phase, then decreased to within the normal range (0.7−2.6 nmol/L for females) by the extension phase end-of-treatment visit (1.9 [1.7] nmol/L; Figure 8). The proportion of females with an elevated testosterone level increased from 15.0% (n=9/61) at baseline to 63.2% (n=24/61) at week 72 and then reduced to 41.7% (n=25/61) at LOV. In males, testosterone levels increased and remained within the normal range throughout osilodrostat treatment (Figure 8). The proportion of male patients with testosterone levels below the lower limit of normal decreased from 58.3% (n=7/12) at baseline to 33.3% (n=4/12) at LOV. The proportion of patients experiencing AEs potentially related to increased testosterone (increased blood testosterone, acne and hirsutism) was lower during the extension than during the core study (Supplementary Figure 2). Mean serum potassium levels remained stable and within the normal range (3.5–5.3 mmol/L) throughout osilodrostat treatment (Figure 8). The proportion of patients with a normal potassium level was similar between baseline (98.6%, n=72/73) and LOV (94.4%, n=68/72). Figure 8 Figure 8 Mean (± SD) levels up to the end-of-treatment visit in the extension phase for 11-deoxycortisol, 11-deoxycorticosterone, potassium and testosterone (in males and females). Shaded area indicates the core phase. n is the number of patients who contributed to the mean. Reference ranges: 11-deoxycortisol ULN, 3.92 nmol/L in males and 3.1 nmol/L in females, or lower depending on age; 11-deoxycorticosterone ULN, 455 pmol/L in males and 696 pmol/L in females (mid-cycle); potassium, 3.5–5.3 mmol/L; testosterone, 8.4–28.7 nmol/L in males and 0.7–2.6 nmol/L in females. At baseline, median (range) tumor volume was 82.0 (12.0–2861.0) mm3; 28.8% (n=21/73) of patients had a macroadenoma (≥10 mm) and 68.5% (n=51/73) had a microadenoma (<10 mm). At week 72, median (range) tumor volume was 68.0 (10.0–3638.0) mm3 (Figure 9A). Of the 27 patients with measurements at both baseline and week 72, 29.6% (n=8/27) had a ≥20% decrease in tumor volume and 37.0% (n=10/27) had a ≥20% increase (Figure 9B). Notably, mean (SD) plasma ACTH increased steadily between baseline (17.1 [32.1] pmol/L, n=73) and week 72 (65.0 [96.9] pmol/L, n=45; Figure 9C); mean ACTH levels appeared to stabilize after week 72. All patients experienced an increase in ACTH levels from baseline to week 72 (n=45) and LOV (n=73); of these, 34/45 (75.6%) and 47/73 (64.4%) experienced an increase in ACTH of ≥2 × baseline levels to week 72 and to LOV, respectively. There was no correlation between change in tumor volume and change in ACTH from baseline to week 72 (r=0.1; calculated without two extreme outliers). Figure 9 Figure 9 (A) Mean and median tumor volume over time, (B) number of patients with a change in tumor volume from baseline, and (C) mean ACTH over time. Shaded areas indicate the core phase. n is the number of patients who contributed to the mean. Dashed lines in (C) indicate reference morning (07:00–10:00) plasma ACTH ranges for males and females ≥18 years old (1.3–11.1 pmol/L). Discussion Following transsphenoidal surgery, approximately one-third of patients experience persistence or recurrence of disease and subsequently require further treatment to control excess cortisol secretion (4). It is therefore essential that clinical studies evaluating the long-term safety and efficacy of potential new treatments, such as osilodrostat, are performed. The data presented here from the LINC 4 extension reinforce previous reports demonstrating that osilodrostat is effective and well tolerated during long-term treatment of Cushing’s disease (7, 8, 13, 14). The normalization of mUFC excretion, observed from as early as week 2 in some patients (13), was sustained to the end of the optional open-label extension phase. Overall, the response rate was durable and remained ≥60% throughout the study, with 72.4% of patients maintaining mUFC ≤ULN at their extension EOT visit. Considering the range in baseline mUFC values (21.4–2607.3 nmol/24 h), this indicates that patients can benefit from osilodrostat treatment regardless of their baseline mUFC level. This also suggests that baseline mUFC is not an indicator of whether a patient will respond to osilodrostat treatment. Notably, there were no escape events during the extension period. Additionally, the improvements in most cardiovascular and metabolic parameters, physical manifestations and QoL previously reported during the 48-week core phase were maintained or further improved with long-term treatment (13). Collectively, these results demonstrate the ability of osilodrostat to reduce the burden of disease and comorbidities frequently experienced by patients with Cushing’s disease. mUFC excretion is commonly assessed in clinical trials and during routine clinical practice to evaluate response to treatment. It is also important to monitor the recovery of the circadian cortisol rhythm in response to treatment by measuring serum cortisol and LNSC (6, 15–17). Elevated LNSC levels have been linked to dysregulation in glucose tolerance, insulin sensitivity and insulin secretion (18). As such, one potential explanation for persistent comorbidities in some patients with normalized mUFC excretion is that LNSC, although reduced, remains just above the ULN. Assessment of LNSC during treatment with other medical therapies has been reported, although differences in treatment duration and patient population type and size limit meaningful comparisons between therapies (15–17). In LINC 4, mean serum cortisol levels remained within the normal range. Mean LNSC improved considerably from baseline but remained above the ULN throughout the study; 47.8% (n=11/23) of patients achieved normalized LNSC at their LOV visit. A numerically large decrease in LNSC, but with mean levels remaining above the ULN, is consistent with previous reports during long-term osilodrostat treatment (8); the mechanism underlying this observation is currently unknown. In real-life clinical practice, the osilodrostat label allows flexible dosing (9, 11), which may help achieve normalization of LNSC. Furthermore, the number of patients with available LNSC assessments was limited, particularly during the extension; therefore, the data should be interpreted with caution. Future studies should examine whether patients with normalization of both UFC and LNSC have better outcomes than patients with only normalized UFC. Overall, the safety findings reported here for the extension period were consistent with those reported in the primary analysis (13) and previous clinical trials (7, 8, 14). Osilodrostat was generally well tolerated throughout the study; most reported AEs were mild or moderate in severity and manageable. Only nine of 73 (12.3%) patients discontinued osilodrostat at any time because of an AE (3/73 [4.1%] prior to week 48; 6/60 [10.0%] after week 48). Given that osilodrostat is a potent inhibitor of 11β-hydroxylase, AEs related to hypocortisolism or increased levels of adrenal hormone precursors are expected. The frequency of these AEs was lower in the extension period than in the core period, although events did still occur, highlighting the importance of monitoring patients regularly throughout long-term osilodrostat use. AEs potentially related to arrhythmogenic potential and QT prolongation remained infrequent throughout the study. Furthermore, the clinical benefit and tolerability of osilodrostat is supported by the high proportion of patients who chose to continue into the extension period: 92.3% who completed the core phase continued into the optional extension phase, with 88.3% of those completing the extension. Although dose adjustments were allowed in the open-label phase, the dose of osilodrostat remained stable over long-term treatment, with 4 mg/day adequate for most patients to achieve and sustain control of mUFC excretion. Most AEs related to hypocortisolism occurred during the dose-escalation periods of both LINC 4 (27%) and LINC 3 (51%) (19); the lower occurrence in LINC 4 than LINC 3 may have been related to the more gradual dose-escalation schedule of LINC 4 (every 3 weeks) relative to that of LINC 3 (every 2 weeks) (13, 14, 19). As such, an increased dose-titration interval could be considered when there is a need to mitigate the potential for glucocorticoid withdrawal syndrome or hypocortisolism-related AEs following a rapid decrease in cortisol. Dose-increase decisions should be informed by regular cortisol assessments, the rate of decrease in cortisol, and the individual’s clinical response and tolerability to osilodrostat. Furthermore, as with all steroidogenesis inhibitors, patients should be educated on the expected effects of treatment and dose increases, with a particular focus on the symptoms of hypocortisolism and the advice to contact their physician if they occur. As expected, levels of 11-deoxycortisol, 11-deoxycorticosterone and, in women, testosterone increased during osilodrostat treatment. These then decreased during long-term treatment; notably, testosterone levels in women returned to within the normal range and to near baseline levels. These observations are consistent with the findings of LINC 3, which also demonstrated that these increases were reversible following discontinuation of osilodrostat (14). Compared with the primary analysis, there were no new AEs of increased testosterone in the extension phase of LINC 4; these findings are consistent with both LINC 2 and LINC 3 long-term analyses (7, 8). In general, osilodrostat did not adversely affect pituitary tumor volume, with similar proportions of patients reporting either a ≥20% decrease, ≥20% increase or stable tumor volume throughout the study. Although ACTH levels increased during osilodrostat treatment, there was no apparent correlation between the change in ACTH and the change in tumor volume after 72 weeks of treatment; however, longer-term data are needed to evaluate this further. As ACTH-producing pituitary adenomas are the underlying drivers of hypercortisolism, in turn responsible for the high morbidity and poor QoL associated with the disease, tumor stability is of great clinical importance in patients with Cushing’s disease, especially those for whom surgery has failed or is not a viable option. In addition to LINC 4, other studies have assessed the long-term efficacy and safety of other medical therapies (20–24); however, there is a paucity of prospective, long-term data. For metyrapone, an oral steroidogenesis inhibitor that is given three or four times daily (25), prospective data are currently only available for 36 weeks of treatment in the Phase III/IV PROMPT study (22, 23). Normalization of mUFC excretion was observed in 48.6% (n=17/35) of patients at week 36 (23), and gastrointestinal, fatigue and adrenal insufficiency AEs were the most commonly reported during the first 12 weeks of treatment (22). Current data for levoketoconazole, an oral steroidogenesis inhibitor that is a ketoconazole stereoisomer taken twice daily, are available for 12 months (median duration of exposure 15 months, n=60) following the extended open-label extension of the Phase III SONICS study (26). Of patients with data, 40.9% (n=18/44) had normal mUFC excretion at month 12 (26). During the extension, no patient experienced alanine aminotransferase or aspartate aminotransferase >3 x ULN, suggesting that the potentially clinically important events relating to liver toxicity may be more likely to occur early during treatment, although periodic monitoring during long-term treatment is advisable (26). Pasireotide is a second-generation somatostatin receptor ligand that is administered subcutaneously twice daily (27, 28) or intramuscularly once a month (29–31). In a 12-­month extension of a Phase III study evaluating the long-term efficacy of long-acting pasireotide, 53.1% of patients had normalized mUFC at study completion (median treatment duration 23.9 months), with the most common AEs being related to hyperglycemia (21). The differences in duration and design of these studies prevent a meaningful comparison of the long-term efficacy of medical treatments for Cushing’s disease. The extension period of LINC 4 was initially planned to run to week 96; however, in agreement with the FDA, a protocol amendment was approved that resulted in approximately half of the patients completing the extension phase between weeks 72 and 96. We also acknowledge the potential for selection bias for patients who experienced the greatest clinical benefit during the 48-week core study; however, over 80% of patients chose to continue osilodrostat treatment after consenting to take part in the extension. Conclusions During the LINC 4 extension period, osilodrostat provided long-term control of cortisol excretion, accompanied by sustained improvements in clinical symptoms, physical manifestations of hypercortisolism and QoL. The safety profile was favorable. These data provide further evidence of the durable clinical benefit of long-term osilodrostat treatment in patients with persistent, recurrent or de novo Cushing’s disease. Data availability statement The datasets generated and analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request. Recordati Rare Diseases will share the complete de-identified patient dataset, study protocol, statistical analysis plan, and informed consent form upon request, effective immediately following publication, with no end date. Ethics statement The studies involving human participants were reviewed and approved by an independent ethics committee/institutional review board at each study site. The