Jump to content

Leaderboard


Popular Content

Showing content with the highest reputation since 08/13/2019 in Posts

  1. 2 points
    Presented by Georgios A. Zenonos, MD Assistant Professor of Neurological Surgery Associate Director, Center for Skull Base Surgery University of Pittsburgh Medical Center 200 Lothrop Street, Pittsburgh PA, 15217 Presbyterian Hospital, Suite B400 Register Now! After registering you will receive a confirmation email containing information about joining the Webinar. Date: Wednesday July 1, 2020 Time: 3:00 PM Pacific Daylight Time, 6:00 PM Eastern Daylight Time
  2. 2 points
    Unfortunately a 4:30 pm cortisol test can't be used to diagnose or exclude Cushing's. The only useful blood measurement for cortisol would be a midnight one. You really need to do a 24 hour urinary cortisol test.
  3. 2 points
    Welcome, Ellie. I can't image how hard it would be to get a diagnosis (or not!) during these COVID times. Unfortunately, results from blood tests aren't going to be the answer - just a part of an answer. You need to get UFCs (urine free cortisol) Do you need to get a referral to an endo? They are the best to diagnose Cushing's - if you get one who is familar with testing. That's the important part. Not all endos "believe in Cushing's" which is incredible to me. Unfortunately, there's no real way of speeding a Cushing's diagnosis along. And, I don't think you'd want to (although I did when I was in the diagnosis phase!) You want to be absolutely sure that this is what you have AND the source - pituitary, adrenal, ectopic, steroid-induced... Best of luck to you and please keep us posted.
  4. 2 points
    Dr. Friedman will discuss topics including: Who should get an adrenalectomy? How do you optimally replace adrenal hormones? What laboratory tests are needed to monitor replacement? When and how do you stress dose? What about subcut cortisol versus cortisol pumps? Patient Melissa will lead a Q and A Sunday • May 17 • 6 PM PST Click here on start your meeting or https://axisconciergemeetings.webex.com/axisconciergemeetings/j.php?MTID=mb896b9ec88bc4e1163cf4194c55b248f OR Join by phone: (855) 797-9485 Meeting Number (Access Code): 802 841 537 Your phone/computer will be muted on entry. Slides will be available on the day of the talk here There will be plenty of time for questions using the chat button. Meeting Password: addison
  5. 2 points
    Hello Mary & dear Cushies!! I’ve just discovered this article two months ago and I was very pleased to speak directly to Dr. Gerardo Burton. He and his team developed a drug (21OH-6OP) which is a SPECIFIC antagonist for cortisol receptors, unlikely mifepristone which inhibits cortisol AND progesterone with so many undesired adverse effects. Unfortunately the pharmaceutical company didn’t choose this drug to start the clinical trials and so it is resting in Dr. Burton’s lab.... since 2007. The great humanity in Dr. Burton drop tears into my eyes when he told me that he would like that his whole work could help at least somebody to improve their quality of life. As a Cushing’s disease survivor ten years ago ... and now with a relapse of Cushing’s syndrome I keep wondering how is it possible that Dr. Burton’s work remains unknown, wasted, buried and in oblivion. For any of us either with Cushing’s Disease or Syndrome this drug is like the light at the end of the tunnel... I wish I could explain all this as clearly as I intended... and the reason why I post this topic is because I promised Dr. Burton I would try to help him to make his work known specially for all of us... and if somebody can help with a FDA contact and make this story known to them... that would be of so much help!!! Thank to all of you for reading this, my best wishes for all... stay safe this pandemic Regards from Querétaro, México Mayela https://www.intramed.net/contenidover.asp?contenidoid=48298
  6. 2 points
    Hello Mary!! Thank you for replying!! It was a surprise for me having a relapse... I never knew or even heard it could happen... but last year I began to feel sooooo bad... and as I’ve had so many difficulties with the doctors I consulted the first time (I visited 40 doctors in ten years ... and only 3 of them understood my symptoms)... I decided to go to the laboratory by myself and asked them to perform the tests I thought I might have needed. And so I saw the cortisol beginning to increase ... but this January I presented a tachyarrhytmia sincope and although cardiologists intended to get me through a lot of heart testing I KNEW it was high cortisol levels again which led to this condition. And that is how it was... my cortisol was twice the normal levels... and again I went to an endocrinologist and she told me ... you have Cushing again... you can imagine it’s been the worst déjà-vu in my life. The etiology of my Cushing’s Disease the first time was very uncommon, as I thankfully never had any ACTH or cortisol secreting tumor, but I presented very high levels of cortisol (over ten times normal levels) and of ACTH, beyond high levels of other pituitary hormones: prolactine , TSH, FSH, LH ( a condition known as PANHYPERPITUITARISM) besides insulin, estrogens and so on... except for somatotropin (growth hormone), almost all of my hormones were in very high levels... and I was almost dying. Ten years and forty doctors later my neurosurgeon discovered in my latest MRI that besides I had a pituitary lesion that didn’t light up in the scan, my pituitary stalk and my hypothalamus (as well as the pituitary gland -presenting empty sella) were completely compressed by a suprasellar arachnoides cyst (meninges cyst), so that the hypothalamus hormones that regulated the pituitary hormones to stop over producing were stuck and never reached the pituitary... so it (pituitary gland) was continually producing all kind of hormones (except GH) without stopping. Finally in 2009 I had a neurosurgery resecting the meninges cyst, hoping that reliefing the pituitary stalk could lead hypothalamus hormones to reach the pituitary and regulate it to a normal hormone release... and so it happened!!! A month after neurosurgery my pituitary hormones levels were totally normal as well as my cortisol... and little by little the rest of almost my other health issues released... it took me over five years to have my liver in optimal conditions (Normal oxaloacetic and pyruvic transaminases) and to leave my diabetes medication at all controlling it only with a strict diet. So the last five years I’ve just struggled with hypertension , hypoglucemia and hypotiroidism (Primary subclicinal)... until last year ... I couldn’t understand what was happening to me... I couldn’t move my muscles.. extreme fatigue and great muscle pain... so I had my doubts and was checking upon suspicious high cortisol levels. This time as well as the first time I suppress cortisol with the dexametasona test... which indicates I do not over produce cortisol because of a tumor... so the etiology is again different from what’s common. And now my latest doctor has told me that my over production of cortisol is due to my previous Cushing’s disease and panhyperpituitarism and not because any possible ACTH or cortisol tumor. I decided to investigate what could help me to stop over producing cortisol and so I found Dr. Burton’s work. After founding out his investigation was still in the dark... well I decided to help him making his work known through your Forum... but I also needed help and so I continued researching and I found Isturisa (osilodrostat - LCI-699) which had just been approved in the EU this January. And so I spoke to the Director of Recordati Rare Diseases in México City and he told me that with my diagnosis and prescription they could send me the medication. As the annual treatment is about 55K euros, they are now helping me through IMSS (Mexican Institute of Social Security) so that the Mexican Federal Government can provide me the medication at no cost for the time I need it... it’s an administrative process but we’re starting it and we expect to have good results. And by far this is how my story goes... I know it was a long reply... but I think it is important for all of us to know this uncommon etiology of the Disease... because it took me over ten years and plenty of pain and suffering to get to the point of what was causing my over production of ACTH, cortisol and almost the whole of hormones in my body... and as my neurosurgeon told me... this etiology of Cushing’s Disease doesn’t even appear in medicine books .... So I hope my medical case can help anybody that unfortunately could be in this position to find quick answers from their doctors... and maybe teach them something as I did. Thank you very much for reading this... my best wishes... stay safe ... blessings!! Regards from Querétaro México MAYELA
  7. 2 points
    Thank you so much, Mayela - I'll definitely check this out. We need all the help we can get and I'm glad that Dr. Burton is trying to help Cushing's patients. 13 years is a long time to withhold a potentially helpful drug. I'm so sorry you're having a relapse Are you planning another pituitary surgery, BLA or something else?
  8. 2 points
    Cushing syndrome, a rare endocrine disorder caused by abnormally excessive amounts of the hormone cortisol, has a new pharmaceutical treatment to treat cortisol overproduction. Osilodrostat (Isturisa) is the first FDA approved drug who either can’t undergo pituitary gland surgery or have undergone the surgery but still have the disease. The oral tablet functions by blocking the enzyme responsible for cortisol synthesis, 11-beta-hydroxylase. “Until now, patients in need of medications…have had few approved options, either with limited efficacy or with too many adverse effects. With this demonstrated effective oral treatment, we have a therapeutic option that will help address patients' needs in this underserved patient population," said Maria Fleseriu, MD, FACE, professor of medicine and neurological surgery and director of the Pituitary Center at Oregon Health Sciences University. Cushing disease is caused by a pituitary tumor that releases too much of the hormone that stimulates cortisol production, adrenocorticotropin. This causes excessive levels of cortisol, a hormone responsible for helping to maintain blood sugar levels, regulate metabolism, help reduce inflammation, assist in memory formulation, and support fetus development during pregnancy. The condition is most common among adults aged 30-50 and affects women 3 times more than men. Cushing disease can lead to a number of medical issues including high blood pressure, obesity, type 2 diabetes, blood clots in the arms and legs, bone loss and fractures, a weakened immune system, and depression. Patients with Cushing disease may also have thin arms and legs, a round red full face, increased fat around the neck, easy bruising, striae (purple stretch marks), or weak muscles. Side effects of osilodrostat occurring in more than 20% of patients are adrenal insufficiency, headache, nausea, fatigue, and edema. Other side effects can include vomiting, hypocortisolism (low cortisol levels), QTc prolongation (heart rhythm condition), elevations in adrenal hormone precursors (inactive substance converted into hormone), and androgens (hormone that regulated male characteristics). Osilodrostat’s safety and effectiveness was evaluated in a study consisting of 137 patients, of which about 75% were women. After a 24-week period, about half of patients had achieved normal cortisol levels; 71 successful cases then entered an 8-week, double-blind, randomized withdrawal study where 86% of patients receiving osilodrostat maintained normal cortisol levels, compared with 30% who were taking a placebo. In January 2020, the European Commission also granted marketing authorization for osilodrostat. From https://www.ajmc.com/newsroom/patients-with-cushing-have-new-nonsurgical-treatment-option
  9. 2 points
    The U.S. Food and Drug Administration today approved Isturisa (osilodrostat) oral tablets for adults with Cushing's disease who either cannot undergo pituitary gland surgery or have undergone the surgery but still have the disease. Cushing's disease is a rare disease in which the adrenal glands make too much of the cortisol hormone. Isturisa is the first FDA-approved drug to directly address this cortisol overproduction by blocking the enzyme known as 11-beta-hydroxylase and preventing cortisol synthesis. "The FDA supports the development of safe and effective treatments for rare diseases, and this new therapy can help people with Cushing's disease, a rare condition where excessive cortisol production puts them at risk for other medical issues," said Mary Thanh Hai, M.D., acting director of the Office of Drug Evaluation II in the FDA's Center for Drug Evaluation and Research. "By helping patients achieve normal cortisol levels, this medication is an important treatment option for adults with Cushing's disease." Cushing's disease is caused by a pituitary tumor that releases too much of a hormone called adrenocorticotropin, which stimulates the adrenal gland to produce an excessive amount of cortisol. The disease is most common among adults between the ages of 30 to 50, and it affects women three times more often than men. Cushing's disease can cause significant health issues, such as high blood pressure, obesity, type 2 diabetes, blood clots in the legs and lungs, bone loss and fractures, a weakened immune system and depression. Patients may have thin arms and legs, a round red full face, increased fat around the neck, easy bruising, striae (purple stretch marks) and weak muscles. Isturisa's safety and effectiveness for treating Cushing's disease among adults was evaluated in a study of 137 adult patients (about three-quarters women) with a mean age of 41 years. The majority of patients either had undergone pituitary surgery that did not cure Cushing's disease or were not surgical candidates. In the 24-week, single-arm, open-label period, all patients received a starting dose of 2 milligrams (mg) of Isturisa twice a day that could be increased every two weeks up to 30 mg twice a day. At the end of this 24-week period, about half of patients had cortisol levels within normal limits. After this point, 71 patients who did not need further dose increases and tolerated the drug for the last 12 weeks entered an eight-week, double-blind, randomized withdrawal study where they either received Isturisa or a placebo (inactive treatment). At the end of this withdrawal period, 86% of patients receiving Isturisa maintained cortisol levels within normal limits compared to 30% of patients taking the placebo. The most common side effects reported in the clinical trial for Isturisa were adrenal insufficiency, headache, vomiting, nausea, fatigue and edema (swelling caused by fluid retention). Hypocortisolism (low cortisol levels), QTc prolongation (a heart rhythm condition) and elevations in adrenal hormone precursors (inactive substance converted into a hormone) and androgens (hormone that regulates male characteristics) may also occur in people taking Isturisa. Isturisa is taken by mouth twice a day, in the morning and evening as directed by a health care provider. After treatment has started, a provider may re-evaluate dosage, depending upon the patient's response. Isturisa received Orphan Drug Designation, which is a special status granted to a drug intended to treat a rare disease or condition. The FDA granted the approval of Isturisa to Novartis. Media Contact: Monique Richards, 240-402-3014 Consumer Inquiries: Email, 888-INFO-FDA The FDA, an agency within the U.S. Department of Health and Human Services, protects the public health by assuring the safety, effectiveness, and security of human and veterinary drugs, vaccines and other biological products for human use, and medical devices. The agency also is responsible for the safety and security of our nation's food supply, cosmetics, dietary supplements, products that give off electronic radiation, and for regulating tobacco products. SOURCE U.S. Food and Drug Administration Related Links http://www.fda.gov From https://www.prnewswire.com/news-releases/fda-approves-new-treatment-for-adults-with-cushings-disease-301019293.html
