Jump to content
Strawberry Orange Banana Lime Leaf Slate Sky Blueberry Grape Watermelon Chocolate Marble
Strawberry Orange Banana Lime Leaf Slate Sky Blueberry Grape Watermelon Chocolate Marble


Popular Content

Showing content with the highest reputation since 08/04/2010 in Posts

  1. 2 points
    Presented by Georgios A. Zenonos, MD Assistant Professor of Neurological Surgery Associate Director, Center for Skull Base Surgery University of Pittsburgh Medical Center 200 Lothrop Street, Pittsburgh PA, 15217 Presbyterian Hospital, Suite B400 Register Now! After registering you will receive a confirmation email containing information about joining the Webinar. Date: Wednesday July 1, 2020 Time: 3:00 PM Pacific Daylight Time, 6:00 PM Eastern Daylight Time
  2. 2 points
    Unfortunately a 4:30 pm cortisol test can't be used to diagnose or exclude Cushing's. The only useful blood measurement for cortisol would be a midnight one. You really need to do a 24 hour urinary cortisol test.
  3. 2 points
    Welcome, Ellie. I can't image how hard it would be to get a diagnosis (or not!) during these COVID times. Unfortunately, results from blood tests aren't going to be the answer - just a part of an answer. You need to get UFCs (urine free cortisol) Do you need to get a referral to an endo? They are the best to diagnose Cushing's - if you get one who is familar with testing. That's the important part. Not all endos "believe in Cushing's" which is incredible to me. Unfortunately, there's no real way of speeding a Cushing's diagnosis along. And, I don't think you'd want to (although I did when I was in the diagnosis phase!) You want to be absolutely sure that this is what you have AND the source - pituitary, adrenal, ectopic, steroid-induced... Best of luck to you and please keep us posted.
  4. 2 points
    Dr. Friedman will discuss topics including: Who should get an adrenalectomy? How do you optimally replace adrenal hormones? What laboratory tests are needed to monitor replacement? When and how do you stress dose? What about subcut cortisol versus cortisol pumps? Patient Melissa will lead a Q and A Sunday • May 17 • 6 PM PST Click here on start your meeting or https://axisconciergemeetings.webex.com/axisconciergemeetings/j.php?MTID=mb896b9ec88bc4e1163cf4194c55b248f OR Join by phone: (855) 797-9485 Meeting Number (Access Code): 802 841 537 Your phone/computer will be muted on entry. Slides will be available on the day of the talk here There will be plenty of time for questions using the chat button. Meeting Password: addison
  5. 2 points
    Hello Mary!! Thank you for replying!! It was a surprise for me having a relapse... I never knew or even heard it could happen... but last year I began to feel sooooo bad... and as I’ve had so many difficulties with the doctors I consulted the first time (I visited 40 doctors in ten years ... and only 3 of them understood my symptoms)... I decided to go to the laboratory by myself and asked them to perform the tests I thought I might have needed. And so I saw the cortisol beginning to increase ... but this January I presented a tachyarrhytmia sincope and although cardiologists intended to get me through a lot of heart testing I KNEW it was high cortisol levels again which led to this condition. And that is how it was... my cortisol was twice the normal levels... and again I went to an endocrinologist and she told me ... you have Cushing again... you can imagine it’s been the worst déjà-vu in my life. The etiology of my Cushing’s Disease the first time was very uncommon, as I thankfully never had any ACTH or cortisol secreting tumor, but I presented very high levels of cortisol (over ten times normal levels) and of ACTH, beyond high levels of other pituitary hormones: prolactine , TSH, FSH, LH ( a condition known as PANHYPERPITUITARISM) besides insulin, estrogens and so on... except for somatotropin (growth hormone), almost all of my hormones were in very high levels... and I was almost dying. Ten years and forty doctors later my neurosurgeon discovered in my latest MRI that besides I had a pituitary lesion that didn’t light up in the scan, my pituitary stalk and my hypothalamus (as well as the pituitary gland -presenting empty sella) were completely compressed by a suprasellar arachnoides cyst (meninges cyst), so that the hypothalamus hormones that regulated the pituitary hormones to stop over producing were stuck and never reached the pituitary... so it (pituitary gland) was continually producing all kind of hormones (except GH) without stopping. Finally in 2009 I had a neurosurgery resecting the meninges cyst, hoping that reliefing the pituitary stalk could lead hypothalamus hormones to reach the pituitary and regulate it to a normal hormone release... and so it happened!!! A month after neurosurgery my pituitary hormones levels were totally normal as well as my cortisol... and little by little the rest of almost my other health issues released... it took me over five years to have my liver in optimal conditions (Normal oxaloacetic and pyruvic transaminases) and to leave my diabetes medication at all controlling it only with a strict diet. So the last five years I’ve just struggled with hypertension , hypoglucemia and hypotiroidism (Primary subclicinal)... until last year ... I couldn’t understand what was happening to me... I couldn’t move my muscles.. extreme fatigue and great muscle pain... so I had my doubts and was checking upon suspicious high cortisol levels. This time as well as the first time I suppress cortisol with the dexametasona test... which indicates I do not over produce cortisol because of a tumor... so the etiology is again different from what’s common. And now my latest doctor has told me that my over production of cortisol is due to my previous Cushing’s disease and panhyperpituitarism and not because any possible ACTH or cortisol tumor. I decided to investigate what could help me to stop over producing cortisol and so I found Dr. Burton’s work. After founding out his investigation was still in the dark... well I decided to help him making his work known through your Forum... but I also needed help and so I continued researching and I found Isturisa (osilodrostat - LCI-699) which had just been approved in the EU this January. And so I spoke to the Director of Recordati Rare Diseases in México City and he told me that with my diagnosis and prescription they could send me the medication. As the annual treatment is about 55K euros, they are now helping me through IMSS (Mexican Institute of Social Security) so that the Mexican Federal Government can provide me the medication at no cost for the time I need it... it’s an administrative process but we’re starting it and we expect to have good results. And by far this is how my story goes... I know it was a long reply... but I think it is important for all of us to know this uncommon etiology of the Disease... because it took me over ten years and plenty of pain and suffering to get to the point of what was causing my over production of ACTH, cortisol and almost the whole of hormones in my body... and as my neurosurgeon told me... this etiology of Cushing’s Disease doesn’t even appear in medicine books .... So I hope my medical case can help anybody that unfortunately could be in this position to find quick answers from their doctors... and maybe teach them something as I did. Thank you very much for reading this... my best wishes... stay safe ... blessings!! Regards from Querétaro México MAYELA
  6. 2 points
    Hello Mary & dear Cushies!! I’ve just discovered this article two months ago and I was very pleased to speak directly to Dr. Gerardo Burton. He and his team developed a drug (21OH-6OP) which is a SPECIFIC antagonist for cortisol receptors, unlikely mifepristone which inhibits cortisol AND progesterone with so many undesired adverse effects. Unfortunately the pharmaceutical company didn’t choose this drug to start the clinical trials and so it is resting in Dr. Burton’s lab.... since 2007. The great humanity in Dr. Burton drop tears into my eyes when he told me that he would like that his whole work could help at least somebody to improve their quality of life. As a Cushing’s disease survivor ten years ago ... and now with a relapse of Cushing’s syndrome I keep wondering how is it possible that Dr. Burton’s work remains unknown, wasted, buried and in oblivion. For any of us either with Cushing’s Disease or Syndrome this drug is like the light at the end of the tunnel... I wish I could explain all this as clearly as I intended... and the reason why I post this topic is because I promised Dr. Burton I would try to help him to make his work known specially for all of us... and if somebody can help with a FDA contact and make this story known to them... that would be of so much help!!! Thank to all of you for reading this, my best wishes for all... stay safe this pandemic Regards from Querétaro, México Mayela https://www.intramed.net/contenidover.asp?contenidoid=48298
  7. 2 points
    Thank you so much, Mayela - I'll definitely check this out. We need all the help we can get and I'm glad that Dr. Burton is trying to help Cushing's patients. 13 years is a long time to withhold a potentially helpful drug. I'm so sorry you're having a relapse Are you planning another pituitary surgery, BLA or something else?
  8. 2 points
    Cushing syndrome, a rare endocrine disorder caused by abnormally excessive amounts of the hormone cortisol, has a new pharmaceutical treatment to treat cortisol overproduction. Osilodrostat (Isturisa) is the first FDA approved drug who either can’t undergo pituitary gland surgery or have undergone the surgery but still have the disease. The oral tablet functions by blocking the enzyme responsible for cortisol synthesis, 11-beta-hydroxylase. “Until now, patients in need of medications…have had few approved options, either with limited efficacy or with too many adverse effects. With this demonstrated effective oral treatment, we have a therapeutic option that will help address patients' needs in this underserved patient population," said Maria Fleseriu, MD, FACE, professor of medicine and neurological surgery and director of the Pituitary Center at Oregon Health Sciences University. Cushing disease is caused by a pituitary tumor that releases too much of the hormone that stimulates cortisol production, adrenocorticotropin. This causes excessive levels of cortisol, a hormone responsible for helping to maintain blood sugar levels, regulate metabolism, help reduce inflammation, assist in memory formulation, and support fetus development during pregnancy. The condition is most common among adults aged 30-50 and affects women 3 times more than men. Cushing disease can lead to a number of medical issues including high blood pressure, obesity, type 2 diabetes, blood clots in the arms and legs, bone loss and fractures, a weakened immune system, and depression. Patients with Cushing disease may also have thin arms and legs, a round red full face, increased fat around the neck, easy bruising, striae (purple stretch marks), or weak muscles. Side effects of osilodrostat occurring in more than 20% of patients are adrenal insufficiency, headache, nausea, fatigue, and edema. Other side effects can include vomiting, hypocortisolism (low cortisol levels), QTc prolongation (heart rhythm condition), elevations in adrenal hormone precursors (inactive substance converted into hormone), and androgens (hormone that regulated male characteristics). Osilodrostat’s safety and effectiveness was evaluated in a study consisting of 137 patients, of which about 75% were women. After a 24-week period, about half of patients had achieved normal cortisol levels; 71 successful cases then entered an 8-week, double-blind, randomized withdrawal study where 86% of patients receiving osilodrostat maintained normal cortisol levels, compared with 30% who were taking a placebo. In January 2020, the European Commission also granted marketing authorization for osilodrostat. From https://www.ajmc.com/newsroom/patients-with-cushing-have-new-nonsurgical-treatment-option
  9. 2 points
    The U.S. Food and Drug Administration today approved Isturisa (osilodrostat) oral tablets for adults with Cushing's disease who either cannot undergo pituitary gland surgery or have undergone the surgery but still have the disease. Cushing's disease is a rare disease in which the adrenal glands make too much of the cortisol hormone. Isturisa is the first FDA-approved drug to directly address this cortisol overproduction by blocking the enzyme known as 11-beta-hydroxylase and preventing cortisol synthesis. "The FDA supports the development of safe and effective treatments for rare diseases, and this new therapy can help people with Cushing's disease, a rare condition where excessive cortisol production puts them at risk for other medical issues," said Mary Thanh Hai, M.D., acting director of the Office of Drug Evaluation II in the FDA's Center for Drug Evaluation and Research. "By helping patients achieve normal cortisol levels, this medication is an important treatment option for adults with Cushing's disease." Cushing's disease is caused by a pituitary tumor that releases too much of a hormone called adrenocorticotropin, which stimulates the adrenal gland to produce an excessive amount of cortisol. The disease is most common among adults between the ages of 30 to 50, and it affects women three times more often than men. Cushing's disease can cause significant health issues, such as high blood pressure, obesity, type 2 diabetes, blood clots in the legs and lungs, bone loss and fractures, a weakened immune system and depression. Patients may have thin arms and legs, a round red full face, increased fat around the neck, easy bruising, striae (purple stretch marks) and weak muscles. Isturisa's safety and effectiveness for treating Cushing's disease among adults was evaluated in a study of 137 adult patients (about three-quarters women) with a mean age of 41 years. The majority of patients either had undergone pituitary surgery that did not cure Cushing's disease or were not surgical candidates. In the 24-week, single-arm, open-label period, all patients received a starting dose of 2 milligrams (mg) of Isturisa twice a day that could be increased every two weeks up to 30 mg twice a day. At the end of this 24-week period, about half of patients had cortisol levels within normal limits. After this point, 71 patients who did not need further dose increases and tolerated the drug for the last 12 weeks entered an eight-week, double-blind, randomized withdrawal study where they either received Isturisa or a placebo (inactive treatment). At the end of this withdrawal period, 86% of patients receiving Isturisa maintained cortisol levels within normal limits compared to 30% of patients taking the placebo. The most common side effects reported in the clinical trial for Isturisa were adrenal insufficiency, headache, vomiting, nausea, fatigue and edema (swelling caused by fluid retention). Hypocortisolism (low cortisol levels), QTc prolongation (a heart rhythm condition) and elevations in adrenal hormone precursors (inactive substance converted into a hormone) and androgens (hormone that regulates male characteristics) may also occur in people taking Isturisa. Isturisa is taken by mouth twice a day, in the morning and evening as directed by a health care provider. After treatment has started, a provider may re-evaluate dosage, depending upon the patient's response. Isturisa received Orphan Drug Designation, which is a special status granted to a drug intended to treat a rare disease or condition. The FDA granted the approval of Isturisa to Novartis. Media Contact: Monique Richards, 240-402-3014 Consumer Inquiries: Email, 888-INFO-FDA The FDA, an agency within the U.S. Department of Health and Human Services, protects the public health by assuring the safety, effectiveness, and security of human and veterinary drugs, vaccines and other biological products for human use, and medical devices. The agency also is responsible for the safety and security of our nation's food supply, cosmetics, dietary supplements, products that give off electronic radiation, and for regulating tobacco products. SOURCE U.S. Food and Drug Administration Related Links http://www.fda.gov From https://www.prnewswire.com/news-releases/fda-approves-new-treatment-for-adults-with-cushings-disease-301019293.html
  10. 2 points
    MENLO PARK, Calif., Aug. 28, 2019 (GLOBE NEWSWIRE) -- Corcept Therapeutics Incorporated (NASDAQ: CORT) announced today that the United States Patent and Trademark Office has issued a Notice of Allowance for a patent covering the administration of Korlym® with food. The patent will expire in November 2032. “This patent covers an important finding of our research – that for optimal effect, Korlym must be taken with food,” said Joseph K. Belanoff, MD, Corcept’s Chief Executive Officer. “Korlym’s label instructs doctors that ‘Korlym must always be taken with a meal.’” Upon issuance, Corcept plans to list the patent, entitled “Optimizing Mifepristone Absorption” (U.S. Pat. App. 13/677,465), in the U.S. Food and Drug Administration’s Approved Drug Products with Therapeutic Equivalence Evaluations (the “Orange Book”). Korlym is currently protected by ten patents listed in the Orange Book. Hypercortisolism Hypercortisolism, often referred to as Cushing’s syndrome, is caused by excessive activity of the hormone cortisol. Endogenous Cushing’s syndrome is an orphan disease that most often affects adults aged 20-50. In the United States, an estimated 20,000 patients have Cushing’s syndrome, with about 3,000 new patients diagnosed each year. Symptoms vary, but most people with Cushing’s syndrome experience one or more of the following manifestations: high blood sugar, diabetes, high blood pressure, upper-body obesity, rounded face, increased fat around the neck, thinning arms and legs, severe fatigue and weak muscles. Irritability, anxiety, cognitive disturbances and depression are also common. Hypercortisolism can affect every organ system in the body and can be lethal if not treated effectively. About Corcept Therapeutics Incorporated Corcept is a commercial-stage company engaged in the discovery and development of drugs that treat severe metabolic, oncologic and psychiatric disorders by modulating the effects of the stress hormone cortisol. Korlym® (mifepristone) was the first treatment approved by the U.S. Food and Drug Administration for patients with Cushing’s syndrome. Corcept has discovered a large portfolio of proprietary compounds, including relacorilant, exicorilant and miricorilant, that selectively modulate the effects of cortisol but not progesterone. Corcept owns extensive United States and foreign intellectual property covering the composition of its selective cortisol modulators and the use of cortisol modulators, including mifepristone, to treat a variety of serious disorders. Forward-Looking Statements Statements in this press release, other than statements of historical fact, are forward-looking statements, which are based on Corcept’s current plans and expectations and are subject to risks and uncertainties that might cause actual results to differ materially from those such statements express or imply. These risks and uncertainties include, but are not limited to, Corcept’s ability to generate sufficient revenue to fund its commercial operations and development programs; the availability of competing treatments, including generic versions of Korlym; Corcept’s ability to obtain acceptable prices or adequate insurance coverage and reimbursement for Korlym; and risks related to the development of Corcept’s product candidates, including regulatory approvals, mandates, oversight and other requirements. These and other risks are set forth in Corcept’s SEC filings, which are available at Corcept’s website and the SEC’s website. In this press release, forward-looking statements include those concerning Corcept’s plans to list the patent “Optimizing Mifepristone Absorption” in the Orange Book; Korlym’s current protection by ten patents listed in the Orange Book; and the scope and protective power of Corcept’s intellectual property. Corcept disclaims any intention or duty to update forward-looking statements made in this press release. CONTACT: Christopher S. James, MD Director, Investor Relations Corcept Therapeutics 650-684-8725 cjames@corcept.com www.corcept.com
  11. 2 points
    It sure sounds like you're on the right track!