patients/participants provided their written informed consent to participate in this study. Author contributions The study steering committee (PS, AH, RF, and RA), AP, and the funder designed the study. AH, MG, MB, PW, ZB, AT, and PS enrolled patients in the study. Data were collected by investigators of the LINC 4 Study Group using the funder’s data management systems. MP and the funder’s statistical team analyzed the data. A data-sharing and kick-off meeting was held with all authors and an outline prepared by a professional medical writer based on interpretation provided by the authors. Each new draft of the manuscript subsequently prepared by the medical writer was reviewed and revised in line with direction and feedback from all authors. All authors contributed to the article and approved the submitted version. Funding This study was funded by Novartis Pharma AG; however, on July 12, 2019, osilodrostat became an asset of Recordati. Financial support for medical editorial assistance was provided by Recordati. Acknowledgments We thank all the investigators, nurses, study coordinators and patients who participated in the trial. We thank Catherine Risebro, PhD of Mudskipper Business Ltd for medical editorial assistance with this manuscript. Conflict of interest Author MG has received speaker fees from Recordati, Ipsen, Crinetics Pharmaceuticals, and Novo Nordisk and attended advisory boards for Novo Nordisk, Recordati, Ipsen, and Crinetics Pharmaceuticals. Author PS reports consultancy for Teva Pharmaceuticals. Author PW reports receiving travel grants and speaker fees from Novartis, Ipsen, Recordati, Novo Nordisk, Strongbridge Biopharma now Xeris Pharmaceuticals, and Lilly. Author MB reports receiving travel grants from Novartis, Ipsen, and Pfizer and consultancy for Novartis. Author ZB has nothing to disclose. Author AT reports consultancy for CinCor and PhaseBio. Author RF reports consultancy for HRA Pharma and Recordati and a research grant from Corcept Therapeutics. Author AH reports speaker fees from Chiasma and Ipsen and has been an advisor to Strongbridge Biopharma now Xeris Pharmaceuticals, Novo Nordisk, and Lundbeck Pharma. Author MP is employed by the company Novartis Pharma AG. Author AP was employed by the company Recordati AG at the time of manuscript development. Author RA reports grants and personal fees from Xeris Pharmaceuticals, Spruce Biosciences, Neurocrine Biosciences, Corcept Therapeutics, Diurnal Ltd, Sparrow Pharmaceuticals, and Novartis and personal fees from Adrenas Therapeutics, Janssen Pharmaceuticals, Quest Diagnostics, Crinetics Pharmaceuticals, PhaseBio Pharmaceuticals, H Lundbeck A/S, Novo Nordisk, and Recordati Rare Diseases. Publisher’s note All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher. Supplementary material The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo.2023.1236465/full#supplementary-material References 1. Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing's syndrome. Lancet (2015) 386:913–27. doi: 10.1016/S0140-6736(14)61375-1 PubMed Abstract | CrossRef Full Text | Google Scholar 2. Feelders RA, Pulgar SJ, Kempel A, Pereira AM. The burden of Cushing's disease: clinical and health-related quality of life aspects. Eur J Endocrinol (2012) 167:311–26. doi: 10.1530/eje-11-1095 PubMed Abstract | CrossRef Full Text | Google Scholar 3. Coelho MC, Santos CV, Vieira Neto L, Gadelha MR. Adverse effects of glucocorticoids: coagulopathy. Eur J Endocrinol (2015) 173:M11–21. doi: 10.1530/EJE-15-0198 PubMed Abstract | CrossRef Full Text | Google Scholar 4. Pivonello R, De Leo M, Cozzolino A, Colao A. The treatment of Cushing's disease. Endocr Rev (2015) 36:385–486. doi: 10.1210/er.2013-1048 PubMed Abstract | CrossRef Full Text | Google Scholar 5. Tritos NA, Biller BMK. Current management of Cushing's disease. J Intern Med (2019) 286:526–41. doi: 10.1111/joim.12975 PubMed Abstract | CrossRef Full Text | Google Scholar 6. Fleseriu M, Auchus R, Bancos I, Ben-Shlomo A, Bertherat J, Biermasz NR, et al. Consensus on diagnosis and management of Cushing's disease: a guideline update. Lancet Diabetes Endocrinol (2021) 9:847–75. doi: 10.1016/S2213-8587(21)00235-7 PubMed Abstract | CrossRef Full Text | Google Scholar 7. Fleseriu M, Biller BMK, Bertherat J, Young J, Hatipoglu B, Arnaldi G, et al. Long-term efficacy and safety of osilodrostat in Cushing's disease: final results from a Phase II study with an optional extension phase (LINC 2). Pituitary (2022) 25:959–70. doi: 10.1007/s11102-022-01280-6 PubMed Abstract | CrossRef Full Text | Google Scholar 8. Fleseriu M, Newell-Price J, Pivonello R, Shimatsu A, Auchus RJ, Scaroni C, et al. Long-term outcomes of osilodrostat in Cushing's disease: LINC 3 study extension. Eur J Endocrinol (2022) 187:531–41. doi: 10.1530/EJE-22-0317 PubMed Abstract | CrossRef Full Text | Google Scholar 9. Recordati Rare Diseases. Isturisa (osilodrostat) tablets, for oral use, prescribing information (2020). Available at: https://www.isturisa.com/pdf/isturisa-prescribing-information.pdf. (Accessed February 2021). Google Scholar 10. Recordati Rare Diseases. Isturisa® Japan prescribing information (2021). Available at: https://www.pmda.go.jp/PmdaSearch/iyakuDetail/GeneralList/24990A5/. (Accessed August 2021). Google Scholar 11. Recordati Rare Diseases. Osilodrostat summary of product characteristics (2020). Available at: https://www.ema.europa.eu/en/documents/product-information/isturisa-epar-product-information_en.pdf. (Accessed February 2021). Google Scholar 12. Swissmedic. Isturisa®, Filmtabletten (Osilodrostatum) (2020). Available at: https://www.swissmedic.ch/swissmedic/en/home/humanarzneimittel/authorisations/new-medicines/isturisa_filmtablette_osilodrostatum.html. (Accessed October 2021). Google Scholar 13. Gadelha M, Bex M, Feelders RA, Heaney AP, Auchus RJ, Gilis-Januszewska A, et al. Randomized trial of osilodrostat for the treatment of Cushing’s disease. J Clin Endocrinol Metab (2022) 107:e2882–95. doi: 10.1210/clinem/dgac178 PubMed Abstract | CrossRef Full Text | Google Scholar 14. Pivonello R, Fleseriu M, Newell-Price J, Bertagna X, Findling J, Shimatsu A, et al. Efficacy and safety of osilodrostat in patients with Cushing's disease (LINC 3): a multicentre Phase III study with a double-blind, randomised withdrawal phase. Lancet Diabetes Endocrinol (2020) 8:748–61. doi: 10.1016/S2213-8587(20)30240-0 PubMed Abstract | CrossRef Full Text | Google Scholar 15. Fleseriu M, Pivonello R, Elenkova A, Salvatori R, Auchus RJ, Feelders RA, et al. Efficacy and safety of levoketoconazole in the treatment of endogenous Cushing's syndrome (SONICS): a Phase 3, multicentre, open-label, single-arm trial. Lancet Diabetes Endocrinol (2019) 7:855–65. doi: 10.1016/S2213-8587(19)30313-4 PubMed Abstract | CrossRef Full Text | Google Scholar 16. Ceccato F, Zilio M, Barbot M, Albiger N, Antonelli G, Plebani M, et al. Metyrapone treatment in Cushing's syndrome: a real-life study. Endocrine (2018) 62:701–11. doi: 10.1007/s12020-018-1675-4 PubMed Abstract | CrossRef Full Text | Google Scholar 17. Newell-Price J, Pivonello R, Tabarin A, Fleseriu M, Witek P, Gadelha MR, et al. Use of late-night salivary cortisol to monitor response to medical treatment in Cushing's disease. Eur J Endocrinol (2020) 182:207–17. doi: 10.1530/EJE-19-0695 PubMed Abstract | CrossRef Full Text | Google Scholar 18. Plat L, Leproult R, L'Hermite-Baleriaux M, Fery F, Mockel J, Polonsky KS, et al. Metabolic effects of short-term elevations of plasma cortisol are more pronounced in the evening than in the morning. J Clin Endocrinol Metab (1999) 84:3082–92. doi: 10.1210/jcem.84.9.5978 PubMed Abstract | CrossRef Full Text | Google Scholar 19. Fleseriu M, Auchus RJ, Snyder PJ, Lacroix A, Heaney AP, Geer EB, et al. Effect of dosing and titration of osilodrostat on efficacy and safety in patients with Cushing's disease (CD): results from two Phase III trials (LINC3 and LINC4). Endocrine Practice (2021) 27(6 Suppl):S112 (abst 999926). doi: 10.1016/j.eprac.2021.04.707 CrossRef Full Text | Google Scholar 20. Castinetti F, Guignat L, Giraud P, Muller M, Kamenicky P, Drui D, et al. Ketoconazole in Cushing's disease: is it worth a try? J Clin Endocrinol Metab (2014) 99:1623–30. doi: 10.1210/jc.2013-3628 PubMed Abstract | CrossRef Full Text | Google Scholar 21. Fleseriu M, Petersenn S, Biller BMK, Kadioglu P, De Block C, T'Sjoen G, et al. Long-term efficacy and safety of once-monthly pasireotide in Cushing's disease: a Phase III extension study. Clin Endocrinol (Oxf) (2019) 91:776–85. doi: 10.1111/cen.14081 PubMed Abstract | CrossRef Full Text | Google Scholar 22. Nieman LK, Boscaro M, Scaroni CM, Deutschbein T, Mezosi E, Driessens N, et al. Metyrapone treatment in endogenous Cushing’s syndrome: results at week 12 from PROMPT, a prospective international multicenter, open-label, Phase III/IV study. J Endocr Soc (2021) 5(Suppl 1):A515. doi: 10.1210/jendso/bvab048.1053 CrossRef Full Text | Google Scholar 23. Nieman L, Boscaro M, Carla S, Deutschbein T, Mezosi E, Driessens N, et al. Metyrapone treatment in endogenous Cushing’s syndrome. Long term efficacy and safety results of the extension of the phase III/IV study PROMPT. Endocrine Abstracts (2021) 73:OC3. doi: 10.1530/endoabs.73.OC3.3 CrossRef Full Text | Google Scholar 24. Gadelha MR, Wildemberg LE, Shimon I. Pituitary acting drugs: cabergoline and pasireotide. Pituitary (2022) 25:722–5. doi: 10.1007/s11102-022-01238-8 PubMed Abstract | CrossRef Full Text | Google Scholar 25. HRA Pharma Rare Diseases. Metopirone® capsules 250 mg summary of product characteristics (1998). Available at: https://www.medicines.org.uk/emc/medicine/26460. (Accessed February 2021). Google Scholar 26. Fleseriu M, Auchus RJ, Greenman Y, Zacharieva S, Geer EB, Salvatori R, et al. Levoketoconazole treatment in endogenous Cushing's syndrome: extended evaluation of clinical, biochemical, and radiologic outcomes. Eur J Endocrinol (2022) 187:859–71. doi: 10.1530/EJE-22-0506 PubMed Abstract | CrossRef Full Text | Google Scholar 27. Recordati Rare Diseases. Signifor® (pasireotide) injection for subcutaneous use prescribing information (2012). Available at: https://signifor.com/wp-content/themes/signifor/dist/pdf/signifor-pi.pdf. (Accessed October 2021). Google Scholar 28. Recordati Rare Diseases. Signifor summary of product characteristics (2012). Available at: https://www.medicines.org.uk/emc/product/4200/smpc. (Accessed October 2021). Google Scholar 29. Recordati Rare Diseases. Signifor LAR summary of product characteristics (2012). Available at: https://www.medicines.org.uk/emc/product/1932/smpc. (Accessed October 2021). Google Scholar 30. Recordati Rare Diseases. Signifor® LAR (pasireotide) for injectable suspension, for intramuscular use (2012). Available at: https://www.signiforlar.com/wp-content/themes/signifor-lar-theme/dist/pdf/signifor-lar-pi.pdf. (Accessed October 2021). Google Scholar 31. Lacroix A, Gu F, Gallardo W, Pivonello R, Yu Y, Witek P, et al. Efficacy and safety of once-monthly pasireotide in Cushing's disease: a 12 month clinical trial. Lancet Diabetes Endocrinol (2018) 6:17–26. doi: 10.1016/S2213-8587(17)30326-1 PubMed Abstract | CrossRef Full Text | Google Scholar Keywords: Cushing’s disease, osilodrostat, hypercortisolism, 11β-hydroxylase, long-term treatment Citation: Gadelha M, Snyder PJ, Witek P, Bex M, Belaya Z, Turcu AF, Feelders RA, Heaney AP, Paul M, Pedroncelli AM and Auchus RJ (2023) Long-term efficacy and safety of osilodrostat in patients with Cushing’s disease: results from the LINC 4 study extension. Front. Endocrinol. 14:1236465. doi: 10.3389/fendo.2023.1236465 Received: 07 June 2023; Accepted: 28 July 2023; Published: 23 August 2023. Edited by: Fabienne Langlois, Centre Hospitalier Universitaire de Sherbrooke, Canada Reviewed by: Filippo Ceccato, University of Padua, Italy Kevin Choong Ji Yuen, Barrow Neurological Institute (BNI), United States Copyright © 2023 Gadelha, Snyder, Witek, Bex, Belaya, Turcu, Feelders, Heaney, Paul, Pedroncelli and Auchus. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. *Correspondence: Mônica Gadelha, mgadelha@hucff.ufrj.br †Present address: Alberto M. Pedroncelli, Camurus AB, Lund, Sweden Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher. From https://www.frontiersin.org/articles/10.3389/fendo.2023.1236465/full