  10. 2 points
    MENLO PARK, Calif., Aug. 28, 2019 (GLOBE NEWSWIRE) -- Corcept Therapeutics Incorporated (NASDAQ: CORT) announced today that the United States Patent and Trademark Office has issued a Notice of Allowance for a patent covering the administration of Korlym® with food. The patent will expire in November 2032. “This patent covers an important finding of our research – that for optimal effect, Korlym must be taken with food,” said Joseph K. Belanoff, MD, Corcept’s Chief Executive Officer. “Korlym’s label instructs doctors that ‘Korlym must always be taken with a meal.’” Upon issuance, Corcept plans to list the patent, entitled “Optimizing Mifepristone Absorption” (U.S. Pat. App. 13/677,465), in the U.S. Food and Drug Administration’s Approved Drug Products with Therapeutic Equivalence Evaluations (the “Orange Book”). Korlym is currently protected by ten patents listed in the Orange Book. Hypercortisolism Hypercortisolism, often referred to as Cushing’s syndrome, is caused by excessive activity of the hormone cortisol. Endogenous Cushing’s syndrome is an orphan disease that most often affects adults aged 20-50. In the United States, an estimated 20,000 patients have Cushing’s syndrome, with about 3,000 new patients diagnosed each year. Symptoms vary, but most people with Cushing’s syndrome experience one or more of the following manifestations: high blood sugar, diabetes, high blood pressure, upper-body obesity, rounded face, increased fat around the neck, thinning arms and legs, severe fatigue and weak muscles. Irritability, anxiety, cognitive disturbances and depression are also common. Hypercortisolism can affect every organ system in the body and can be lethal if not treated effectively. About Corcept Therapeutics Incorporated Corcept is a commercial-stage company engaged in the discovery and development of drugs that treat severe metabolic, oncologic and psychiatric disorders by modulating the effects of the stress hormone cortisol. Korlym® (mifepristone) was the first treatment approved by the U.S. Food and Drug Administration for patients with Cushing’s syndrome. Corcept has discovered a large portfolio of proprietary compounds, including relacorilant, exicorilant and miricorilant, that selectively modulate the effects of cortisol but not progesterone. Corcept owns extensive United States and foreign intellectual property covering the composition of its selective cortisol modulators and the use of cortisol modulators, including mifepristone, to treat a variety of serious disorders. Forward-Looking Statements Statements in this press release, other than statements of historical fact, are forward-looking statements, which are based on Corcept’s current plans and expectations and are subject to risks and uncertainties that might cause actual results to differ materially from those such statements express or imply. These risks and uncertainties include, but are not limited to, Corcept’s ability to generate sufficient revenue to fund its commercial operations and development programs; the availability of competing treatments, including generic versions of Korlym; Corcept’s ability to obtain acceptable prices or adequate insurance coverage and reimbursement for Korlym; and risks related to the development of Corcept’s product candidates, including regulatory approvals, mandates, oversight and other requirements. These and other risks are set forth in Corcept’s SEC filings, which are available at Corcept’s website and the SEC’s website. In this press release, forward-looking statements include those concerning Corcept’s plans to list the patent “Optimizing Mifepristone Absorption” in the Orange Book; Korlym’s current protection by ten patents listed in the Orange Book; and the scope and protective power of Corcept’s intellectual property. Corcept disclaims any intention or duty to update forward-looking statements made in this press release. CONTACT: Christopher S. James, MD Director, Investor Relations Corcept Therapeutics 650-684-8725 cjames@corcept.com www.corcept.com
  11. 1 point
    Study Authors: Tsung-Chieh Yao, Ya-Wen Huang, et al.; Beth I. Wallace, Akbar K. Waljee Target Audience and Goal Statement: Primary care physicians, rheumatologists, pulmonologists, dermatologists, gastroenterologists, cardiologists The goal of this study was to examine the associations between oral corticosteroid bursts and severe adverse events among adults in Taiwan. Question Addressed: What were the associations between steroid bursts and severe adverse events, specifically gastrointestinal (GI) bleeding, sepsis, and heart failure? Study Synopsis and Perspective: It has long been known that long-term use of corticosteroids can be both effective and toxic. Long-term use is associated with adverse effects such as infections, GI bleeding/ulcers, cardiovascular disease (CVD), Cushing syndrome, diabetes and metabolic syndromes, cataracts, glaucoma, and osteoporosis. Most clinical practice guidelines caution against long-term steroid use unless medically necessary. Action Points In a retrospective cohort study and self-controlled case series, prescriptions for oral steroid bursts were found to be associated with increased risks for gastrointestinal bleeding, sepsis, and heart failure within the first month after initiation, despite a median exposure of just 3 days. Note that the risks were highest 5 to 30 days after exposure, and attenuated during the subsequent 31 to 90 days. Instead, clinical practice guidelines recommend steroid bursts for inflammatory ailments such as asthma, inflammatory bowel disease, and rheumatoid arthritis. Waljee and colleagues noted in 2017 that they are most commonly used for upper respiratory infections, suggesting that many people are receiving steroids in the real world. In a retrospective cohort study and self-controlled case series, prescriptions for oral steroid bursts -- defined as short courses of oral corticosteroids for 14 or fewer days -- were found to be associated with increased risks for GI bleeding, sepsis, and heart failure within the first month after initiation, despite a median exposure of just 3 days, according to Tsung-Chieh Yao, MD, PhD, of Chang Gung Memorial Hospital in Taoyuan, and colleagues. The risks were highest 5 to 30 days after exposure, and attenuated during the subsequent 31 to 90 days, they reported in Annals of Internal Medicine. The self-controlled case series was based on national medical claims records. Included were adults, ages 20-64, covered by Taiwan's National Health Insurance in 2013-2015. Out of a population of more than 15.8 million, study authors identified 2,623,327 people who received a steroid burst during the study period. These individuals were age 38 on average, and 55.3% were women. About 85% had no baseline comorbid conditions. The most common indications for the steroid burst were skin disorders and respiratory tract infections. The incidence rates among patients prescribed steroid bursts were 27.1 per 1,000 person-years for GI bleeding (incidence rate ratio [IRR] 1.80, 95% CI 1.75-1.84), 1.5 per 1,000 person-years for sepsis (IRR 1.99, 95% CI 1.70-2.32), and 1.3 per 1,000 person-years for heart failure (IRR 2.37, 95% CI 2.13-2.63). Absolute risk elevations were similar in patients with and without comorbid conditions, meaning that the potential for harm was not limited to those at high risk for these adverse events. The study authors acknowledged that they could not adjust for disease severity and major lifestyle factors such as alcohol use, smoking, and body mass index; because these factors were static, the effect could be eliminated using the self-controlled case series design. Their reliance on prescription data also meant they could not tell if patients actually complied with oral corticosteroid therapy. Furthermore, the exclusion of the elderly and younger populations also left room for underestimation of the risks of steroid bursts, they said. Source References: Annals of Internal Medicine 2020; DOI: 10.7326/M20-0432 Editorial: Annals of Internal Medicine 2020; DOI: 10.7326/M20-4234 Study Highlights and Explanation of Findings: Over the 3-year study period, steroid bursts were commonly prescribed to adults. Such prescriptions were written for common conditions, including skin disorders and upper respiratory tract infections. The highest risks for GI bleeding, sepsis, and heart failure occurred within the first month after receipt of the steroid burst, and this risk was attenuated during the subsequent 31 to 90 days. "Our findings are important for physicians and guideline developers because short-term use of oral corticosteroids is common and the real-world safety of this approach remains unclear," the researchers wrote. Notably, one corticosteroid that fits the bill is dexamethasone -- a medication that holds promise for the treatment of critically ill COVID-19 patients, although it is not generally prescribed orally for these patients. Based on preliminary results, the NIH's COVID-19 treatment guidelines panel recommended the use of "dexamethasone (at a dose of 6 mg per day for up to 10 days) in patients with COVID-19 who are mechanically ventilated and in patients with COVID-19 who require supplemental oxygen but who are not mechanically ventilated." In addition, they recommend "against using dexamethasone in patients with COVID-19 who do not require supplemental oxygen." "We are now learning that bursts as short as 3 days may increase risk for serious AEs [adverse events], even in young and healthy people. As providers, we must reflect on how and why we prescribe corticosteroids to develop strategies that prevent avoidable harms," wrote Beth Wallace, MD, and Akbar Waljee, MD, both of the VA Ann Arbor Healthcare System and Michigan Medicine. On the basis of the reported risk differences in the study, Wallace and Waljee calculated that one million patients exposed to corticosteroid bursts experienced 41,200 GI bleeding events, 400 cases of sepsis, and 4,000 cases of new heart failure per year that were directly attributed to this brief treatment. "Although many providers already avoid corticosteroids in elderly patients and those with comorbid conditions, prescribing short bursts to 'low-risk' patients has generally been viewed as innocuous, even in cases where the benefit is unclear. However, Yao and colleagues provide evidence that this practice may risk serious harm, making it difficult to justify in cases where corticosteroid use lacks evidence of meaningful benefit," they wrote in an accompanying editorial. "Medication-related risks for AEs can, of course, be outweighed by major treatment benefit. However, this study and prior work show that corticosteroid bursts are frequently prescribed for self-limited conditions, where evidence of benefit is lacking," Wallace and Waljee noted. "As we reflect on how to respond to these findings, it is useful to note the many parallels between use of corticosteroid bursts and that of other short-term medications, such as antibiotics and opiates. All of these treatments have well-defined indications but can cause net harm when used -- as they frequently are -- when evidence of benefit is low," they emphasized. Last Updated August 07, 2020 Reviewed by Dori F. Zaleznik, MD Associate Clinical Professor of Medicine (Retired), Harvard Medical School, Boston Primary Source Annals of Internal Medicine Source Reference: Yao TC, et al "Association between oral corticosteroid bursts and severe adverse events: a nationwide population-based cohort study" Ann Intern Med 2020; DOI: 10.7326/M20-0432. Secondary Source Annals of Internal Medicine Source Reference: Wallace BI, Waljee AK "Burst case scenario: why shorter may not be any better when it comes to corticosteroids" Ann Intern Med 2020; DOI: 10.7326/M20-4234. Additional Source MedPage Today Source Reference: Lou N "Sobering Data on Risks of Short-Term Oral Corticosteroids" 2020. From https://www.medpagetoday.org/primarycare/generalprimarycare/87959?xid=nl_mpt_DHE_2020-08-08&eun=g1406328d0r&utm_term=NL_Daily_DHE_dual-gmail-definition&vpass=1
  12. 1 point
    Wow 8.4 on the first try. These are textbook adrenal numbers. I hope your doctors come to their senses.
  13. 1 point
    I hope your phone appointment went well and- you got some answers! Please keep us posted!
