Jump to content
Strawberry Orange Banana Lime Leaf Slate Sky Blueberry Grape Watermelon Chocolate Marble
Strawberry Orange Banana Lime Leaf Slate Sky Blueberry Grape Watermelon Chocolate Marble

Leaderboard


Popular Content

Showing content with the highest reputation since 10/13/2018 in Posts

  1. 1 point
    Pituitary Tumors Affect Patients’ Ability to Work, Reduce Quality of Life Pituitary tumor conditions, such as Cushing’s disease, have a substantial effect on patients’ work capabilities and health-related quality of life, researchers from The Netherlands reported. The study, “Work disability and its determinants in patients with pituitary tumor-related disease,” was published in the journal Pituitary. Pituitary tumors, like those that cause Cushing’s disease, have significant effects on a patient’s physical, mental, and social health, all of which influence their work status and health-related quality of life. However, the effects of the disease on work status is relatively under-investigated, investigators report. Here, researchers evaluated the work disability among patients who were treated for pituitary tumors in an attempt to understand the impact of disease diagnosis and treatment on their social participation and ability to maintain a paying job. In their study, researchers examined 241 patients (61% women) with a median age of 53 years. The majority (27%) had non-functioning pituitary tumors, which do not produce excess hormones, but patients with acromegaly, Cushing’s disease, prolactinomas, and Rathke’s cleft cyst also were included. Participants were asked to complete questionnaires to evaluate their health-related quality of life and disease-specific impact on their work capabilities. Each participant completed a set of five questionnaires. Participants also reported their hormonal status and demographic data, including gender, age, education, and marital status. Specific information, such as disease diagnosis, treatment, and tumor type was obtained from their medical records. Work status and productivity were assessed using two surveys, the Short-Form-Health and Labour Questionnaire (SF-HLQ) and the work role functioning questionnaire 2.0 (WRFQ). SF-HLQ was used to obtain information on the participants’ employment and their work attendance. Employment was either paid or unpaid. (Participation in household chores was considered not having a paid job.) WRFQ is a 27-question survey that determines work disability regarding being able to meet the productivity, physical, emotional, social, and flexible demands. A higher score indicates low self-perceived work disability. Disease-specific mood problems, social and sexual functioning issues, negative perceptions due to illness, physical and cognitive difficulties, were assessed using a 26-item survey called Leiden Bother and Needs for Support Questionnaire for pituitary patients(LBNQ-Pituitary). Overall, 28% of patients did not have a paid job, but the rates increased to 47% among those with Cushing’s disease. Low education, hormonal deficits, and being single were identified as the most common determinants of not having a paid job among this population. Further analysis revealed that more patients with Cushing’s disease and acromegaly had undergone radiotherapy. They also had more hormonal deficits than others with different tumor types. Overall, patients with a paid job reported working a median of 36 hours in one week and 41% of those patients missed work an average of 27 days during the previous year. Health-related problems during work also were reported by 39% with a paid job. Finally, health-related quality of life was determined using two questionnaires: SF-36 and EQ-5D. The physical, mental, and emotional well being was measured with SF-36, while ED-5D measured the health outcome based on the impact of pain, mobility, self-care, usual activities, discomfort, and anxiety or depression. In both SF-36 and EQ-5D, a higher score indicates a better health status. Statistical analysis revealed that the quality of life was significantly higher in patients with a job. Overall, patients with a paid job reported better health status and higher quality of life than those without a paid job. Although 40% of the patients reported being bothered by health-related problems in the past year, only 12% sought the help of an occupational physician, the researchers reported. “Work disability among patients with a pituitary tumor is substantial,” investigators said. “The determinants and difficulties at work found in this study could potentially be used for further research, and we advise healthcare professionals to take these results into consideration in the clinical guidance of patients,” they concluded. From https://cushingsdiseasenews.com/