  15. Abstract The most common cause of Cushing syndrome (CS) is exposure to exogenous glucocorticoids. There is an increasing incidence of adulterated over-the-counter (OTC) supplements containing steroids. We present a case of Artri King (AK)-induced CS in a 40-year-old woman who presented with an intertrochanteric fracture of her right femur. Laboratory testing revealed suppressed cortisol and adrenocorticotropic hormone, which was consistent with suppression of the hypothalamic-pituitary-adrenal (HPA) axis. Following the cessation of the AK supplement, the patient’s HPA axis recovered, and the clinical manifestations of CS improved. This case emphasizes the need for better regulation of OTC supplements and the need for cautious use. Introduction Cushing syndrome (CS) is a condition that occurs because of high blood levels of glucocorticoids (GCs). These patients can present with a variety of systemic signs and symptoms, including truncal obesity, easy bruising of the skin, violaceous abdominal striae, resistant hypertension, dysglycemia, as well as osteoporosis. CS can occur because of adrenal etiologies such as adrenal adenoma, adrenal cancer, or adrenal hyperplasia or from an adrenocorticotropic hormone (ACTH)-producing pituitary adenoma or ectopic tumor. However, the most common cause of CS is the exogenous administration of GCs [1]. While exogenous GCs are often medically prescribed for the treatment of inflammatory conditions, some patients may be accidentally exposed to exogenous GCs from over-the-counter (OTC) supplements. We present a case of a young woman who developed exogenous CS and suffered a hip fracture as a result of taking an OTC supplement, Artri King (AK), adulterated with GCs. Case Presentation A 40-year-old obese woman presented to the hospital following a fall at home. She reported a snapping noise and sudden right hip pain while trying to stand up, and subsequently fell to the floor. She had noted right-sided hip pain for several days preceding her fall. She was evaluated in the emergency department where computed tomography (CT) imaging of the right lower extremity showed an intertrochanteric fracture of the right femur (Figure 1). The patient underwent open reduction and internal fixation of her right femur. The patient reported an unexplained weight gain of approximately 40 lbs in the preceding five months with a peak weight of 223 lbs (101 kg) and a body mass index (BMI) of 37 kg/m2. The patient denied taking any medications or supplements at the time of hospitalization. The endocrinology team was consulted to evaluate for causes of secondary osteoporosis in this young woman. Figure 1: A CT scan showing the right intertrochanteric fracture of the right femur (yellow arrows) Diagnostic assessment Her vital signs showed a blood pressure of 142/96 mmHg, heart rate of 68 beats per minute, temperature of 98.1°F (36.7°C), and 98% oxygenation on room air. Physical examination did not reveal abdominal striae or buffalo hump. She did have supraclavicular fat deposition and central obesity. No proximal muscle weakness was present. Laboratory tests were pertinent for decreased 25-hydroxy vitamin D, increased parathyroid hormone (PTH), and normal calcium (Table 1). These findings were consistent with secondary hyperparathyroidism due to vitamin D deficiency. Dual-energy X-ray absorptiometry (DEXA) scan revealed osteoporosis (Figures 2, 3 and Tables 2, 3). Further testing showed normal thyroid-stimulating hormone (TSH), estradiol, follicle-stimulating hormone (FSH), and luteinizing hormone (LH), thus ruling out hyperthyroidism and primary ovarian insufficiency as possible causes of reduced bone mineral density (Table 1). Random cortisol was checked as hypercortisolism was suspected but it was found to be decreased along with decreased ACTH as well (Table 4). A cosyntropin stimulation test was performed, which showed decreased baseline cortisol with inappropriately decreased cortisol levels at 30 minutes and 60 minutes (Table 5). Given the discordance between the patient’s presentation and the lab results, assay interference was suspected, and further evaluation of the adrenal function was performed. Repeat labs using liquid chromatography-mass spectrometry (LCMS) assay again confirmed persistently low cortisol (Table 4). A 24-hour free urine cortisol was too low to quantify per assay despite the adequate volume. Further evaluation showed overall low adrenal steroids, including deoxycorticosterone, 17-hydroxyprogesterone, androstenedione, 11-deoxycortisol, pregnenolone, dehydroepiandrosterone sulfate, corticosterone, and progesterone. Lab test Patient's value Reference range 25-hydroxy vitamin D 12.8 ng/ml 30-100 ng/ml Parathyroid hormone (PTH) 86.2 pg/ml 10-66 pg/ml Serum calcium 9.5 ng/dl 8.8-10.5 mg/dl Thyroid-stimulating hormone (TSH) 2.49 mIU/L 0.36-3.74 mIU/L Estradiol 57.1 pg/ml 19.8-144.2 pg/ml Follicle-stimulating hormone (FSH) 5.4 mIU/ml 2.5-10.4 mIU/ml Luteinizing hormone (LH) 6 mIU/ml 1.9-12.5 mIU/ml Table 1: Patient's lab values on admission Figure 2: Dual-energy X-ray absorptiometry (DEXA) scan of the femoral neck showing osteopenia Figure 3: Dual-energy X-ray absorptiometry (DEXA) scan of the lumbar spine showing osteoporosis Region Area (cm2) Bone mineral content (g) Bone mineral density (g/cm2) T-score Peak reference Z-score Age-matched Femoral neck 4.76 3.53 0.742 -1.0 87 -0.7 91 Total 33.39 26.14 0.783 -1.3 83 -1.1 85 Table 2: Summary of dual-energy X-ray absorptiometry (DEXA) scan results of the femoral neck Region Area (cm2) Bone mineral content (g) Bone mineral density (g/cm2) T-score Peak reference Z-score Age-matched L1 10.79 7.56 0.701 -2.6 71 -2.4 73 L2 11.79 9.06 0.768 -2.4 75 -2.1 77 L3 12.70 9.98 0.786 -2.7 73 -2.4 75 L4 15.57 11.42 0.733 -3.0 69 -2.7 71 Total 50.86 38.03 0.748 -2.7 71 -2.5 73 Table 3: Summary of dual-energy X-ray absorptiometry (DEXA) scan results of the lumbar spine Lab test Patient's values while on Artri King Patient's values four weeks off of Artri King Reference range Random cortisol (routine assay) <0.64 μg/dL 7.3 μg/dL 5-25 μg/dL Adrenocorticotropic hormone (ACTH) 1.5 pg/ml 12 pg/ml 7.2-63.3 pg/ml Random cortisol (using liquid chromatography-mass spectrometry (LCMS) assay) 0.526 μg/dL N/A 5-25 μg/dL Table 4: Patient's cortisol and adrenocorticotropic hormone levels before and after stopping Artri King Cosyntropin stimulation test Patient value Reference range Baseline cortisol 1.64 μg/dL 5-25 μg/dL Cortisol after 30 minutes 1.33 μg/dL >18 μg/dL Cortisol after 60 minutes 6.48 μg/dL >18 μg/dL Table 5: Results of cosyntropin test while on Artri King Treatment She was started on teriparatide as well as vitamin D and calcium supplementation for the treatment of osteoporosis. Based on the aforementioned testing and the apparent symptoms of hypercortisolism, the patient was questioned again about the potential intake of steroids. She then recalled that she had been taking AK, an OTC supplement promoted for joint pain and arthritis. She reported that she had been taking two tablets of the supplement three times a day intermittently for the past three years. The patient neglected to bring it to the medical team’s attention before because she was under the impression that it was a multivitamin and did not have implications on her diagnosis. She was asked to stop the supplement and was educated about potential adrenal insufficiency symptoms and GC withdrawal. Outcome and follow up Repeat labs after four weeks off AK showed improved cortisol and ACTH levels indicating recovery of her hypothalamic-pituitary-adrenal (HPA) axis (Table 4). She lost 25 lbs in this time span with lifestyle modification. She continues teriparatide for osteoporosis, and monitoring of her bone mineral density is planned. Discussion This patient initially presented with a pathological fracture of her right femoral head. Given her young age, causes of secondary osteoporosis, including CS, were explored. The prevalence of osteoporosis in CS patients is 50% [2]. The effects of GC on bone health have been well studied. The major mechanism by which GC affects bone mineral density is by impairment of bone formation. GCs increase osteoblast and osteocyte apoptosis and decrease osteoblast function through their catabolic effects, which result in a dramatic decrease in bone formation rate. A prolonged lifespan of osteoclasts is observed with GC. A decrease in bone formation markers such as P1NP and osteocalcin has been observed in patients treated with GC [3]. Long-term GC use is associated with increased risk for fractures with a reported global prevalence of fractures of 30-50%. The risk for vertebral fractures is even higher, particularly in the thoracic and lumbar vertebrae. Interestingly, the risk for fracture with GC use peaks early in the course of treatment, often as early as three months into treatment, and declines rapidly after GC discontinuation [4]. An increased fracture risk has been described even with relatively low doses of GC (2.5-7.5 mg of prednisone or other equivalently dosed GC) and even with short-term use of under 30 days [5]. Our patient’s initial labs confirmed adrenal suppression despite our initial suspicion of CS, given her ongoing weight gain, central obesity, and osteoporosis. However, no obvious source of exogenous GC was identified. In most cases, the source of exogenous GC is easily identified through medication reconciliation; however, in our case, the patient was inadvertently exposed to steroids from an unregulated supplement, AK. The supplement’s ingredients were listed as glucosamine, chondroitin, collagen, vitamin C, curcumin, methylsulfonylmethane, nettle, and omega-3 fatty acids, with no mention of any steroid components. In a letter to the editor of the Internal Medicine magazine, several doctors published their concerns about a recent increase in CS cases associated with the use of AK and other similarly unregulated products [6]. Based on our literature search, three similar cases were published [7,8]. The reported cases developed CS after taking Artri King for several months, but none of them presented with a fracture. A warning by the U.S. Food & Drug Administration (FDA) was issued on April 20, 2022, indicating that FDA laboratory testing of this supplement confirmed the presence of undeclared drug ingredients, including dexamethasone, methocarbamol, and diclofenac. The FDA, however, was unable to confirm the exact amount of dexamethasone that these supplements contained [9]. Adverse events, including liver toxicity and death, were reported by the FDA. One study revealed that between 2007 and 2016, the FDA had issued more than 700 warnings about the sale of dietary supplements that contained unlisted and potentially dangerous ingredients. The majority of these supplements included those marketed for sexual enhancement, weight loss, or muscle building [10]. This case highlights the risks of undisclosed ingredients in OTC supplements. Conclusions In conclusion, we recommend that a thorough reconciliation of medication and supplements be obtained for all patients with CS. Supplements should be stopped and HPA axis testing should be repeated in patients with suspected exogenous GC exposure, even if steroids are not declared in the ingredients. It is also important to monitor such patients for adrenal insufficiency due to GC withdrawal and consider GC tapering if necessary. Our patient showed improvement in cortisol levels with no overt symptoms of adrenal insufficiency without the need for GC therapy. This case demonstrates the first case of AK-induced CS resulting in a pathological fracture. Given the increased use and availability of OTC supplements, this case highlights on the importance of detailed history-taking and the role of supplements in causing CS. This case also stresses the need for further education and counseling of our patients as well as tighter control on the manufacturing and sale of these supplements. References Lacroix A, Feelders RA, Stratakis CA, Nieman LK: Cushing's syndrome. Lancet. 2015, 386:913-27. 10.1016/S0140-6736(14)61375-1 Mancini T, Doga M, Mazziotti G, Giustina A: Cushing's syndrome and bone. Pituitary. 2004, 7:249-52. 10.1007/s11102-005-1051-2 Briot K, Roux 😄 Glucocorticoid-induced osteoporosis. RMD Open. 2015, 1:e000014. 10.1136/rmdopen-2014-000014 Canalis E, Mazziotti G, Giustina A, Bilezikian JP: Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007, 18:1319-28. 10.1007/s00198-007-0394-0 Waljee AK, Rogers MA, Lin P, et al.: Short term use of oral corticosteroids and related harms among adults in the United States: population based cohort study. BMJ. 2017, 357:j1415. 10.1136/bmj.j1415 Del Carpio-Orantes L, Quintín Barrat-Hernández A, Salas-González A: Iatrogenic Cushing syndrome due to fallacious herbal supplements. The case of Ortiga Ajo Rey and Artri King. Med Int Mex. 2021, 37:599-602. Patel R, Sherf S, Lai NB, Yu R: Exogenous Cushing syndrome caused by a "Herbal" supplement. AACE Clin Case Rep. 2022, 8:239-42. 10.1016/j.aace.2022.08.001 Mikhail N, Kurator K, Martey E, Gaitonde A, Cabrera C, Balingit P: Iatrogenic Cushing’s syndrome caused by adulteration of a health product with dexamethasone. JSM Clin Case Rep. 2022, 3: U.S. Food and Drug Administration. Public notification: Artri King contains hidden drug ingredients. (2022). Accessed: February 25, 2023: https://www.fda.gov/drugs/medication-health-fraud/public-notification-artri-king-contains-hidden-drug-ingredients. Tucker J, Fischer T, Upjohn L, Mazzera D, Kumar M: Unapproved pharmaceutical ingredients included in dietary supplements associated with US Food and Drug Administration warnings. JAMA Netw Open. 2018, 1:e183337. 10.1001/jamanetworkopen.2018.3337 From https://www.cureus.com/articles/153927-exogenous-cushing-syndrome-and-hip-fracture-due-to-over-the-counter-supplement-artri-king#!/