  14. 1 point
    Hypercortisolism Quickly Reversed With Oral Tx Oral osilodrostat (Isturisa) normalized cortisol levels in Cushing's disease patients who were ineligible for or not cured with pituitary surgery, according to the phase III LINC 3 trial. After 24 weeks of open-label treatment with twice-daily osilodrostat, 53% of patients (72 of 137; 95% CI 43.9-61.1) were able to maintain a complete response -- marked by mean 24-hour urinary free cortisol concentration of the upper limit of normal or below -- without any uptitration in dosage after the initial 12-week buildup phase, reported Rosario Pivonello, MD, of the Università Federico II di Napoli in Italy, and colleagues. As they explained in their study online in The Lancet Diabetes & Endocrinology, following the 24-week open-label period these complete responders to treatment were then randomized 1:1 to either remain on osilodrostat or be switched to placebo. During this 10-week randomization phase, 86% of patients maintained their complete cortisol response if they remained on osilodrostat versus only 29% of those who were switched to placebo (odds ratio 13.7, 95% CI 3.7-53.4, P<0.0001) -- meeting the trial's primary endpoint. As for adverse events, more than half of patients experienced hypocortisolism, and the most common adverse events included nausea (42%), headache (34%), fatigue (28%), and adrenal insufficiency (28%). "Alongside careful dose adjustments and monitoring of known risks associated with osilodrostat, our findings indicate a positive benefit-risk consideration of treatment for most patients with Cushing's disease," the researchers concluded. This oral inhibitor of 11β-­hydroxylase -- the enzyme involved in the last step of cortisol synthesis -- was FDA approved in March 2020 based on these findings, and is currently available in 1 mg, 5 mg, and 10 mg film-coated tablets. The prospective trial, consisting of four periods, included individuals between the ages of 18 and 75 with confirmed persistent or recurrent Cushing's disease -- marked by a mean 24-h urinary free cortisol concentration over 1.5 times the upper limit of normal (50 μg/24 hours), along with morning plasma adrenocorticotropic hormone above the lower limit of normal (9 pg/mL). All individuals had either undergone prior pituitary surgery or irradiation, were not deemed to be candidates for surgery, or had refused to have surgery. During the first open-label study period, all participants took 2 mg of oral osilodrostat twice daily, spaced 12 hours apart. This dose was then titrated up if the average of three 24-h urinary free cortisol concentration samples exceeded the upper limit of normal. During the second study period, which spanned weeks 12 through 24, all participants remained on their osilodrostat therapeutic dose. By week 24, about 62% of the participants were taking a therapeutic dose of 5 mg or less twice daily; only about 6% of patients needed a dose higher than 10 mg twice daily. In the third study period, which spanned weeks 26 through 34, "complete responders" who achieved normal cortisol levels were then randomized to continue treatment or be switched to placebo, while those who did not fully respond to treatment continued on osilodrostat. For the fourth study period, from weeks 24 through 48, all participants were switched back to active treatment with osilodrostat. Overall, 96% of participants were able to achieve a complete response at some point while on osilodrostat treatment, with two-thirds of these responders maintaining this normalized cortisol level for at least 6 months. The median time to first complete response was 41 days. Metabolic profiles also improved along with this reduction in cortisol levels. These included improvements in body weight, body mass index, fasting plasma glucose, both systolic and diastolic blood pressures, and total cholesterol levels. "Given the known clinical burden of cardiovascular risk associated with Cushing's disease, the improvement in clinical features shown here indicates important benefits of osilodrostat," the researchers said. "By improving multiple cardiovascular risk factors, our findings are likely to be clinically relevant." Along with metabolic improvements, patients also had "clinically meaningful improvements" in quality of life, as well as reductions in depressive symptoms measured by the Beck Depression Inventory score, the investigators reported. One limitation to the trial, they noted, was an inability to control for concomitant medications, since nearly all participants were taking other medications, particularly antihypertensive and antidiabetic therapies. "Further examination of the effects of osilodrostat on the clinical signs of Cushing's disease, and the reasons for changes in concomitant medications and the association between such medications and clinical outcomes would be valuable," Pivonello's group said. From https://www.medpagetoday.com/endocrinology/generalendocrinology/87827
  15. 1 point
    Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the viral strain that has caused the coronavirus disease 2019 (COVID-19) pandemic, has presented healthcare systems around the world with an unprecedented challenge. In locations with significant rates of viral transmission, social distancing measures and enforced ‘lockdowns’ are the new ‘norm’ as governments try to prevent healthcare services from being overwhelmed. However, with these measures have come important challenges for the delivery of existing services for other diseases and conditions. The clinical care of patients with pituitary disorders typically involves a multidisciplinary team, working in concert to deliver timely, often complex, disease investigation and management, including pituitary surgery. COVID-19 has brought about major disruption to such services, limiting access to care and opportunities for testing (both laboratory and radiological), and dramatically reducing the ability to safely undertake transsphenoidal surgery. In the absence of clinical trials to guide management of patients with pituitary disease during the COVID-19 pandemic, herein the Professional Education Committee of the Pituitary Society proposes guidance for continued safe management and care of this population. Introduction In many centers worldwide, the evaluation and treatment of pituitary disorders has already been substantially impacted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the viral strain that has caused the coronavirus disease 2019 (COVID-19) pandemic. With reduced access to routine clinical services, patients with suspected or confirmed pituitary disease face the prospect of delays in diagnosis and implementation of effective treatment plans. Furthermore, patients undergoing surgery may be at increased risk from COVID-19, whilst the risk of infection to healthcare providers during pituitary surgery is of particular concern. Herein, we discuss several clinical scenarios where clinical care can be adjusted temporarily without compromising patient outcomes. For this expert guidance, The Pituitary Society Professional Education Committee, which includes neuroendocrinologists and neurosurgeons from four continents, held an online video conference call with subsequent discussions conducted through email communications. The suggestions are not evidence-based due to the novelty and timing of the pandemic; furthermore, re-evaluation every few months in light of emerging data, is recommended. The approach will also likely vary from country to country depending on the risk of viral infection, local rules for “lockdown”, and the capabilities of individual health care systems. Pituitary surgery challenges during the COVID-19 pandemic The significant challenges to pituitary surgery presented by COVID-19 can be considered in terms of the phase of the pandemic, the patient, the surgeon, and the healthcare institution (Table 1). Table 1 Pituitary surgery challenges and recommendations during COVID-19 pandemic Full size table The World Health Organization (WHO) recognizes several phases of a pandemic wave [1]. When the pandemic is in progress (WHO pandemic phase descriptions; Phase 6) [2] there is a high prevalence of active cases. In the immediate post-peak period, the pandemic activity appears to wane, but active cases remain, and additional waves may follow. Previous pandemics have had many such waves, each separated by several months (www.cdc.gov). The corollary is that there will remain a significant possibility of patients and surgeons contracting COVID-19 until a vaccine is developed or herd immunity is achieved by other means. The patient requiring pituitary surgery may be especially vulnerable to COVID-19 due to age and/or comorbidities. This is particularly true of patients with functioning pituitary adenomas such as those with Cushing’s disease (CD), where cortisol excess results in immunosuppression, hypercoagulability, diabetes mellitus and hypertension, and acromegaly which is also frequently complicated by diabetes mellitus and hypertension. Moreover, the risk for patients undergoing surgery that develop COVID-19 in the perioperative period appears to be very high. In a retrospective analysis of 34 patients who underwent elective—non pituitary—surgeries during the incubation period of COVID-19, 15 (44.1%) patients required admission to the intensive care unit, and 7 (20.5%) died [3]. Although this study included cases of variable technical difficulty, complexity and risk—from excision of breast lump to total hip replacement—we would suggest that patients undergoing pituitary surgery that develop COVID-19 are likely to be at similar or greater risk. These risks must be balanced carefully against the natural history of pituitary disease and, in particular, whether undue delay may result in irreversible morbidity such as visual loss in patients with pituitary apoplexy. The surgeon remains in direct contact with the patient throughout their operation and is therefore at risk of contracting COVID-19 if the patient has an active infection. Iorio-Morin et al. [4] suggest that surgeons performing transsphenoidal pituitary surgery (TSS) may be at the greatest risk, because such surgery is performed under general anesthesia, requiring intubation and extubation, exposes the colonized nasal mucosa, and usually involves sphenoid drilling, which can result in aerosolization of contaminated tissues. The healthcare institution will invariably divert resources from elective services to support the care of patients with COVID-19, with a knock-on effect on the capacity to manage patients with pituitary disease (Table 1). Bernstein et al. [5] suggest that surgery is particularly affected in such reorganization, because of both the need for redeployment of anesthesiologists able to manage patient airways, and availability of protective physical resources such as masks, gowns, and gloves (personal protective equipment; PPE). Furthermore, in areas with high number of infections, several operating rooms (OR)s were converted into intensive care units (ICU) to treat patients with COVID-19, thus limiting patients’ access to elective surgery even more. Recommendations for pituitary surgery When the viral risk is decreasing in a specific geographic area, we would advocate a stepwise, but flexible normalization of activity, addressing each of the aforementioned factors. Burke et al. [6] proposed a staged volume limiting approach to scheduling surgical cases depending on the number of community cases and inpatients with COVID-19, and staffing shortages. In extreme cases, where significant assistance is required from outside institutions, only emergent cases can proceed. Until further data become available, all patients undergoing pituitary surgery should undergo screening for COVID-19, until a vaccine is developed or herd immunity is achieved by other means. At the least, we recommend screening patients for cough, fever, or other recognized symptoms of infection with SARS-CoV-2, and taking swab samples for testing if there is any clinical suspicion. Depending on the level of COVID-19 activity in the community, and available resources, a more exhaustive strategy may be appropriate, including isolation of patients for up to 2 weeks before surgery, paired swabs and/or serological tests for all patients irrespective of symptoms, and routine chest X-ray or chest computed tomography (CT), depending on local guidance. In patients with COVID-19 in whom surgery is indicated, in general we recommend delaying surgery if possible, ideally until patients no longer have symptoms and have a negative swab test result. The nature of the patient’s pituitary disease is an important consideration, and we propose stratifying cases as emergent, urgent, or elective. We recommend that patients continue to be operated on in an emergent fashion if they present with pituitary apoplexy, acute severe visual loss, or other significant mass effect, or if there is concern regarding malignant pathology. Selected patients with slowly progressive visual loss, functioning tumors with aggressive clinical features, and those with an unclear diagnosis, may also benefit from urgent (but not emergent) surgery, with decisions made on a case-by-case basis. Patients with incidental and asymptomatic tumors, known nonfunctioning adenomas [7] or functioning tumors, which are well controlled with medical therapy, can be scheduled as elective cases. In most cases, TSS remains the safest, most effective, and most efficient approach to pituitary tumors. In a series of 9 consecutive patients without COVID-19 undergoing pituitary and skull base surgery during the pandemic, Kolias et al. [8] reported that none of the patients or staff contracted COVID-19 following adoption of a standardized risk-mitigation strategy. In the rare instances where a patient with COVID-19 requires emergent surgery that cannot be deferred, alternative transcranial approaches may be considered (avoiding nasal mucosa). To replace high-speed drilling, the use of non-powered tools such as rongeurs and chisels has been recommended. If this is not possible large suction tubes can be used to aspirate as much particulate matter as possible [9]. In such cases, the availability and use of PPE, and in particular filtering facepiece (FFP3) respirators, is mandated. Depending on the level of COVID-19 activity in the community, and the availability and effectiveness of testing, PPE may be appropriate in all cases. At an institutional level, there must remain flexibility in anticipation of further waves of COVID-19. This necessitates a reduction in capacity, particularly in available ICU beds, that must be recognized when scheduling challenging surgical cases. In the long term, resumption of full elective workloads depends on wider national and international factors, including widespread testing, and widespread immunity through vaccination or other means. Pituitary diseases diagnosis and management Acromegaly Acromegaly, a condition that arises from growth hormone (GH) excess, generally occurs as a result of autonomous GH secretion from a somatotroph pituitary adenoma [10, 11], is associated with substantial morbidity and excess mortality, which can be mitigated by prompt and adequate treatment [12]. Diagnosis is often delayed because of the low prevalence of the disease, the frequently non-specific nature of presenting symptoms, and the typically subtle progression of clinical features [10, 11]. During the COVID-19 pandemic many outpatient clinics have closed or limited work hours. Patients are often reluctant to seek care out of fear of possible exposure to the coronavirus. Therefore, even longer diagnostic delays are anticipated. In addition, patients who present with vision loss and larger tumors encroaching upon the optic apparatus are at risk for experiencing persistent visual compromise unless the optic chiasm and nerves are promptly decompressed. To improve patient access to care and minimize potentially deleterious delays in diagnosis and treatment, clinicians may conduct virtual visits (VV) using secure, internet-based electronic medical record platforms. A detailed history can be obtained and a limited physical examination is possible, including inspection of the face, skin and extremities. Diagnosis Establishing the diagnosis of acromegaly requires testing of serum insulin-like growth factor-I (IGF-I) levels [11] (Box 1). Access to accurate IGF-I assays is critical in light of the substantial