  2. 1 point
    The U.S. Food and Drug Administration has approved the clinical use of a magnetic resonance imaging (MRI) scanner — the ultra-high-field 7T Terra MRI — with unprecedented resolution that allows for more reliable images of the brain. The approach recently allowed the precise localization of a small tumor in the pituitary gland, which standard MRI had failed to spot, in a patient with Cushing’s disease. So far, only one scanner of this kind exists in the U.S.. It was installed in February 2017 at the Mark and Mary Stevens Neuroimaging and Informatics Institute (INI) of the Keck School of Medicine, University of Southern California (USC). The new scanner has an increased magnetic field strength of 7 Tesla, which is more than four times that of conventional MRI. This property greatly improves the instrument’s signal-to-noise ratio, dramatically increasing the spatial resolution and contrast of its images so that scientists can visualize the human living brain in high-definition and with unprecedented detail. The 7T Terra is ideal for high-resolution neuroimaging, exploration of neurodegenerative diseases such as Alzheimer’s and Parkinson’s, and diagnosis and treatment of other brain diseases, a USC news story by Zara Greenbaum states. Earlier this year, a report described the case of women with Cushing’s disease with a pituitary adenoma (slow-growing, benign tumor in the pituitary gland) that was possible to localize only with the new 7T MRI. Based on laboratory analysis that revealed high levels of adrenocorticotropic hormone(ACTH) and cortisol, the doctors suspected a pituitary adenoma and recommended the patient for surgery. However, they ignored the precise location of the tumor, which failed to be detected by standard MRI scanners (1T and 3T). Two hours before surgery, the woman underwent a 7T MRI scan which finally identified with high precision the location of the adenoma, a very small tumor of 8 mm on the right side of the pituitary gland. “The 7T may save patients an invasive procedure. It also makes it easier for neurosurgeons to selectively remove a tumor without damaging surrounding areas,” said Gabriel Zada, MD, associate professor of neurological surgery at the Keck School. Since its arrival, the device has supported exploratory research into both healthy and diseased brains. Now the scanner’s advanced imaging technology can be used to help with diagnosis, treatment and monitoring of patients with neurological diseases, including Cushing’s disease. “This device, which has already made its mark as a powerful tool to advance research in the neurosciences, is now accessible to clinical populations in addition to researchers,” said Arthur W. Toga, PhD, provost professor and chair at the Keck School and director of the USC Stevens INI. “Clinicians across the university and beyond can now leverage all the benefits of increased spatial resolution to serve patients in need,” he said. Adapted from https://cushingsdiseasenews.com/2018/11/06/fda-oks-high-resolution-mri-better-spotting-pituitary-tumor-cushings/
  3. 1 point
    If you’ve got your finger on the pulse of health trends, it’s likely you’ve been hearing the current buzzwords “cortisol creates belly fat” and “cortisol causes muscle wasting and fat storage.” These are the type of catch phrases that gain momentum every few years. And although some of the fads and trends showing up seasonally in fitness are myths, this caution about chronically elevated cortisol is true. Cortisol is also deeply connected with the dangers of chronic inflammation, which I described in another article, “Inflammation Creates Diseases.” Like many hormones, cortisol has an effect on a wide variety of functions in the body. Although it’s getting particularly demonized lately, cortisol serves some very important and positive functions in the body. It’s an essential component of the flight or flight response, so it gives us energy, focus, strength, motivation and courage. But, like with sugar or caffeine, it comes with a crash that feels like an emotional, psychological and physical drain. Cortisol is important for survival, but we didn’t evolve to have high levels of it all the time. According to hormone.org, cortisol isn’t only a stress hormone: “Because most bodily cells have cortisol receptors, it affects many different functions in the body. Cortisol can help control blood sugar levels, regulate metabolism, help reduce inflammation and assist with memory formulation. It has a controlling effect on salt and water balance and helps control blood pressure. In women, cortisol also supports the developing fetus during pregnancy. All of these functions make cortisol a crucial hormone to protect overall health and