  16. Abstract Importance Cushing syndrome is defined as a prolonged increase in plasma cortisol levels that is not due to a physiological etiology. Although the most frequent cause of Cushing syndrome is exogenous steroid use, the estimated incidence of Cushing syndrome due to endogenous overproduction of cortisol ranges from 2 to 8 per million people annually. Cushing syndrome is associated with hyperglycemia, protein catabolism, immunosuppression, hypertension, weight gain, neurocognitive changes, and mood disorders. Observations Cushing syndrome characteristically presents with skin changes such as facial plethora, easy bruising, and purple striae and with metabolic manifestations such as hyperglycemia, hypertension, and excess fat deposition in the face, back of the neck, and visceral organs. Cushing disease, in which corticotropin excess is produced by a benign pituitary tumor, occurs in approximately 60% to 70% of patients with Cushing syndrome due to endogenous cortisol production. Evaluation of patients with possible Cushing syndrome begins with ruling out exogenous steroid use. Screening for elevated cortisol is performed with a 24-hour urinary free cortisol test or late-night salivary cortisol test or by evaluating whether cortisol is suppressed the morning after an evening dexamethasone dose. Plasma corticotropin levels can help distinguish between adrenal causes of hypercortisolism (suppressed corticotropin) and corticotropin-dependent forms of hypercortisolism (midnormal to elevated corticotropin levels). Pituitary magnetic resonance imaging, bilateral inferior petrosal sinus sampling, and adrenal or whole-body imaging can help identify tumor sources of hypercortisolism. Management of Cushing syndrome begins with surgery to remove the source of excess endogenous cortisol production followed by medication that includes adrenal steroidogenesis inhibitors, pituitary-targeted drugs, or glucocorticoid receptor blockers. For patients not responsive to surgery and medication, radiation therapy and bilateral adrenalectomy may be appropriate. Conclusions and Relevance The incidence of Cushing syndrome due to endogenous overproduction of cortisol is 2 to 8 people per million annually. First-line therapy for Cushing syndrome due to endogenous overproduction of cortisol is surgery to remove the causative tumor. Many patients will require additional treatment with medications, radiation, or bilateral adrenalectomy. From https://jamanetwork.com/journals/jama/article-abstract/2807073
  17. In Italy it is estimated that there are about 3,000 patients suffering from Cushing’s syndrome, while in Europe the number rises to over 50,000. The Cushing’s syndrome, a disease caused by the excessive production of cortisol by the pituitary gland due to a benign tumor of the gland, has seen a breakthrough in its treatment. Thanks to a new drug called osilodrostat, approved in 2020 by the Food and Drug Administration and subsequently by Aifa in Italy, patients unfit for surgery can benefit from a treatment that offers the same effects as a scalpel. Furthermore, this drug reduced symptoms in 80% of cases. Cushing’s syndrome has been dubbed “full moon face disease” due to its most obvious visible effects, such as a rounding of the face caused by fat accumulation and visible weight gain also on the waist and back. Despite its symptomatic relevance, the disease has long been poorly understood by both healthcare professionals and the general public. To raise awareness of this syndrome, the #Thiscushing campaign has been launched, which aims to spread knowledge about the disease. The campaign recently stopped in Rome, during the Congress of the Italian Society of Endocrinology (SIE), where a photographic exhibition was organized which represents moments of daily life of people affected by Cushing’s syndrome and their difficulties. Despite the debilitating symptoms, Cushing’s syndrome is often underdiagnosed, resulting in delays in diagnosis of up to 5-7 years. The disease presents a wide range of symptoms, ranging from difficulty performing even simple daily activities such as tying your shoes or getting out of bed, to common manifestations such as high cholesterol, hypertension and hyperglycemia, which can be confused with symptoms of other less common pathologies. serious. It is for this reason that the EIS experts are appealing for the inclusion of Cushing’s syndrome in the list of rare pathologies recognized by the Ministry of Health, in order to facilitate timely diagnosis and faster access to the necessary treatments. From https://www.breakinglatest.news/health/cushings-syndrome-a-new-drug-allows-you-to-avoid-surgery/
  18. Solu-Cortef® Pfizer has been experiencing a supply issue for our life saving drug Solu-Cortef® and many in our community have been unable to find it. According to Pfizer they will soon be back to "normal" production rates. (projected end of June) However, we understand that some of you are still unable to fill your prescriptions and are out or will soon be out and need more. We will be sharing all we know so far about this shortage and our suggestions for obtaining the medication. Here you can see a copy of their initial letter about the problem. Understanding Pfizer's process to obtain the medication What to do when their process doesn't work Understanding Pfizer's process to obtain 50 or 100 mg Solo-Cortef in the Act-O-Vial While some pharmacies may still have the medication others will need to order it and due to the supply issue Pfizer is requiring a form. This form must be filled out by your doctor or pharmacist. It has space for an electronic signature (Either your doctor or the pharmacist must sign it). The form must be emailed to PISupplyContinuity@pfizer.com Pfizer has sent letters to the Endocrine Society, Pediatric Endocrine Society, and Pharmacy organizations outlining the process to get Solu-Cortef®. IMPORTANT: The form is for emergency use only. Meaning your are out of soul-cortef or will be out soon. If requesting overnight delivery the form must arrive by 3:00 CT M-F. There is a $25 (plus additional $ based on weight) fee for overnight shipping. While the pharmacy may charge the patient for this service we do not know if insurance will cover that additional cost so if possible it's best to get this form filled out and sent before you run out. A physician or pharmacy is also able to call the supply continuity team M-F by 6:00 p.m. CT at 1-844-646-4398. Tell them to pick "Option 1" - customer then "Option 3" - supply continuity. Pfizer will NOT work directly with the patient through this number. What to do when their process doesn't work If your physician or pharmacist has filled out the form and called the supply continuity team and you still can't get your medication email us with the following: Pharmacy name, address and phone number. Your name and date of birth. We also have a google doc where we are tracking the issue we encourage you to share your data with us. Names are optional, but we encourage use of this form to help us track the problem on a larger scale. Other ideas Ask the pharmacist if they are able to get Solu-Cortef® in the powder form or in a different dose. If yes, then ask your physician to write a script for the option they have available. Be sure to get the new dosing and mixing instructions as they may change due to the higher/lower dose. Some of our members who are not salt wasting use a Dexamethasone injection as their emergency medication. There is also a solu-medrol act-o-vial. Ask your doctor if one of these would work for you or your loved one until the Solu-Cortef can be obtained. If you are salt wasting you still may be able to use dex or medrol. Be sure ask your doctor what to do to replace your mineralocorticoids during a crisis. If your local hospital has a pharmacy try to fill your prescription there. One of our members was able to get her prescription filled and mailed from Canada.
  19. What is cortisol? Cortisol is an essential hormone that your body produces naturally. It comes from two adrenal glands above the kidneys, controlled by the pituitary gland that regulates your body’s reaction to fight-or-flight. Many consider the pituitary gland the master gland for regulating development, reproduction and blood pressure. During stressful times, the pituitary gland signals the adrenals to release the right amount of cortisol into your bloodstream. There are other ways cortisol supports healthy bodily functions, such as boosting metabolism, decreasing inflammation and regulating the sleep-wake cycle. It’s when the adrenal glands produce too much or too little cortisol that problems arise. Signs of high cortisol in the body You may be experiencing high cortisol levels if you’re holding onto weight in your belly or face or have noticed fat deposits in your shoulder or stretch marks on your stomach. Muscle weakness, blood sugar spikes, high blood pressure and hirsutism (unwanted hair growth) may be other red flags. Sometimes, irregular periods also indicate a hormonal imbalance. Women with infrequent periods and high stress, weight gain, acne and excessive body hair could have polycystic ovarian syndrome (PCOS). In this scenario, an endocrinologist can prescribe hormone-balancing medications and suggest lifestyle changes to regulate your body’s function. You should always be proactive about your health, regardless of the situation, and managing your cortisol is no different. Among other issues, having too-high cortisol levels for too long could put you at risk of type 2 diabetes because cortisol spikes your glucose levels for an extended time. How does cortisol affect energy levels? ... Irritability, depression, muscle pains and reduced libido are also possible effects of low cortisol production. Five ways to achieve hormonal balance Remember how I mentioned the importance of being proactive about your health? These five tips can help you achieve balanced cortisol and improve your energy levels. Check-in with a specialist If you suspect your cortisol is wonky, call your doctor. They may be able to run labs or prescribe treatment to help you regulate the hormones. It’s especially important to check in with a specialist to rule out reproductive issues, diabetes or other serious conditions (like Cushing's!). Take medication Different medications can help control cortisol imbalance symptoms. Nearly 150 million women worldwide use birth control to prevent pregnancy or tend to other female reproductive and hormonal problems. Doctors may also recommend medicines that tackle your cortisol issue directly. Additionally, you could ask for sleep medication or antidepressants to deal with daytime fatigue, irritability and mood swings. Although the right dose can make a significant difference in your daily life, some people find that antidepressants make them groggy. However, taking them before bedtime can improve your sleep cycle and concentration. Practise relaxation techniques Considering cortisol is known as the ‘stress hormone’, it only makes sense to keep your anxiety and stress to a minimum. Helpful relaxation techniques include yoga, meditation and breathing exercises. Creative hobbies like painting, journaling and scrapbooking are other ways to distract yourself from whatever’s stressing you out. If there was ever a time to invest in an adult colouring book or new yoga pants, it’s now. Diet and exercise Exercising and eating healthy can also regulate your hormones and give you a much-needed energy boost during the day. Exercise can reduce cortisol levels and increase endorphins which can provide pain relief and improve your mood. Studies have shown that anti-inflammatory foods rich in omega-3s are excellent for combatting excess or low cortisol. Snack on nuts, seeds, yogurt and eggs to keep your energy up. You could also start getting excited about trying new seafood recipes for dinner. Sleep well Cortisol is a stimulant so if you have a cortisol imbalance, there’s a good chance you’re tossing and turning at night. Your body starts producing cortisol during the second part of your sleep hours and reaches its peak about mid-morning. It then begins to dip in the evening, allowing sleep hormones like melatonin and adenosine to take over. A healthy sleep cycle can vastly improve your body’s natural cortisol production and adrenal function. Balance your cortisol for more energy Regulating your cortisol can make a dramatic difference in your energy levels and it can also help you sleep better through the night. So if you’re encountering any of the above issues, head to your doctor and get control of your body’s hormones to feel better and more alive throughout the day. Adapted from https://fashionjournal.com.au/life/cortisol-energy-levels/