analytical and post-analytical problems that have plagued several IGF-I immunoassays. While the oral glucose tolerance test (OGTT) is considered the diagnostic “gold standard”, this test is not essential in many patients, including those with a clear-cut clinical picture and an unequivocally elevated serum IGF-I level. Deferring the lengthy (2-h) OGTT may minimize the risk of potential exposure to infectious agents. Given the over-representation of macroadenomas in patients with acromegaly, pituitary imaging is indicated, preferably by a pituitary-specific magnetic resonance imaging (MRI) protocol, although CT may be performed to rule out a large tumor if MRI is not feasible. Obtaining imaging at satellite sites detached from major hospitals may also decrease the risk of infection exposure. Management Transsphenoidal pituitary surgery remains the treatment of choice for most patients with acromegaly [10, 11], and patients with visual compromise as a result of a pituitary adenoma compressing the optic apparatus should still undergo pituitary surgery promptly. Other patients could be treated medically until the pandemic subsides. Medical treatment options are somatostatin receptor ligands (SRLs), octreotide long-acting release (LAR), lanreotide depot and pasireotide LAR, pegvisomant and cabergoline (used off-label) [13]. Medical therapies can be effective in providing symptomatic relief, control GH excess or action, and potentially reduce tumor size (except pegvisomant, which does not have direct antiproliferative effects). Preoperative medical therapy has been reported to improve surgical outcomes in some, but not all studies. Pasireotide, which potentially can induce QTc prolongation, should be used with caution in patients who are taking, either as prophylaxis or treatment, medications for COVID-19 (azithromycin, hydroxychloroquine), which can also have an effect on QTc interval. Furthermore, as hyperglycemia is very frequent in patients treated with pasireotide and needs close monitoring at start of the treatment, this treatment should be reserved for truly resistant cases, with large tumors and who cannot have surgery yet. Notably, lanreotide depot, cabergoline or pegvisomant can be administered by the patient or a family member and therefore an in-person visit to a clinic is not required. If SRLs that require health care professional administration are required, raising the dose may allow the interval between injections to be extended beyond 4 weeks while maintaining disease control. Virtual visits can be implemented to monitor the patient’s course and response to medical therapy during the pandemic. Careful management of comorbidities associated with acromegaly remains an essential part of patient care [14, 15]. Prolactinomas Hyperprolactinemia may be physiological in origin or arise because of an underlying pathophysiologic cause, medication use or laboratory artifact. Therefore, an initial evaluation for hyperprolactinemia should include a comprehensive medication history, a thorough evaluation for secondary causes, including primary hypothyroidism, and a careful assessment for clinical features of hyperprolactinemia, including hypogonadism and galactorrhea. Unless a secondary cause of hyperprolactinemia can be established definitively, further investigation is indicated to evaluate the etiology of hyperprolactinemia. Diagnosis The diagnosis of a lactotroph adenoma can be inferred in most patients based on the presence of a pituitary adenoma and an elevated prolactin level, which is typically proportionate in magnitude to adenoma size. Pituitary imaging (MRI or CT) is therefore a key step in the investigation of hyperprolactinemia. Evaluation for hypopituitarism is also necessary. Management Although observation and routine follow-up with serial prolactin levels and imaging is acceptable for patients who are asymptomatic and who have a microadenoma, most patients diagnosed with a prolactinoma will require treatment. Dopamine-agonists (DA) can normalize prolactin levels and lead to reduction in size of the lactotroph adenoma [16]. In patients who have a microadenoma and who are not seeking fertility, hormone-replacement therapy may also be appropriate if serum prolactin is routinely followed and imaging performed as necessary. Medical therapy can be managed effectively and efficiently via VVs coupled with laboratory/imaging studies as needed. However, in all patients in whom a DA will be initiated, it is critical that a comprehensive psychiatric history is obtained prior to commencing treatment. Patients may not readily volunteer their psychiatric history and may not appreciate the relevance of such information. For example, until specifically questioned about their psychiatric history, the patient described in the illustrative case (Box 2) did not report a history of severe depression, suicide attempt and prolonged psychiatric hospitalization 8 months prior to presentation with hyperprolactinemia. At the time of the visit, he was not taking any psychiatric medications and was not under the care of a mental health team. Given this patient’s significant psychiatric history, lack of ongoing psychiatric care, and the well-recognized adverse effects of DA therapy, including increased impulsivity, depression and psychosis [17], a DA was not initiated. Counseling on potential DA side-effects is crucial, as they may also present in individuals with no prior psychiatric history [17]. Furthermore, during the COVID-19 pandemic when there is reduced access to routine medical and mental health care, patients who develop symptoms of severe depression may not have ready access to mental health services, or may not seek care. Therefore, it is particularly important to make patients aware of these potential side effects and the critical importance of reporting them. In the small number of patients for whom medical therapy is not possible and where surveillance is not appropriate (e.g., macroprolactinoma with visual loss) the risks and benefits of surgical intervention will need to be carefully weighed. Cushing’s disease Left untreated, CD has significant morbidity and mortality, and delays in diagnosis (from a few months to even years) are common. Clinical presentation is also very variable with some patients having subtle symptoms while others present with more striking/classical features. Severe hypercortisolemia induces immunosuppression, which may place patients with untreated CD at particular risk from COVID-19. New patients referred for endocrinology evaluation with clinical suspicion of Cushing’s Diagnosis Screening for, and confirmation of Cushing’s syndrome (CS) and, furthermore, localization for CD is laborious and requires serial visits and testing procedures [18, 19]. If initial laboratory abnormalities are consistent with hypercortisolemia, a VV should allow for an estimate of the severity of clinical presentation and facilitate planning for further testing and treatment. Careful questioning for potential causes of exogenous CS (including, but not limited to, history of high-dose oral corticosteroids, intraarticular injections or topical preparations) is an important first step. Subsequently, establishing the likelihood and pretest probability of CS is more important than ever now, when testing may be delayed. While presentation varies significantly between patients, some features, although not all highly sensitive, are more specific, e.g. easy bruising, facial plethora, large wide > 1 cm violaceous striae, proximal weakness and hypokalemia. Diagnosis of CS is often challenging even under normal circumstances, however, a diagnosis by VV is more nuanced and difficult. Conversely, if a patient has a high likelihood of CS, we recommend limited laboratory evaluation (urinary free cortisol (UFC), adrenocorticotropic hormone (ACTH), liver panel, basic metabolic panel), preferably at a smaller local laboratory rather than a Pituitary Center, to reduce viral risk exposure. Salivary cortisol samples could represent a hazard for laboratory staff and they are prohibited in some countries [18, 19]. In the US, laboratories have continued to process salivary cortisol samples and salivary cortisol has higher sensitivity compared with UFC and has the convenience of mailing multiple specimens at a time, without travel [18, 19]. Though usually we strongly recommend sequential laboratory testing under normal circumstances, limiting trips to a laboratory is preferred during COVID-19. If preliminary assessment confirms ACTH-dependent CS [18, 19] and no visual symptoms are reported, imaging may be delayed. However, in the presence of any visual symptoms, and recognizing the challenges of undertaking a formal visual field assessment, proceeding directly with MRI or CT (shorter exam time and easier machine access) imaging, will allow confirmation or exclusion of a large pituitary adenoma compressing the optic chiasm. If the latter is confirmed, the patient will need to be evaluated by a neurosurgeon. In contrast, a small pituitary adenoma may not be visible on CT, but in such cases MRI may be deferred for a few months until COVID-19 restrictions limiting access to care are lifted. Another VV will help to decide, in conjunction with patient’s preference, the best next step, which in cases of more severe clinical Cushing’s, and in the absence of a large pituitary adenoma, would be medical therapy. The magnitude of 24 h-UFC elevation could also represent a criterion for primary therapy, since higher values have been associated with increased risk of infection. In parallel, it is also important to address comorbidities including diabetes mellitus, hypertension and hyperlipidemia. In light of the increased risk of venous thromboembolism, in discussion with primary care providers, plans for regular mobilization/exercise as permitted (including at home when orders to stay in are in place) and/or prophylactic low weight molecular heparin should be considered. Management First line medical therapy options vary, depending on country availability, regulatory approval and patient comorbidities. Ideally, an oral medication, which is easier to administer is preferred; options include ketoconazole, osilodrostat or metyrapone [20, 21]. Cabergoline therapy, which has lesser efficacy [20, 21] compared with adrenal steroidogenesis inhibitors, can be also attempted in very mild cases. The initial laboratory profile should be reviewed to exclude significant abnormalities of renal and/or liver function prior to commencing treatment. Starting doses of all medications should be the lowest possible to avoid adrenal insufficiency (AI) and up titration should be slow, with VVs weekly if possible. All patients with CS on any type of medical therapy should have prescribed glucocorticoids (GC) both in oral and injectable forms available at home and information regarding AI should be provided during a VV when starting therapy for CS. Down titration of other medications for diabetes and hypertension may also be needed over time. Pasireotide (both subcutaneous and LAR preparations) would be a second line option, reflecting higher risk of significant hyperglycemia that would require treatment [22]. If the clinical features of CS are mild and longstanding, with no acute deterioration, another possibility is to aggressively treat the associated comorbidities for a few months; depending on local circumstances, this may actually be less risky for the patient by avoiding the risk of AI/crisis and the need for an emergency department (ED) visit and/or admission. For patients with Cushing’s disease with endocrinology chronic care Patients in remission after surgery with adrenal insufficiency on glucocorticoid replacement These patients are likely to remain at slightly higher risk of COVID-19 infection due to immunosuppression from previous hypercortisolemia. Furthermore, GC doses should be adjusted to prevent adrenal crisis and visits to an ED. Lower GC daily doses (10–15 mg hydrocortisone/day) are now frequently used for replacement and virtual and/or phone visits are encouraged to evaluate an appropriate regimen and sufficient supplies of medication and injectable GC (at home) should be prescribed. Patients with potential symptoms of under replacement may require an increase in daily dose, while balancing any risk of GC over replacement and possible consequent immunosuppression. Patients in non-remission treated with medical therapy (dependent on country availability) Doses may need to be adjusted to reduce the risk of AI/crisis and reduce the need for serial laboratory work. Monthly or bimonthly VVs are appropriate for clinical evaluation and up titration should be slower than usual. Patients with CD on medical therapy need to have at home prescriptions for oral and injectable GC and instruction on AI surveillance. Patients should also be advised, that if they develop a fever, to stop Cushing’s medication for few days; if they develop AI symptoms, GC administration will be required. In some countries, block and replace regimens are also employed to avoid risk of AI. Of note, for mifepristone, a glucocorticoid receptor (GR) antagonist, patients will require much higher doses of GC to reverse the blockade (1 mg of dexamethasone approximately per 400 mg of mifepristone) and for several days, as drug metabolites also have GR antagonist effects. Furthermore, for all patients who have made dose changes or discontinued medications for Cushing’s, it is essential to follow very closely and consider adjustments in the doses of concomitant medications, especially insulin, other antidiabetic and antihypertensive medications, and potassium supplements. If patients have history of radiotherapy and are still on medications for CD, a VV every few months should be performed to determine if anti-Cushing’s treatment can be slowly down-titrated (to avoid AI). A morning serum cortisol would be ideal to rule out AI off medications, however, if laboratory testing cannot be undertaken safely, clinical evaluation by serial VVs can be helpful. While head-to-head data will never be available, in COVID-19 hotspots, given the higher risk of infection with laboratory testing or face to face visits, mild hypercortisolemia might be “better” than adrenal crisis, especially in the short term! Patients with CD have increased rates of depression, anxiety and can have decreased quality of life (QoL) even when in long-term remission, thus in the challenging circumstances of the current pandemic it is it even more important to focus on psychological evaluation during virtual endocrinology visits, with referral to virtual counseling as needed. From https://link.springer.com/article/10.1007/s11102-020-01059-7?utm_source=newsletter_370
  16. 1 point
    I think we always knew Cushing's and pregnancy were related... Abstract Cushing’s syndrome (CS) during pregnancy is very rare with a few cases reported in the literature. Of great interest, some cases of CS during pregnancy spontaneously resolve after delivery. Most studies suggest that aberrant luteinizing hormone (LH)/human chorionic gonadotropin (hCG) receptor (LHCGR) seems to play a critical role in the pathogenesis of CS during pregnancy. However, not all women during pregnancy are observed cortisol hypersecretion. Moreover, some cases of adrenal tumors or macronodular hyperplasia with LHCGR expressed, have no response to hCG or LH. Therefore, alternative pathogenic mechanisms are indicated. It has been recently reported that estrogen binding to estrogen receptor α (ERα) could enhance the adrenocortical adenocarcinoma (ACC) cell proliferation. Herein, we hypothesize that ERα is probably involved in CS development during pregnancy. Better understanding of the possible mechanism of ERα on cortisol production and adrenocortical tumorigenesis will contribute to the diagnosis and treatment of CS during pregnancy. Read the entire article here: https://www.sciencedirect.com/science/article/pii/S0306987720303893?via%3Dihub
  17. 1 point
    Presented by Georgios A. Zenonos, MD Assistant Professor of Neurological Surgery Associate Director, Center for Skull Base Surgery University of Pittsburgh Medical Center 200 Lothrop Street, Pittsburgh PA, 15217 Presbyterian Hospital, Suite B400 No Registration is Required. It will be webcast by Microsoft Teams. Click here to attend. Date: Friday, July 17, 2020 Time: 10:00 AM Pacific Daylight Time, 1:00 PM Eastern Daylight Time
  18. 1 point
    Yes, that is common.