well-being.” (hormone.org/hormones-and-health/hormones/cortisol) There are many symptoms of chronically elevated cortisol levels. With that said, the way a spike of cortisol gives you a jolt of energy is by raising blood sugar. It does this by way of gluconeogenesis. This literally means “creating new sugar,” and it happens by way of breaking protein down into amino acids that are then turned into sugar by the liver. What is a large source of protein in the body? Yep, muscles. This is what is meant by “cortisol causes muscle loss.” This in turn contributes to muscle weakness. Whereas normal levels of cortisol help to regulate blood sugar levels by breaking down only a little muscle (which can be replaced with exercise), excessive levels cause muscle wasting. Why does cortisol cause fat gain? Remember those cortisol receptors most cells have? Fat cells have four times as many, so they are particularly responsive to cortisol. Okay, remember all that glucose the cortisol surge dumped into your blood for energy? Well, that also came with an insulin response to get your blood sugar levels back down, and insulin causes energy storage. And where do you store the energy? Yep, in those hypersensitive fat cells that cortisol just turned on. And what happens when you have too much insulin over time? Yep, diabetes. Also, another reason stress can cause emotional and/or binge eating is because cortisol also fires up your sense of purpose, as well as your appetite. So now stress has made you feel motivated…to eat. Emotionally and psychologically, chronically high cortisol can exacerbate depression, anxiety, irritability and lack of emotional control. Cortisol triggers a release of tryptophan oxygenase. This enzyme breaks down tryptophan. Tryptophan is required for creating serotonin. Serotonin gives us the ability to feel happiness, and it also affects appetite, sleep and sexual desire. Since extended exposure to high levels of cortisol inhibits the production of serotonin, all the symptoms of low serotonin become problematic (decreased appetite, insomnia, impotence, etc.). In short, prolonged stress causes depression. Cortisol also plays a role in the circulatory system. It manipulates blood pressure by acting as a diuretic. Excess cortisol causes an electrolyte imbalance, whereby sodium is retained, but potassium is excreted. Let me take you back to your high school biology days: Muscles fire because of the sodium potassium pump. The sodium potassium pump also effects the firing of nerves, including those impulses that cause your heart to beat and your kidneys to take in water for filtration. That sodium potassium pump is important throughout the entire body, across many of its biological functions. Because cortisol increases the concentration of sodium in your body, it has a direct impact on your blood pressure. Remember why excess salt can cause high blood pressure? Because it contains sodium. For all these reasons and more, chronically elevated cortisol also causes muscle weakness (ironic, since short bursts of it temporarily increase strength). Cortisol has other effects on minerals. According to the Hindawi Journal of Sports Medicine, “Cortisol triggers bone mineral resorption (removal) in order to free amino acids for use as an energy source through gluconeogenesis. Cortisol indirectly acts on bone by blocking calcium absorption, which decreases bone cell growth.” As you can see, excess cortisol causes osteoporosis. It also exacerbates other bone mineral density diseases, which means cortisol can leave you literally brittle with stress. Practically anything can become a stressor in the right conditions, and fight or flight is our only biological response to stress. Some triggers of stress include conflict, worry, alcohol and drug consumption, processed foods, excess exercise (especially prolonged and repeated sessions of low-level steady-state cardio training), sleep deprivation, thirst and hunger. As much as possible, protect yourself from stress with rest, relaxation, meditation, play time and healthy foods full of antioxidants, which reduce inflammation and thus the risks for practically all diseases. Jack Kirven completed the MFA in Dance at UCLA, and earned certification as a personal trainer through NASM. His wellness philosophy is founded upon integrated lifestyles as opposed to isolated workouts. Visit him at jackkirven.com and INTEGRE8Twellness.com. Adapted from https://goqnotes.com/61597/stress-cortisol-and-weight-gain/
  4. 1 point
    I don't think so - this is the first I have heard of a Rife Machine so I looked it up and found this info: Anyone else? Have you heard of this for Cushing's? Frantbri, are you going to try it? If so, please keep us posted! It would be great if something like this worked.