  20. Objective: The first-line treatment for Cushing’s disease is transsphenoidal surgery, after which the rates of remission are 60 to 80%, with long-term recurrence of 20 to 30%, even in those with real initial remission. Drug therapies are indicated for patients without initial remission or with surgical contraindications or recurrence, and ketoconazole is one of the main available therapies. The objective of this study was to evaluate the safety profile of and the treatment response to ketoconazole in Cushing’s disease patients followed up at the endocrinology outpatient clinic of a Brazilian university hospital. Patients and methods: This was a retrospective cohort of Cushing’s disease patients with active hypercortisolism who used ketoconazole at any stage of follow-up. Patients who were followed up for less than 7 days, who did not adhere to treatment, or who were lost to follow-up were excluded. Results: Of the 172 Cushing’s disease patients who were followed up between 2004 and 2020, 38 received ketoconazole. However, complete data was only available for 33 of these patients. Of these, 26 (78%) underwent transsphenoidal surgery prior to using ketoconazole, five of whom (15%) had also undergone radiotherapy; seven used ketoconazole as a primary treatment. Ketoconazole use ranged from 14 days to 14.5 years. A total of 22 patients had a complete response (66%), three patients had a partial response (9%), and eight patients had no response to treatment (24%), including those who underwent radiotherapy while using ketoconazole. Patients whose hypercortisolism was controlled or partially controlled with ketoconazole had lower baseline 24-h urinary free cortisol levels than the uncontrolled group [times above the upper limit of normal: 0.62 (SD, 0.41) vs. 5.3 (SD, 8.21); p < 0.005, respectively] in addition to more frequent previous transsphenoidal surgery (p < 0.04). The prevalence of uncontrolled patients remained stable over time (approximately 30%) despite ketoconazole dose adjustments or association with other drugs, which had no significant effect. One patient received adjuvant cabergoline from the beginning of the follow-up, and it was prescribed to nine others due to clinical non-response to ketoconazole alone. Ten patients (30%) reported mild adverse effects, such as nausea, vomiting, dizziness, and loss of appetite. Only four patients had serious adverse effects that warranted discontinuation. There were 20 confirmed episodes of hypokalemia among 10/33 patients (30%). Conclusion: Ketoconazole effectively controlled hypercortisolism in 66% of Cushing’s disease patients, being a relatively safe drug for those without remission after transsphenoidal surgery or whose symptoms must be controlled until a new definitive therapy is carried out. Hypokalemia is a frequent metabolic effect not yet described in other series, which should be monitored during treatment. Introduction Cushing’s disease (CD) results from a pituitary tumor that secretes adrenocorticotropic hormone (ACTH), which leads to chronic hypercortisolism. It is a potentially fatal disease with high morbidity and a mortality rate of up to 3.7 times than that of the general population (1–4) associated to several clinical–metabolic disorders caused by excess cortisol and/or loss of circadian rhythm (5). In general, its management is a challenge even in reference centers (6, 7). Transsphenoidal surgery (TSS), the treatment of choice for CD, results in short-term remission in 60 to 80% of patients (8). However, recurrence rates of 20 to 30% are found in long-term follow-up, even in those with clear initial remission (9). Drug therapies can help control excess cortisol in patients without initial remission, in cases of recurrence, and in those with contraindications or high initial surgical risk (10). Nevertheless, specific drugs that act on the pituitary adenoma, which could directly treat excess ACTH, have a limited effect, and only pasireotide is approved for this purpose in Brazil (11, 12). In this scenario, adrenal steroidogenesis blockers are important. One such off-label medication is the antifungal drug ketoconazole, a synthetic imidazole derivative that inhibits the enzymes CYP11A1, CYP17, CYP11B2, and CYP11B1. Because of its hepatotoxicity and the availability of other drugs, it has been withdrawn from the market in several countries (13). In Europe, it is still approved for use in CD, although in the United States, it is recommended for off-label use almost in CD (14–16). Due to the potential benefits for hypercortisolism, ketoconazole has been replaced by levoketoconazole, which the European Union has recently approved for CD with a lower expected hepatotoxicity (17). Thus, when adrenal inhibitors are used as an alternative treatment for CD, information about the outcomes of drugs such as ketoconazole are important. Clinical studies on these effects in CD are scarce, mostly retrospective, multicenter, or from developed countries (14, 18). A recent meta-analysis on the therapeutic modalities for CD included only four studies (246 patients) that evaluated urinary cortisol response as a treatment outcome and eight studies (366 patients) describing the prevalence of some side effects: change in transaminase activity, digestive symptoms, skin rash, and adrenal insufficiency. Hypokalemia was not mentioned in this meta-analysis (19). The objective of this study was to evaluate the safety profile of and treatment response to ketoconazole in CD patients followed during a long term in the endocrinology outpatient clinic of a Brazilian university hospital. Patients and methods Patients We retrospectively evaluated 38 patients (27 women) diagnosed with CD. These patients, whose treatment included ketoconazole at any time between 2004 and 2020, are part of a prospective cohort series from the Hospital de Clínicas de Porto Alegre neuroendocrinology outpatient clinic. The diagnostic criteria for hypercortisolism were based on high 24-h urinary free cortisol levels (24-h UFC) in at least two samples, non-suppression of serum cortisol after low-dose dexamethasone testing (>1.8 µg/dl), and/or loss of cortisol rhythm (midnight serum cortisol >7.5 µg/dl or midnight salivary cortisol >0.208 nmol/L). CD was diagnosed by normal or elevated ACTH levels, evidence of pituitary adenoma >0.6 cm on magnetic resonance image (MRI), and ACTH central/periphery gradient on inferior petrosal sinus catheterization when MRI was normal or showed an adenoma <0.6 cm. CD was considered to be in remission after the improvement of hypercortisolism symptoms or clinical signs of adrenal insufficiency, associated with serum cortisol within reference values, normalization of 24-h UFC and/or serum cortisol <1.8 μg/dl at 8 am after 1 mg dexamethasone overnight, and/or normalization of midnight serum or salivary cortisol. In patients with active disease, to evaluate the ketoconazole treatment response, 24-h UFC was used as a laboratory parameter, as recommended in similar publications (14, 16, 20, 21), but in some cases, we considered elevated late night salivary cortisol and/or 1 mg dexamethasone overnight cortisol (even with normal 24-h UFC), given the greater assessment sensitivity seen through these two methods in the detection of early recurrence when compared with 24-h UFC (22). Inclusion criteria We included patients with CD and active hypercortisolism who used ketoconazole either as primary treatment, after TSS without hypercortisolism remission, or after a recurrence. Exclusion criteria We excluded patients with CD and active hypercortisolism who used ketoconazole but had <7 days of follow-up, irregular outpatient follow-up, treatment non-adherence, and incomplete medical records or those who were lost to follow-up. Evaluated parameters Prior to ketoconazole treatment, all patients underwent an assessment of pituitary function and hypercortisolism, including serum cortisol, ACTH, 24-hour UFC, cortisol suppression after 1 mg dexamethasone overnight, midnight serum cortisol, and/or midnight salivary cortisol. The evaluated parameters were sex, age at diagnosis, weight, height, prevalence and severity of hypertension and DM, pituitary tumor characteristics, prior treatment (surgery, radiotherapy, or other medications), symptoms at disease onset, biochemical tests (renal function, hepatic function, and lipid profile), number of medications used to treat associated comorbidities, data on medication tolerance, and reasons for discontinuation, when necessary. The clinical parameters observed during treatment were control of blood pressure and hyperglycemia, anthropometric measurements (weight, height, and body mass index), jaundice, and any other symptoms or adverse effects reported by patients. The biochemical evaluation included fasting glucose, glycated hemoglobin, lipid profile (total cholesterol, high-density lipoprotein, low-density lipoprotein, and triglycerides), markers of liver damage (transaminases, bilirubin, gamma-glutamyl transferase, and alkaline phosphatase), electrolytes (sodium and potassium), and renal function (creatinine and urea). Hypecortisolism was accessed preferentially by 24-h UFC, however, late-night salivary cortisol and cortisol after 1 mg overnight dexamethasone could also be used. Study design This retrospective cohort study included patients with CD who were followed up at the Hospital de Clínicas de Porto Alegre Endocrinology Division, with their medical records from the first outpatient visit and throughout clinical follow-up collected. This study was approved by the Hospital de Clínicas de Porto Alegre Research Ethics Committee (number 74555617.0.0000.5327). Outcomes Hypercortisolism was considered controlled when the 24-h UFC and/or late-night salivary cortisol (LNSC) and/or overnight 1 mg dexamethasone suppression test (DST) levels were normalized in at least two consecutive assessments. Hypercortisolism was considered partially controlled when there was a 50% over-reduction in 24-h UFC and/or LNSC and/or DST levels but still above normal. A reduction lower than 50% in these parameters was considered as non-response. We also assessed the ketoconazole doses that resulted in 24-h UFC normalization, maximum dose, medication tolerance, adverse effects, and changes in liver, kidney, and biochemical function. Due to the characteristics of this study, these outcomes were periodically evaluated in all patient consultations, which occurred usually every 2 to 4 months. Data collection This retrospective cohort evaluated outpatient medical records and any tests indicated by the attending physician as a pragmatic study. Ketoconazole use followed the department’s care protocol, which is based on national and international guidelines (4), and all patients received a similar care routine: the recommended initial prescription was generally taken in two to six doses at 100 to 300 mg/day. It was then increased by 200 mg every 2 to 4 months until hypercortisolism was controlled or side effects developed, especially those related to liver function. The maximum prescription was 1,200 mg/day. Clinical follow-up of these patients was performed 30 days after starting the medication and every 2–4 months thereafter (23). Clinical, anthropometric, laboratory, and other exam data were collected through a review of the hospital’s electronic medical records for the entire follow-up period. Data from the first and last consultation were considered in the final analysis of all parameters. Statistical analysis Baseline population characteristics were described as mean and standard deviation (SD) or median with interquartile ranges (25–75) for continuous variables. The chi-square test was used to compare qualitative variables, and Student’s t-test or ANOVA was used to compare the quantitative variables. The Mann–Whitney U-test was used for unpaired data. P-values <0.05 were considered significant. Statistical analysis was performed in SPSS 18.0 (SPSS Inc., Chicago, IL, USA) and R package geepack 1.3-1. Results Treatment with ketoconazole was indicated for 41 of the 172 CD patients. In 3/41 patients, ketoconazole was unallowed due to concomitant liver disease, and 38 received ketoconazole during CD treatment between 2004 and 2020. Of these, five were excluded due to insufficient data to determine the response to ketoconazole (short treatment time, irregular follow-up, incomplete medical records, or lost to follow-up). The baseline characteristics of every sample are shown in Table 1. Thus, 33/41 patients were included in the final analysis. The patients were predominantly women (84.2%) and white (89.5%); 11 had microadenoma, 15 had macroadenoma, and 11 had no adenoma visualized. In 12/33 patients, pituitary imaging was not performed immediately before starting ketoconazole. Hypertension was observed in 26 patients (78%) and DM in 12 patients (36%). The mean age at CD diagnosis was 31.7 years. Table 1 TABLE 1 Baseline clinical data of Cushing’s disease patients treated with ketoconazole. Of the 33 patients with complete data, 26 (78%) underwent TSS prior to starting ketoconazole, five of whom (15%) had also undergone radiotherapy. Thus, seven patients used ketoconazole as primary treatment since performing a surgical procedure was impossible at that time. Of these, four had no response to ketoconazole, one had a partial response, and two had a complete response. At follow-up, four of these patients underwent their first TSS, and three continued the ketoconazole therapy, achieving full UFC control. Among those who used ketoconazole after TSS (n = 26), 20 had a complete response, two had a partial response, and four had no response. Figure 1 shows the study flow chart and patient distribution throughout the treatment. Figure 1 FIGURE 1 Flowchart of ketoconazole treatment in Cushing's disease patients. Individual patient data are described in Table 2. The duration of ketoconazole use ranged from 14 days (in one patient who used it pre-TSS) to 14.5 years. The total follow-up time of the 22 patients with controlled CD ranged from 3 months to 14.5 years, with a mean of 5.33 years and a median of 4.8 years. Table 2 TABLE 2 Individual data. Therapeutic response Relative therapeutic response data are described in Table 3. Patients whose hypercortisolism was controlled or partially controlled with ketoconazole had lower baseline 24-h UFC than the uncontrolled group [times above the upper limit of normal: 0.62 (SD, 0.41) vs. 5.3 (SD, 8.21); p < 0.005, respectively], in addition to more frequent prior TSS (p < 0.04). In some patients (4/33), 24-h UFC was in the normal range at the beginning of ketoconazole therapy, but they were prescribed with the medication due to the clinical recurrence of CD associated to cortisol non-suppression after 1 mg dexamethasone overnight and/or abnormal midnight salivary or serum cortisol. Table 3 TABLE 3 Baseline characteristics of Cushing’s disease patients according to therapeutic response to ketoconazole. Figure 2 shows that the prevalence of uncontrolled patients remained stable over time (approximately 30%) despite dose adjustments or association with other drugs, which led to no differences. When analyzing only the results of the last follow-up visit (eliminating fluctuations during follow-up), 22 patients had a complete response (66%), three patients had a partial response (9%), and eight patients had no response to ketoconazole treatment (24%), which includes patients who underwent radiotherapy during ketoconazole treatment. Figure 2 FIGURE 2 Prevalence of controlled hypercortisolism during follow-up of Cushing's disease patients treatesd with ketoconazole. During