  19. 1 point
    https://doi.org/10.1016/S2213-8587(20)30215-1 Over the past few months, COVID-19, the pandemic disease caused by severe acute respiratory syndrome coronavirus 2, has been associated with a high rate of infection and lethality, especially in patients with comorbidities such as obesity, hypertension, diabetes, and immunodeficiency syndromes.1 These cardiometabolic and immune impairments are common comorbidities of Cushing's syndrome, a condition characterised by excessive exposure to endogenous glucocorticoids. In patients with Cushing's syndrome, the increased cardiovascular risk factors, amplified by the increased thromboembolic risk, and the increased susceptibility to severe infections, are the two leading causes of death.2 In healthy individuals in the early phase of infection, at the physiological level, glucocorticoids exert immunoenhancing effects, priming danger sensor and cytokine receptor expression, thereby sensitising the immune system to external agents.3 However, over time and with sustained high concentrations, the principal effects of glucocorticoids are to produce profound immunosuppression, with depression of innate and adaptive immune responses. Therefore, chronic excessive glucocorticoids might hamper the initial response to external agents and the consequent activation of adaptive responses. Subsequently, a decrease in the number of B-lymphocytes and T-lymphocytes, as well as a reduction in T-helper cell activation might favour opportunistic and intracellular infection. As a result, an increased risk of infection is seen, with an estimated prevalence of 21–51% in patients with Cushing's syndrome.4 Therefore, despite the absence of data on the effects of COVID-19 in patients with Cushing's syndrome, one can make observations related to the compromised immune state in patients with Cushing's syndrome and provide expert advice for patients with a current or past history of Cushing's syndrome. Fever is one of the hallmarks of severe infections and is present in up to around 90% of patients with COVID-19, in addition to cough and dyspnoea.1 However, in active Cushing's syndrome, the low-grade chronic inflammation and the poor immune response might limit febrile response in the early phase of infection.2 Conversely, different symptoms might be enhanced in patients with Cushing's syndrome; for instance, dyspnoea might occur because of a combination of cardiac insufficiency or weakness of respiratory muscles.2 Therefore, during active Cushing's syndrome, physicians should seek different signs and symptoms when suspecting COVID-19, such as cough, together with dysgeusia, anosmia, and diarrhoea, and should be suspicious of any change in health status of their patients with Cushing's syndrome, rather than relying on fever and dyspnoea as typical features. The clinical course of COVID-19 might also be difficult to predict in patients with active Cushing's syndrome. Generally, patients with COVID-19 and a history of obesity, hypertension, or diabetes have a more severe course, leading to increased morbidity and mortality.1 Because these conditions are observed in most patients with active Cushing's syndrome,2 these patients might be at an increased risk of severe course, with progression to acute respiratory distress syndrome (ARDS), when developing COVID-19. However, a key element in the development of ARDS during COVID-19 is the exaggerated cellular response induced by the cytokine increase, leading to massive alveolar–capillary wall damage and a decline in gas exchange.5 Because patients with Cushing's syndrome might not mount a normal cytokine response,4 these patients might parodoxically be less prone to develop severe ARDS with COVID-19. Moreover, Cushing's syndrome and severe COVID-19 are associated with hypercoagulability, such that patients with active Cushing's syndrome might present an increased risk of thromboembolism with COVID-19. Consequently, because low molecular weight heparin seems to be associated with lower mortality and disease severity in patients with COVID-19,6 and because anticoagulation is also recommended in specific conditions in patients with active Cushing's syndrome,7 this treatment is strongly advised in hospitalised patients with Cushing's syndrome who have COVID-19. Furthermore, patients with active Cushing's syndrome are at increased risk of prolonged duration of viral infections, as well as opportunistic infections, particularly atypical bacterial and invasive fungal infections, leading to sepsis and an increased mortality risk,2 and COVID-19 patients are also at increased risk of secondary bacterial or fungal infections during hospitalisation.1 Therefore, in cases of COVID-19 during active Cushing's syndrome, prolonged antiviral treatment and empirical prophylaxis with broad-spectrum antibiotics1, 4 should be considered, especially for hospitalised patients (panel). Panel Risk factors and clinical suggestions for patients with Cushing's syndrome who have COVID-19 Reduction of febrile response and enhancement of dyspnoea Rely on different symptoms and signs suggestive of COVID-19, such as cough, dysgeusia, anosmia, and diarrhoea. Prolonged duration of viral infections and susceptibility to superimposed bacterial and fungal infections Consider prolonged antiviral and broad-spectrum antibiotic treatment. Impairment of glucose metabolism (negative prognostic factor) Optimise glycaemic control and select cortisol-lowering drugs that improve glucose metabolism. Hypertension (negative prognostic factor) Optimise blood pressure control and select cortisol-lowering drugs that improve blood pressure. Thrombosis diathesis (negative prognostic factor) Start antithrombotic prophylaxis, preferably with low-molecular-weight heparin treatment. Surgery represents the first-line treatment for all causes of Cushing's syndrome,8, 9 but during the pandemic a delay might be appropriate to reduce the hospital-associated risk of COVID-19, any post-surgical immunodepression, and thromboembolic risks.10 Because immunosuppression and thromboembolic diathesis are common Cushing's syndrome features,2, 4 during the COVID-19 pandemic, cortisol-lowering medical therapy, including the oral drugs ketoconazole, metyrapone, and the novel osilodrostat, which are usually effective within hours or days, or the parenteral drug etomidate when immediate cortisol control is required, should be temporarily used.9 Nevertheless, an expeditious definitive diagnosis and proper surgical resolution of hypercortisolism should be ensured in patients with malignant forms of Cushing's syndrome, not only to avoid disease progression risk but also for rapidly ameliorating hypercoagulability and immunospuppression;9 however, if diagnostic procedures cannot be easily secured or surgery cannot be done for limitations of hospital resources due to the pandemic, medical therapy should be preferred. Concomitantly, the optimisation of medical treatment for pre-existing comorbidities as well as the choice of cortisol-lowering drugs with potentially positive effects on obesity, hypertension, or diabates are crucial to improve the eventual clinical course of COVID-19. Once patients with Cushing's syndrome are in remission, the risk of infection is substantially decreased, but the comorbidities related to excess glucocorticoids might persist, including obesity, hypertension, and diabetes, together with thromboembolic diathesis.2 Because these are features associated with an increased death risk in patients with COVID-19,1 patients with Cushing's syndrome in remission should be considered a high-risk population and consequently adopt adequate self-protection strategies to minimise contagion risk. In conclusion, COVID-19 might have specific clinical presentation, clinical course, and clinical complications in patients who also have Cushing's syndrome during the active hypercortisolaemic phase, and therefore careful monitoring and specific consideration should be given to this special, susceptible population. Moreover, the use of medical therapy as a bridge treatment while waiting for the pandemic to abate should be considered. RP reports grants and personal fees from Novartis, Strongbridge, HRA Pharma, Ipsen, Shire, and Pfizer; grants from Corcept Therapeutics and IBSA Farmaceutici; and personal fees from Ferring and Italfarmaco. AMI reports non-financial support from Takeda and Ipsen; grants and non-financial support from Shire, Pfizer, and Corcept Therapeutics. BMKB reports grants from Novartis, Strongbridge, and Millendo; and personal fees from Novartis and Strongbridge. AC reports grants and personal fees from Novartis, Ipsen, Shire, and Pfizer; personal fees from Italfarmaco; and grants from Lilly, Merck, and Novo Nordisk. All other authors declare no competing interests. References 1 P Kakodkar, N Kaka, MN Baig A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19) Cureus, 12 (2020), Article e7560 View Record in ScopusGoogle Scholar 2 R Pivonello, AM Isidori, MC De Martino, J Newell-Price, BMK Biller, A Colao Complications of Cushing's syndrome: state of the art Lancet Diabetes Endocrinol, 4 (2016), pp. 611-629 ArticleDownload PDFView Record in ScopusGoogle Scholar 3 DW Cain, JA Cidlowski Immune regulation by glucocorticoids Nat Rev Immunol, 17 (2017), pp. 233-247 CrossRefView Record in ScopusGoogle Scholar 4 V Hasenmajer, E Sbardella, F Sciarra, M Minnetti, AM Isidori, MA Venneri The immune system in Cushing's syndrome Trends Endocrinol Metab (2020) published online May 6, 2020. DOI:10.1016/j.tem.2020.04.004 Google Scholar 5 Q Ye, B Wang, J Mao The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19 J Infect, 80 (2020), pp. 607-613 ArticleDownload PDFView Record in ScopusGoogle Scholar 6 N Tang, H Bai, X Chen, J Gong, D Li, Z Sun Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy J Thromb Haemost, 18 (2020), pp. 1094-1099 CrossRefView Record in ScopusGoogle Scholar 7 AM Isidori, M Minnetti, E Sbardella, C Graziadio, AB Grossman Mechanisms in endocrinology: the spectrum of haemostatic abnormalities in glucocorticoid excess and defect Eur J Endocrinol, 173 (2015), pp. R101-R113 View Record in ScopusGoogle Scholar 8 LK Nieman, BM Biller, JW Findling, et al.Treatment of Cushing's syndrome: an endocrine society clinical practice guideline J Clin Endocrinol Metab, 100 (2015), pp. 2807-2831 CrossRefView Record in ScopusGoogle Scholar 9 R Pivonello, M De Leo, A Cozzolino, A Colao The treatment of Cushing's disease Endocr Rev, 36 (2015), pp. 385-486 CrossRefView Record in ScopusGoogle Scholar 10 J Newell-Price, L Nieman, M Reincke, A Tabarin Endocrinology in the time of COVID-19: management of Cushing's syndrome Eur J Endocrinol (2020) published online April 1. DOI:10.1530/EJE-20-0352 Google Scholar View Abstract From https://www.thelancet.com/journals/landia/article/PIIS2213-8587(20)30215-1/fulltext
  20. 1 point
    Braun LT, Fazel J, Zopp S Journal of Bone and Mineral Research | May 22, 2020 This study was attempted to assess bone mineral density and fracture rates in 89 patients with confirmed Cushing's syndrome at the time of diagnosis and 2 years after successful tumor resection. Researchers ascertained five bone turnover markers at the time of diagnosis, 1 and 2 years postoperatively. Via chemiluminescent immunoassays, they assessed bone turnover markers osteocalcin, intact procollagen‐IN‐propeptide, alkaline bone phosphatase, CrossLaps, and TrAcP 5b in plasma or serum. For comparison, they studied 71 gender‐, age‐, and BMI‐matched patients in whom Cushing's syndrome had been excluded. The outcomes of this research exhibit that the phase immediately after surgical remission from endogenous CS is defined by a high rate of bone turnover resulting in a striking net increase in bone mineral density in the majority of patients. Read the full article on Journal of Bone and Mineral Research.
  21. 1 point
    Presented by Jamie J. Van Gompel, M.D., B.S., Professor in Neurosurgery and Otolaryngology specializing in endoscopic/open skull base focusing on Pituitary tumors as well as Epilepsy at the Mayo Clinic in Rochester, Minnesota, USA and Garret W. Choby, M.D., a fellowship-trained rhinologist and endoscopic skull base surgeon practicing at the Mayo Clinic. Objectives: - Understand the additional considerations that are key to performing endonasal surgery during the COVID pandemic - Identify the practice changes that are allowing pituitary surgery to proceed safely - Characterize the nasal cavity and nasopharynx as a reservoir for the coronavirus - Identify the risk of undergoing pituitary surgery during the Covid -19 pandemic Register Now! After registering you will receive a confirmation email containing information about joining the Webinar. Date: Monday, May 11, 2020 Time: 4:00 PM Pacific Daylight Time - 5:15 PM Pacific Daylight Time
  22. 1 point
    Presented by Nelson M. Oyesiku, MD, PhD, FACS Professor of Neurosurgery and Medicine Vice-Chairman, Neurosurgery Residency Program Director Emory University School of Medicine Register Now! After registering you will receive a confirmation email containing information about joining the Webinar. Date: Sunday, May 10, 2020 Time: 11:00 AM Pacific Daylight Time to 12:15 PM Pacific Daylight Time/ 2:00 PM - 3:15 PM Eastern Daylight Time
  23. 1 point
    Dr. Friedman will discuss topics including: Who should get an adrenalectomy? How do you optimally replace adrenal hormones? What laboratory tests are needed to monitor replacement? When and how do you stress dose? What about subcut cortisol versus cortisol pumps? Patient Melissa will lead a Q and A Sunday • May 17 • 6 PM PST Click here on start your meeting or https://axisconciergemeetings.webex.com/axisconciergemeetings/j.php?MTID=mb896b9ec88bc4e1163cf4194c55b248f OR Join by phone: (855) 797-9485 Meeting Number (Access Code): 802 841 537 Your phone/computer will be muted on entry. Slides will be available on the day of the talk here There will be plenty of time for questions using the chat button. Meeting Password: addison For more information, email us at mail@goodhormonehealth.com
  24. 1 point
    More responses: And
  25. 1 point
    Has anyone suggested Cyclic Cushing's to you? That's where tests cycle normal/abnormal but no one knows how long a person's cycle could be. That's even harder to diagnose due to the constant fluctuations and some endos don't believe in it, although I don't understand how a doctor can't believe in a disease. Here are the bios of some Cushies with Cyclic Cushing's: https://cushingsbios.com/category/cyclic/
  26. 1 point
    Here's another answer I got:
  27. 1 point
    I asked some other Cushies I know and got this answer so far:
  28. 1 point
    I had a lot of unexplained bruising. Around New Year's Day, I started bleeding by my ankle. My doctor wasn't available so my husband used a magic marker to draw a circle around the area of the bleed, then made more circles as it spread out. The size of the area with the rings are what alerted my GP to send me to the hematologist for more testing. Previously, I had told him, my gynecologist, a (new during Cushing's) foot doctor, a neurologist that I was sure I had Cushing's - all said it was too rare. I couldn't have it.