  12. 2 points
    I received my dictation from Doctor F.. I pray that I am on the road to a diagnosis. I don’t know how much more of this I can take.
  13. 2 points
    Metoclopramide, a gastrointestinal medicine, can increase cortisol levels after unilateral adrenalectomy — the surgical removal of one adrenal gland — and conceal adrenal insufficiency in bilateral macronodular adrenal hyperplasia (BMAH) patients, a case report suggests. The study, “Retention of aberrant cortisol secretion in a patient with bilateral macronodular adrenal hyperplasia after unilateral adrenalectomy,” was published in Therapeutics and Clinical Risk Management. BMAH is a subtype of adrenal Cushing’s syndrome, characterized by the formation of nodules and enlargement of both adrenal glands. In this condition, the production of cortisol does not depend on adrenocorticotropic hormone (ACTH) stimulation, as usually is the case. Instead, cortisol production is triggered by a variety of stimuli, such as maintaining an upright posture, eating mixed meals — those that contain fats, proteins, and carbohydrates — or exposure to certain substances. A possible treatment for this condition is unilateral adrenalectomy. However, after the procedure, some patients cannot produce adequate amounts of cortisol. That makes it important for clinicians to closely monitor the changes in cortisol levels after surgery. Metoclopramide, a medicine that alleviates gastrointestinal symptoms and is often used during the postoperative period, has been reported to increase the cortisol levels of BMAH patients. However, the effects of metoclopramide on BMAH patients who underwent unilateral adrenalectomy are not clear. Researchers in Japan described the case of a 61-year-old postmenopausal woman whose levels of cortisol remained high after surgery due to metoclopramide ingestion. The patient was first examined because she had experienced high blood pressure, abnormal lipid levels in the blood, and osteoporosis for ten years. She also was pre-obese. She was given medication to control blood pressure with no results. The lab tests showed high serum cortisol and undetectable levels of ACTH, suggesting adrenal Cushing’s syndrome. Patients who have increased cortisol levels, but low levels of ACTH, often have poor communication between the hypothalamus, the pituitary, and the adrenal glands. These three glands — together known as the HPA axis — control the levels of cortisol in healthy people. Imaging of the adrenal glands revealed they were both enlarged and presented nodules. The patient’s cortisol levels peaked after taking metoclopramide, and her serum cortisol varied significantly during the day while ACTH remained undetectable. These results led to the BMAH diagnosis. The doctors performed unilateral adrenalectomy to control cortisol levels. The surgery was successful, and the doctors reduced the dose of glucocorticoid replacement therapy on day 6. Eight days after the surgery, however, the patient showed decreased levels of fasting serum cortisol, which indicated adrenal insufficiency — when the adrenal glands are unable to produce enough cortisol. The doctors noticed that metoclopramide was causing an increase in serum cortisol levels, which made them appear normal and masked the adrenal insufficiency. They stopped metoclopramide treatment and started replacement therapy (hydrocortisone) to control the adrenal insufficiency. The patient was discharged 10 days after the surgery. The serum cortisol levels were monitored on days 72 and 109 after surgery, and they remained lower than average. Therefore she could not stop hydrocortisone treatment. The levels of ACTH remained undetectable, suggesting that the communication between the HPA axis had not been restored. “Habitual use of metoclopramide might suppress the hypothalamus and pituitary via negative feedback due to cortisol excess, and lead to a delayed recovery of the HPA axis,” the researchers said. Meanwhile, the patient’s weight decreased, and high blood pressure was controlled. “Detailed surveillance of aberrant cortisol secretion responses on a challenge with exogenous stimuli […] is clinically important in BMAH patients,” the study concluded. “Caution is thus required for assessing the actual status of the HPA axis.” From https://cushingsdiseasenews.com/2019/05/07/metoclopramide-conceals-adrenal-insufficiency-after-gland-removal-bmah-patients-case-report/
  14. 2 points
    This is such great news, Donna - the endo sounds fantastic. Can you please share his info with others so that they might have a faster diagnosis, too? Hopefully, surgery will be soon and on to remission!
  15. 2 points
    I never had a hump but still had Cushing's. Unfortunately your symptoms (and most Cushing's symptoms) can also be caused by other medical conditions so it's important to test everything and if you're concerned about Cushing's I would do some cortisol testing if you haven't already. Have you done any 24 hour urinary free cortisol tests? or had your ACTH checked?
  16. 1 point
    https://doi.org/10.1016/S2213-8587(20)30215-1 Over the past few months, COVID-19, the pandemic disease caused by severe acute respiratory syndrome coronavirus 2, has been associated with a high rate of infection and lethality, especially in patients with comorbidities such as obesity, hypertension, diabetes, and immunodeficiency syndromes.1 These cardiometabolic and immune impairments are common comorbidities of Cushing's syndrome, a condition characterised by excessive exposure to endogenous glucocorticoids. In patients with Cushing's syndrome, the increased cardiovascular risk factors, amplified by the increased thromboembolic risk, and the increased susceptibility to severe infections, are the two leading causes of death.2 In healthy individuals in the early phase of infection, at the physiological level, glucocorticoids exert immunoenhancing effects, priming danger sensor and cytokine receptor expression, thereby sensitising the immune system to external agents.3 However, over time and with sustained high concentrations, the principal effects of glucocorticoids are to produce profound immunosuppression, with depression of innate and adaptive immune responses. Therefore, chronic excessive glucocorticoids might hamper the initial response to external agents and the consequent activation of adaptive responses. Subsequently, a decrease in the number of B-lymphocytes and T-lymphocytes, as well as a reduction in T-helper cell activation might favour opportunistic and intracellular infection. As a result, an increased risk of infection is seen, with an estimated prevalence of 21–51% in patients with Cushing's syndrome.4 Therefore, despite the absence of data on the effects of COVID-19 in patients with Cushing's syndrome, one can make observations related to the compromised immune state in patients with Cushing's syndrome and provide expert advice for patients with a current or past history of Cushing's syndrome. Fever is one of the hallmarks of severe infections and is present in up to around 90% of patients with COVID-19, in addition to cough and dyspnoea.1 However, in active Cushing's syndrome, the low-grade chronic inflammation and the poor immune response might limit febrile response in the early phase of infection.2 Conversely, different symptoms might be enhanced in patients with Cushing's syndrome; for instance, dyspnoea might occur because of a combination of cardiac insufficiency or weakness of respiratory muscles.2 Therefore, during active Cushing's syndrome, physicians should seek different signs and symptoms when suspecting COVID-19, such as cough, together with dysgeusia, anosmia, and diarrhoea, and should be suspicious of any change in health status of their patients with Cushing's syndrome, rather than relying on fever and dyspnoea as typical features. The clinical course of COVID-19 might also be difficult to predict in patients with active Cushing's syndrome. Generally, patients with COVID-19 and a history of obesity, hypertension, or diabetes have a more severe course, leading to increased morbidity and mortality.1 Because these conditions are observed in most patients with active Cushing's syndrome,2 these patients might be at an increased risk of severe course, with progression to acute respiratory distress syndrome (ARDS), when developing COVID-19. However, a key element in the development of ARDS during COVID-19 is the exaggerated cellular response induced by the cytokine increase, leading to massive alveolar–capillary wall damage and a decline in gas exchange.5 Because patients with Cushing's syndrome might not mount a normal cytokine response,4 these patients might parodoxically be less prone to develop severe ARDS with COVID-19. Moreover, Cushing's syndrome and severe COVID-19 are associated with hypercoagulability, such that patients with active Cushing's syndrome might present an increased risk of thromboembolism with COVID-19. Consequently, because low molecular weight heparin seems to be associated with lower mortality and disease severity in patients with COVID-19,6 and because anticoagulation is also recommended in specific conditions in patients with active Cushing's syndrome,7 this treatment is strongly advised in hospitalised patients with Cushing's syndrome who have COVID-19. Furthermore, patients with active Cushing's syndrome are at increased risk of prolonged duration of viral infections, as well as opportunistic infections, particularly atypical bacterial and invasive fungal infections, leading to sepsis and an increased mortality risk,2 and COVID-19 patients are also at increased risk of secondary bacterial or fungal infections during hospitalisation.1 Therefore, in cases of COVID-19 during active Cushing's syndrome, prolonged antiviral treatment and empirical prophylaxis with broad-spectrum antibiotics1, 4 should be considered, especially for hospitalised patients (panel). Panel Risk factors and clinical suggestions for patients with Cushing's syndrome who have COVID-19 Reduction of febrile response and enhancement of dyspnoea Rely on different symptoms and signs suggestive of COVID-19, such as cough, dysgeusia, anosmia, and diarrhoea. Prolonged duration of viral infections and susceptibility to superimposed bacterial and fungal infections Consider prolonged antiviral and broad-spectrum antibiotic treatment. Impairment of glucose metabolism (negative prognostic factor) Optimise glycaemic control and select cortisol-lowering drugs that improve glucose metabolism. Hypertension (negative prognostic factor) Optimise blood pressure control and select cortisol-lowering drugs that improve blood pressure. Thrombosis diathesis (negative prognostic factor) Start antithrombotic prophylaxis, preferably with low-molecular-weight heparin treatment. Surgery represents the first-line treatment for all causes of Cushing's syndrome,8, 9 but during the pandemic a delay might be appropriate to reduce the hospital-associated risk of COVID-19, any post-surgical immunodepression, and thromboembolic risks.10 Because immunosuppression and thromboembolic diathesis are common Cushing's syndrome features,2, 4 during the COVID-19 pandemic, cortisol-lowering medical therapy, including the oral drugs ketoconazole, metyrapone, and the novel osilodrostat, which are usually effective within hours or days, or the parenteral drug etomidate when immediate cortisol control is required, should be temporarily used.9 Nevertheless, an expeditious definitive diagnosis and proper surgical resolution of hypercortisolism should be ensured in patients with malignant forms of Cushing's syndrome, not only to avoid disease progression risk but also for rapidly ameliorating hypercoagulability and immunospuppression;9 however, if diagnostic procedures cannot be easily secured or surgery cannot be done for limitations of hospital resources due to the pandemic, medical therapy should be preferred. Concomitantly, the optimisation of medical treatment for pre-existing comorbidities as well as the choice of cortisol-lowering drugs with potentially positive effects on obesity, hypertension, or diabates are crucial to improve the eventual clinical course of COVID-19. Once patients with Cushing's syndrome are in remission, the risk of infection is substantially decreased, but the comorbidities related to excess glucocorticoids might persist, including obesity, hypertension, and diabetes, together with thromboembolic diathesis.2 Because these are features associated with an increased death risk in patients with COVID-19,1 patients with Cushing's syndrome in remission should be considered a high-risk population and consequently adopt adequate self-protection strategies to minimise contagion risk. In conclusion, COVID-19 might have specific clinical presentation, clinical course, and clinical complications in patients who also have Cushing's syndrome during the active hypercortisolaemic phase, and therefore careful monitoring and specific consideration should be given to this special, susceptible population. Moreover, the use of medical therapy as a bridge treatment while waiting for the pandemic to abate should be considered. RP reports grants and personal fees from Novartis, Strongbridge, HRA Pharma, Ipsen, Shire, and Pfizer; grants from Corcept Therapeutics and IBSA Farmaceutici; and personal fees from Ferring and Italfarmaco. AMI reports non-financial support from Takeda and Ipsen; grants and non-financial support from Shire, Pfizer, and Corcept Therapeutics. BMKB reports grants from Novartis, Strongbridge, and Millendo; and personal fees from Novartis and Strongbridge. AC reports grants and personal fees from Novartis, Ipsen, Shire, and Pfizer; personal fees from Italfarmaco; and grants from Lilly, Merck, and Novo Nordisk. All other authors declare no competing interests. References 1 P Kakodkar, N Kaka, MN Baig A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19) Cureus, 12 (2020), Article e7560 View Record in ScopusGoogle Scholar 2 R Pivonello, AM Isidori, MC De Martino, J Newell-Price, BMK Biller, A Colao Complications of Cushing's syndrome: state of the art Lancet Diabetes Endocrinol, 4 (2016), pp. 611-629 ArticleDownload PDFView Record in ScopusGoogle Scholar 3 DW Cain, JA Cidlowski Immune regulation by glucocorticoids Nat Rev Immunol, 17 (2017), pp. 233-247 CrossRefView Record in ScopusGoogle Scholar 4 V Hasenmajer, E Sbardella, F Sciarra, M Minnetti, AM Isidori, MA Venneri The immune system in Cushing's syndrome Trends Endocrinol Metab (2020) published online May 6, 2020. DOI:10.1016/j.tem.2020.04.004 Google Scholar 5 Q Ye, B Wang, J Mao The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19 J Infect, 80 (2020), pp. 607-613 ArticleDownload PDFView Record in ScopusGoogle Scholar 6 N Tang, H Bai, X Chen, J Gong, D Li, Z Sun Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy J Thromb Haemost, 18 (2020), pp. 1094-1099 CrossRefView Record in ScopusGoogle Scholar 7 AM Isidori, M Minnetti, E Sbardella, C Graziadio, AB Grossman Mechanisms in endocrinology: the spectrum of haemostatic abnormalities in glucocorticoid excess and defect Eur J Endocrinol, 173 (2015), pp. R101-R113 View Record in ScopusGoogle Scholar 8 LK Nieman, BM Biller, JW Findling, et al.Treatment of Cushing's syndrome: an endocrine society clinical practice guideline J Clin Endocrinol Metab, 100 (2015), pp. 2807-2831 CrossRefView Record in ScopusGoogle Scholar 9 R Pivonello, M De Leo, A Cozzolino, A Colao The treatment of Cushing's disease Endocr Rev, 36 (2015), pp. 385-486 CrossRefView Record in ScopusGoogle Scholar 10 J Newell-Price, L Nieman, M Reincke, A Tabarin Endocrinology in the time of COVID-19: management of Cushing's syndrome Eur J Endocrinol (2020) published online April 1. DOI:10.1530/EJE-20-0352 Google Scholar View Abstract From https://www.thelancet.com/journals/landia/article/PIIS2213-8587(20)30215-1/fulltext
  17. 1 point
    J Clin Endocrinol Metab . 2003 Apr;88(4):1554-8. doi: 10.1210/jc.2002-021518. Francesca Pecori Giraldi 1, Mirella Moro, Francesco Cavagnini, Study Group on the Hypothalamo-Pituitary-Adrenal Axis of the Italian Society of Endocrinology Affiliations PMID: 12679438 DOI: 10.1210/jc.2002-021518 Abstract Cushing's disease (CD) presents a marked female preponderance, but whether this skewed gender distribution has any relevance to the presentation and outcome of CD is not known. The aim of the present study was the comparison of clinical features, biochemical indices of hypercortisolism, and surgical outcome among male and female patients with CD. The study population comprised 280 patients with CD (233 females, 47 males) collected by the Italian multicentre study. Epidemiological data, frequency of clinical signs and symptoms, urinary free cortisol (UFC), plasma ACTH and cortisol levels, responses to dynamic testing, and surgical outcome were compared in female and male patients. Male patients with CD presented at a younger age, compared with females (30.5 +/- 1.93 vs. 37.1 +/- 0.86 yr, P < 0.01), with higher UFC and ACTH levels (434.1 +/- 51.96 vs. 342.1 +/- 21.01% upper limit of the normal range for UFC, P < 0.05; 163.9 +/- 22.92 vs. 117.7 +/- 9.59% upper limit of the normal range for ACTH, P < 0.05). No difference in ACTH and cortisol responses to CRH, gradient at inferior petrosal sinus sampling, and cortisol inhibition after low-dose dexamethasone was recorded between sexes. In contrast, the sensitivity of the high-dose dexamethasone test was significantly lower in male than in female patients. Of particular interest, symptoms indicative of hypercatabolic state were more frequent in male patients; indeed, males presented a higher prevalence of osteoporosis, muscle wasting, striae, and nephrolitiasis. Conversely, no symptom was more frequent in female patients with CD. Patients with myopathy, hypokalemia, and purple striae presented significantly higher UFC levels, compared with patients without these symptoms. Lastly, in male patients, pituitary imaging was more frequently negative and immediate and late surgical outcome less favorable. In conclusion, CD appeared at a younger age and with a more severe clinical presentation in males, compared with females, together with more pronounced elevation of cortisol and ACTH levels. Furthermore, high-dose dexamethasone suppression test and pituitary imaging were less reliable in detecting the adenoma in male patients, further burdening the differential diagnosis with ectopic ACTH secretion. Lastly, the postsurgical course of the disease carried a worse prognosis in males. Altogether, these findings depict a different pattern for CD in males and females. From https://pubmed.ncbi.nlm.nih.gov/12679438/
  18. 1 point
    Braun LT, Fazel J, Zopp S Journal of Bone and Mineral Research | May 22, 2020 This study was attempted to assess bone mineral density and fracture rates in 89 patients with confirmed Cushing's syndrome at the time of diagnosis and 2 years after successful tumor resection. Researchers ascertained five bone turnover markers at the time of diagnosis, 1 and 2 years postoperatively. Via chemiluminescent immunoassays, they assessed bone turnover markers osteocalcin, intact procollagen‐IN‐propeptide, alkaline bone phosphatase, CrossLaps, and TrAcP 5b in plasma or serum. For comparison, they studied 71 gender‐, age‐, and BMI‐matched patients in whom Cushing's syndrome had been excluded. The outcomes of this research exhibit that the phase immediately after surgical remission from endogenous CS is defined by a high rate of bone turnover resulting in a striking net increase in bone mineral density in the majority of patients. Read the full article on Journal of Bone and Mineral Research.