follow-up, no significant differences were found in blood pressure control or in dehydroepiandrosterone sulfate, cortisol, ACTH, or glucose levels. Worsening of hypertension control was observed in association with hypokalemia in some cases, as described in side effects. The ketoconazole doses ranged from 100 to 1,200 mg per day, and there were no significant dose or response differences between the groups (Table 4). Figure 3 shows the patients, their dosages, and 24-h UFC control at the first and last consultation, showing a trend toward hypercortisolism reduction in approximately 70% of the cohort (25 of 33). Only four patients used doses lower than 300 mg at the end of follow-up. One of them used before TSS and suspended its use after surgery. One patient, who has already undergone radiotherapy, discontinued ketoconazole due to intolerance, despite adequate control of hypercortisolism. Another one, who had also undergone radiotherapy, was lost to follow-up when it was controlled using 100 mg daily, and one remained controlled using 200 mg, without previous radiotherapy. Table 4 TABLE 4 Final dose of ketoconazole used in patients with Cushing’s disease. Figure 3 FIGURE 3 First and last consultation 24çhour UFC results vs. ketoconazole dosage in Cushing's disease patients. Side effects Regarding adverse effects (Table 5), there was no significant difference between the controlled/partially controlled group and the uncontrolled group regarding liver enzyme changes or drug intolerance. Mild adverse effects, including nausea, vomiting, dizziness, and loss of appetite, occurred in 10 patients (30%). Only four patients had serious adverse effects that warranted discontinuing the medication. In two cases, ketoconazole was discontinued due to a significantly acute increase in liver enzymes (drug-induced hepatitis) during the use of 400 and 800 mg of ketoconazole. Non-significant elevation of transaminases (up to three times the normal value) was observed in three cases. A slight increase in gamma-glutamyltransferase occurred in six patients. In these nine patients with elevated liver markers, the daily dose ranged from 400 to 1,200 mg. None of those with mild increases in liver markers needed to discontinue ketoconazole. Table 5 TABLE 5 Adverse effects of ketoconazole in Cushing’s disease patients treated with ketoconazole. One female patient developed pseudotumor cerebri syndrome, which was treated with acetazolamide. She did not need to discontinue ketoconazole, having used it for more than 10 years without new side effects and achieving complete control of hypercortisolism (24). Another patient became pregnant during follow-up while using the medication, but no maternal or fetal complications occurred (25). Hypokalemia was also observed during follow-up. Twenty episodes of reduced potassium levels occurred in 10 patients over the course of treatment. Of these episodes, six occurred in controlled patients, three in partially controlled patients, and 11 in uncontrolled patients (Table 6). The hypokalemia was managed with spironolactone (25 to 100 mg) and oral potassium supplementation. Table 6 TABLE 6 Characteristics of Cushing’s disease patients who developed hypokalemia during ketoconazole treatment. Ketoconazole and associations Of the patients who used an association of cabergoline and ketoconazole, one did so since the beginning of follow-up, while another nine were prescribed cabergoline during follow-up due to non-response to ketoconazole alone. Of these 10 patients, two did not start the medication due to problems in obtaining the drug. Thus, in two of the nine patients on the maximum tolerated dose of ketoconazole or who could not tolerate a higher dose due to hepatic enzymatic changes, 1.5–4.5 mg of cabergoline per week was associated. In patients not controlled with ketoconazole plus cabergoline, mitotane (two patients) or pasireotide (two patients) was added. Only two of nine patients responded to the combination of cabergoline and ketoconazole. Data on these associations are shown in Table 7. Table 7 TABLE 7 Effects of associating cabergoline with ketoconazole in Cushing’s disease patients. Considering that one of the indications for the treatment of hypercortisolism may be complementary to radiotherapy, we analyzed the eight patients who underwent radiotherapy after transsphenoidal surgery. In these patients, doses of ketoconazole from 200 to 1,200 mg were used, and in six patients there was a normalization of the UFC in 1 to 60 months of treatment. Thus, the association of ketoconazole with radiotherapy was effective in normalizing the 24-h UFC in 75% of cases. Clinical follow-up New therapeutic approaches were attempted in some patients during follow-up: radiotherapy (eight patients), new TSS (five patients), and bilateral adrenalectomy (four patients). At the end of this analysis, 11 patients remained on ketoconazole, all with controlled hypercortisolism. Among the 11 patients who were not fully controlled by the last visit, five were using ketoconazole as pre-TSS therapy and underwent TSS as soon as possible, while three others underwent radiotherapy and two underwent bilateral adrenalectomy. One patient was lost to follow-up. Discussion According to the current consensus about CD, drug treatment should be reserved for patients without remission after TSS, those who cannot undergo surgical treatment, or those awaiting the effects of radiotherapy (4, 16). Drugs available in this context may act as adrenal steroidogenesis blockers (ketoconazole, osilodrostat, metyrapone, mitotane, levoketoconazole, and etomidate), in pituitary adenoma (somatostatinergic receptor ligands—pasireotide), dopamine receptor agonists (cabergoline), or glucocorticoid receptor blockers (mifepristone) (16, 26). Among these alternatives, the drug of choice still cannot be determined. Thus, the best option must be established individually, considering aspects such as remission potential, safety profile, availability, cost, etc. (16, 27, 28). For over 30 years, ketoconazole has been prescribed off-label for CD patients with varied rates of remission of hypercortisolism, and it can be used in monotherapy or associated with other drugs (29, 30). The Brazilian public health system does not provide drugs for the treatment of CD, and among medications with a better profile for controlling hypercortisolism, such as osilodrostat, levoketoconazole, and pasireotide, only pasireotide has been approved by the national regulatory authority (ANVISA). Due to such pragmatic considerations, ketoconazole is among the most commonly used drugs in our health system, whether recently associated or not with cabergoline (7). In this cohort, the most prevalent response type was complete (66%). Since 75% of the CD patients who used ketoconazole had a complete or partial response, there was a clear trend towards improvement in hypercortisolism. When only those who used ketoconazole post-TSS were evaluated, the rate of control increased to 76%. We found that patients with a higher initial 24-h UFC tended to have less control of excess cortisol, a difference that was not observed when analyzing ketoconazole dose or follow-up time. In our series and at the prescribed doses, the combination of cabergoline and ketoconazole was not effective in the management of hypercortisolism since only two of nine patients (22%) had their 24-hour UFC normalized. However, it should be observed that this association was used in patients who had more severe CD and, consequently, were less likely to have a favorable response. The effects of cabergoline in CD patients remain controversial, although some studies have shown promising responses (31, 32). Previous reviews found that the efficacy of ketoconazole for hypercortisolism control was quite heterogeneous, ranging from 14 to 100% in 99 patients (33, 34). Our cohort’s response rate was lower than that of Sonino et al. (89%) (20) but higher than that of a multicenter cohort by Castinetti et al. (approximately 50%) (14). Regarding other smaller series (35–37) our results reinforce some findings that demonstrate a percentage of control greater than 50% of the cases. Our analyses showed a trend toward a response that continued, with some oscillations, over time. The rate of uncontrolled patients remained stable over time (approximately 30%), regardless of association with other drugs (cabergoline, mitotane, or pasireotide) or dose adjustments. Speculatively, it would appear that patients who respond to ketoconazole treatment would show some type of response as soon as therapy begins. Our cohort has the longest follow-up time of any study on ketoconazole use in CD, nearly 15 years. Our results demonstrate that patients who benefit from ketoconazole (i.e., control of hypercortisolism and associated comorbidities) can safely use it for a long term since those who did not experience liver enzyme changes at the beginning of treatment also had no long-term changes. Another relevant information for clinical practice is the result of treatment with ketoconazole associated with radiotherapy, which demonstrated normalizing the 24-h UFC in 75% of cases, a finding that reinforces the use of this therapeutic combination, especially in cases that are more resistant to different treatment modalities. As described in the literature, adverse effects, such as nausea, vomiting, dizziness, headache, loss of appetite, and elevated transaminases, are relatively frequent (38). In our cohort, 10 patients (30%) had mild adverse effects, and four (12%) had more serious adverse effects requiring discontinuation. In other studies, up to 20% of patients required discontinuation due to side effects (14). We documented 20 episodes of hypokalemia during ketoconazole treatment, some with worsening blood pressure control. In most cases, hypokalemia has occurred in association with the use of diuretic drugs, which may have potentiated potassium spoliation, reinforcing the need of stringent surveillance in hypertensive Cushing’s disease patients using this combination. It can also result from the enzymatic blockade that could lead to the elevation of adrenal mineralocorticoid precursors (pex. deoxycorticosterone), with consequent sodium retention and worsening hypertension. Although it has not been analyzed in other series with ketoconazole, this side effect has been observed in patients who received other adrenal-blocking drugs, such as osilodrostat and metyrapone (16). This alteration seems to be transient in some patients; in our series, it was managed by suspending drugs that could worsen hypokalemia and introducing spironolactone and/or potassium supplementation. Hypokalemia may also result from continuing intense adrenal stimulation by ACTH and changes in the activity of the 11-beta-hydroxysteroid dehydrogenase enzyme, which increase the mineralocorticoid activity of cortisol, as observed in patients with severe hypercortisolism in uncontrolled CD (39). Hypogonadism occurred in one male patient. In two adolescent patients (one female and one male), hypercortisolism was effectively controlled without altering the progression of puberty. As described in other cohorts, this effect was expected due to the high doses, which block adrenal and testicular androgen production (20). Thus, our findings confirm previous reports in the literature and add important information about the side effects and safety of long-term ketoconazole use in CD treatment. Our data reinforce the current recommendations about ketoconazole for recurrent cases or those refractory to surgery, including proper follow-up by an experienced team specializing in evaluating clinical and biochemical responses and potential adverse effects (7, 18, 40). Despite the severity of many of our CD patients, no ketoconazole-related death occurred during follow-up, including long-term observation. On the other hand, no patient progressed to definitive remission of hypercortisolism, even after many years of treatment with ketoconazole. Conclusions In our cohort of patients, ketoconazole proved to be an effective and safe alternative for CD treatment, although it can produce side effects that require proper identification and management, allowing effective long-term treatment. We found side effects that have been rarely described in the literature, including hypokalemia and worsening hypertension, which require specific care and management. Thus, ketoconazole is an effective alternative for CD patients who cannot undergo surgery, who do not achieve remission after pituitary surgery, or who have recurrent hypercortisolism. Data availability statement The raw data supporting the conclusions of this article will be made available by the authors without undue reservation. Ethics statement The studies involving human participants were reviewed and approved by the Hospital de Clínicas de Porto Alegre Research Ethics Committee. Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements. Author contributions CV and MAC created the research format. CV, RBM, and MCBC realized the search on medical records. CV performed the statistical analysis. MAC, ACVM, and TCR participated in the final data review and discussion. ACVM participated in the final data review and discussion as volunteer collaborator. All authors contributed to the article and approved the submitted version. Funding This work was supported by the “Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior” (CAPES), Ministry of Health - Brazil, through a PhD scholarship; and the Research Incentive Fund (FIPE) of Hospital de Clı́nicas de Porto Alegre. Acknowledgments The authors would like to thank the HCPA Research and Graduate Studies Group (GPPG) for the statistical technical support provided by Rogério Borges. We also thank the Research Incentive Fund of Hospital de Clínicas de Porto Alegre and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), by funds applied. We also thank the Graduate Program in Endocrinology and Metabolism (PPGEndo UFRGS) for all the support in the preparation of this research. Conflict of interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Publisher’s note All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher. References 1. Fleseriu M, Castinetti F. Updates on the role of adrenal steroidogenesis inhibitors in cushing’s syndrome: a focus on novel therapies. Pituitary (2016) 19(6):643–53. doi: 10.1007/s11102-016-0742-1 PubMed Abstract | CrossRef Full Text | Google Scholar 2. Pivonello R, De Leo M, Cozzolino A, Colao A. The treatment of cushing’s disease. Endocr Rev (2015) 36(4):385–486. doi: 10.1210/er.2013-1048 PubMed Abstract | CrossRef Full Text | Google Scholar 3. Nieman LK, Biller BMK, Findling JW, Newell-Price J, Savage MO, Stewart PM, et al. The diagnosis of cushing’s syndrome: An endocrine society clinical practice guideline. J Clin Endocrinol Metab (2008) 93(5):1526–40. doi: 10.1210/jc.2008-0125 PubMed Abstract | CrossRef Full Text | Google Scholar 4. Nieman LK, Biller BMK, Findling JW, Murad MH, Newell-Price J, Savage MO, et al. Treatment of cushing’s syndrome: An endocrine society clinical practice guideline. J Clin Endocrinol Metab (2015) 100(8):2807–31. doi: 10.1210/jc.2015-1818 PubMed Abstract | CrossRef Full Text | Google Scholar 5. Pivonello R, De Martino M, De Leo M, Lombardi G, Colao A. Cushing’s syndrome. Endocrinol Metab Clin North (2008) 37(1):135–49. doi: 10.1016/j.ecl.2007.10.010 CrossRef Full Text | Google Scholar 6. Alexandraki KI, Grossman AB. Therapeutic strategies for the treatment of severe cushing’s syndrome. Drugs (2016) 76(4):447–8. doi: 10.1007/s40265-016-0539-6 PubMed Abstract | CrossRef Full Text | Google Scholar 7. Machado MC, Fragoso MCBV, Moreira AC, Boguszewski CL, Neto LV, Naves LA, et al. A review of cushing’s disease treatment by the department of neuroendocrinology of the Brazilian society of endocrinology and metabolism. Arch Endocrinol Metab (2018) 62(1):87–105. doi: 10.20945/2359-3997000000014 PubMed Abstract | CrossRef Full Text | Google Scholar 8. Rollin G, Ferreira NP, Czepielewski MA. Prospective evaluation of transsphenoidal pituitary surgery in 108 patients with Cushing's disease. Arq Bras Endocrinol Metabol. (2007) 51(8):1355–61. doi: 10.1590/s0004-27302007000800022 PubMed Abstract | CrossRef Full Text | Google Scholar 9. Patil CG, Prevedello DM, Lad SP, Lee Vance M, Thorner MO, Katznelson L, et al. Late recurrences of cushing’s disease after initial successful transsphenoidal surgery. J Clin Endocrinol Metab (2008) 93(2):358–62. doi: 10.1210/jc.2007-2013 PubMed Abstract | CrossRef Full Text | Google Scholar 10. Rubinstein G, Osswald A, Zopp S, Ritzel K, Theodoropoulou M, Beuschlein F, et al. Therapeutic options after surgical failure in cushing’s disease: A critical review. Best Pract Res Clin Endocrinol Metab (2019) 33(2):101270. doi: 10.1016/j.beem.2019.04.004 PubMed Abstract | CrossRef Full Text | Google Scholar 11. Zhao N, Yang X, Li C, Yin X. Efficacy and safety of pasireotide for Cushing's disease: A protocol for systematic review and meta-analysis. Medicine (Baltimore). (2020) 99(51):e23824. doi: 10.1097/MD.0000000000023824 PubMed Abstract | CrossRef Full Text | Google Scholar 12. Pivonello R, Fleseriu M, Newell-Price J, Bertagna X, Findling J, Shimatsu A, et al. Efficacy and safety of osilodrostat in patients with cushing’s disease (LINC 3): a multicentre phase III study with a double-blind, randomised withdrawal phase. Lancet Diabetes Endocrinol (2020) 8(9):748–61. doi: 10.1016/S2213-8587(20)30240-0 PubMed Abstract | CrossRef Full Text | Google Scholar 13. Yan JY, Nie XL, Tao QM, Zhan SY, De Zhang Y. Ketoconazole associated hepatotoxicity: A systematic review and meta-analysis. Biomed Environ Sci (2013) 26(7):605–10. doi: 10.3967/0895-3988.2013.07.013 PubMed Abstract | CrossRef Full Text | Google Scholar 14. Castinetti F, Guignat L, Giraud P, Muller M, Kamenicky P, Drui D, et al. Ketoconazole in cushing’s disease: Is it worth a try. J Clin Endocrinol Metab (2014) 99(5):1623–30. doi: 10.1210/jc.2013-3628 PubMed Abstract | CrossRef Full Text | Google Scholar 15. Castinetti F, Nieman LK, Reincke M, Newell-Price J. Approach to the patient treated with steroidogenesis inhibitors. J Clin Endocrinol Metab (2021) 106(7):2114–23. doi: 10.1210/clinem/dgab122 PubMed Abstract | CrossRef Full Text | Google Scholar 16. Fleseriu M, Auchus R, Bancos I, Bem-Shlomo A, Bertherat J, Biermasz NR, et al. Consensus on diagnosis and management of cushing’s disease: a guideline update. Lancet Diabetes Endocrinol (2021) 9(12):847–75. doi: 10.1016/s2213-8587(21)00235-7 PubMed Abstract | CrossRef Full Text | Google Scholar 17. Fleseriu M, Pivonello R, Elenkova A, Salvatori R, Auchus RJ, Feelders RA, et al. Efficacy and safety of levoketoconazole in the treatment of endogenous cushing’s syndrome (SONICS): a phase 3, multicentre, open-label, single-arm trial. Lancet Diabetes Endocrinol (2019) 7(11):855–65. doi: 10.1016/S2213-8587(19)30313-4 PubMed Abstract | CrossRef Full Text | Google Scholar 18. Tritos NA. Adrenally directed medical therapies for cushing syndrome. J Clin Endocrinol Metab (2021) 106(1):16–25. doi: 10.1210/clinem/dgaa778 PubMed Abstract | CrossRef Full Text | Google Scholar 19. Simões Corrêa Galendi J, Correa Neto ANS, Demetres M, Boguszewski CL, dos S V. N. nogueira, “Effectiveness of medical treatment of cushing’s disease: A systematic review and meta-analysis,”. Front Endocrinol (Lausanne) (2021) 12:732240(September). doi: 10.3389/fendo.2021.732240 PubMed Abstract | CrossRef Full Text | Google Scholar 20. Sonino N, Boscaro M, Paoletta A, Mantero F, Zillotto D. Ketoconazole treatment in cushing’s syndrome: experience in 34 patients. Clin Endocrinol (Oxf) (1991) 35(4):347–52. doi: 10.1111/j.1365-2265.1991.tb03547.x PubMed Abstract | CrossRef Full Text | Google Scholar 21. Costenaro F, Rodrigues TC, Rollin GAF, Czepielewski MA. Avaliação do eixo hipotálamohipófise adrenal no diagnóstico e na remissão da doença de cushing. Arquivos Brasileiros Endocrinologia e Metabologia (2012). doi: 10.1590/S0004-27302012000300002 CrossRef Full Text | Google Scholar 22. Amlashi FG, Swearinger B, Faje AT, Nachtigall LB, Miller KK, Klibanski A, et al. Accuracy of late-night salivary cortisol in evaluating postoperative remission and recurrence in cushing’s disease. J Clin Endocrinol Metab (2015) 100(10):3770–7. doi: 10.1210/jc.2015-2107 PubMed Abstract | CrossRef Full Text | Google Scholar 23. Silveiro SP, Satler F. Rotinas em endocrinologia. (Porto Alegre: Artmed) (2015). Google Scholar 24. Costenaro F, Rodrigues TC, Ferreira NP, da Costa TG, Schuch T, Boschi V, et al. Pseudotumor cerebri during cushing’s disease treatment with ketoconazole. Arq. Bras Endocrinol Metabol (2011). doi: 10.1590/s0004-27302011000400008 CrossRef Full Text | Google Scholar 25. Costenaro F, Rodrigues TC, De Lima PB, Ruszczyk J, Rollin G, Czepielewski MA. A successful case of cushing’s disease pregnancy treated with ketoconazole. Gynecol Endocrinol (2015) 31(3):176–8. doi: 10.3109/09513590.2014.995615 PubMed Abstract | CrossRef Full Text | Google Scholar 26. Gadelha MR, Neto LV. Efficacy of medical treatment in cushing’s disease: A systematic review. Clin Endocrinol (Oxf) (2014) 80(1):1–12. doi: 10.1111/cen.12345 PubMed Abstract | CrossRef Full Text | Google Scholar 27. Fleseriu M, Petersenn S. New avenues in the medical treatment of cushing’s disease: Corticotroph tumor targeted therapy. J Neurooncol (2013) 114(1):1–11. doi: 10.1007/s11060-013-1151-1 PubMed Abstract | CrossRef Full Text | Google Scholar 28. Fleseriu M, Petersenn S. Medical management of cushing’s disease: What is the future? Pituitary (2012) 15(3):330–41. doi: 10.1007/s11102-012-0397-5 PubMed Abstract | CrossRef Full Text | Google Scholar 29. Feelders RA, De Bruin C, Pereira AM, Romijn JÁ, Netea-Maier RT, Hermus AR, et al. Pasireotide alone or with cabergoline and ketoconazole in cushing’s disease. N Engl J Med (2010) 362(19):1846–8. doi: 10.1056/NEJMc1000094 PubMed Abstract | CrossRef Full Text | Google Scholar 30. Barbot M, Albiger N, Ceccato F, Zilio M, Frigo AC, Denaro Lc, et al. Combination therapy for cushing’s disease: Effectiveness of two schedules of treatment. should we start with cabergoline or ketoconazole? Pituitary (2014) 17(2):109–17. doi: 10.1007/s11102-013-0475-3 PubMed Abstract | CrossRef Full Text | Google Scholar 31. Vilar L, Naves LA, Azevedo MF, Arruda MJ, Arahata CM, Silva LM, et al. Effectiveness of cabergoline in monotherapy and combined with ketoconazole in the management of cushing’s disease. Pituitary (2010) 13(2):123–9. doi: 10.1007/s11102-009-0209-8 PubMed Abstract | CrossRef Full Text | Google Scholar 32. Pivonello R, De Martino MC, Cappabianca P, De Leo M, Faggiano A, Lombardi G, et al. The medical treatment of cushing’s disease: Effectiveness of chronic treatment with the dopamine agonist cabergoline in patients unsuccessfully treated by surgery. J Clin Endocrinol Metab (2009) 94(1):223–30. doi: 10.1210/jc.2008-1533 PubMed Abstract | CrossRef Full Text | Google Scholar 33. Castinetti F, Morange I, Jaquet P, Conte-Devolx B, Brue T. Ketoconazole revisited: A preoperative or postoperative treatment in cushing’s disease. Eur J Endocrinol (2008). doi: 10.1530/EJE-07-0514 PubMed Abstract | CrossRef Full Text | Google Scholar 34. Loli P, Berselli ME, Tagliaferri M. Use of ketoconazole in the treatment of cushing’s syndrome. J Clin Endocrinol Metab (1986) 63(6):1365–71. doi: 10.1210/jcem-63-6-1365 PubMed Abstract | CrossRef Full Text | Google Scholar 35. Kakade HR, Kasaliwal R, Khadilkar KS, Jadhav S, Bukan A, Khare Sc, et al. Clinical, biochemical and imaging characteristics of cushing’s macroadenomas and their long-term treatment outcome. Clin Endocrinol (Oxf) (2014) 81(3):336–42. doi: 10.1111/cen.12442 PubMed Abstract | CrossRef Full Text | Google Scholar 36. Luisetto G, Zangari M, Camozzi V, Boscaro M, Sonino N, Fallo F. Recovery of bone mineral density after surgical cure, but not by ketoconazole treatment, in cushing’s syndrome. Osteoporos Int (2001) 12(11):956–60. doi: 10.1007/s001980170025 PubMed Abstract | CrossRef Full Text | Google Scholar 37. Huguet I, Aguirre M, Vicente A, Alramadan M, Quiroga I, Silva J, et al. Assessment of the outcomes of the treatment of cushing’s disease in the hospitals of castilla-la mancha. Endocrinol y Nutr (2015) 62(5):217–23. doi: 10.1016/j.endonu.2015.02.007 CrossRef Full Text | Google Scholar 38. Tritos NA, Biller BMK. Advances in the medical treatment of cushing disease. Endocrinol Metab Clin North Am (2020) 49(3):401–12. doi: 10.1016/j.ecl.2020.05.003 PubMed Abstract | CrossRef Full Text | Google Scholar 39. Torpy D, Mullen N, Ilias I, Nieman L. Association of hypertension and hypokalemia with cushing’s syndrome caused by ectopic ACTH secretion. Ann N Y Acad Sci (2002) 970:134–44. doi: 10.1111/j.1749-6632.2002.tb04419.x PubMed Abstract | CrossRef Full Text | Google Scholar 40. Varlamov EV, Han AJ, Fleseriu M. “Updates in adrenal steroidogenesis inhibitors for cushing’s syndrome – a practical guide,”. Best Pract Res Clin Endocrinol Metab (2021) 35(1):101490. doi: 10.1016/j.beem.2021.101490 PubMed Abstract | CrossRef Full Text | Google Scholar Keywords: Cushing’s disease, Cushing’s syndrome, hypercortisolism, treatment, ketoconazole Citation: Viecceli C, Mattos ACV, Costa MCB, Melo RBd, Rodrigues TdC and Czepielewski MA (2022) Evaluation of ketoconazole as a treatment for Cushing’s disease in a retrospective cohort. Front. Endocrinol. 13:1017331. doi: 10.3389/fendo.2022.1017331 Received: 11 August 2022; Accepted: 06 September 2022; Published: 07 October 2022. Edited by: Luiz Augusto Casulari, University of Brasilia, Brazil Reviewed by: Juliana Drummond, Federal University of Minas Gerais, Brazil Monalisa Azevedo, University of Brasilia, Brazil Copyright © 2022 Viecceli, Mattos, Costa, Melo, Rodrigues and Czepielewski. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. *Correspondence: Mauro Antonio Czepielewski, maurocze@terra.com.br Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher. From https://www.frontiersin.org/articles/10.3389/fendo.2022.1017331/full
  21. Brief Summary: This is a randomized, placebo-controlled, crossover study of SPI-62 in subjects with ACTH-dependent Cushing's syndrome. Subjects will receive each of the following 2 treatments for 12 weeks: SPI-62 and matching placebo Condition or disease Intervention/treatment Phase Cushing's Syndrome ICushing Disease Due to Increased ACTH Secretion Cortisol ExcessCortisol; Hypersecretion Cortisol Overproduction Ectopic ACTH Secretion Drug: SPI-62 Drug: Placebo Phase 2 Detailed Description: This is a multicenter, randomized, placebo-controlled, Phase 2 study to evaluate the pharmacologic effect, efficacy, and safety of SPI-62 in subjects with ACTH-dependent Cushing's syndrome. Each subject who provides consent and meets all inclusion and exclusion criteria will participate in 3 periods: a 28-day screening period (Days -35 to -8), a 7-day baseline period (Days -7 to -1), and a 24-week treatment period (Day 1 of Week 1 to Day 168 ± 3 days of Week 24). Up to 26 subjects will be enrolled with the aim that 18 subjects with Cushing's disease will complete the study. Subjects will receive each of the following 2 treatments for 12 weeks: SPI-62 and matching placebo. Study Design Go to Study Type : Interventional (Clinical Trial) Estimated Enrollment : 26 participants Allocation: Randomized Intervention Model: Crossover Assignment Intervention Model Description: Staggered parallel crossover Masking: Quadruple (Participant, Care Provider, Investigator, Outcomes Assessor) Primary Purpose: Treatment Official Title: SPI-62 as a Treatment for Adrenocorticotropic Hormone-dependent Cushing's Syndrome Actual Study Start Date : March 1, 2022 Estimated Primary Completion Date : March 15, 2023 Estimated Study Completion Date : August 15, 2023 More info at https://clinicaltrials.gov/ct2/show/record/NCT05307328