  29. 1 point
    Endocrinologists have underlined the importance that physicians consider "a stress dose" of glucocorticoids in the event of severe COVID-19 infection in endocrine, and other, patients on long-term steroids. People taking corticosteroids on a routine basis for a variety of underlying inflammatory conditions, such as asthma, allergies, and arthritis, are at elevated risk of being infected with, and adversely affected by, COVID-19. This also applies to a rarer group of patients with adrenal insufficiency and uncontrolled Cushing syndrome, as well as secondary adrenal insufficiency occurring in hypopituitarism, who also rely on glucocorticoids for day-to-day living. In the event of COVID-19, all of these individuals may be unable to mount a normal stress response, and "in the case of adrenal suppression...such patients may run into severe difficulties, particularly if on intensive care units," warns Paul Stewart, MD, University of Leeds, UK, and editor-in-chief of the Journal of Clinical Endocrinology & Metabolism (JCEM). As such, it is vitally important to recognize that "Injectable supplemental glucocorticoid therapy in this setting can reverse the risk of potentially fatal adrenal failure and should be considered in every case," Stewart and colleagues emphasize in a newly published editorial in JCEM. They note this advice must be considered alongside World Health Organization (WHO) guidance against prescribing therapeutic glucocorticoids to treat complications of COVID-19, based on prior experience in patients with acute respiratory distress syndrome, as well as those affected by severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). The key difference here is not to use pharmacologic doses of glucocorticoids as treatment for COVID-19 (where they have no effect), but rather to prevent death from adrenal failure by using "stress" doses of replacement glucocorticoid, Stewart explained to Medscape Medical News. "No patient with a history of prior exposure to chronic glucocorticoid therapy (> 3 months)...should die without consideration" for a stress dose of replacement glucocorticoid therapy. "The intent here is to ensure that no patient with a history of prior exposure to chronic glucocorticoid therapy (> 3 months) by whatever route should die without consideration for parenteral glucocorticoid therapy," the editorialists write. He advises using physiological stress doses of hydrocortisone (50-100 mg intravenously tid). Specific Advice for Adrenal Insufficiency: Follow Sick Day Rules A separate statement by the American Association of Clinical Endocrinologists (AACE) also emphasizes that it is particularly important for patients with adrenal insufficiency to follow advice from the Centers for Disease Control and Prevention (CDC) or similar guidance on preventing COVID-19 infection, including social distancing and frequent hand washing. Such patients should continue to take medications as prescribed and ensure they have appropriate supplies of oral and injectable steroids, ideally for 90 days, AACE advises. And if there is a shortage of hydrocortisone, the statement advises patients ask a pharmacist or physician about replacement hydrocortisone with different doses that might be available. Stewart agrees that patients with adrenal insufficiency need to be hypervigilant, but says that "if they do become ill, for the most part they are well counseled to respond appropriately to intercurrent infections." Nevertheless, it is "invaluable to reiterate 'sick day rules'" for suspected COVID-19 infection. "Any patient who develops a dry continuous cough and fever should immediately double their daily oral glucocorticoid dose and continue on this regimen until the fever has subsided." If a patient still deteriorates on this regimen, develops diarrhea or vomiting, or is unable to take oral glucocorticoids for other reasons, they should contact their physicians or seek urgent medical care to receive parenteral treatment with a glucocorticoid. J Clin Endocrinol Metab. Published online March 31, 2020. Position statement For more diabetes and endocrinology news, follow us on Twitter and Facebook. From https://www.medscape.com/viewarticle/928072?nlid=134869_3901&src=wnl_newsalrt_200404_MSCPEDIT&uac=295048SY&impID=2335560&faf=1&fbclid=IwAR1zZe6fqDS3tKuHUYoFpbvBMkQYJ4JN59RzC93xdzVcGGkJIz5bnmmE4LY
  30. 1 point
    With the novel COVID-19 virus continuing to spread, it is crucial to adhere to the advice from experts and the Centers for Disease Control and Prevention (CDC) to help reduce risk of infection for individuals and the population at large. This is particularly important for people with adrenal insufficiency and people with uncontrolled Cushing’s Syndrome. Studies have reported that individuals with adrenal insufficiency have an increased rate of respiratory infection-related deaths, possibly due to impaired immune function. As such, people with adrenal insufficiency should observe the following recommendations: Maintain social distancing to reduce the risk of contracting COVID-19 Continue taking medications as prescribed Ensure appropriate supplies for oral and injectable steroids at home, ideally a 90-day preparation In the case of hydrocortisone shortages, ask your pharmacist and physician about replacement with different strengths of hydrocortisone tablets that might be available. Hydrocortisone (or brand name Cortef) tablets have 5 mg, 10 mg or 20 mg strength In cases of acute illness, increase the hydrocortisone dose per instructions and call the physician’s office for more details Follow sick day rules for increasing oral glucocorticoids or injectables per your physician’s recommendations In general, patients should double their usual glucocorticoid dose in times of acute illness In case of inability to take oral glucocorticoids, contact your physician for alternative medicines and regimens If experiencing fever, cough, shortness of breath or other symptoms, call both the COVID-19 hotline (check your state government website for contact information) and your primary care physician or endocrinologist Monitor symptoms and contact your physician immediately following signs of illness Acquire a medical alert bracelet/necklace in case of an emergency Individuals with uncontrolled Cushing’s Syndrome of any origin are at higher risk of infection in general. Although information on people with Cushing’s Syndrome and COVID-19 is scarce, given the rarity of the condition, those with Cushing’s Syndrome should strictly adhere to CDC recommendations: Maintain social distancing to reduce the risk of contracting COVID-19 If experiencing fever, cough, shortness of breath or other symptoms, call both the COVID-19 hotline (check your state government website for contact information) and your primary care physician or endocrinologist In addition, people with either condition should continue to follow the general guidelines at these times: Stay home as much as possible to reduce your risk of being exposed When you do go out in public, avoid crowds and limit close contact with others Avoid non-essential travel Wash your hands with soap and water regularly, for at least 20 seconds, especially before eating or drinking and after using the restroom and blowing your nose, coughing or sneezing If soap and water are not readily available, use an alcohol-based sanitizer with at least 60% alcohol Cover your nose and mouth when coughing or sneezing with a tissue or a flexed elbow, then throw the tissue in the trash Avoid touching your eyes, mouth or nose when possible From https://www.aace.com/recent-news-and-updates/aace-position-statement-coronavirus-covid-19-and-people-adrenal
  31. 1 point
    Along with all of you, NADF is monitoring this outbreak by paying close attention to CDC and FDA updates. We have also asked our Medical Advisor to help answer your important questions as they come up. We asked Medical Director Paul Margulies, MD, FACE, FACP to help us with this question: Question: Does Adrenal Insufficiency cause us to have a weakened immune system and therefore make us more susceptible? Response: Individuals with adrenal insufficiency on replacement doses of glucocorticoids do not have a suppressed immune system. The autoimmune mechanism that causes Addison’s disease does not cause an immune deficiency that would make one more likely to get an infection. The problem is with the individual’s ability to deal with the stress of an infection once it develops. Those with adrenal insufficiency fall into that category. When sick with a viral infection, they can have a more serious illness, and certainly require stress dose steroids to help to respond to the illness. If someone with adrenal insufficiency contracts the coronavirus, it is more likely to lead to the need for supportive care, including hospitalization. This information from the CDC Website provides important information regarding Prevention & Treatment. You can find this information here: https://www.cdc.gov/coronavirus/2019-ncov/about/prevention-treatment.html From https://www.nadf.us/
  32. 1 point
    Published: 13 January 2020 Shigemitsu Yasuda, Yusuke Hikima, Yusuke Kabeya, Shinichiro Iida, Yoichi Oikawa, Masashi Isshiki, Ikuo Inoue, Akira Shimada & Mitsuhiko Noda BMC Endocrine Disorders volume 20, Article number: 9 (2020) Abstract Background Primary aldosteronism (PA) plus subclinical Cushing’s syndrome (SCS), PASCS, has occasionally been reported. We aimed to clinically characterize patients with PASCS who are poorly profiled. Methods A population-based, retrospective, single-center, observational study was conducted in 71 patients (age, 58.2 ± 11.2 years; 24 males and 47 females) who developed PA (n = 45), SCS (n = 12), or PASCS (n = 14). The main outcome measures were the proportion of patients with diabetes mellitus (DM), serum potassium concentration, and maximum tumor diameter (MTD) on the computed tomography (CT) scans. Results The proportion of DM patients was significantly greater in the PASCS group than in the PA group (50.0% vs. 13.9%, p <  0.05), without a significant difference between the PASCS and SCS groups. Serum potassium concentration was significantly lower in the PASCS group than in the SCS group (3.2 ± 0.8 mEq/L vs. 4.0 ± 0.5 mEq/L; p <  0.01), without a significant difference between the PASCS and PA groups. Among the 3 study groups of patients who had a unilateral adrenal tumor, MTD was significantly greater in the PASCS group than in the PA group (2.7 ± 0.1 cm vs. 1.4 ± 0.1 cm; p <  0.001), without a significant difference between the PASCS and SCS groups. Conclusions Any reference criteria were not obtained that surely distinguish patients with PASCS from those with PA or SCS. However, clinicians should suspect the presence of concurrent SCS in patients with PA when detecting a relatively large adrenal tumor on the CT scans. Peer Review reports Background Primary aldosteronism (PA), an adrenocortical disorder caused by an adrenal tumor that overproduces aldosterone, accounts for 5 to 15% of patients with hypertension [1]. Cushing’s syndrome (CS), an endocrinopathy resulting from the prolonged, excessive adrenocortical secretion of cortisol, falls roughly into the following 2 categories: adrenocorticotropic hormone (ACTH)-dependent CS and ACTH-independent CS; the former includes Cushing’s disease that is primarily caused by a pituitary ACTH-secreting tumor and ectopic ACTH syndrome resulting from extrapituitary ACTH-secreting tumors (eg, bronchial carcinoid) [2], while the latter is usually caused by unilateral adenomas or carcinomas that provoke the autonomous adrenal cortical secretion [3]. Subclinical Cushing’s syndrome (SCS), an ill-defined endocrine disorder leading to the ACTH-independent secretion of cortisol from an adrenal adenoma that is not fully restrained by pituitary feedback [4], is known to cause hypertension, glucose intolerance, and dyslipidemia [5]. The concurrence of clinically overt hyperaldosteronism and subclinical hypercortisolism is rare in PA patients [6]. To date, a few number of studies have examined the clinicopathological features of patients with PA plus SCS (PASCS), the incidences of which have ranged between about 10 and 20% [7, 8]. Lower plasma ACTH levels and a greater tumor size were found in patients with PASCS than in patients with PA alone [8]. In the clinical settings, we rarely encounter PASCS patients who show a small adrenal tumor on the computed tomography (CT) scans and/or do not have a low plasma ACTH level in blood samples collected in the early morning. To examine the clinical features of PASCS patients in the present study, we compared clinical, laboratory, and imaging characteristics among patients with PA, SCS, or PASCS. Methods Patients We conducted a population-based, retrospective, single-center, observational study in 187 patients (119 with PA, 54 with SCS, and 14 with PASCS) at Saitama Medical University Hospital, Saitama, Japan, between January 1999 and December 2016. Hypertensive patients with suspected PA or SCS, as well as normotensive or hypertensive patients with an adrenal incidentaloma were referred to our hospital. A total of 116 patients were excluded from the study: 31 who were diagnosed with PA or SCS only because tests required to definitely diagnose these endocrinopathies were not conducted; 61 who failed to meet the new Japanese diagnostic criteria of SCS [9]; 1 who failed to meet the new Korean diagnostic criteria of subclinical hypercortisolism [10]; and 23 who failed to meet the Japanese [11] and United States [12] diagnostic criteria of PA. Therefore, we investigated 71 patients who were definitely diagnosed with PA and/or SCS (45 with PA, 12 with SCS, and 14 with PASCS). This study was approved by the institutional review board of Saitama Medical University. Patients provided written informed consent to the use of their clinical and laboratory data in the study. Diagnosis of PA and SCS Hormones required for the diagnosis of PA and SCS were assayed according to the procedures described in the pertinent