  5. 1 point
    Strongbridge Biopharma released additional positive results from a Phase 3 trial evaluating whether the company’s investigational therapy Recorlev (levoketoconazole) is safe and effective for people with endogenous Cushing’s syndrome. The latest results were presented in the scientific poster “Safety and Efficacy of Levoketoconazole in Cushing Syndrome: Initial Results From the Phase 3 SONICS Study,\” at the 18th Annual Congress of the European NeuroEndocrine Association (ENEA), which took place in Wrocław, Poland, last month. The SONICS study (NCT01838551) was a multi-center, open-label Phase 3 trial evaluating Recorlev’s safety and effectiveness in 94 patients with endogenous Cushing’s syndrome. The trial consisted of three parts: a dose-escalation phase to determine the appropriate Recorlev dose that achieved normalization of cortisol levels; a maintenance phase in which patients received the established dose for six months; and a final extended phase, in which patients were treated with Recorlev for an additional six months, with the possibility of dose adjustments. Its primary goal was a reduction in the levels of cortisol in the patients’ urine after six months of maintenance treatment, without any dose increase during that period. Among secondary goals was a reduction in the characteristically high risk of cardiovascular disease in these people, through the assessment of multiple cardiovascular risk markers. Strongbridge announced top-line results of the SONICS study in August, which showed that the trial had reached its primary and secondary goals. It concluded last month. After six months of maintenance therapy, Recorlev successfully lowered to normal the levels of cortisol in 30% of patients without a dose increase. It also led to statistically and clinically significant reductions in cardiovascular risk biomarkers, including blood sugar, cholesterol levels, body weight, and body mass index. Maria Fleseriu, MD, director of the Oregon Health Sciences University Northwest Pituitary Center, presented additional and detailed results of SONICS at the congress. Additional analyses showed that among the 77 patients who completed the dose-escalation phase and entered the study’s maintenance phase, 81% had their cortisol levels normalized. At the end of the six months of maintenance treatment, 29 (53%) of the 55 patients who had their cortisol levels assessed at the beginning of the study and at the end of the maintenance phase had achieved normalization of cortisol levels, regardless of dose increase. Among all patients who completed maintenance treatment (including patients with some missing data) and regardless of dose increase, 38% had achieved normalization of cortisol levels and 48% recorded a 50% or more decrease or normalization. The results also highlighted that Recorlev substantially reduced patients’ cortisol levels regardless of their levels at the study’s beginning (which were on average about five-fold higher than the upper limit of normal). In those patients with the highest levels of cortisol in their urine, Recorlev led to a median reduction of more than 80%. As previously reported, Recorlev was found to be generally well-tolerated, with no new safety concerns, and only 12 participants (12.8%) stopped treatment due to adverse events. Ten patients had three- or five-fold increased levels of alanine aminotransferase — a liver enzyme used to assess liver damage — which were fully resolved without further complications. These liver-related adverse events “were all noted in the first 60 days, thus suggesting a timeline interval for monitoring,” Fleseriu said in a press release. “We continue to be encouraged by the positive efficacy results of SONICS and the overall benefit-to-risk profile of Recorlev and look forward to sharing additional planned analyses from the study in the near future,” said Fredric Cohen, Strongbridge’s chief medical officer. From https://cushingsdiseasenews.com/2018/11/01/new-data-from-phase-3-trial-supports-recorlev-ability-to-safely-treat-cushings-syndrome/
  6. 1 point
    Presented by Kevin C.J. Yuen, MD Director, Barrow Pituitary Center Director, Barrow Neuroendocrinology Clinic Barrow Neurological Institute Phoenix, Arizona After registering you will receive a confirmation email containing information about joining the Webinar. Date: November 1, 2018 Time: 10:00 AM - 11:00 AM Pacific Daylight Time Learning Objectives: To discuss the anatomy of the pituitary gland To discuss the physiology of pituitary hormone secretion To discuss what can go wrong and how to treat pituitary disorders Presenter Bio: Kevin C.J. Yuen, MD, is a neuroendocrinologist and Medical Director of the Pituitary Program at Barrow Neurological Institute, specializing in the management of hypothalamic-pituitary disorders. He is double board-certified in Endocrinology and Internal Medicine by the American Board of Internal Medicine, and General Medical Council in the UK. Dr. Yuen’s expertise includes clinical and research interest in the management of pituitary and adrenal disorders, particularly adults with growth hormone deficiency, acromegaly, hypogonadism, Cushing’s disease and adrenal insufficiency. He also has a particular interest in neuroendocrine disorders in young adult cancer survivors and adults with traumatic brain injury. His research is devoted to new diagnostics and treatments of pituitary disorders. Dr. Yuen received his medical degree from University of Sheffield, UK. He completed his residency in Internal Medicine at University of Southampton, UK, clinical and research fellowship in Endocrinology at University of Cambridge, UK, and clinical and research instructor at Oregon Health and Science University, Portland, OR. Dr. Yuen is active in national and international collaborative studies, and has published extensively in numerous peer-reviewed medical journals, authored several book chapters, and is a frequent guest speaker on various topics related to pituitary disorders.