  19. 1 point
    Heidi, my first instinct was to say no but I did a search of the boards and found 177 posts on this topic so some people have actually gone this route. If you join the boards, you can read those responses. My reasoning for saying no was that if you have Cushing's, it is generally caused by a tumor and surgery is the only way to deal with the tumor. If Cushing's is caused by taking steroids, weaning off the steroids can sometimes help. Have you been diagnosed with Cushing's? If so, do you know what type? Best of luck to you!
  20. 1 point
    Dr. Friedman will discuss topics including: Who should get an adrenalectomy? How do you optimally replace adrenal hormones? What laboratory tests are needed to monitor replacement? When and how do you stress dose? What about subcut cortisol versus cortisol pumps? Patient Melissa will lead a Q and A Sunday • May 17 • 6 PM PST Click here on start your meeting or https://axisconciergemeetings.webex.com/axisconciergemeetings/j.php?MTID=mb896b9ec88bc4e1163cf4194c55b248f OR Join by phone: (855) 797-9485 Meeting Number (Access Code): 802 841 537 Your phone/computer will be muted on entry. Slides will be available on the day of the talk here There will be plenty of time for questions using the chat button. Meeting Password: addison For more information, email us at mail@goodhormonehealth.com
  21. 1 point
    Lizzy, I had normal tests for the longest time. Of course, no one would believe me that I had Cushing's despite my symptoms. It was finally my spontaneous bleeding that got me to a hematologist/oncologist and he was the first one to get the diagnosis from a 24-hour UFC. Of course, he couldn't do anything but I got referred on to someone who wouldn't give up and got me into the NIH for final testing and surgery. Please keep us posted and best of luck to you!
  22. 1 point
    Published: 13 January 2020 Shigemitsu Yasuda, Yusuke Hikima, Yusuke Kabeya, Shinichiro Iida, Yoichi Oikawa, Masashi Isshiki, Ikuo Inoue, Akira Shimada & Mitsuhiko Noda BMC Endocrine Disorders volume 20, Article number: 9 (2020) Abstract Background Primary aldosteronism (PA) plus subclinical Cushing’s syndrome (SCS), PASCS, has occasionally been reported. We aimed to clinically characterize patients with PASCS who are poorly profiled. Methods A population-based, retrospective, single-center, observational study was conducted in 71 patients (age, 58.2 ± 11.2 years; 24 males and 47 females) who developed PA (n = 45), SCS (n = 12), or PASCS (n = 14). The main outcome measures were the proportion of patients with diabetes mellitus (DM), serum potassium concentration, and maximum tumor diameter (MTD) on the computed tomography (CT) scans. Results The proportion of DM patients was significantly greater in the PASCS group than in the PA group (50.0% vs. 13.9%, p <  0.05), without a significant difference between the PASCS and SCS groups. Serum potassium concentration was significantly lower in the PASCS group than in the SCS group (3.2 ± 0.8 mEq/L vs. 4.0 ± 0.5 mEq/L; p <  0.01), without a significant difference between the PASCS and PA groups. Among the 3 study groups of patients who had a unilateral adrenal tumor, MTD was significantly greater in the PASCS group than in the PA group (2.7 ± 0.1 cm vs. 1.4 ± 0.1 cm; p <  0.001), without a significant difference between the PASCS and SCS groups. Conclusions Any reference criteria were not obtained that surely distinguish patients with PASCS from those with PA or SCS. However, clinicians should suspect the presence of concurrent SCS in patients with PA when detecting a relatively large adrenal tumor on the CT scans. Peer Review reports Background Primary aldosteronism (PA), an adrenocortical disorder caused by an adrenal tumor that overproduces aldosterone, accounts for 5 to 15% of patients with hypertension [1]. Cushing’s syndrome (CS), an endocrinopathy resulting from the prolonged, excessive adrenocortical secretion of cortisol, falls roughly into the following 2 categories: adrenocorticotropic hormone (ACTH)-dependent CS and ACTH-independent CS; the former includes Cushing’s disease that is primarily caused by a pituitary ACTH-secreting tumor and ectopic ACTH syndrome resulting from extrapituitary ACTH-secreting tumors (eg, bronchial carcinoid) [2], while the latter is usually caused by unilateral adenomas or carcinomas that provoke the autonomous adrenal cortical secretion [3]. Subclinical Cushing’s syndrome (SCS), an ill-defined endocrine disorder leading to the ACTH-independent secretion of cortisol from an adrenal adenoma that is not fully restrained by pituitary feedback [4], is known to cause hypertension, glucose intolerance, and dyslipidemia [5]. The concurrence of clinically overt hyperaldosteronism and subclinical hypercortisolism is rare in PA patients [6]. To date, a few number of studies have examined the clinicopathological features of patients with PA plus SCS (PASCS), the incidences of which have ranged between about 10 and 20% [7, 8]. Lower plasma ACTH levels and a greater tumor size were found in patients with PASCS than in patients with PA alone [8]. In the clinical settings, we rarely encounter PASCS patients who show a small adrenal tumor on the computed tomography (CT) scans and/or do not have a low plasma ACTH level in blood samples collected in the early morning. To examine the clinical features of PASCS patients in the present study, we compared clinical, laboratory, and imaging characteristics among patients with PA, SCS, or PASCS. Methods Patients We conducted a population-based, retrospective, single-center, observational study in 187 patients (119 with PA, 54 with SCS, and 14 with PASCS) at Saitama Medical University Hospital, Saitama, Japan, between January 1999 and December 2016. Hypertensive patients with suspected PA or SCS, as well as normotensive or hypertensive patients with an adrenal incidentaloma were referred to our hospital. A total of 116 patients were excluded from the study: 31 who were diagnosed with PA or SCS only because tests required to definitely diagnose these endocrinopathies were not conducted; 61 who failed to meet the new Japanese diagnostic criteria of SCS [9]; 1 who failed to meet the new Korean diagnostic criteria of subclinical hypercortisolism [10]; and 23 who failed to meet the Japanese [11] and United States [12] diagnostic criteria of PA. Therefore, we investigated 71 patients who were definitely diagnosed with PA and/or SCS (45 with PA, 12 with SCS, and 14 with PASCS). This study was approved by the institutional review board of Saitama Medical University. Patients provided written informed consent to the use of their clinical and laboratory data in the study. Diagnosis of PA and SCS Hormones required for the diagnosis of PA and SCS were assayed according to the procedures described in the pertinent guidelines [9, 11]. Serum cortisol and plasma ACTH levels were determined by electrochemiluminescence immunoassay, plasma aldosterone concentration (PAC) and plasma renin activity (PRA) by radioimmunoassay, and serum dehydroepiandrosterone sulfate (DHEAS) level by chemiluminescent enzyme immunoassay (SRL Inc., Tokyo, Japan). Blood samples were collected in the early morning (7 a.m. to 9 a.m.). PA was suspected when detecting elevated PAC (≥ 150 pg/mL), low PRA (≤ 1.0 ng/mL/hr), and/or the elevated aldosterone-to-renin ratio (> 200). We conducted the following 3 challenge tests in accordance with the Japanese guidelines of PA [11]: captopril challenge test, furosemide upright posture challenge test, and ACTH challenge test. PA was diagnosed when at least 1 of these 3 challenge tests afforded results compatible with the disease. Furthermore, we also referred to the American guideline of PA [12] for selecting only patients who met the diagnostic criteria for PA. Prior to the confirmatory tests, patients had not received any antihypertensive drugs for at least 2 weeks except for those with severe hypertension treated with calcium-channel blockers and/or α-blockers. Adrenal venous sampling (AVS), whose usefulness was well documented in the Japanese and United States guidelines [11,12,13], was conducted in all of patients who had PA or PASCS to make the differential diagnosis of uni- or bilateral aldosterone hypersecretion. The low-dose (1-mg) dexamethasone suppression test (DST) and the corticotropin-releasing hormone (CRH) challenge test were conducted, and the diurnal rhythms of cortisol were also determined—all for the diagnosis of SCS. Moreover, the high-dose (8-mg) DST was also conducted to rule out ACTH-dependent CS. Test results were assessed in accordance with the diagnostic criteria advocated by the Japan Endocrine Society [9] to make the definite diagnosis of SCS. Concretely, patients were required to meet the requisites 1–3)—1) presence of an adrenal incidentaloma; 2) lack of characteristic features of Cushing’s syndrome; and 3) normal basal serum cortisol levels, as well as to have either of the requisites 4–6)—4) the cutoff value of serum cortisol level for the diagnosis of SCS was ≥ 5 μg/dL after the 1-mg DST, 5) the cutoff value of serum cortisol level for the diagnosis of SCS was ≥ 3 μg/dL after the 1-mg DST, and at least 1 of “Low plasma levels of ACTH in the early morning,” “No diurnal changes in serum cortisol levels,” “Unilateral uptake on adrenal scintigraphy,” “Low serum levels of DHEAS,” or the presence of “Transient adrenal insufficiency or atrophy of the attached normal adrenal cortex after removal of the adrenal tumor,” or 6) the cutoff value of serum cortisol level for the diagnosis of SCS was ≥ 1.8 μg/dL after the 1-mg DST, with the presence of “Low plasma levels of ACTH in the early morning” and “No diurnal changes in serum cortisol levels,” or the presence of “Transient adrenal insufficiency or atrophy of the attached normal adrenal cortex after removal of the adrenal tumor.” In the present study, we examined only patients who met the requisites 1–3) and either 1 of the requisites 4–6) as patients with SCS. All patients underwent 128-slice CT of the adrenal glands. 131I-adosterol adrenal scintigraphy was conducted in all of patients who had SCS or PASCS to specify the laterality of the adrenal tumor. Consequently, 7 of 12 patients with SCS and 8 of 14 patients with PASCS underwent adrenalectomy. Postsurgical histopathological examination confirmed cortisol hypersecretion based on the atrophy of the normal area adjacent to the adenoma of the removed adrenal gland [9]. Study outcome measures At the initial visit, all patients were checked up for their age and sex. Systolic blood pressure (SBP), diastolic blood pressure (DBP), and the outcome measures listed in Table 1 were examined in untreated patients. At the time of admission to the hospital for making the definite diagnosis, height and body weight were measured to calculate body mass index (BMI). In the early morning of the next day of admission to the hospital, blood pressures were measured. Blood samples were collected to determine PAC, PRA, as well as plasma ACTH, serum cortisol, and serum DHEAS levels. The laterality of the adrenal tumor was confirmed based on the results from AVS and/or CT. The Hounsfield number and MTD of adrenal tumors were determined on the CT scans. Table 1 Clinical, laboratory, and imaging characteristics of untreated patients with PA, SCS, or PASCS The following terms were defined for PASCS: hypertension, SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg [14]; diabetes mellitus (DM), an fasting plasma glucose (FPG) level ≥ 126 mg/dL, a 2-h plasma glucose level ≥ 200 mg/dL in the 75-g oral glucose tolerance test, and/or a serum hemoglobin A1c (HbA1c) level ≥ 6.5% in national glycohemoglobin standardization program [15]; and dyslipidemia, a serum triglyceride (TG) level ≥ 150 mg/dL, a serum high-density lipoprotein cholesterol (HDL-C) level < 40 mg/dL, or a serum low-density lipoprotein cholesterol (LDL-C) level ≥ 140 mg/dL [16]. To specify the source of aldosterone hypersecretion by AVS, the following diagnostic criteria were used: 1) the laterality ratio (LR) and the contralaterality ratio (CR) calculated before and after the ACTH challenge test in reference to the Japanese guidelines of PA [11]; 2) the absolute PAC value of ≥ 14,000 pg/mL in reference to the articles of Ohmura [17] and Makita [18]; and 3) the aldosterone ratio of the right and left adrenal veins. According to the Japanese guidelines of PA [11], an LR of > 4 and a CR of < 1 after the ACTH challenge test were used as the cutoff values. Tumor laterality was determined based on a CR of < 1 and the absolute PAC value of ≥ 14,000 pg/mL when the ACTH challenge test indicated an LR of 2 to 4 or a discrepancy occurred in tumor laterality before and after the ACTH challenge test. Since serum cortisol levels considerably differed in the adrenal veins of PASCS patients, the adrenal gland secreting cortisol predominantly was determined based on the aldosterone ratio and on the right-to-left ratio of aldosterone and cortisol in the adrenal veins in reference to the article of Hiraishi et al. [8]. Moreover, tumor laterality was determined based on the results from 131I-adosterol adrenal scintigraphy and on the absolute value of PAC in reference to the articles of Funder et al. [12] and Minami et al. [13]. We did not measure plasma metanephrine concentrations, although the measurement thereof is useful for determining the need for AVS [19] in patients with the suspected concurrence of aldosterone and cortisol hypersecretion. Statistical analyses Continuous and categorical variables were analyzed according to the one-way analysis of variance and Fisher’s exact test, respectively. Two of the 3 study groups were analyzed according to Student’s t-test. Bonferroni’s correction was applied to the p values from Student’s t-test or Fisher’s exact test in multiple comparisons between 2 among the 3 study groups. Blood steroid profiles were compared between 2 groups according to Student’s t-test or the Mann-Whitney U-test. In addition, the multiple linear regression analysis adjusted for age, sex, and BMI was performed to examine differences in MTD and serum potassium concentration among the PA, SCS, and PASCS groups. MTD was not measured in 1 of 42 patients in the PA group who had a unilateral adrenal tumor. Therefore, the data from the patient were excluded as the missing data. A value of p <  0.05 was considered statistically significant. The JMP software version 9.0 (SAS Institute, Cary, NC, USA) was used to make all statistical analyses except multiple linear regression analysis that was performed using the STATA software version 14 (Stata Corp, College Station, TX, USA). Results Study population The clinical, laboratory, and imaging characteristics of 71 patients are shown in Table 1. Mean age was 58.2 ± 11.2 years, females (n = 47, 66.2%) were predominant, and mean BMI was 25.2 ± 4.5 kg/m2. No significant difference was found in age, sex, and BMI among the PA, SCS, and PASCS groups (Table 1). SBP and DBP of patients with untreated hypertension were 165.6 ± 26.1 mmHg and 96.0 ± 13.6 mmHg, respectively, in the PA group in contrast to 145.6 ± 26.9 mmHg and 80.0 ± 12.7 mmHg, respectively, in the SCS groups. DBP was significantly greater (p <  0.01) in the PA group than in the SCS group. Comorbidities are shown in Table 