guidelines [9, 11]. Serum cortisol and plasma ACTH levels were determined by electrochemiluminescence immunoassay, plasma aldosterone concentration (PAC) and plasma renin activity (PRA) by radioimmunoassay, and serum dehydroepiandrosterone sulfate (DHEAS) level by chemiluminescent enzyme immunoassay (SRL Inc., Tokyo, Japan). Blood samples were collected in the early morning (7 a.m. to 9 a.m.). PA was suspected when detecting elevated PAC (≥ 150 pg/mL), low PRA (≤ 1.0 ng/mL/hr), and/or the elevated aldosterone-to-renin ratio (> 200). We conducted the following 3 challenge tests in accordance with the Japanese guidelines of PA [11]: captopril challenge test, furosemide upright posture challenge test, and ACTH challenge test. PA was diagnosed when at least 1 of these 3 challenge tests afforded results compatible with the disease. Furthermore, we also referred to the American guideline of PA [12] for selecting only patients who met the diagnostic criteria for PA. Prior to the confirmatory tests, patients had not received any antihypertensive drugs for at least 2 weeks except for those with severe hypertension treated with calcium-channel blockers and/or α-blockers. Adrenal venous sampling (AVS), whose usefulness was well documented in the Japanese and United States guidelines [11,12,13], was conducted in all of patients who had PA or PASCS to make the differential diagnosis of uni- or bilateral aldosterone hypersecretion. The low-dose (1-mg) dexamethasone suppression test (DST) and the corticotropin-releasing hormone (CRH) challenge test were conducted, and the diurnal rhythms of cortisol were also determined—all for the diagnosis of SCS. Moreover, the high-dose (8-mg) DST was also conducted to rule out ACTH-dependent CS. Test results were assessed in accordance with the diagnostic criteria advocated by the Japan Endocrine Society [9] to make the definite diagnosis of SCS. Concretely, patients were required to meet the requisites 1–3)—1) presence of an adrenal incidentaloma; 2) lack of characteristic features of Cushing’s syndrome; and 3) normal basal serum cortisol levels, as well as to have either of the requisites 4–6)—4) the cutoff value of serum cortisol level for the diagnosis of SCS was ≥ 5 μg/dL after the 1-mg DST, 5) the cutoff value of serum cortisol level for the diagnosis of SCS was ≥ 3 μg/dL after the 1-mg DST, and at least 1 of “Low plasma levels of ACTH in the early morning,” “No diurnal changes in serum cortisol levels,” “Unilateral uptake on adrenal scintigraphy,” “Low serum levels of DHEAS,” or the presence of “Transient adrenal insufficiency or atrophy of the attached normal adrenal cortex after removal of the adrenal tumor,” or 6) the cutoff value of serum cortisol level for the diagnosis of SCS was ≥ 1.8 μg/dL after the 1-mg DST, with the presence of “Low plasma levels of ACTH in the early morning” and “No diurnal changes in serum cortisol levels,” or the presence of “Transient adrenal insufficiency or atrophy of the attached normal adrenal cortex after removal of the adrenal tumor.” In the present study, we examined only patients who met the requisites 1–3) and either 1 of the requisites 4–6) as patients with SCS. All patients underwent 128-slice CT of the adrenal glands. 131I-adosterol adrenal scintigraphy was conducted in all of patients who had SCS or PASCS to specify the laterality of the adrenal tumor. Consequently, 7 of 12 patients with SCS and 8 of 14 patients with PASCS underwent adrenalectomy. Postsurgical histopathological examination confirmed cortisol hypersecretion based on the atrophy of the normal area adjacent to the adenoma of the removed adrenal gland [9]. Study outcome measures At the initial visit, all patients were checked up for their age and sex. Systolic blood pressure (SBP), diastolic blood pressure (DBP), and the outcome measures listed in Table 1 were examined in untreated patients. At the time of admission to the hospital for making the definite diagnosis, height and body weight were measured to calculate body mass index (BMI). In the early morning of the next day of admission to the hospital, blood pressures were measured. Blood samples were collected to determine PAC, PRA, as well as plasma ACTH, serum cortisol, and serum DHEAS levels. The laterality of the adrenal tumor was confirmed based on the results from AVS and/or CT. The Hounsfield number and MTD of adrenal tumors were determined on the CT scans. Table 1 Clinical, laboratory, and imaging characteristics of untreated patients with PA, SCS, or PASCS The following terms were defined for PASCS: hypertension, SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg [14]; diabetes mellitus (DM), an fasting plasma glucose (FPG) level ≥ 126 mg/dL, a 2-h plasma glucose level ≥ 200 mg/dL in the 75-g oral glucose tolerance test, and/or a serum hemoglobin A1c (HbA1c) level ≥ 6.5% in national glycohemoglobin standardization program [15]; and dyslipidemia, a serum triglyceride (TG) level ≥ 150 mg/dL, a serum high-density lipoprotein cholesterol (HDL-C) level < 40 mg/dL, or a serum low-density lipoprotein cholesterol (LDL-C) level ≥ 140 mg/dL [16]. To specify the source of aldosterone hypersecretion by AVS, the following diagnostic criteria were used: 1) the laterality ratio (LR) and the contralaterality ratio (CR) calculated before and after the ACTH challenge test in reference to the Japanese guidelines of PA [11]; 2) the absolute PAC value of ≥ 14,000 pg/mL in reference to the articles of Ohmura [17] and Makita [18]; and 3) the aldosterone ratio of the right and left adrenal veins. According to the Japanese guidelines of PA [11], an LR of > 4 and a CR of < 1 after the ACTH challenge test were used as the cutoff values. Tumor laterality was determined based on a CR of < 1 and the absolute PAC value of ≥ 14,000 pg/mL when the ACTH challenge test indicated an LR of 2 to 4 or a discrepancy occurred in tumor laterality before and after the ACTH challenge test. Since serum cortisol levels considerably differed in the adrenal veins of PASCS patients, the adrenal gland secreting cortisol predominantly was determined based on the aldosterone ratio and on the right-to-left ratio of aldosterone and cortisol in the adrenal veins in reference to the article of Hiraishi et al. [8]. Moreover, tumor laterality was determined based on the results from 131I-adosterol adrenal scintigraphy and on the absolute value of PAC in reference to the articles of Funder et al. [12] and Minami et al. [13]. We did not measure plasma metanephrine concentrations, although the measurement thereof is useful for determining the need for AVS [19] in patients with the suspected concurrence of aldosterone and cortisol hypersecretion. Statistical analyses Continuous and categorical variables were analyzed according to the one-way analysis of variance and Fisher’s exact test, respectively. Two of the 3 study groups were analyzed according to Student’s t-test. Bonferroni’s correction was applied to the p values from Student’s t-test or Fisher’s exact test in multiple comparisons between 2 among the 3 study groups. Blood steroid profiles were compared between 2 groups according to Student’s t-test or the Mann-Whitney U-test. In addition, the multiple linear regression analysis adjusted for age, sex, and BMI was performed to examine differences in MTD and serum potassium concentration among the PA, SCS, and PASCS groups. MTD was not measured in 1 of 42 patients in the PA group who had a unilateral adrenal tumor. Therefore, the data from the patient were excluded as the missing data. A value of p <  0.05 was considered statistically significant. The JMP software version 9.0 (SAS Institute, Cary, NC, USA) was used to make all statistical analyses except multiple linear regression analysis that was performed using the STATA software version 14 (Stata Corp, College Station, TX, USA). Results Study population The clinical, laboratory, and imaging characteristics of 71 patients are shown in Table 1. Mean age was 58.2 ± 11.2 years, females (n = 47, 66.2%) were predominant, and mean BMI was 25.2 ± 4.5 kg/m2. No significant difference was found in age, sex, and BMI among the PA, SCS, and PASCS groups (Table 1). SBP and DBP of patients with untreated hypertension were 165.6 ± 26.1 mmHg and 96.0 ± 13.6 mmHg, respectively, in the PA group in contrast to 145.6 ± 26.9 mmHg and 80.0 ± 12.7 mmHg, respectively, in the SCS groups. DBP was significantly greater (p <  0.01) in the PA group than in the SCS group. Comorbidities are shown in Table 1. Hypertension occurred in 45 (100%), 9 (75.0%), and 13 (92.9%) patients in the PA, SCS, and PASCS groups, respectively. The proportion of patients with hypertension was significantly greater (p <  0.05) in the PA group than in the SCS group; however, no significant difference was found between the PASCS group and the PA group. Notably, the incidence of hypertension was 100% in patients with PA. DM occurred in 6 (14.0%), 6 (50.0%), and 7 (50.0%) patients in the PA, SCS, and PASCS groups, respectively. The proportion of DM patients was significantly greater (p <  0.05) in the PASCS group than in the PA group. Dyslipidemia occurred in 25 (56.8%), 10 (83.3%), and 9 (64.3%) patients in the PA, SCS, and PASCS groups, respectively; however, no significant difference was found among these study groups. Results from laboratory tests are shown in Table 1. FPG was greater not statistically but numerically in the PASCS group than in the PA group (131.6 ± 52.1 mg/dL vs. 103.8 ± 28.5 mg/dL; p = 0.09). On the other hand, FPG was statistically greater in the SCS group than in the PA group (150.0 ± 60.7 mg/dL vs. 103.8 ± 28.5 mg/dL; p <  0.01). HbA1c was greater not statistically but numerically in the PASCS group than in the PA group (6.5 ± 2.1% vs. 5.7 ± 0.9%; p = 0.21). On the other hand, HbA1c was significantly greater in the SCS group than in the PA group (7.3 ± 2.2% vs. 5.7 ± 0.9%; p <  0.01). Serum potassium concentration was significantly lower in the PA group than in the SCS group (3.3 ± 0.7 mEq/L vs. 4.0 ± 0.5 mEq/L; p <  0.01) and in the PASCS group than in the SCS group (3.2 ± 0.8 mEq/L vs. 4.0 ± 0.5 mEq/L; p <  0.01). No significant difference was found in serum potassium concentration between the PA group and the PASCS group. Serum alkaline phosphatase (ALP) level was significantly greater in the PASCS group than in the PA group (279.1 ± 105.4 U/L vs. 212.3 ± 46.3 U/L; p <  0.01). No significant difference was found in serum ALP level between the SCS group and the PASCS group. Subsequently, differences in CT Hounsfield units and MTD of adrenal tumors among the 3 study groups were examined with respect to 65 patients who had a unilateral adrenal tumor (Table 2). MTD on the CT scans was significantly greater in the PASCS group than in the PA group (2.7 ± 0.1 cm vs. 1.3 ± 0.1 cm; p <  0.001) and was also greater in the SCS group than in the PA group (2.7 ± 0.2 cm vs. 1.3 ± 0.1 cm; p <  0.001). No significant difference was found in MTD between the SCS group and the PASCS group. MTD was significantly smaller in the PA group than in the other 2 groups, was second smallest in the SCS group, and was largest in the PASCS group (Table 2). MTD ranged as follows: 0.3–2.2 cm, 1.8–3.5 cm, and 1.1–5.0 cm in the PA, SCS, and PASCS groups, respectively (Fig. 1). Table 2 Maximum tumor diameters and computed tomography Hounsfield units of adrenal tumors in patients who had a unilateral adrenal tumor Full size table Fig. 1 Maximum tumor diameters in patients with PA, SCS, or PASCS who had a unilateral adrenal tumor. PA, primary aldosteronism; SCS, subclinical Cushing’s syndrome, PASCS, primary aldosteronism plus subclinical Cushing’s syndrome The blood steroid profiles of patients with PA or PASCS are shown in Table 3. PAC was significantly greater in the PASCS group than in the PA group (255.0 [713.3–153.5] vs. 208.0 [273.0–159.8]; p <  0.005). No significant difference was found in PRA in the morning, while the PAC/PRA ratio was significantly greater in the PASCS group than in the PA group (1450.0 [5010.0–529.4] vs. 1258.3 [1956.3–643.1]; p <  0.005). The PAC/PRA ratio in the captopril challenge test was significantly greater in the PASCS group than in the PA group (3028.5 ± 3648.9 vs. 730.7 ± 745.7; p <  0.001) as with PAC in the captopril challenge test (348.6 ± 340.1 vs. 149.0 ± 94.2; p <  0.005). Serum cortisol level was significantly greater in the PASCS group than in the PA group (16.4 ± 6.6 μg/dL vs. 12.4 ± 4.3 μg/dL; p <  0.05). The mean serum cortisol level was 17.8 ± 5.9 μg/dL in the SCS group and was not significantly greater in the SCS group than in the PASCS group (17.8 ± 5.9 μg/dL vs. 16.4 ± 6.6 μg/dL; p = 0.49). No significant difference was found in plasma ACTH and serum DHEAS levels in the early morning; however, these variables were not significantly lower in the PASCS than in the PA group (p = 0.29 for ACTH and p = 0.40 for DHEAS). On the other hand, the peak plasma ACTH levels in the CRH challenge test were significantly lower in the PASCS group than in the PA group (18.9 ± 8.9 vs. 57.1 ± 10.8; p <  0.005) (Table 3) and were not significantly greater in the SCS group than in the PASCS group (15.3 ± 5.6 μg/dL vs. 18.9 ± 8.9 μg/dL; p = 0.64). Table 3 Blood steroid profiles of patients with PA or PASCS Full size table Multiple linear regression analysis on MTD and serum potassium concentration with respect to patients in the PA, SCS, and PASCS groups who had a unilateral adrenal tumor MTD was significantly greater in the PASCS and SCS groups than in the PA group with respect to patients who had a unilateral adrenal tumor (Table 2). Therefore, we conducted a multiple linear regression analysis adjusted for age, sex, and BMI to examine differences in MTD among the PA, SCS, and PASCS groups. Consequently, MTD was significantly smaller in the PA group than in the PASCS group (difference, – 1.19 cm; 95% CI, – 1.66 to – 0.72 cm). However, no significant difference was found in MTD between the SCS group and the PASCS group (Table 4). Serum potassium concentration was significantly greater in the SCS