  7. 1 point
    Cushing’s disease patients whose pituitary tumors carry a USP8 mutation are more likely to achieve remission after surgery than those without such mutations, a retrospective Italian study found. The study, “Clinical characteristics and surgical outcome in USP8-mutated human adrenocorticotropic hormone-secreting pituitary adenomas,” was published in the journal Endocrine. Cushing’s disease is a condition where a tumor on the pituitary gland produces too much of the adrenocorticotropin hormone (ACTH), which will act on the adrenal gland to make cortisol in excess. While rare, the condition can be life-threatening, as excess cortisol is linked to an increased risk of infections and cardiovascular complications, along with an increased likelihood of obesity and diabetes. The reasons some patients develop these pituitary adenomas are far from understood, but researchers recently found that some of these patients show mutations in the USP8 gene. These appear to increase EGFR signaling which, in turn, has a stimulatory role for the synthesis of ACTH. But more than influencing the development of Cushing’s disease, researchers believe the USP8 mutations may also determine response to treatment. Thus, a team in Italy examined whether patients with USP8 mutations presented different clinical features and responded differently to the standard surgical procedure, called transsphenoidal pituitary surgery. The study included 92 patients with ACTH-secreting pituitary tumors who received surgery at the neurosurgical department of the Istituto Scientifico San Raffaele in Milan between 1996 and 2016. “All surgical procedures were performed by the same experienced neurosurgeon, which is one of the most important factors affecting early and late surgical outcome of pituitary adenomas,” researchers explained. Among study participants, 22 (23.9%) had mutations in the USP8 gene, but these mutations were significantly more common in women than in men — 28.7% vs. 5.3%. Researchers think estrogens — a female sex hormone — may have a role in the development of mutated pituitary tumors. Overall, the two groups had similar tumor size and aggressiveness and similar ACTH and cortisol levels before surgery. But among those with microadenomas — tumors smaller then 10 mm in diameter — USP8-mutated patients had significantly larger tumor diameters. After receiving surgery, 81.5% of patients achieved surgical remission — deemed as low cortisol levels requiring glucocorticoid replacement therapy, normal cortisol levels in urine, and normal response to a dexamethasone-suppression test. But remission rates were significantly higher among those with USP8 mutations — 100% vs. 75.7%. Also, USP8 mutation carriers required steroid replacement therapy for shorter periods, despite ACTH and cortisol levels being similar among the two groups after surgery. Among patients who entered remission, 12 (16%) saw their disease return. While more patients with USP8 mutations experienced a recurrence — 22.7% vs. 13.2% — this difference was not significant. After five years, 73.8% of UPS8-mutated patients remained alive and recurrence-free, which researchers consider comparable to the 88.5% seen in patients without the mutation. Researchers also tested sex, age at surgery, and post-surgical ACTH and cortisol levels as possible predictors of disease recurrence, but none of these factors was associated with this outcome. “ACTH-secreting pituitary adenomas carrying somatic USP8 mutations are associated with a greater likelihood of surgical remission in patients operated on by a single neurosurgeon. Recurrence rates are not related with USP8-variant status,” researchers concluded. From https://cushingsdiseasenews.com/2018/10/23/cushings-disease-patients-usp8-mutations-more-likely-achieve-remission-after-surgery/
  8. 1 point
    Patients with subclinical hypercortisolism, i.e., without symptoms of cortisol overproduction, and adrenal incidentalomas recover their hypothalamic-pituitary-adrenal (HPA) axis function after surgery faster than those with Cushing’s syndrome (CS), according to a study. Moreover, the researchers found that an HPA function analysis conducted immediately after the surgical removal of adrenal incidentalomas — adrenal tumors discovered by chance in imaging tests — could identify patients in need of glucocorticoid replacement before discharge. Using this approach, they found that most subclinical patients did not require treatment with hydrocortisone, a glucocorticoid taken to compensate for low levels of cortisol in the body, after surgery. The study, “Alterations in hypothalamic-pituitary-adrenal function immediately after resection of adrenal adenomas in patients with Cushing’s syndrome and others with incidentalomas and subclinical hypercortisolism,” was published in Endocrine. The HPA axis is the body’s central stress response system. The hypothalamus releases corticotropin-releasing hormone (CRH) that acts on the pituitary gland to release adrenocorticotropic hormone (ACTH), leading the adrenal gland to produce cortisol. As the body’s defense mechanism to avoid excessive cortisol secretion, high cortisol levels alert