1. Hypertension occurred in 45 (100%), 9 (75.0%), and 13 (92.9%) patients in the PA, SCS, and PASCS groups, respectively. The proportion of patients with hypertension was significantly greater (p <  0.05) in the PA group than in the SCS group; however, no significant difference was found between the PASCS group and the PA group. Notably, the incidence of hypertension was 100% in patients with PA. DM occurred in 6 (14.0%), 6 (50.0%), and 7 (50.0%) patients in the PA, SCS, and PASCS groups, respectively. The proportion of DM patients was significantly greater (p <  0.05) in the PASCS group than in the PA group. Dyslipidemia occurred in 25 (56.8%), 10 (83.3%), and 9 (64.3%) patients in the PA, SCS, and PASCS groups, respectively; however, no significant difference was found among these study groups. Results from laboratory tests are shown in Table 1. FPG was greater not statistically but numerically in the PASCS group than in the PA group (131.6 ± 52.1 mg/dL vs. 103.8 ± 28.5 mg/dL; p = 0.09). On the other hand, FPG was statistically greater in the SCS group than in the PA group (150.0 ± 60.7 mg/dL vs. 103.8 ± 28.5 mg/dL; p <  0.01). HbA1c was greater not statistically but numerically in the PASCS group than in the PA group (6.5 ± 2.1% vs. 5.7 ± 0.9%; p = 0.21). On the other hand, HbA1c was significantly greater in the SCS group than in the PA group (7.3 ± 2.2% vs. 5.7 ± 0.9%; p <  0.01). Serum potassium concentration was significantly lower in the PA group than in the SCS group (3.3 ± 0.7 mEq/L vs. 4.0 ± 0.5 mEq/L; p <  0.01) and in the PASCS group than in the SCS group (3.2 ± 0.8 mEq/L vs. 4.0 ± 0.5 mEq/L; p <  0.01). No significant difference was found in serum potassium concentration between the PA group and the PASCS group. Serum alkaline phosphatase (ALP) level was significantly greater in the PASCS group than in the PA group (279.1 ± 105.4 U/L vs. 212.3 ± 46.3 U/L; p <  0.01). No significant difference was found in serum ALP level between the SCS group and the PASCS group. Subsequently, differences in CT Hounsfield units and MTD of adrenal tumors among the 3 study groups were examined with respect to 65 patients who had a unilateral adrenal tumor (Table 2). MTD on the CT scans was significantly greater in the PASCS group than in the PA group (2.7 ± 0.1 cm vs. 1.3 ± 0.1 cm; p <  0.001) and was also greater in the SCS group than in the PA group (2.7 ± 0.2 cm vs. 1.3 ± 0.1 cm; p <  0.001). No significant difference was found in MTD between the SCS group and the PASCS group. MTD was significantly smaller in the PA group than in the other 2 groups, was second smallest in the SCS group, and was largest in the PASCS group (Table 2). MTD ranged as follows: 0.3–2.2 cm, 1.8–3.5 cm, and 1.1–5.0 cm in the PA, SCS, and PASCS groups, respectively (Fig. 1). Table 2 Maximum tumor diameters and computed tomography Hounsfield units of adrenal tumors in patients who had a unilateral adrenal tumor Full size table Fig. 1 Maximum tumor diameters in patients with PA, SCS, or PASCS who had a unilateral adrenal tumor. PA, primary aldosteronism; SCS, subclinical Cushing’s syndrome, PASCS, primary aldosteronism plus subclinical Cushing’s syndrome The blood steroid profiles of patients with PA or PASCS are shown in Table 3. PAC was significantly greater in the PASCS group than in the PA group (255.0 [713.3–153.5] vs. 208.0 [273.0–159.8]; p <  0.005). No significant difference was found in PRA in the morning, while the PAC/PRA ratio was significantly greater in the PASCS group than in the PA group (1450.0 [5010.0–529.4] vs. 1258.3 [1956.3–643.1]; p <  0.005). The PAC/PRA ratio in the captopril challenge test was significantly greater in the PASCS group than in the PA group (3028.5 ± 3648.9 vs. 730.7 ± 745.7; p <  0.001) as with PAC in the captopril challenge test (348.6 ± 340.1 vs. 149.0 ± 94.2; p <  0.005). Serum cortisol level was significantly greater in the PASCS group than in the PA group (16.4 ± 6.6 μg/dL vs. 12.4 ± 4.3 μg/dL; p <  0.05). The mean serum cortisol level was 17.8 ± 5.9 μg/dL in the SCS group and was not significantly greater in the SCS group than in the PASCS group (17.8 ± 5.9 μg/dL vs. 16.4 ± 6.6 μg/dL; p = 0.49). No significant difference was found in plasma ACTH and serum DHEAS levels in the early morning; however, these variables were not significantly lower in the PASCS than in the PA group (p = 0.29 for ACTH and p = 0.40 for DHEAS). On the other hand, the peak plasma ACTH levels in the CRH challenge test were significantly lower in the PASCS group than in the PA group (18.9 ± 8.9 vs. 57.1 ± 10.8; p <  0.005) (Table 3) and were not significantly greater in the SCS group than in the PASCS group (15.3 ± 5.6 μg/dL vs. 18.9 ± 8.9 μg/dL; p = 0.64). Table 3 Blood steroid profiles of patients with PA or PASCS Full size table Multiple linear regression analysis on MTD and serum potassium concentration with respect to patients in the PA, SCS, and PASCS groups who had a unilateral adrenal tumor MTD was significantly greater in the PASCS and SCS groups than in the PA group with respect to patients who had a unilateral adrenal tumor (Table 2). Therefore, we conducted a multiple linear regression analysis adjusted for age, sex, and BMI to examine differences in MTD among the PA, SCS, and PASCS groups. Consequently, MTD was significantly smaller in the PA group than in the PASCS group (difference, – 1.19 cm; 95% CI, – 1.66 to – 0.72 cm). However, no significant difference was found in MTD between the SCS group and the PASCS group (Table 4). Serum potassium concentration was significantly greater in the SCS group than in the PASCS group (difference, 0.97 mEq/L; 95% CI, 0.38 to 1.54 mEq/L). However, no significant difference was found in serum potassium concentration between the PASCS group and the PA group (Table 4). Table 4 Multiple regression analysis on maximum tumor diameter and serum potassium concentration with respect to patients in the PA, SCS, and PASCS groups who had a unilateral adrenal tumor (n = 65) Full size table The cutoff value of 2.4 cm for tumor size seemed to produce the largest proportion of classified patients (91.0%). Patients with PA who had a tumor size of > 2.4 cm almost certainly had the elements of PASCS (specificity 100%). Namely, the sensitivity and specificity were calculated to be 58.0 and 100%, respectively, when the cutoff point for tumor diameter was set to 2.4 cm. The odds ratio for tumor diameter when comparing PA with PASCS was 0.06 (95% CI, 0.006–0.261). Discussion We found several clinical and laboratory differences between patients with PASCS and patients with either PA or SCS. Regarding the impact of PA and SCS on glucose metabolism, the risk of developing DM in SCS is enhanced by the overproduction of cortisol that leads to increased gluconeogenesis [20]. Moreover, the risk is also enhanced by PA through 1) a hypokalemia-induced decrease in initial pancreatic insulin release and 2) a reduction in insulin sensitivity [21,22,23]. Hypokalemia is caused by the mineralocorticoid receptor-mediated overexcretion of potassium from the kidneys in both hypercortisolism and hyperaldosteronism [12, 24, 25]. Serum potassium concentration decreased significantly in the PA group than in the SCS group (p <  0.01). Similarly, the concurrence of PA and SCS significantly decreased serum potassium concentration against the SCS group (p <  0.01), but not the PA group. Of special note was the fact that the PASCS group involving both hyperaldosteronism and hypercortisolism did not show any greater decrease in serum potassium concentration as compared with the PA group. The mineralocorticoid receptors (MRs) bind both mineralocorticoids and glucocorticoids with high affinity (deoxycorticosterone = corticosterone ≥ aldosterone = cortisol) [26]. On the other hand, a cortisol-degrading enzyme—11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2)—is expressed in renal epithelial cells and regulates the binding of aldosterone to the MRs by impeding cortisol binding to the MRs through the inactivation of cortisol to cortisone [26, 27]. Namely, this physiological event explains the MR-mediated renal excretion of potassium that is enhanced by both cortisol and aldosterone. We hypothesize that the renal potassium excretion-enhancing activity is greater for aldosterone than for cortisol due to the 11β-HSD2-induced, extensive inactivation of cortisol and that the hyperaldosteronism-enhanced renal excretion of potassium in patients with PASCS becomes more apparent, with the less effect of hypercortisolism on renal potassium excretion. Zallocchi et al. [28] described that renal 11β-HSD2 activity is regulated by glucocorticoids, is downregulated following adrenalectomy, and is restored by corticosterone replacement. These findings lead us to hypothesize that 11β-HSD2 may suppress the binding of corticosteroids to the MRs almost completely in subclinical hypercortisolism or that the expression/activity of renal 11β-HSD2 may be increased in PA. However, these hypotheses require further research for its demonstration. The proportion of DM patients increased significantly in the PASCS group than in the PA group (p <  0.05), which is in line with a previous study that described abnormal glucose metabolism in PA patients with cortisol hypersecretion [29]. Hyperaldosteronism found in patients with PA also induces abnormal glucose metabolism [21,22,23], although being less intense as compared with hypercortisolism found in patients with SCS. The proportions of DM patients in the PA and SCS groups increased, which resulted to nullify a statistically significant difference in the proportion of DM patients between the 2 study groups. The fact that the risk for DM is increased in PA patients with mild glucocorticoid excess has been reported [30,31,32]; the finding was also described in Japanese patients with PA and patients with PASCS [33]. Interestingly, patients with PASCS involving hypercortisolism- and hyperaldosteronism-induced hypokalemia showed neither additive or synergic impact on abnormal glucose metabolism contrary to our prediction. The proportion of DM patients was comparable between the PASCS group and the SCS group. However, the reason for these findings is unknown, awaiting the further accumulation of clinical evidence. MTD was significantly smaller (p <  0.001) in the PA group than in the PASCS or SCS group, and multiple regression analysis on MTD revealed that MTD was significantly larger by 1.2 cm in the PASCS group than in the PA group (p <  0.001). Previous studies [8, 34] examined the clinical characteristics of patients with PA or PASCS and described significant differences in MTD between the 2 study groups. Their results were concordant with and support our results that indicated no significant difference in MTD between the PASCS group and the SCS group. Most of previous clinical studies in patients with SCS have described adrenal tumors of ≥ 2 cm in diameter [35, 36]. In addition, an adrenal adenoma causing the overproduction of both cortisol and aldosterone is considered to have a ≥ 2.5 cm diameter [34]. In the present study, however, the adrenal tumor was smaller in both patients with SCS and patients with PASCS. Concretely, the smallest MTD was 1.1 cm in patients with PASCS (Fig. 1). None of patients, who had PA and an adrenal tumor < 1 cm in diameter, developed SCS. Therefore, the dexamethasone suppression test may not be required for them. Regarding bone metabolism impairment in SCS, the risk of developing osteoporosis is enhanced by the overproduction of cortisol in SCS [37, 38]. On the other hand, hyperaldosteronism is also known to increase the risk for osteoporosis [39]. SCS and PA are the risk factors for a reduction in BMD and an increase in vertebral fracture [37,38,39]. In the present study, serum ALP level was significantly greater in the PASCS group than in the PA group (p <  0.01). No significant difference was found in serum ALP level between the SCS group and the PASCS group. If this ALP represents bone alkaline phosphatase (BAP), the deleterious effects of hyperaldosteronism on bone metabolism might be masked by the severe abnormalities of bone metabolism caused by hypercortisolism in patients with PASCS. However, the relevant effects are difficult to assess by means of bone metabolism markers [eg, BAP] in patients with hypercortisolism as found in SCS [37]. Unfortunately, we neither used bone metabolism markers, nor measured BMD. Therefore, we will intend to investigate these variables in the future. Limitations The present study has several limitations. First, the study was retrospective in design and had a relatively small number of patients. Therefore, selection bias and sampling bias cannot be discarded. Second, not all patients underwent AVS or had a histopathological diagnosis. Patients, to whom challenge tests for either PA or SCS were conducted, were not included in the present study. Hence, the number of patients resulted to be relatively small. Third, the lack of data in the present study impeded the analysis of BMD and bone metabolism markers. Fourth, 131I-adosterol adrenal scintigraphy is not only useful for the diagnosis of SCS, but also is a very important imaging modality to predict postsurgical hypoadrenalism [40]. However, we could not investigate the latter. Conclusions We could not obtain any reference criteria to surely distinguish patients with concurrent endocrinopathies from those with a single endocrinopathy. However, clinicians should suspect the presence of concurrent SCS in patients with PA when detecting an adrenal tumor (≥ 1 cm in diameter) on the CT scans. Availability of data and materials The datasets analyzed during the current study are available from the corresponding author on a reasonable request. Abbreviations ACTH: Adrenocorticotropic hormone ALP: Alkaline phosphatase BMI: Body mass index; CRH: corticotropin-releasing hormone CT: computed tomography DBP: Diastolic blood pressure DHEAS: Dehydroepiandrosterone sulfate FPG: Fasting plasma glucose HbA1c: Hemoglobin A1c HDL-C: High-density lipoprotein cholesterol HU: Hounsfield unit LDL-C: Low-density lipoprotein cholesterol MTD: Maximum tumor diameter NGSP: National glycohemoglobin standardization program PA: Primary aldosteronism PAC: Plasma aldosterone concentration PASCS: Primary aldosteronism plus subclinical Cushing’s syndrome PRA: Plasma renin activity SBP: Systolic blood pressure SCS: Subclinical Cushing’s syndrome TG: Triglyceride UA: Uric acid References 1. Mulatero P, Stowasser M, Loh KC, Fardella CE, Gordon RD, Mosso L, et al. Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents. J Clin Endocrinol Metab. 2004;89:1045–50. CAS Article Google Scholar 2. Kageyama K, Oki Y, Sakihara S, Nigawara T, Terui K, Suda T. Evaluation of the diagnostic criteria for Cushing's disease in Japan. Endocr J. 2013;60:127–35. CAS Article Google Scholar 3. Newell-Price J, Bertagna X, Grossman AB, Nieman LK. Cushing’s syndrome. Lancet. 2006;367:1605–17. CAS Article Google Scholar 4. Terzolo M, Pia A, Reimondo G. Subclinical Cushing’s syndrome: definition and management. Clin Endocrinol. 2012;76:12–8. CAS Article Google Scholar 5. Iacobone M, Citton M, Scarpa M, Viel G, Boscaro M, Nitti D. Systematic review of surgical treatment of subclinical Cushing’s syndrome. Br J Surg. 2015;102:318–30. CAS Article Google Scholar 6. Fallo F, Bertello C, Tizzani D, Fassina A, Boulkroun S, Sonino N, et al. Concurrent primary aldosteronism and subclinical cortisol hypersecretion: a prospective study. J Hypertens. 