  22. Recordati's Isturisa is expected to launch in the second or third quarter. (Getty) As part of a small 2019 deal, Italian drugmaker Recordati snagged a trio of underperforming Novartis endocrinology meds, including a late-stage candidate for Cushing's disease. Less than a year later, that drug is cleared for market after an FDA green light. The FDA on Friday approved Recordati's Isturisa (osilodrostat) to treat Cushing's disease—a rare disease in which patients' adrenal glands produce too much cortisol—in those who have undergone a prior pituitary gland surgery or are not eligible for one. Isturisa, a cortisol synthesis inhibitor, will come with the FDA's orphan drug designation, providing market exclusivity for seven years, Recordati said (PDF) in a release. The drug is expected to be commercially available in the second or third quarter. The FDA based its review on phase 3 data showing 86% of patients treated with Isturisa showed normal cortisol levels in their urine after eight weeks, compared with 29% of patients treated with placebo, the drugmaker said. Recordati is "actively building its commercial, medical, and market access teams" to accommodate Isturisa's launch through its recently created U.S. endocrinology business unit, it said. The drugmaker will launch the drug with a "comprehensive distribution model" through specialty pharmacies. Novartis, once the owner of Isturisa, turned the asset over to Recordati in 2019 as part of a $390 million offload of some of the Swiss drugmaker's endocrinology portfolio. Recordati received Signifor, long-acting sister Signifor LAR and Isturisa, positioned as a successor drug to Signifor. The purchase included milestone payments tied to Isturisa. Recordati talked up the buy of the Cushing's disease trio as a boon for its rare disease portfolio, calling it a "key and historical milestone" at the time. From https://www.fiercepharma.com/pharma/recordati-scores-fda-nod-for-cushing-s-disease-med-isturisa
  23. Cortisol isn’t bad; you need it to help regulate your responses to life. Regulation involves a very complex interplay of feedback loops between the hypothalamus, pituitary gland, and adrenal glands, says Dr. Singh. “In general, cortisol levels tend to peak in the late morning and gradually decline throughout the day,” he explains. “When a stressful event occurs, the increased cortisol will work alongside our ‘fight or flight’ mechanisms to either upregulate or downregulate bodily functions. [Affected systems include] the central nervous system, cardiovascular system, gastrointestinal system, or immune system.” In addition to normal processes that trigger or suppress cortisol release, levels can also be affected by different medical conditions, Dr. Singh says. For example, if someone has abnormally high levels of cortisol, this is called Cushing’s syndrome, which is typically caused by a tumor affecting any of the glands that take part in the process of cortisol production. When people suffer from abnormally low levels of cortisol, it’s called Addison’s disease. It generally occurs due to adrenal gland dysfunction, but could also be the result of abnormal functioning of any of the other glands in the cortisol production process. Finally, if you use corticosteroid medications such as prednisone or dexamethasone, prolonged use will result in excessive cortisol production, Dr. Singh says. “If the medication is not adequately tapered down when discontinued, the body’s ability to create cortisol can become permanently impaired,” he says. From https://www.yahoo.com/lifestyle/manage-pesky-stress-hormone-cortisol-184900397.html
  24. Clinical trial analyses focus on the human body’s homeostatic response to potent HSD-1 inhibition by SPI-62 Results highlight that urinary free cortisol is distinct from intracellular cortisol that causes symptoms in patients with Cushing’s syndrome or autonomous cortisol secretion May 24, 2022 07:20 AM Eastern Daylight Time PORTLAND, Ore.--(BUSINESS WIRE)--Sparrow Pharmaceuticals, an emerging, clinical-stage biopharmaceutical company developing novel, targeted therapies for disorders of glucocorticoid excess, today presented new pharmacological data during a poster session and a Rapid Communications session titled, “HPA axis modulation by a potent inhibitor indicates 11β-hydroxysteroid dehydrogenase type 1 (HSD-1) is a main source of cortisol that can bind intracellular receptors” at the 24th European Congress of Endocrinology (ECE 2022). Sparrow scientists examined the steroid hormone changes after administration of its lead therapeutic candidate, SPI-62, an HSD-1 inhibitor, to healthy adults. “Normalized urinary free cortisol, or UFC, is a standard therapeutic target for patients with Cushing’s syndrome,” said David A. Katz, Ph.D., CSO at Sparrow Pharmaceuticals, “But that biomarker doesn’t measure the cortisol that can access intracellular receptors and cause symptoms. UFC normalization has been shown not to correlate with clinical endpoints in patients with Cushing’s syndrome. Many patients with autonomous cortisol secretion have normal UFC, yet substantial cortisol morbidity. As we conduct clinical trials for patients with those diseases, we’re in search of better ways to measure the cortisol that makes patients ill.” The study analyzed historical clinical trial data to better characterize how SPI-62 impacts cortisol levels and the body’s homeostatic response to those changes. Conclusions of the study include: Half of hepatocellular cortisol with access to intracellular receptors is generated in healthy adults by HSD-1. ACTH increase compensates for the effect of HSD-1 inhibition on systemic cortisol levels. Secondary increases of androgen levels have not been associated to date with clinical consequences. Large changes of the amount of cortisol that can bind intracellular receptors, and thus cause cortisol-related morbidity, can occur independently of urinary free cortisol levels. HSD-1 converts cortisone to cortisol in tissues in which cortisol excess is associated with morbidity including liver, adipose, bone, and brain. SPI-62 is a potent HSD-1 inhibitor in clinical development for treatment of Cushing’s syndrome and autonomous cortisol secretion, and as adjunctive therapy to prednisolone in polymyalgia rheumatica. In Phase 1 clinical trials SPI-62 was generally well tolerated and associated with maximal liver and brain HSD-1 inhibition. To register and view the abstracts, visit ECE’s website here. From https://www.businesswire.com/news/home/20220524005465/en/Sparrow-Pharmaceuticals-Presents-New-Clinical-Trial-Data-Analyses-on-HSD-1-Inhibitor-SPI-62-at-the-24th-European-Congress-of-Endocrinology
  25. Crinetics Pharmaceuticals, Inc. (Nasdaq: CRNX) today announced positive results from the multiple-ascending dose (MAD) portion of a first-in-human Phase 1 clinical study of CRN04894, the company's first-in-class, investigational, oral, nonpeptide adrenocorticotropic hormone (ACTH) antagonist that is being developed for the treatment of Cushing’s disease, congenital adrenal hyperplasia (CAH) and other conditions of excess ACTH. Following administration of CRN04894, results showed serum cortisol below normal levels and a marked reduction in 24-hour urine free cortisol excretion in the presence of sustained, disease-like ACTH concentrations. “The design of our Phase 1 healthy volunteer study allowed us to demonstrate CRN04894’s potent pharmacologic activity in the presence of ACTH levels that were in similar range to those seen in CAH and Cushing’s disease patients,” said Alan Krasner, M.D., Crinetics’ chief medical officer. “The observation of dose-dependent reductions in serum cortisol levels to below the normal range even in the presence of high ACTH indicates that CRN04894 was effective in blocking the key receptor responsible for regulating cortisol secretion. We believe this is an important finding that may be predictive of CRN04894’s efficacy in patients.” ACTH is the key regulator of the hypothalamic-pituitary adrenal (HPA) axis controlling adrenal activation. It is regulated by cortisol via a negative feedback loop that acts to inhibit ACTH secretion. This feedback loop is dysregulated in diseases of excess ACTH. In Cushing’s disease, a benign pituitary tumor drives excess ACTH secretion even in the presence of excess cortisol. While in CAH, an enzyme deficiency results in excess androgen synthesis without normal cortisol synthesis, allowing unchecked ACTH production and requiring lifelong glucocorticoid use. In both diseases, excess ACTH drives over-stimulation of the adrenal gland and leads to a host of symptoms including infertility, adrenal rest tumors, and metabolic complications in CAH and, in Cushing’s disease, symptoms include hypertension, central obesity, neuropsychiatric disorders and metabolic complications. To our knowledge, no other ACTH antagonists are currently in clinical development for diseases of ACTH excess such as Cushing’s disease or CAH. The 49 healthy adults evaluated in the multiple ascending dose portion of the Phase 1 study were administered 40, 60 or 80 mg doses of CRN04894, or placebo, daily for 10 days. After 10 days of dosing was complete, evaluable participants were administered an ACTH challenge to stimulate adrenal activation to disease relevant levels. Safety and pharmacokinetic data were consistent with expectations from the single-ascending dose cohorts in the Phase 1 study. There were no discontinuations due to treatment-related adverse events and no serious adverse events reported. Glucocorticoid deficiency was the most common treatment-related adverse event in the MAD cohorts. This was an expected extension of pharmacology given the mechanism of action of CRN04894. CRN04894 showed consistent oral bioavailability in the MAD cohorts with a half-life of approximately 24 hours, which is anticipated to support once-daily dosing. Participants in the MAD cohorts who were administered once nightly CRN04894 experienced a dose-dependent suppression of adrenal function as measured by suppression of serum cortisol production of 17%, 29% and 37% on average from baseline over 24 hours for the 40, 60 or 80 mg dosing groups respectively, (despite requirement for glucocorticoid supplementation in some of these subjects to prevent clinical adrenal insufficiency), compared to an average 2% increase in serum cortisol for individuals receiving placebo. The strong, dose-dependent suppression of serum and urine free cortisol was achieved despite ACTH levels in subjects in the 60 and 80 mg cohorts similar to those typically seen in patients with CAH and Cushing’s disease. Even when an additional exogenous ACTH challenge was administered on top of the already increased ACTH levels, cortisol levels remained below the normal range in subjects receiving CRN04894, indicating clinically significant suppression of adrenal activity. “Due to its central position in HPA axis, ACTH is the obvious target for inhibiting excessive stimulation of the adrenal in diseases of ACTH excess. Even though the field of endocrinology has known about its clinical significance for more than 100 years, we are not aware of any other ACTH antagonist that has entered clinical development. This is an important milestone for endocrinology and for our company.” said Scott Struthers, Ph.D., founder and chief executive officer of Crinetics. “We are very excited to initiate patient studies in Cushing’s disease and CAH with CRN04894, which will be our third home-grown NCE to demonstrate pharmacologic proof-of-concept and enter patient trials.” Crinetics plans to present additional details of safety, efficacy, and biomarker results from the CRN04894 Phase 1 study at an endocrinology-focused medical meeting in 2022. Data Review Conference Call Crinetics will hold a conference call and live audio webcast today, May 25, 2022, at 8:00 a.m. Eastern Time to discuss results from the MAD cohorts of the Phase 1 study of CRN04894. To participate, please dial 1-877-407-0789 (domestic) or 1-201-689-8562 (international) and refer to conference ID 13730000. To access the webcast, click here. Following the live event, a replay will be available on the Events page of the Company’s website. About the CRN04894 Phase 1 Study Crinetics has completed enrollment of the 88 healthy volunteers in this double-blind, randomized, placebo-controlled Phase 1 study. Participants were divided into multiple cohorts in the single ascending dose (n=39) and multiple ascending dose (n=49) portions of the study. In both the SAD and MAD portions of the study, safety and pharmacokinetics were assessed. In addition, pharmacodynamic responses were evaluated before and after challenges with injected synthetic ACTH to assess pharmacologic effects resulting from exposure to CRN04894. From https://www.streetinsider.com/Corporate+News/Crinetics+Pharmaceuticals+(CRNX)+Reports+Positive+Top-line+Results+Including+Strong+Adrenal+Suppression+from+CRN04894+Phase+1+Study/20126484.html
×
×
  • Create New...