the hypothalamus to stop producing CRH and the pituitary gland to stop making ACTH. Therefore, in diseases associated with chronically elevated cortisol levels, such as Cushing’s syndrome and adrenal incidentalomas, there’s suppression of the HPA axis. After an adrenalectomy, which is the surgical removal of one or both adrenal glands, patients often have low cortisol levels (hypocortisolism) and require glucocorticoid replacement therapy. “Most studies addressing the peri-operative management of patients with adrenal hypercortisolism have reported that irrespective of how mild the hypercortisolism was, such patients were given glucocorticoids before, during and after adrenalectomy,” the researchers wrote. Evidence also shows that, after surgery, glucocorticoid therapy is administered for months before attempting to test for recovery of HPA function. For the past 30 years, researchers at the University Hospitals Cleveland Medical Center have withheld glucocorticoid therapy in the postoperative management of patients with ACTH-secreting pituitary adenomas until there’s proof of hypocortisolism. “The approach offered us the opportunity to examine peri-operative hormonal alterations and demonstrate their importance in predicting need for replacement therapy, as well as future recurrences,” they said. In this prospective observational study, the investigators extended their approach to patients with subclinical hypercortisolism. “The primary goal of the study was to examine rapid alteration in HPA function in patients with presumably suppressed axis and appreciate the modulating impact of surgical stress in that setting,” they wrote. Collected data was used to decide whether to start glucocorticoid therapy. The analysis included 14 patients with Cushing’s syndrome and 19 individuals with subclinical hypercortisolism and an adrenal incidentaloma. All participants had undergone surgical removal of a cortisol-secreting adrenal tumor. “None of the patients received exogenous glucocorticoids during the year preceding their evaluation nor were they taking medications or had other illnesses that could influence HPA function or serum cortisol measurements,” the researchers noted. Glucocorticoid therapy was not administered before or during surgery. To evaluate HPA function, the clinical team took blood samples before and at one, two, four, six, and eight hours after the adrenalectomy to determine levels of plasma ACTH, serum cortisol, and dehydroepiandrosterone sulfate (DHEA-S) — a hormone produced by the adrenal glands. Pre-surgery assessment of both groups showed that patients with an incidentaloma plus subclinical hypercortisolism had larger adrenal masses, higher ACTH, and DHEA-S levels, but less serum cortisol after adrenal function suppression testing with dexamethasone. Dexamethasone is a man-made version of cortisol that, in a normal setting, makes the body produce less cortisol. But in patients with a suppressed HPA axis, cortisol levels remain high. After the adrenalectomy, the ACTH concentrations in both groups of patients increased. This was found to be negatively correlated with pre-operative dexamethasone-suppressed cortisol levels. Investigators reported that “serum DHEA-S levels in patients with Cushing’s syndrome declined further after adrenalectomy and were undetectable by the 8th postoperative hour,” while incidentaloma patients’ DHEA-S concentrations remained unchanged for the eight-hour postoperative period. Eight hours after surgery, all Cushing’s syndrome patients had serum cortisol levels of less than 2 ug/dL, indicating suppressed HPA function. As a result, all of these patients required glucocorticoid therapy for several months to make up for HPA axis suppression. “The decline in serum cortisol levels was slower and less steep [in the incidentaloma group] when compared to that observed in patients with Cushing’s syndrome. At the 6th–8th postoperative hours only 5/19 patients [26%] with subclinical hypercortisolism had serum cortisol levels at ≤3ug/dL and these 5 were started on hydrocortisone therapy,” the researchers wrote. Replacement therapy in the subclinical hypercortisolism group was continued for up to four weeks. Results suggest that patients with an incidentaloma plus subclinical hypercortisolism did not have an entirely suppressed HPA axis, as they were able to recover its function much faster than the CS group after surgical stress. From https://cushingsdiseasenews.com/2018/10/11/most-subclinical-cushings-patients-dont-need-glucocorticoids-post-surgery-study/?utm_source=Cushing%27s+Disease+News&utm_campaign=a881a1593b-RSS_WEEKLY_EMAIL_CAMPAIGN&utm_medium=email&utm_term=0_ad0d802c5b-a881a1593b-72451321
  9. 1 point
    Kim, why won't your son test for Cushing's? I hope he will get some help, too. Congratulations on your own remission
  10. 1 point
    My then teen had this and also had stretch marks and trouble breathing. We had some testing done and he did have low testosterone. They would not help him. He had the same weight gain the. He is now almost 275 lbs and now he wont test for cushings. Maybe get some labwork and see whats going on. I am in remission of cushings.