2011;29:1773–7. CAS Article Google Scholar 7. Piaditis GP, Kaltsas GA, Androulakis II, Gouli A, Makras P, Papadogias D, et al. High prevalence of autonomous cortisol and aldosterone secretion from adrenal adenomas. Clin Endocrinol. 2009;71:772–8. CAS Article Google Scholar 8. Hiraishi K, Yoshimoto T, Tsuchiya K, Minami I, Doi M, Izumiyama H, et al. Clinicopathological features of primary aldosteronism associated with subclinical Cushing’s syndrome. Endocr J. 2011;58:543–51. CAS Article Google Scholar 9. Yanase T, Oki Y, Katabami T, Otsuki M, Kageyama K, Tanaka T, et al. New diagnostic criteria of adrenal subclinical Cushing’s syndrome: opinion from the Japan Endocrine Society. Endocr J. 2018;65:383–93. CAS Article Google Scholar 10. Lee SH, Song KH, Kim J, Park S, Ahn SH, Kim H, et al. New diagnostic criteria for subclinical hypercortisolism using postsurgical hypocortisolism: the co-work of adrenal research study. Clin Endocrinol. 2017;86:10–8. CAS Article Google Scholar 11. Nishikawa T, Omura M, Satoh F, Shibata H, Takahashi K, Tamura N, et al. Task force committee on primary Aldosteronism, the Japan Endocrine Society guidelines for the diagnosis and treatment of primary aldosteronism—the Japan Endocrine Society 2009. Endocr J. 2011;58:711–21. CAS Article Google Scholar 12. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: Case detection, diagnosis, and treatment: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:1889–916. CAS Article Google Scholar 13. Minami I, Yoshimoto T, Hirono Y, Izumiyama H, Doi M, Hirata Y. Diagnostic accuracy of adrenal venous sampling in comparison with other parameters in primary aldosteronism. Endocr J. 2008;55:839–46. Article Google Scholar 14. Ogihara T, Saruta T, Rakugi H, Fujimoto A, Ueshima K, Yasuno S, et al. CASE-J trial group, relationship between the achieved blood pressure and the incidence of cardiovascular events in Japanese hypertensive patients with complications: a sub-analysis of the CASE-J trial. Hypertens Res. 2009;32:248–54. Article Google Scholar 15. Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus, Seino Y, Nanjo K, Tajima N, Kadowaki T, Kashiwagi A, Araki E, et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Investig. 2010;1:212–28. Article Google Scholar 16. Teramoto T, Sasaki J, Ueshima H, Egusa G, Kinoshita M, Shimamoto K, et al. Japan atherosclerosis society (JAS) Committee for Epidemiology and Clinical Management of atherosclerosis. Diagnostic criteria for dyslipidemia, executive summary of Japan atherosclerosis society (JAS) guideline for diagnosis and prevention of atherosclerotic cardiovascular diseases for Japanese. J Atheroscler Thromb. 2007;14:155–8. CAS Article Google Scholar 17. Omura M, Saito J, Yamaguchi K, Kakuta Y, Nishikawa T. Prospective study on the prevalence of secondary hypertension among hypertensive patients visiting a general outpatient clinic in Japan. Hypertens Res. 2004;27:193–202. Article Google Scholar 18. Makita K, Nishimoto K, Kiriyama-Kitamoto K, Karashima S, Seki T, Yasuda M, et al. A novel method: super-selective adrenal venous sampling. J Vis Exp. 2017;127:55716. 19. Dekkers T, Deinum J, Schultzekool LJ, Blondin D, Vonend O, Hermus AR, et al. Plasma metanephrine for assessing the selectivity of adrenal venous sampling. Hypertension. 2013;62:1152–7. CAS Article Google Scholar 20. Bancos I, Alahdab F, Crowley RK, Chortis V, Delivanis DA, Erickson D, et al. Therapy of endocrine disease: improvement of cardiovascular risk factors after adrenalectomy in patients with adrenal tumors and subclinical Cushing’s syndrome: a systematic review and meta-analysis. Eur J Endocrinol. 2016;175:R283–95. CAS Article Google Scholar 21. Corry DB, Tuck ML. The effect of aldosterone on glucose metabolism. Curr Hypertens Rep. 2003;5:106–9. Article Google Scholar 22. Remde H, Hanslik G, Rayes N, Quinkler M. Glucose metabolism in primary aldosteronism. Horm Metab Res. 2015;47:987–93. CAS Article Google Scholar 23. Watanabe D, Yatabe M, Ichihara A. Evaluation of insulin sensitivity and secretion in primary aldosteronism. Clin Exp Hypertens. 2016;38:613–7. CAS Article Google Scholar 24. Young WF. Primary aldosteronism: renaissance of a syndrome. Clin Endocrinol. 2007;66:607–18. CAS Article Google Scholar 25. Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BM, Colao A. Complications of Cushing’s syndrome: state of the art. Lancet Diabetes Endocrinol. 2016;4:611–29. CAS Article Google Scholar 26. Funder JW. Mineralocorticoid receptors: distribution and activation. Heart Fail Rev. 2005;10:15–22. CAS Article Google Scholar 27. Ferrari P, Sansonnens A, Dick B, Frey FJ. In vivo 11beta-HSD-2 activity: variability, salt-sensitivity, and effect of licorice. Hypertension. 2001;38:1330–6. CAS Article Google Scholar 28. Zallocchi ML, Matkovic L, Calvo JC, Damasco MC. Adrenal gland involvement in the regulation of renal 11beta-hydroxysteroid dehydrogenase 2. J Cell Biochem. 2004;92:591–602. CAS Article Google Scholar 29. Gerards J, Heinrich DA, Adolf C, Meisinger C, Rathmann W, Sturm L, et al. Impaired glucose metabolism in primary aldosteronism is associated with cortisol co-secretion. J Clin Endocrinol Metab. 2019. https://doi.org/10.1210/jc.2019-00299 [Epub ahead of print]. Article Google Scholar 30. Wu VC, Chueh SJ, Chen L, Chang CH, Hu YH, Lin YH, et al. Risk of new-onset diabetes mellitus in primary aldosteronism: a population study over 5 years. J Hypertens. 2017;35:1698–708. CAS Article Google Scholar 31. Arlt W, Lang K, Sitch AJ, Dietz AS, Rhayem Y, Bancos I, et al. Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight. 2017;2:e93136. Article Google Scholar 32. Beuschlein F, Reincke M, Arlt W. The impact of Connshing’s syndrome - mild cortisol excess in primary aldosteronism drives diabetes risk. J Hypertens. 2017;35:2548. CAS Article Google Scholar 33. Akehi Y, Yanase T, Motonaga R, Umakoshi H, Tsuiki M, Takeda Y, et al. High prevalence of diabetes in patients with primary aldosteronism (PA) associated with subclinical hypercortisolism and prediabetes more prevalent in bilateral than unilateral PA: a large, multicenter cohort study in Japan. Diabetes Care. 2019;42:938–45. CAS Article Google Scholar 34. Späth M, Korovkin S, Antke C, Anlauf M, Willenberg HS. Aldosterone- and cortisol-co-secreting adrenal tumors: the lost subtype of primary aldosteronism. Eur J Endocrinol. 2011;164:447–55. Article Google Scholar 35. Maehana T, Tanaka T, Itoh N, Masumori N, Tsukamoto T. Clinical outcomes of surgical treatment and longitudinal non-surgical observation of patients with subclinical Cushing’s syndrome and nonfunctioning adrenocortical adenoma. Indian J Urol. 2012;28:179–83. Article Google Scholar 36. Rockall AG, Babar SA, Sohaib SA, Isidori AM, Diaz-Cano S, Monson JP, et al. CT and MR imaging of the adrenal glands in ACTH-independent Cushing syndrome. Radiographics. 2004;24:435–52. Article Google Scholar 37. Chiodini I, Vainicher CE, Morelli V, Palmieri S, Cairoli E, Salcuni AS, et al. Mechanisms in endocrinology: endogenous subclinical hypercortisolism and bone: a clinical review. Eur J Endocrinol. 2016;175:R265–82. CAS Article Google Scholar 38. Hardy RS, Zhou H, Seibel MJ, Cooper MS. Glucocorticoids and bone: consequences of endogenous and exogenous excess and replacement therapy. Endocr Rev. 2018;39:519–48. Article Google Scholar 39. Asbach E, Bekeran M, Reincke M. Parathyroid gland function in primary aldosteronism. Horm Metab Res. 2015;47:994–9. CAS Article Google Scholar 40. Ricciato MP, Di Donna V, Perotti G, Pontecorvi A, Bellantone R, Corsello SM. The role of adrenal scintigraphy in the diagnosis of subclinical Cushing’s syndrome and the prediction of post-surgical hypoadrenalism. World J Surg. 2014;38:1328–35. PubMed Google Scholar Download references Acknowledgments The authors would like to express their gratitude Kazuyuki Inoue, MD and Takujiro Iuchi, MD for their role in the data collection. The authors also thank Satoshi Sakima, MD, for valuable discussions about the manuscript. Funding No funding was obtained for this study. Author information Affiliations Department of Endocrinology and Diabetes, Saitama Medical University, Morohongo 38, Moroyama, Iruma-gun, Saitama, 350-0495, Japan Shigemitsu Yasuda , Yusuke Hikima , Shinichiro Iida , Yoichi Oikawa , Masashi Isshiki , Ikuo Inoue , Akira Shimada & Mitsuhiko Noda Department of Home Care Medicine, Sowa Hospital, Sagamihara, Kanagawa, Japan Yusuke Kabeya Department of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International University of Health and Welfare, Chiba, Japan Mitsuhiko Noda Contributions SY analyzed and interpreted the data, drafted, and finalized the manuscript. YK performed statistical analyses, YH, YK, SI, YO, MI, II, AS, and MN contributed to the discussion and critically revised the manuscript, AS and MN are taking full responsibility for the work as a whole. All authors read and approved the final manuscript. Corresponding author Correspondence to Shigemitsu Yasuda. Ethics declarations Ethics approval and consent to participate All participants gave written informed consent. The present study followed the recommendations of the Declaration of Helsinki and was approved by the ethics committee of Saitama Medical University (18049.01). Consent for publication This manuscript does not report personal data such as individual details, images or videos; therefore, consent for publication is not applicable. Competing interests The authors declare that they have no conflict of interest. Additional information Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Rights and permissions Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Reprints and Permissions About this article Cite this article Yasuda, S., Hikima, Y., Kabeya, Y. et al. Clinical characterization of patients with primary aldosteronism plus subclinical Cushing’s syndrome. BMC Endocr Disord 20, 9 (2020). https://doi.org/10.1186/s12902-020-0490-0 Download citation Received15 May 2019 Accepted08 January 2020 Published13 January 2020 DOIhttps://doi.org/10.1186/s12902-020-0490-0 Share this article Anyone you share the following link with will be able to read this content: Get shareable link Keywords Primary aldosteronism Subclinical Cushing’s syndrome Adrenal tumor Maximum tumor diameter Diabetes mellitus Serum potassium Download PDF
  23. 1 point
    So do we need to get our bones checked too? https://www.sciencealert.com/our-bones-provide-our-bodies-with-a-secret-weapon-that-saves-us-in-times-of-danger Bizarre Discovery Shows Your Bones Could Be Triggering The 'Fight-or-Flight' Response MIKE MCRAE 13 SEP 2019 When faced with a threat, hormones flood our bodies in preparation either for battle or a quick escape - what's commonly known as the 'fight-or-flight' response. For decades, we've generally thought this response was driven by hormones such as adrenaline. But it now seems that one of the most important of these messengers could come from a rather unexpected place – our skeleton. We usually think of chemicals like cortisol and adrenaline as the things that get the heart racing and muscles pumping. But the real star player could actually be osteocalcin, a calcium-binding protein produced by our bones. As a response to acute stress, steroids of the glucocorticoid variety are released by the body's endocrine system, where they manage the production of a cascade of other 'get ready to rumble' chemicals throughout various tissues. Researchers from the US, the UK, and India argue there's one tiny problem with this explanation of the fight-or-flight reaction. It isn't exactly fast. While nobody is disputing that our bodies produce cortisol when stressed, the fact their main action is to trigger cells into transcribing specific genes – a process that takes time – makes it an unlikely candidate for a rapid physiological response. "Although this certainly does not rule out that glucocorticoid hormones may be implicated in some capacity in the acute stress response, it suggests the possibility that other hormones, possibly peptide ones, could be involved," says geneticist Gerard Karsenty of Columbia University. So Karsenty and colleagues went on the hunt for something a little more expedient, focussing on proteins released by bone cells that would potentially have a more immediate effect on animal metabolism. Looking to the skeleton as a source might not be as weird as it first seems. After all, our bones evolved as a way to protect our squishy bits from being squashed, either by predator or accident. "If you think of bone as something that evolved to protect the organism from danger – the skull protects the brain from trauma, the skeleton allows vertebrates to escape predators, and even the bones in the ear alert us to approaching danger – the hormonal functions of osteocalcin begin to make sense," says Karsenty. Osteocalcin isn't in any way new to science, either. We've understood its function in bone development for nearly half a century, and in recent years begun to suspect it also has a hand in regulating our energy levels by affecting glucose metabolism. It also seems to give an ageing memory a boost, at least in lab rodents. All useful things in moments of danger. But it's still a surprising discovery that osteocalcin might also help to kickstart our acute stress response. "It completely changes how we think about how acute stress responses occur," says Karsenty. To test their suspicions, the researchers put lab mice under duress by restraining them for a 45 minute period. During that time, osteocalcin levels in the peripheral blood rose by half, while other skeletal hormones barely budged. In another test, just 15 minutes after a few harmless (but uncomfortable) shocks to the feet, osteocalcin levels in the stressed mice jumped by a whole 150 percent. Giving the test subjects a whiff of a chemical found in fox urine also elevated their peripheral osteocalcin levels. Importantly, these went up before their corticosterone levels began to climb, starting a few minutes after exposure and remaining high for another three hours. Just to make sure it wasn't only a mouse thing, the team also checked the hormone in humans who volunteered to do a public speech and undergo a pulse-raising cross-examination. Sure enough, up the osteocalcin went. In yet another series of tests, the team used rodents that were genetically engineered to lack the usual corticosteroid and other stress hormones, and found these animals continued to present a stress response. In addition, a shot of osteocalcin in otherwise unstressed mice was all they needed to get twitchy, raising their heart rate, temperature, and levels of circulating glucose. "Osteocalcin could explain past observations of an intact flight-or-flight response in humans and other animals lacking glucocorticoids and additional molecules produced by the adrenal glands," says Karsenty. With the evidence building for the bone protein as such a strong motivator for dealing with stress, it stands to ask why we need hormones like cortisol at all. The researchers plan to unravel this mystery in future investigations. This research was published in Cell Metabolism.
  24. 1 point
    For patients with persistent or recurring Cushing’s disease, monthly pasireotide therapy was safe and effective, leading to normal urinary free cortisol levels in 47% of patients after 2 years, according to findings published in Clinical Endocrinology. Maria Fleseriu “The management of Cushing’s syndrome, and particularly Cushing’s disease, remains challenging,” Maria Fleseriu, MD, FACE, professor of neurological surgery and professor of medicine in the division of endocrinology, diabetes and clinical nutrition in the School of Medicine at Oregon Health & Science University and director of the OHSU Northwest Pituitary Center, told Endocrine Today. “Long-acting pasireotide provided sustained biochemical improvements and clinical benefit in a significant proportion of patients with Cushing’s disease who elected to continue in this extension study. There were many adverse events reported overall, but no new safety signals emerging over long-term treatment.” In the last decade, medical treatment for Cushing’s disease has progressed from a few steroidogenesis inhibitors to three novel drug groups: new inhibitors for steroidogenic enzymes with possibly fewer adverse effects, pituitary-directed drugs that aim to inhibit the pathophysiological pathways of Cushing’s disease, and glucocorticoid receptor antagonists that block cortisol’s action, Fleseriu, who is also an Endocrine Today Editorial Board member, said. In an open-label extension study, Fleseriu and colleagues analyzed data from 81 adults with confirmed Cushing’s disease with mean urinary free cortisol not exceeding the upper limit of normal, who transitioned from a 12-month, randomized controlled trial where they were assigned 10 mg or 30 mg once-monthly intramuscular pasireotide (Signifor LAR, Novartis). During the main study, researchers recruited participants with mean urinary free cortisol level concentration 1.5 to five times the upper limit of normal, normal or greater than normal plasma and confirmed pituitary source of Cushing’s disease. Participants who elected to continue in the extension were considered biochemical responders or benefited from the study drug per the clinical investigator, Fleseriu said. “As in all extension studies, the bias is inherent that patients deemed responders tend to continue, but for any type of treatment for pituitary tumors, and particularly Cushing’s disease, long-term, robust data on efficacy and safety parameters is essential,” Fleseriu said. Median overall exposure to pasireotide at the end of the extension study was 23.9 months, with nearly half of patients receiving at least 1 year of treatment during the extension phase. Researchers found that improvements in clinical signs of hypercortisolism were sustained throughout the study and median urinary free cortisol remained within normal range. Overall, 38 participants (47%) had controlled urinary free cortisol at month 24 (after 12 months of treatment during the extension phase), with researchers noting that the proportion of participants with controlled or partially controlled urinary free cortisol was stable throughout the extension phase. “Interestingly, the median salivary cortisol level decreased but remained above normal (1.3 times upper limit of normal) at 3 years,” Fleseriu said. As seen in other pasireotide studies, and expected based on the mechanism of action, researchers observed hyperglycemia-related adverse events in 39.5% of participants, with diabetes medications initiated or escalated in some patients, Fleseriu said. However, mean fasting glucose and HbA1c were stable during the extension phase, after increasing in the main study. Within the cohort, 81.5% had type 2 diabetes at baseline (entering extension phase) and 88.9% patients had type 2 diabetes at last assessment. “Pasireotide acts at the tumor level, and tumor shrinkage is seen in many patients,” Fleseriu said. “In this study, 42% and 32.1% had a measurable microadenoma or macroadenoma, respectively, on MRI at the start of pasireotide treatment; an adenoma was not visible in almost a quarter of patients at 2 years.” Among patients with a measurable adenoma at baseline and at month 24 (n = 35), 85.7% experienced a reduction of at least 20% or a 20% change in tumor volume between the two time points. Improvements in median systolic and diastolic blood pressure, BMI and waist circumference were sustained during the extension, Fleseriu said. “The long-term safety profile of pasireotide was favorable and consistent with that reported during the first 12 months of treatment,” the researchers wrote. “These data support the use of long-acting pasireotide as an effective long-term treatment option for some patients with [Cushing’s disease].” Fleseriu said individualized treatment selecting patients who will derive benefit from therapy will be crucial, balancing both efficacy and the potential risks and costs. – by Regina Schaffer Disclosures: Fleseriu reports she has received consultant fees and her institution has received research support from Novo Nordisk and Pfizer. Please see the study for all other authors’ relevant financial disclosures. From https://www.healio.com/endocrinology/neuroendocrinology/news/online/%7B5da4611f-34b2-4306-80b8-46babd2aad4a%7D/long-acting-pasireotide-provides-sustained-biochemical-improvements-in-cushings-disease?page=2
  25. 1 point
    Abstract OBJECTIVE: To report our management of bilateral adrenalectomy with autologous adrenal gland transplantation for persistent Cushing's disease, and to discuss the feasibility of autologous adrenal transplantation for the treatment of refractory Cushing's disease. MATERIAL AND METHODS: A retrospective analysis was performed in 4 patients (3 females, aged 14-36 years) who underwent autologous adrenal transplantation for persistent Cushing's disease after endonasal transsphenoidal resection of a pituitary tumor. The procedure was performed by implanting a vascularized adrenal graft into the left iliac fossa with direct and indirect anastomoses. Postoperative follow-up was performed in 1, 1.5, 8, and 10 years, and an over 8-year long-term follow-up was reached in 2 out of the 4 cases. Hormone replacement dosage was guided by clinical symptoms and endocrine results including serum cortisol (F), 24 h urine-free cortisol, and adrenocorticotrophic hormone levels. RESULTS: All 4 patients with symptomatic Cushing's disease experienced resolution of symptoms after autotransplantation without Nelson Syndrome. Functional autografts were confirmed through clinical evaluation and endocrine results. One year after transplantation, adrenal function and hormone replacement dosage remained stable without adrenal hyperplasia. After long-term follow-up, dosages of hormone replacement were reduced in all patients. CONCLUSIONS: In this series of 4 patients, we demonstrate the long-term efficacy of bilateral adrenalectomy with autologous adrenal transplantation and propose this procedure as a viable treatment option for refractory Cushing's disease. © 2019 S. Karger AG, Basel. KEYWORDS: Cortisol; Adrenalectomy; Autologous adrenal gland transplantation ; Cushing’s disease; Nelson syndrome PubMed http://www.ncbi.nlm.nih.gov/pubmed/31434089 TAGS: cortisol, adrenalectomy, Autologous adrenal gland transplantation , Cushing's disease, Nelson syndrome
  26. 1 point
    Presented by Nathan T Zwagerman MD Director of Pituitary and Skull base surgery Department of Neurosurgery Medical College of Wisconsin After registering you will receive a confirmation email with details about joining the webinar. Date: Wednesday, August 21, 2019 Time: 10:00 AM - 11:00 AM Pacific Daylight Time 1:00 PM - 2:00 PM Eastern Daylight Time Webinar Description: Learning Objectives: Describe the signs and symptoms of Cushing's Disease Describe the work up for patients with Cushing's Disease Understand the goals, risks, and expected outcomes for treatment Describe alternative treatments when surgery is not curative. Presenter Bio: Dr. Zwagerman is a Professor of Neurosurgery at the Medical College of Wisconsin. He did his undergraduate work in psychology at Calvin College in Grand Rapids, Michigan. He earned his medical degree at Wayne State University in Detroit. He did his fellowship in endoscopic and open cranial base surgery, and then his residency in neurological surgery at the University of Pittsburgh Medical Center.
  27. 1 point
    by Kristen Monaco, Staff Writer, MedPage Today LOS ANGELES -- An investigational therapy improved quality of life and reduced disease symptoms for patients with endogenous Cushing's syndrome, according to new findings from the phase III SONICS study. Patients taking oral levoketoconazole twice daily had significant reductions in mean scores for acne (-1.8), peripheral edema (-0.4), and hirsutism (-2.6), all secondary endpoints of the pivotal trial (P<0.03 for all), reported Maria Fleseriu, MD, of Oregon Health and Science University in Portland. "We're looking forward to see the results of further studies and to add this therapy to the landscape of Cushing's," Fleseriu said here during a presentation of the findings at AACE 2019, the annual meeting of the American Association of Clinical Endocrinologists. "We have a newer medication and still we cannot make a dent in the outcomes of Cushing's, especially for patient-reported outcomes." Free testosterone levels significantly decreased in women taking levoketoconazole (a ketoconazole stereoisomer and potent steroidogenesis inhibitor), from an average of 0.32 ng/dL down to 0.12 ng/dL (0.011 to 0.004 nmol/L, P<0.0001). Men had a non-significant increase: 5.1 ng/dL up to 5.8 ng/dL (0.177 to 0.202 nmol/L). There were no significant changes from baseline to the end of maintenance for other secondary endpoints in the analysis: moon facies, facial plethora, striae, bruising, supraclavicular fat, irregular menstruation, and dysmenorrhea. However, significant improvements after 6 months of therapy were seen in patient-reported quality of life compared with baseline (mean 10.6 change on the Cushing QOL questionnaire) as well as a significant reduction in depressive symptoms (mean -4.3 change on the Beck Depression Inventory II). The open-label, multicenter SONICS (Study of Levoketoconazole in Cushing's Syndrome) trial included 94 adult men and women with a confirmed diagnosis of Cushing's syndrome and elevated 24-hour mean urinary free cortisol (mUFC) levels at least 1.5 times the upper limit of normal. In the dose-titration phase of the study (weeks 2 to 21), patients were titrated up to a max dose of 600 mg levoketoconazole twice daily until mUFC normalization. A 6-month maintenance phase followed with no dose increases, but decreases were allowed if adverse events emerged. An additional 6-month extended evaluation phase followed thereafter. The study met it's previously reported primary endpoint, with 30% of patients achieving normalized mUFC levels after 6 months of maintenance therapy without a dose increase (95% CI 21%-40%, P=0.0154). Levoketoconazole was well tolerated, with only 12.8% of patients discontinuing treatment due to adverse events. The most commonly reported adverse events were nausea (31.9%), headache (27.7%), peripheral edema (19.1%), hypertension (17%), and fatigue (16%), some of which were expected due to steroid withdrawal, Fleseriu said. Serious adverse events were reported in 14 patients, including prolonged QTc interval in two patients, elevated liver function in one patient, and adrenal insufficiency in another, events similar to those seen with ketoconazole (Nizoral) therapy. Fleseriu explained that drug-drug interaction is a problem in Cushing's, as all of the available medications prolong QT interval. She noted that in SONICS, QT prolongation with levoketoconazole was observed in few patients. It's still a "concern," said Fleseriu, especially for patients on other drugs that prolong QT. Although not yet approved, levoketoconazole has received orphan drug designation from the FDA and the European Medicines Agency for endogenous Cushing's syndrome. The tentative brand name is Recorlev. The study was supported by Strongbridge Biopharma. Fleseriu reported relationships with Strongbridge, Millendo Therapeutics, and Novartis. Co-authors also disclosed relevant relationships with industry. Primary Source American Association of Clinical Endocrinologists Source Reference: Fleseriu M, et al "Levoketoconazole in the treatment of endogenous Cushing's syndrome: Improvements in clinical signs and symptoms, patient-reported outcomes, and associated biochemical markers in the phase 3 SONICS study" AACE 2019; Poster 369. From https://www.medpagetoday.com/meetingcoverage/aace/79465
  28. 1 point
    The use of an insulin pump to deliver continuous pulsatile cortisol may be a viable treatment option in patients with severe adrenal insufficiency who are unresponsive to oral corticosteroids, according to study results presented at the 28th Annual Congress of the American Association of Clinical Endocrinologists, held April 24 to 28, 2019, in Los Angeles, California. According to the investigators, increasing oral steroid doses may be required to prevent adrenal crisis in patients with adrenal insufficiency. However, in light of the associated side effects of long-term use of steroids, an alternative treatment method is needed. Insulin pumps, typically used to treat patients with diabetes, can be used to deliver steroids and may provide symptom control, prevent adrenal crisis, and lower required corticosteroid dose. The current study enrolled patients with adrenal insufficiency who could not absorb oral corticosteroid treatment or were not responding to treatment. Of 118 patients with adrenal insufficiency, 6 patients were switched to pump treatment. The results indicated that the use of cortisol pumps was associated with a 78.5% risk reduction for adrenal crisis compared with oral corticosteroids. As hydrocortisone dose was gradually tapered using the cortisol pump, there was a mean dose reduction of 62.77 mg compared with oral corticosteroid therapy. The researchers noted that in addition to reducing the number of adrenal crises, use of a cortisol pump was found to be associated with better symptom control and quality of life. “Continuous pulsatile cortisol replacement via pump is an option for management of severe adrenal insufficiency in patients unresponsive to oral therapy,” concluded the researchers. Reference Khalil A, Ahmed F, Alzohaili O. Insulin pump for adrenal insufficiency, a novel approach to the use of insulin pumps to deliver corticosteroids in patients with poor cortisol absorption. Presented at: American Association of Clinical Endocrinologists 28th Annual Scientific & Clinical Congress; April 24-28, 2019; Los Angeles, CA. From https://www.endocrinologyadvisor.com/home/conference-highlights/aace-2019/cortisol-pumps-may-be-viable-option-to-reduce-adrenal-crisis-in-severe-adrenal-insufficiency/
  29. 1 point
    In: Pituitary, ISSN 1386-341X, E-ISSN 1573-7403, Vol. 22, no 2, p. 179-186Article in journal (Refereed) Published Abstract [en] Background: Studies on the incidence of Cushing's disease (CD) are few and usually limited by a small number of patients. The aim of this study was to assess the annual incidence in a nationwide cohort of patients with presumed CD in Sweden. Methods: Patients registered with a diagnostic code for Cushing's syndrome (CS) or CD, between 1987 and 2013 were identified in the Swedish National Patient Registry. The CD diagnosis was validated by reviewing clinical, biochemical, imaging, and histopathological data. Results: Of 1317 patients identified, 534 (41%) had confirmed CD. One-hundred-and-fifty-six (12%) patients had other forms of CS, 41 (3%) had probable but unconfirmed CD, and 334 (25%) had diagnoses unrelated to CS. The mean (95% confidence interval) annual incidence between 1987 and 2013 of confirmed CD was 1.6 (1.4-1.8) cases per million. 1987-1995, 1996-2004, and 2005-2013, the mean annual incidence was 1.5 (1.1-1.8), 1.4 (1.0-1.7) and 2.0 (1.7-2.3) cases per million, respectively. During the last time period the incidence was higher than during the first and second time periods (P<0.05). Conclusion: The incidence of CD in Sweden (1.6 cases per million) is in agreement with most previous reports. A higher incidence between 2005 and 2013 compared to 1987-2004 was noticed. Whether this reflects a truly increased incidence of the disease, or simply an increased awareness, earlier recognition, and earlier diagnosis can, however, not be answered. This study also illustrates the importance of validation of the diagnosis of CD in epidemiological research. Place, publisher, year, edition, pages SPRINGER , 2019. Vol. 22, no 2, p. 179-186 Keywords [en] Cushing's syndrome, Epidemiology, Incidence, Validation National Category Endocrinology and Diabetes Identifiers URN: urn:nbn:se:uu:diva-380429DOI: 10.1007/s11102-019-00951-1ISI: 000461291200010PubMedID: 30799512OAI: oai:DiVA.org:uu-380429DiVA, id: diva2:1300822 From http://uu.diva-portal.org/smash/record.jsf?aq2=%5B%5B%5D%5D&c=1&af=%5B%5D&searchType=LIST_LATEST&sortOrder2=title_sort_asc&query=&language=en&pid=diva2%3A1300822&aq=%5B%5B%5D%5D&sf=all&aqe=%5B%5D&sortOrder=author_sort_asc&onlyFullText=false&noOfRows=50&dswid=-3880
  30. 1 point
    A 42-year-old woman who presented to hospital with acute vision loss in her right eye was diagnosed with a benign tumour in her adrenal gland. Writing in BMJ Case Reports, clinicians described how the patient presented with a visual acuity of 6/36 in her right eye and 6/6 in her left eye. Investigations revealed an exudative retinal detachment in her right eye as well as a pigment epithelial detachment. The patient had multifocal central serous retinopathy in both eyes. The woman, who had hypertension and diabetes, was diagnosed with Cushing syndrome and a right adrenal adenoma was also discovered. During a treatment period that spanned several years, the patient received an adrenalectomy followed by a maintenance dose of steroids. The patient subsequently developed central serous retinopathy again which the clinicians believe might be related to steroid use. The authors advised “careful deliberation” in prescribing a maintenance dose of steroids following removal of the adrenal glands because of the potential link to retinopathy. From https://www.aop.org.uk/ot/science-and-vision/research/2018/12/17/vision-loss-the-first-sign-of-adrenal-tumour-in-42-year-old-patient
  31. 1 point
    That's fantastic! Getting a doctor who will thoroughly test you is one of the hardest parts of the disease. Nobody wants to be sick of have Cushing's but with a lot of us it's gets to a stage where you just know in your gut what's going on and then you have to fight with doctors to get them to listen. I hope testing is quick and the proof comes back right away so you can get back to feeling like a human again.