  11. 1 point
    A patient with depression developed Cushing’s syndrome (CS) because of a rare ACTH-secreting small cell cancer of the prostate, a case study reports. The case report, “An unusual cause of depression in an older man: Cushing’s syndrome resulting from metastatic small cell cancer of the prostate,” was published in the “Lesson of the Month” section of Clinical Medicine. Ectopic CS is a condition caused by an adrenocorticotropic hormone (ACTH)-secreting tumor outside the pituitary or adrenal glands. The excess ACTH then acts on the adrenal glands, causing them to produce too much cortisol. Small cell cancer is more common in older men, those in their 60s or 70s. Sources of ectopic ACTH synthesis arising in the pelvis are rare; nonetheless, ACTH overproduction has been linked to tumors in the gonads and genitourinary organs, including the prostate. Still, evidence suggests there are less than 30 published cases reporting ectopic CS caused by prostate cancer. Researchers from the Southern Adelaide Local Health Network and the Royal Adelaide Hospital in Australia described the case of an 84-year-old man who complained of fatigue, back pain, and lack of appetite. Blood tests revealed mildly elevated prostate-specific antigen (PSA) and creatinine levels, which could indicate the presence of prostate cancer and impaired kidney function, respectively. The patient had a history of locally invasive prostate cancer even though he didn’t experience any symptoms of this disease. Ultrasound examination showed an enlarged prostate plus obstructed ureters — the tubes that carry urine from the kidney to the bladder. To remove the obstruction, doctors inserted a thin tube into both ureters and restored urine flow. After the procedure, the man had low levels of calcium, a depressed mood, and back pain, all of which compromised his recovery. Imaging of his back showed no obvious reason for his complaints, and he was discharged. Eight days later, the patient went to the emergency room of a large public hospital because of back pain radiating to his left buttock. The man also had mild proximal weakness on both sides. He was thinner, and had low levels of calcium, high blood pressure and serum bicarbonate levels, plus elevated blood sugar. In addition, his depression was much worse. A psychiatrist prescribed him an antidepressant called mirtazapine, and regular follow-up showed that his mood did improve with therapy. A computed tomography (CT) scan revealed a 10.5 cm tumor on the prostate and metastasis on the lungs and liver. Further testing showed high serum cortisol and ACTH levels, consistent with a diagnosis of Cushing’s syndrome. But researchers could not identify the ACTH source, and three weeks later, the patient died of a generalized bacterial infection, despite treatment with broad-spectrum antibiotics. An autopsy revealed that the cancer had spread to the pelvic sidewalls and to one of the adrenal glands. Tissue analysis revealed that the patient had two types of cancer: acinar adenocarcinoma and small cell neuroendocrine carcinoma — which could explain the excess ACTH. Cause of death was bronchopneumonia, a severe inflammation of the lungs, triggered by an invasive fungal infection. Investigators believe there are things to be learned from this case, saying, “Neither the visceral metastases nor aggressive growth of the pelvic mass noted on imaging were typical of prostatic adenocarcinoma. [Plus], an incomplete diagnosis at death was the precipitant for a post-mortem examination. The autopsy findings were beneficial to the patient’s family and treating team. The case was discussed at a regular teaching meeting at a large tertiary hospital and, thus, was beneficial to a wide medical audience.” Although a rare cause of ectopic ACTH synthesis, small cell prostate cancer should be considered in men presenting with Cushing’s syndrome, especially in those with a “mystery” source of ACTH overproduction. “This case highlights the importance of multidisciplinary evaluation of clinical cases both [before and after death], and is a fine example of how autopsy findings can be used to benefit a wide audience,” the researchers concluded. https://cushingsdiseasenews.com/2018/10/16/rare-prostate-cancer-prostate-associated-cushings-syndrome-case-report/
  12. 1 point
    These are pictures of me taken 3 years apart. 45lb weight gain.
  13. 1 point
    Excellent, Donna! Please let us know how your new endo works out for you. Best of luck!
  14. 1 point
    Thanks to all that have responded to my post. I have an endocrinologist appt. on October 23rd. I pray that he has the wisdom to help me.
  15. 1 point
    How do you find an Endo Dr. that knows about Cushings? I live in Tucson Arizona.
×