  32. 1 point
    I Went to my Endo appt yesterday (prepared) I had a list of all of my symptoms and a few photos of me to show the dramatic changes that my body has gone through over a short period of time. Without my prompting, He is sure that I have Cushings. Now, to prove it. I Walked away with a long list of labs to do, including...blood, urine, and saliva. Although I already knew in my heart that this is what I had, it was still very hard to hear. I know this is not gonna be an easy road to travel and I would be lying if I said I wasn’t scared. (I’m terrified) I had a hysterectomy 4 years ago and ended up with sepsis, e-coli, c-diff, just to name a few. It nearly ended my life. I’ll keep you guys updated when I know more. Thanks to everyone that has helped me along the way and to those that will continue to do so.
  33. 1 point
    Presented by Mario Zuccarello, MD Neurosurgeon University of Cincinnati College of Medicine Department of Neurosurgery and Jonathan A. Forbes, MD Neurosurgeon University of Cincinnati College of Medicine Department of Neurosurgery After registering you will receive a confirmation email containing information about joining the webinar. Contact us at webinar@pituitary.org if you have any questions. Date: December 3, 2018 Time: 3:00PM - 4:00PM Pacific Standard Time 6:00PM - 7:00PM Eastern Standard Time Learning Objectives: To understand the role of surgery in the treatment of pituitary tumors To understand the advantages and disadvantages of different surgical approaches in the treatment of pituitary tumors To understand the risks and benefits associated with different surgical strategies Presenter Bios: Mario Zuccarello, MD Neurosurgeon Mario Zuccarello, MD, is currently a Professor of Neurosurgery in the Department of Neurosurgery at the University of Cincinnati. He was the Frank H. Mayfield Chair for Neurological Surgery and Chairman of the Department of Neurosurgery from 2009-2017. Dr. Zuccarello is also a member of the University of Cincinnati Gardner Neuroscience Institute and the Greater Cincinnati/Northern Kentucky Stroke Team. Dr. Zuccarello is dedicated to clinical research in neurovascular disease and the development of new neurosurgical techniques for the treatment of stroke, cerebral hemorrhage, vasospasm, carotid artery disease, and moyamoya disease. While Cincinnati has become widely known for its leadership in stroke research, treatment, and the development of clot-busting drugs, Dr. Zuccarello has led a quiet revolution in the prevention and treatment of brain hemorrhages, which rank among the most hazardous conditions of the brain. Dr. Zuccarello graduated summa cum laude from the Gymnasium in Catania, Italy, in 1970. He received his medical degree from the University of Padova, Italy, in 1976, and completed his residency in neurosurgery from Padova, with summa cum laude honors, in 1980. He subsequently performed research fellowships at the University of Iowa and the University of Virginia Medical Center, Charlottesville, and a clinical fellowship at the University of Cincinnati. He was inducted into Alpha Omega Alpha, the national medical honor society in 2001 and has been named to the Best Doctors in America since 2005. In 2013, he received recognition by members of the Vasospasm consortium for his dedication and outstanding accomplishments in the field of experimental and clinical research on subarachnoid hemorrhage. Jonathan A. Forbes, MD Neurosurgeon Dr. Forbes is a fellowship-trained neurosurgeon with expertise and interest in open and minimally-invasive approaches for treatment of pathology of the cranial base. He has a long and distinguished history of academic recognition, commitment to excellence, and service to our country. As an undergraduate at Grove City College, he was a recipient of the Trustee Scholarship and was named Sportsman of the Year after his senior season of varsity football. Following the events of 9/11, he enrolled in the Health Professions Scholarship Program with the United States Air Force. In medical school at the University of Pittsburgh, he was a recipient of the David Glasser Honors’ Award for academic performance. During neurosurgical residency at Vanderbilt University, he received numerous national accolades—including the AANS Synthes Craniofacial Award for Research in Neurotrauma as well as the AANS Top Gun Award. His score on the American Board of Neurological Surgery (ABNS) written board examination during his fourth year of residency was recognized in the top 3% nationwide. After completing his chief year of neurosurgical residency at Vanderbilt in 2013, Dr. Forbes went on to fulfill a 4-year commitment with the U.S. Air Force that included a 6-month deployment to Bagram Air Force Base in Afghanistan. Humanitarian care he provided at the Craig Joint Theater Hospital in Bagram has been featured in numerous neurosurgical journals—including Journal of Neurosurgery, World Neurosurgery and Neurosurgical Focus—and recognized on a national level by the USAF as part of the “Through Airmen’s Eyes” series. After honorable discharge from the military, he completed a minimally-invasive skull base fellowship at Weill Cornell Medical Center in New York City under the guidance of Dr. Theodore Schwartz prior to joining the UC Department of Neurosurgery. To date, Dr. Forbes has contributed to over 40 peer-reviewed publications.
  34. 1 point
    Presented by Kevin C.J. Yuen, MD Director, Barrow Pituitary Center Director, Barrow Neuroendocrinology Clinic Barrow Neurological Institute Phoenix, Arizona After registering you will receive a confirmation email containing information about joining the Webinar. Date: November 1, 2018 Time: 10:00 AM - 11:00 AM Pacific Daylight Time Learning Objectives: To discuss the anatomy of the pituitary gland To discuss the physiology of pituitary hormone secretion To discuss what can go wrong and how to treat pituitary disorders Presenter Bio: Kevin C.J. Yuen, MD, is a neuroendocrinologist and Medical Director of the Pituitary Program at Barrow Neurological Institute, specializing in the management of hypothalamic-pituitary disorders. He is double board-certified in Endocrinology and Internal Medicine by the American Board of Internal Medicine, and General Medical Council in the UK. Dr. Yuen’s expertise includes clinical and research interest in the management of pituitary and adrenal disorders, particularly adults with growth hormone deficiency, acromegaly, hypogonadism, Cushing’s disease and adrenal insufficiency. He also has a particular interest in neuroendocrine disorders in young adult cancer survivors and adults with traumatic brain injury. His research is devoted to new diagnostics and treatments of pituitary disorders. Dr. Yuen received his medical degree from University of Sheffield, UK. He completed his residency in Internal Medicine at University of Southampton, UK, clinical and research fellowship in Endocrinology at University of Cambridge, UK, and clinical and research instructor at Oregon Health and Science University, Portland, OR. Dr. Yuen is active in national and international collaborative studies, and has published extensively in numerous peer-reviewed medical journals, authored several book chapters, and is a frequent guest speaker on various topics related to pituitary disorders.
  35. 1 point
    Jess, I'm so sorry you're going through this Off the top of my head - and I'm not a doctor - this doesn't sound like Cushing's. I'm wondering if some of his issues could be side effects for the anti-anxiety meds he's on Teen years can be an issue but this sounds like more than normal. Can you go back to the doctor who prescribed the meds and see if there's something that won't make things worse? Unfortunately, your photo links don't include photos but email text. I can remove those links, if you wish. If you email those photos to cushingshelp@gmail.com I'd be happy to post them for you. Best of luck to you!
  36. 1 point
    I never had a hump and I definitely had Cushing's Disease. Get some tests and a good doctor.
  37. 1 point
    Yes it was all due to my symptoms and how I looked. The surgery only worked for about a month and then all symptoms came back. The surgeon never saw an adenoma but lab kept saying tissue was abnormal so he took my whole right side and sent for pathology and it came back as corticotroph adenoma so next step is seeing another surgeon on September 5 to discuss bilateral adrenalectomy. My DHEAS is always high also.
  38. 1 point
    Metyrapone treatments helped patients with Cushing syndrome reach normal, urinary-free cortisol levels in the short-term and also had long-term benefits, according to a study published in Endocrine. This observational, longitudinal study evaluated the effects of the 11β -hydroxylase inhibitor metyrapone on adult patients with Cushing syndrome. Urinary-free cortisol and late-night salivary cortisol levels were evaluated in 31 patients who were already treated with metyrapone to monitor cortisol normalization and rhythm. The average length of metyrapone treatment was 9 months, and 6 patients had 24 months of treatment. After 1 month of treatment, the mean urinary-free cortisol was reduced from baseline by 67% and mean late-night salivary cortisol level decreased by 57%. Analyzing only patients with severe hypercortisolism, after 1 month of treatment, the mean urinary-free cortisol decreased by 86% and the mean late-night salivary cortisol level decreased 80%. After 3 months, normalization of the mean urinary-free cortisol was established in 68% of patients. Mean late-night salivary cortisol levels took longer to decrease, especially in severe and very severe hypercortisolism, which could take 6 months to drop. Treatment was more successful at normalizing cortisol excretion (70%) than cortisol rhythm (37%). Nausea, abdominal pain, and dizziness were the most common adverse events, but no severe adverse event was reported. Future research is needed to evaluate a larger cohort with randomized dosages and stricter inclusion criteria to evaluate metyrapone's effects on cortisol further. Study researchers conclude that metyrapone was successful and safe in lowering urinary-free cortisol after just 1 month of treatment and controlling long-term levels in patients with Cushing syndrome. This study was supported by Novartis. Reference Ceccato F, Zilio M, Barbot M, et al. Metyrapone treatment in Cushing's syndrome: a real-life study [published online July 16, 2018]. Endocrine. doi: 10.1007/s12020-018-1675-4 From https://www.endocrinologyadvisor.com/general-endocrinology/metyrapone-cushing-syndrome/article/786716/
  39. 1 point
  40. 1 point
    Read all the blog posts here, on the right side. It would be great to share some (ALL?) on Twitter, Facebook, wherever to get the word out even further.
  41. 1 point
    Yes, it is. No one patient has all the symptoms of Cushing's, unfortunately. I think it would be so much easier to diagnose if the doctor could just verify that we had all of the symptoms like they can with a cold. Best of luck!
  42. 1 point
    Measuring cortisol levels in saliva multiple times a day is a convenient and useful way to determine the best course of treatment for patients with Cushing’s syndrome, a preliminary study shows. The research, “Multiple Salivary Cortisol Measurements Are a Useful Tool to Optimize Metyrapone Treatment in Patients with Cushing’s Syndromes Treatment: Case Presentations,” appeared in the journal Frontiers of Endocrinology. Prompt and effective treatment for hypercortisolism — the excessive amount of cortisol in the blood — is essential to lowering the risk of Cushing’s-associated conditions, including infections, cardiovascular disease, and stroke. Steroid hormone inhibitors, such as HRA Pharma’s Metopirone (metyrapone), have been used significantly in Cushing’s syndrome patients. These therapies not only suppress cortisol levels, but also avoid adrenal insufficiency (where not enough cortisol is produced) and restore the circadian rhythm, which is disrupted in Cushing’s patients. However, effective medical treatment requires monitoring cortisol activity throughout the day. Salivary measurements of cortisol are a well-known method for diagnosing and predicting the risk of recurrence of Cushing’s syndrome. The method is convenient for patients and can be done in outpatient clinics. However, the medical field lacks data on whether measuring cortisol in saliva works for regulating treatment. Researchers analyzed the effectiveness of salivary cortisol measurements for determining the best dosage and treatment timing of Cushing’s patients with Metopirone. The study included six patients, three with cortisol-secreting masses in the adrenal glands and and three with ACTH (or adrenocorticotropin)-secreting adenomas in the pituitary glands, taking Metopirone. Investigators collected samples before and during treatment to assess morning serum cortisol and urinary free cortisol (UFC). Patients also had salivary cortisol assessments five times throughout the day. Saliva samples were collected at 6 a.m. (wake-up time), 8 a.m. (before breakfast), noon (before lunch), 6 p.m. (before dinner), and 10 p.m. (before sleep). Other studies have used UFC assessments to monitor treatment. However, the inability of this parameter to reflect changes in diurnal cortisol requires alternative approaches. Results showed that although UFC was normalized in five out of six patients, multiple salivary cortisol measurements showed an impaired diurnal cortisol rhythm in these patients. Whereas patients with cortisol-secreting adrenocortical adenoma showed elevated cortisol levels throughout the day, those with ACTH-secreting pituitary adenoma revealed increased levels mainly in the morning. This finding indicates that “the significance of elevated morning cortisol levels is different depending on the disease etiology,” the researchers wrote. In a prospective case study to better assess the effectiveness of performing multiple salivary cortisol assessments, the research team analyzed one of the participants who had excessive cortisol production that was not controlled with four daily doses of Metoripone (a daily total of 2,250 mg). Results revealed that cortisol levels increased before each dosage. After the patient’s treatment regimen was changed to a 2,500 mg dose divided into five daily administrations, researchers observed a significant improvement in the diurnal cortisol pattern, as well as in UFC levels. Subsequent analysis revealed that performing multiple salivary cortisol measurements helps with a more precise assessment of excess cortisol than analyzing UFC levels, or performing a unique midnight salivary cortisol collection, the researchers said. Although more studies are required, the results “suggest that multiple salivary cortisol measurements can be a useful tool to visualize the diurnal cortisol rhythm and to determine the dose and timing of metyrapone [Metopirone] during the treatment in patients with [Cushing’s syndrome],” the researchers wrote. Future studies should include a larger sample size, evaluate changes over a longer term, use a standardized protocol for treatment dosing and timing, and evaluate changes in a patient’s quality of life, the investigators said. From https://cushingsdiseasenews.com/2018/02/15/multiple-saliva-cortisol-checks-cushings-metyrapone-study/
  43. 1 point
    Usually, you have to do a LOT of 24-hour UFCs to get diagnosed. One just doesn't get it. When I was being diagnosed, I did several weeks of daily UFCS. Are you seeing a good endocrinologist who is knowledgeable about Cushing's? Please keep us posted.
  44. 1 point
    Patients with different subtypes of Cushing’s syndrome (CS) have distinct plasma steroid profiles. This could be used as a test for diagnosis and classification, a German study says. The study, “Plasma Steroid Metabolome for Diagnosis and Subtyping Patients with Cushing Syndrome,” appeared in the journal Clinical Chemistry. A quick diagnosis of CS is crucial so that doctors can promptly give therapy. However, diagnosing CS is often complicated by the multiple tests necessary not just to diagnose the disease but also to determine its particular subtype. Cortisol, which leads to CS when produced at high levels, is a steroid hormone. But while earlier studies were conducted to determine whether patients with different subtypes of CS had distinct steroid profiles, the methods researchers used were cumbersome and have been discontinued for routine use. Recently, a technique called LC-MS/MS has emerged for multi-steroid profiling in patients with adrenocortical dysfunction such as congenital adrenal hyperplasia, adrenal insufficiency and primary aldosteronism. Researchers at Germany’s Technische Universität in Dresden used that method to determine whether patients with the three main subtypes of CS (pituitary, ectopic and adrenal) showed differences in plasma steroid profiles. They measured levels of 15 steroids produced by the adrenal glands in single plasma samples collected from 84 patients with confirmed CS and 227 age-matched controls. They found that CS patients saw huge increases in the plasma steroid levels of 11-deoxycortisol (289%), 21-deoxycortisol (150%), 11-deoxycorticosterone (133%), corticosterone (124%) and cortisol (122%), compared to patients without the disease. Patients with the ectopic subtype had the biggest jumps in levels of these steroids. However, plasma 18-oxocortisol levels were particularly low in ectopic disease. Other steroids demonstrated considerable variation. Patients with the adrenal subtype had the lowest concentration of dehydroepiandrosterone (DHEA) and DHEA-SO4, which are androgens. Patients with the ectopic and pituitary subtype had the lowest concentration of aldosterone. Through the use of 10 selected steroids, patients with different subtypes of CS could be identified almost as closely as with other tests, including the salivary and urinary free cortisol test, the dexamethasone-suppressed cortisol test, and plasma adrenocorticotropin levels. The misclassification rate using steroid levels was 9.5 percent, compared to 5.8 percent in other tests. “This study using simultaneous LC-MS/MS measurements of 15 adrenal steroids in plasma establishes distinct steroid metabolome profiles that might be useful as a test for CS,” the team concluded, adding that using LC-MS/MS is advantageous, as specimen preparation is simple and the entire panel takes 12 minutes to run. This means it could be offered as a single test for both identification and subtype classification. From https://cushingsdiseasenews.com/2018/01/02/plasma-steroid-levels-used-screen-diagnosis-subtyping-patients-cushing-syndrome/
  45. 1 point
    If you join these boards - it's free - and post a bit, you'll be able to do searches and get lots more features that you have as a guest. Best of luck to you!
  46. 1 point
    Ectopic Cushing’s syndrome can be challenging to diagnose, especially when it comes identifying the problem source. But appropriate hormone management protocols, used in combination with advanced imaging methods, may help physicians identify ectopic ACTH-producing tumors. The findings in a case report of a young man with ectopic Cushing’s syndrome were published in the International Journal of Surgery Case Reports, under the title “Case report: Ectopic Cushing’s syndrome in a young male with hidden lung carcinoid tumor.” Cushing’s syndrome is caused by high amounts of glucocoticosteroids in the blood. The most common cause is a malfunction of the glands that produce these hormones. In some cases, however, the disease may be caused by tumors elsewhere in the body that have the ability to produce adrenocorticotropic hormone (ACTH). In half of all Cushing’s patients, ectopic ACTH is produced by small lung cell carcinomas or lung carcinoids (a type of slow-growing lung cancer). But some tumors in the thymus and pancreas also have been found to produce ACTH. Researchers at Damascus University Hospital in Syria presented the case of a 26-year-old man who had ectopic Cushing’s syndrome due to lung carcinoids. The patient presented with increased appetite and rapid weight gain for more than a year. These were associated with headache, fatigue, proximal muscle weakness, and easy bruising. He had no family history of hormonal disorder. Based on the initial physical and symptom evaluation, the clinical team suspected Cushing’s syndrome. Blood analysis revealed high levels of cortisol and ACTH hormones, which supported the diagnosis. Administration of dexamethasone, a treatment used to inhibit the production of glucocoticosteroids by the pituitary gland, reduced cortisol levels within normal range, but not ACTH levels. This led to the diagnosis of ectopic Cushing’s syndrome. The next step was to identify the tumor causing the syndrome. The team conducted imaging studies of the brain, chest, and abdomen, but found no tumor. Because ectopic ACTH is commonly produced by lung cancers, the team then analyzed the patient’s lungs. Again, they failed to detect a tumor. The patient was discharged with prescription of 200 mg of Nizoral (ketoconazole) once-daily, calcium, and vitamin D. After three months of treatment, he remained stable, with no evidence of symptom improvement. At this point, the team decided to surgically remove both adrenal glands in an attempt to reduce the hormone levels. Treatment with prednisolone 5 mg and fludrocortisone 0.1 mg once daily was initiated, along with calcium and vitamin D. Eighteen months later, the patient’s condition worsened and he required hospitalization. Imaging tests targeting the neck, chest, and abdomen were conducted again. This time, physicians detected a 2 cm mass in the middle lobe of the right lung, which was removed surgically. Detailed analysis of the small tumor confirmed that it was the source of the excessive ACTH. “ACTH secreting tumors can be very hard to detect,” the researchers stated. “Initial failed localization is common in ectopic ACTH syndrome and it is usually due to carcinoid.” Cases where the ectopic ACTH production is caused by a carcinoid tumor can be challenging to diagnose because tumors are small and relatively slow-growing. Imaging data is often hard to analyze and the tumors can be confused with pulmonary vessels, the researchers explained. “In such cases we should first aim to lower blood cortisol medically or through bilateral adrenalectomy to avoid Cushing’s complications,” which should then “be followed up through imaging studies (CT, MRI, scintigraphy or PET) to detect the tumor and resect it, which is the definitive treatment of these patients,” the researchers concluded. From https://cushingsdiseasenews.com/2017/12/12/case-report-ectopic-acth-producing-lung-tumors-can-hard-detect/
  47. 1 point
    By Tori Rodriguez, MA, LPC In the early 20th century, the term "pluriglandular syndrome" was coined by Harvey Cushing to describe the disorder that results from chronic tissue exposure to excessive levels of glucocorticoids.1 Now called Cushing's syndrome, the condition affects an estimated 10-15 million people annually, most often women and individuals between the ages of 20 and 50 years.2 Risk factors and common comorbidities include hypertension, obesity, osteoporosis, uncontrolled diabetes, depression, and anxiety.3 Presentation The clinical presentation of the disorder is heterogenous and varies by sex, age, and disease severity. Common signs and symptoms include central adiposity, roundness of the face or extra fat around the neck, thin skin, impaired short-term memory and concentration, irritability, hirsutism in women, fatigue, and menstrual irregularity.4 Because each of these features may be observed in a wide range of other conditions, it may be difficult to diagnose cases that are not severe. "It can be challenging to differentiate the milder forms from pseudo-Cushing's states," which are characterized by altered cortisol production and many of the same clinical features as Cushing's syndrome, according to Roberto Salvatori, MD, the medical director of the Johns Hopkins Pituitary Center, Baltimore, Maryland. These may include alcoholism, obesity, eating disorders, and depression. "Because Cushing's can cause depression, for example, it is sometimes difficult to determine which came first," he says. In these states, however, hypercortisolism is believed to be driven by increased secretion of hypothalamic corticotropin-releasing hormone, which is suppressed in Cushing's syndrome.5 Causes and Diagnosis If Cushing's syndrome is suspected on the basis of the patient's physical appearance, the diagnostic workup should include a thorough medical history, physical exam, and 1 or more of the following tests to establish hypercortisolism: the 24-hour urinary cortisol test, the low-dose dexamethasone suppression test, or the late-night salivary cortisol test. "We sometimes use 2 or 3 of these tests since 1 may not accurately reflect cortisol production in a particular patient," Dr Salvatori notes. The next step is to determine the source of the hypercortisolism, which may involve the high-dose dexamethasone suppression test, magnetic resonance imaging, or petrosal sinus sampling.2 Medication is the most common cause of Cushing's syndrome. These iatrogenic or exogenous cases typically result from corticosteroids administered for conditions such as asthma, allergies, and autoimmune disorders.6 More rarely, the disorder can be caused by the use of medroxyprogesterone. In these cases, corticosteroids should be reduced or discontinued under medical care, if possible. Endogenous Cushing's syndrome results from the presence of benign or malignant tumors on the adrenal or pituitary glands or elsewhere in the body. These tumors can interfere with the adrenal glands' production of cortisol that is usually prompted by the adrenocorticotropic hormone (ACTH) released by the pituitary gland.6 There are 3 different mechanisms by which the process can occur. Pituitary adenomas, which account for approximately 70% of endogenous cases of Cushing's syndrome, secrete ACTH and stimulate additional cortisol production. Because of the large proportion of cases this condition represents, it is specifically referred to as Cushing's disease. It is more common in women than men (with a ratio of 3 to 4:1), although in pediatric patients, it occurs more frequently in boys vs girls.5 Adrenal tumors (adenomas, malignant tumors, or micronodular hyperplasia) produce cortisol in their own tissue in addition to the amount produced by the adrenal glands. These tumors, which cause approximately 15% of endogenous Cushing's syndrome cases, are more common in children vs adults and in women vs men. Benign or malignant tumors elsewhere in the body, most often the lungs, thyroid, thymus, and pancreas, secrete ACTH and trigger the excessive release of cortisol. An estimated 15% of endogenous cases are attributed to these types of tumors. Treatment Surgery is the first-line treatment for Cushing's syndrome. "We first want to try to figure out the cause of the disorder," Dr Salvatori says. "Ideally, treatment involves surgery to remove the tumor that is causing it." When surgery is unsuccessful, contraindicated, or delayed, other treatment options include radiation or medications that inhibit cortisol, modulate the release of ACTH, or inhibit steroidogenesis.5 Bilateral adrenalectomy may be indicated for patients who do not respond to medication or other surgery. If surgical resection of the tumor is successful, then "all of the comorbidities reverse, but if it is unsuccessful or must be delayed, you would treat each comorbidity" with the appropriate medication; for example, antihypertensives for high blood pressure and antidiabetic medications for diabetes, Dr Salvatori advises. In severe cases, prophylactic antibiotics may be indicated for the prevention of severe infections such as pneumonia. It is also important to inquire about and address psychiatric symptoms related to Cushing's syndrome, even in patients who are in remission. It has been proposed that the chronic hypercortisolism and dysfunction of the HPA axis may "lead to structural and functional changes in the central nervous system, developing brain atrophy, particularly in the hippocampus, which may determine the high prevalence of psychiatric disorders, such as affective and anxiety disorders or cognitive dysfunctions," according to a recently published paper on the topic.7 Patients should be screened with self-report questionnaires such as the Beck Depression Inventory and the Hospital Anxiety and Depression Scale, and management of psychiatric symptoms may include patient education, psychotropic medications, and referral to a mental health professional. Future Directions Several trials are currently planned or underway, including a phase 2 randomized, double-blind, placebo-controlled study of an oral medication called ATR-101 by Millendo Therapeutics, Inc. (ClinicalTrials.gov identifier: NCT03053271). In addition to the need for novel medical therapies, refined imaging techniques could improve surgical success rates in patients with Cushing's disease in particular, according to Dr Salvatori. "A significant portion of these patients have tumors too small to be detected by MRI, and the development of more sensitive MRI could improve detection and provide a surgical target" for neurosurgeons treating the patients, he says. Summary Milder cases of Cushing's syndrome present diagnostic challenges are a result overlapping features with various other conditions. Diagnosis may require careful observation as well as biochemical and imaging tests. RELATED ARTICLES New Research Highlights Possible Genetic Cause of Cushing's Disease Endocrine Society Releases Guidelines on Treatment of Cushing's Syndrome Pediatric Endocrine Society Provides Guidance for Growth Hormone Use in Pediatric Patients References Loriaux DL. Diagnosis and differential diagnosis of Cushing's syndrome. N Engl J Med. 2017;376:1451-1459. doi:10.1056/NEJMra1505550 American Association of Neurological Surgeons. Cushing's syndrome/disease. http://www.aans.org/Patients/Neurosurgical-Conditions-and-Treatments/Cushings-Disease. Accessed August 1, 2017. León-Justel A, Madrazo-Atutxa A, Alvarez-Rios AI, et al. A probabilistic model for cushing's syndrome screening in at-risk populations: a prospective multicenter study. J Clin Endocrinol Metab. 2016;101:3747-3754. doi:10.1210/jc.2016-1673 The Pituitary Society. Cushing's syndrome and disease–symptoms. https://pituitarysociety.org/patient-education/pituitary-disorders/cushings/symptoms-of-cushings-disease-and-cushings-syndrome. Accessed August 1, 2017. Sharma ST, Nieman LK, Feelders RA. Cushing's syndrome: epidemiology and developments in disease management. Clin Epidemiol. 2015;7:281-293. doi:10.2147/CLEP.S44336 National Institutes of Health: Eunice Kennedy Shriver National Institute of Child Health and Human Development. What causes Cushing's syndrome?https://www.nichd.nih.gov/health/topics/cushing/conditioninfo/pages/causes.aspx. Accessed August 1, 2017. Santos A, Resmini E, Pascual JC, Crespo I, Webb SM. Psychiatric symptoms in patients with Cushing's syndrome: prevalence, diagnosis and management. Drugs. 2017;77:829-842. doi:10.1007/s40265-017-0735-z From http://www.endocrinologyadvisor.com/adrenal/cushings-syndrome-diagnosis-treatment/article/682302/
  48. 1 point
    O.k. well this question is a little past the deadline but I hear that not all patients can take Korlym. Which type of patient should not take it?
  49. 1 point
    Thanks so much, Betseebee. We still need questions from folks in advance.
  50. 1 point
    Thanks for sharing this story... although it is so sad!! Especially when we know something could have helped this man so much sooner. Thanks for sharing!! I guess even though these stories are awful to read, they spread awareness... which is exactly what we need... Paige
  • Create New...