group than in the PASCS group (difference, 0.97 mEq/L; 95% CI, 0.38 to 1.54 mEq/L). However, no significant difference was found in serum potassium concentration between the PASCS group and the PA group (Table 4). Table 4 Multiple regression analysis on maximum tumor diameter and serum potassium concentration with respect to patients in the PA, SCS, and PASCS groups who had a unilateral adrenal tumor (n = 65) Full size table The cutoff value of 2.4 cm for tumor size seemed to produce the largest proportion of classified patients (91.0%). Patients with PA who had a tumor size of > 2.4 cm almost certainly had the elements of PASCS (specificity 100%). Namely, the sensitivity and specificity were calculated to be 58.0 and 100%, respectively, when the cutoff point for tumor diameter was set to 2.4 cm. The odds ratio for tumor diameter when comparing PA with PASCS was 0.06 (95% CI, 0.006–0.261). Discussion We found several clinical and laboratory differences between patients with PASCS and patients with either PA or SCS. Regarding the impact of PA and SCS on glucose metabolism, the risk of developing DM in SCS is enhanced by the overproduction of cortisol that leads to increased gluconeogenesis [20]. Moreover, the risk is also enhanced by PA through 1) a hypokalemia-induced decrease in initial pancreatic insulin release and 2) a reduction in insulin sensitivity [21,22,23]. Hypokalemia is caused by the mineralocorticoid receptor-mediated overexcretion of potassium from the kidneys in both hypercortisolism and hyperaldosteronism [12, 24, 25]. Serum potassium concentration decreased significantly in the PA group than in the SCS group (p <  0.01). Similarly, the concurrence of PA and SCS significantly decreased serum potassium concentration against the SCS group (p <  0.01), but not the PA group. Of special note was the fact that the PASCS group involving both hyperaldosteronism and hypercortisolism did not show any greater decrease in serum potassium concentration as compared with the PA group. The mineralocorticoid receptors (MRs) bind both mineralocorticoids and glucocorticoids with high affinity (deoxycorticosterone = corticosterone ≥ aldosterone = cortisol) [26]. On the other hand, a cortisol-degrading enzyme—11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2)—is expressed in renal epithelial cells and regulates the binding of aldosterone to the MRs by impeding cortisol binding to the MRs through the inactivation of cortisol to cortisone [26, 27]. Namely, this physiological event explains the MR-mediated renal excretion of potassium that is enhanced by both cortisol and aldosterone. We hypothesize that the renal potassium excretion-enhancing activity is greater for aldosterone than for cortisol due to the 11β-HSD2-induced, extensive inactivation of cortisol and that the hyperaldosteronism-enhanced renal excretion of potassium in patients with PASCS becomes more apparent, with the less effect of hypercortisolism on renal potassium excretion. Zallocchi et al. [28] described that renal 11β-HSD2 activity is regulated by glucocorticoids, is downregulated following adrenalectomy, and is restored by corticosterone replacement. These findings lead us to hypothesize that 11β-HSD2 may suppress the binding of corticosteroids to the MRs almost completely in subclinical hypercortisolism or that the expression/activity of renal 11β-HSD2 may be increased in PA. However, these hypotheses require further research for its demonstration. The proportion of DM patients increased significantly in the PASCS group than in the PA group (p <  0.05), which is in line with a previous study that described abnormal glucose metabolism in PA patients with cortisol hypersecretion [29]. Hyperaldosteronism found in patients with PA also induces abnormal glucose metabolism [21,22,23], although being less intense as compared with hypercortisolism found in patients with SCS. The proportions of DM patients in the PA and SCS groups increased, which resulted to nullify a statistically significant difference in the proportion of DM patients between the 2 study groups. The fact that the risk for DM is increased in PA patients with mild glucocorticoid excess has been reported [30,31,32]; the finding was also described in Japanese patients with PA and patients with PASCS [33]. Interestingly, patients with PASCS involving hypercortisolism- and hyperaldosteronism-induced hypokalemia showed neither additive or synergic impact on abnormal glucose metabolism contrary to our prediction. The proportion of DM patients was comparable between the PASCS group and the SCS group. However, the reason for these findings is unknown, awaiting the further accumulation of clinical evidence. MTD was significantly smaller (p <  0.001) in the PA group than in the PASCS or SCS group, and multiple regression analysis on MTD revealed that MTD was significantly larger by 1.2 cm in the PASCS group than in the PA group (p <  0.001). Previous studies [8, 34] examined the clinical characteristics of patients with PA or PASCS and described significant differences in MTD between the 2 study groups. Their results were concordant with and support our results that indicated no significant difference in MTD between the PASCS group and the SCS group. Most of previous clinical studies in patients with SCS have described adrenal tumors of ≥ 2 cm in diameter [35, 36]. In addition, an adrenal adenoma causing the overproduction of both cortisol and aldosterone is considered to have a ≥ 2.5 cm diameter [34]. In the present study, however, the adrenal tumor was smaller in both patients with SCS and patients with PASCS. Concretely, the smallest MTD was 1.1 cm in patients with PASCS (Fig. 1). None of patients, who had PA and an adrenal tumor < 1 cm in diameter, developed SCS. Therefore, the dexamethasone suppression test may not be required for them. Regarding bone metabolism impairment in SCS, the risk of developing osteoporosis is enhanced by the overproduction of cortisol in SCS [37, 38]. On the other hand, hyperaldosteronism is also known to increase the risk for osteoporosis [39]. SCS and PA are the risk factors for a reduction in BMD and an increase in vertebral fracture [37,38,39]. In the present study, serum ALP level was significantly greater in the PASCS group than in the PA group (p <  0.01). No significant difference was found in serum ALP level between the SCS group and the PASCS group. If this ALP represents bone alkaline phosphatase (BAP), the deleterious effects of hyperaldosteronism on bone metabolism might be masked by the severe abnormalities of bone metabolism caused by hypercortisolism in patients with PASCS. However, the relevant effects are difficult to assess by means of bone metabolism markers [eg, BAP] in patients with hypercortisolism as found in SCS [37]. Unfortunately, we neither used bone metabolism markers, nor measured BMD. Therefore, we will intend to investigate these variables in the future. Limitations The present study has several limitations. First, the study was retrospective in design and had a relatively small number of patients. Therefore, selection bias and sampling bias cannot be discarded. Second, not all patients underwent AVS or had a histopathological diagnosis. Patients, to whom challenge tests for either PA or SCS were conducted, were not included in the present study. Hence, the number of patients resulted to be relatively small. Third, the lack of data in the present study impeded the analysis of BMD and bone metabolism markers. Fourth, 131I-adosterol adrenal scintigraphy is not only useful for the diagnosis of SCS, but also is a very important imaging modality to predict postsurgical hypoadrenalism [40]. However, we could not investigate the latter. Conclusions We could not obtain any reference criteria to surely distinguish patients with concurrent endocrinopathies from those with a single endocrinopathy. However, clinicians should suspect the presence of concurrent SCS in patients with PA when detecting an adrenal tumor (≥ 1 cm in diameter) on the CT scans. Availability of data and materials The datasets analyzed during the current study are available from the corresponding author on a reasonable request. Abbreviations ACTH: Adrenocorticotropic hormone ALP: Alkaline phosphatase BMI: Body mass index; CRH: corticotropin-releasing hormone CT: computed tomography DBP: Diastolic blood pressure DHEAS: Dehydroepiandrosterone sulfate FPG: Fasting plasma glucose HbA1c: Hemoglobin A1c HDL-C: High-density lipoprotein cholesterol HU: Hounsfield unit LDL-C: Low-density lipoprotein cholesterol MTD: Maximum tumor diameter NGSP: National glycohemoglobin standardization program PA: Primary aldosteronism PAC: Plasma aldosterone concentration PASCS: Primary aldosteronism plus subclinical Cushing’s syndrome PRA: Plasma renin activity SBP: Systolic blood pressure SCS: Subclinical Cushing’s syndrome TG: Triglyceride UA: Uric acid References 1. Mulatero P, Stowasser M, Loh KC, Fardella CE, Gordon RD, Mosso L, et al. Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents. J Clin Endocrinol Metab. 2004;89:1045–50. CAS Article Google Scholar 2. Kageyama K, Oki Y, Sakihara S, Nigawara T, Terui K, Suda T. Evaluation of the diagnostic criteria for Cushing's disease in Japan. Endocr J. 2013;60:127–35. CAS Article Google Scholar 3. Newell-Price J, Bertagna X, Grossman AB, Nieman LK. Cushing’s syndrome. Lancet. 2006;367:1605–17. CAS Article Google Scholar 4. Terzolo M, Pia A, Reimondo G. Subclinical Cushing’s syndrome: definition and management. Clin Endocrinol. 2012;76:12–8. CAS Article Google Scholar 5. Iacobone M, Citton M, Scarpa M, Viel G, Boscaro M, Nitti D. Systematic review of surgical treatment of subclinical Cushing’s syndrome. Br J Surg. 2015;102:318–30. CAS Article Google Scholar 6. Fallo F, Bertello C, Tizzani D, Fassina A, Boulkroun S, Sonino N, et al. Concurrent primary aldosteronism and subclinical cortisol hypersecretion: a prospective study. J Hypertens. 2011;29:1773–7. CAS Article Google Scholar 7. Piaditis GP, Kaltsas GA, Androulakis II, Gouli A, Makras P, Papadogias D, et al. High prevalence of autonomous cortisol and aldosterone secretion from adrenal adenomas. Clin Endocrinol. 2009;71:772–8. CAS Article Google Scholar 8. Hiraishi K, Yoshimoto T, Tsuchiya K, Minami I, Doi M, Izumiyama H, et al. Clinicopathological features of primary aldosteronism associated with subclinical Cushing’s syndrome. Endocr J. 2011;58:543–51. CAS Article Google Scholar 9. Yanase T, Oki Y, Katabami T, Otsuki M, Kageyama K, Tanaka T, et al. New diagnostic criteria of adrenal subclinical Cushing’s syndrome: opinion from the Japan Endocrine Society. Endocr J. 2018;65:383–93. CAS Article Google Scholar 10. Lee SH, Song KH, Kim J, Park S, Ahn SH, Kim H, et al. New diagnostic criteria for subclinical hypercortisolism using postsurgical hypocortisolism: the co-work of adrenal research study. Clin Endocrinol. 2017;86:10–8. CAS Article Google Scholar 11. Nishikawa T, Omura M, Satoh F, Shibata H, Takahashi K, Tamura N, et al. Task force committee on primary Aldosteronism, the Japan Endocrine Society guidelines for the diagnosis and treatment of primary aldosteronism—the Japan Endocrine Society 2009. Endocr J. 2011;58:711–21. CAS Article Google Scholar 12. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: Case detection, diagnosis, and treatment: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:1889–916. CAS Article Google Scholar 13. Minami I, Yoshimoto T, Hirono Y, Izumiyama H, Doi M, Hirata Y. Diagnostic accuracy of adrenal venous sampling in comparison with other parameters in primary aldosteronism. Endocr J. 2008;55:839–46. Article Google Scholar 14. Ogihara T, Saruta T, Rakugi H, Fujimoto A, Ueshima K, Yasuno S, et al. CASE-J trial group, relationship between the achieved blood pressure and the incidence of cardiovascular events in Japanese hypertensive patients with complications: a sub-analysis of the CASE-J trial. Hypertens Res. 2009;32:248–54. Article Google Scholar 15. Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus, Seino Y, Nanjo K, Tajima N, Kadowaki T, Kashiwagi A, Araki E, et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Investig. 2010;1:212–28. Article Google Scholar 16. Teramoto T, Sasaki J, Ueshima H, Egusa G, Kinoshita M, Shimamoto K, et al. Japan atherosclerosis society (JAS) Committee for Epidemiology and Clinical Management of atherosclerosis. Diagnostic criteria for dyslipidemia, executive summary of Japan atherosclerosis society (JAS) guideline for diagnosis and prevention of atherosclerotic cardiovascular diseases for Japanese. J Atheroscler Thromb. 2007;14:155–8. CAS Article Google Scholar 17. Omura M, Saito J, Yamaguchi K, Kakuta Y, Nishikawa T. Prospective study on the prevalence of secondary hypertension among hypertensive patients visiting a general outpatient clinic in Japan. Hypertens Res. 2004;27:193–202. Article Google Scholar 18. Makita K, Nishimoto K, Kiriyama-Kitamoto K, Karashima S, Seki T, Yasuda M, et al. A novel method: super-selective adrenal venous sampling. J Vis Exp. 2017;127:55716. 19. Dekkers T, Deinum J, Schultzekool LJ, Blondin D, Vonend O, Hermus AR, et al. Plasma metanephrine for assessing the selectivity of adrenal venous sampling. Hypertension. 2013;62:1152–7. CAS Article Google Scholar 20. Bancos I, Alahdab F, Crowley RK, Chortis V, Delivanis DA, Erickson D, et al. Therapy of endocrine disease: improvement of cardiovascular risk factors after adrenalectomy in patients with adrenal tumors and subclinical Cushing’s syndrome: a systematic review and meta-analysis. Eur J Endocrinol. 2016;175:R283–95. CAS Article Google Scholar 21. Corry DB, Tuck ML. The effect of aldosterone on glucose metabolism. Curr Hypertens Rep. 2003;5:106–9. Article Google Scholar 22. Remde H, Hanslik G, Rayes N, Quinkler M. Glucose metabolism in primary aldosteronism. Horm Metab Res. 2015;47:987–93. CAS Article Google Scholar 23. Watanabe D, Yatabe M, Ichihara A. Evaluation of insulin sensitivity and secretion in primary aldosteronism. Clin Exp Hypertens. 2016;38:613–7. CAS Article Google Scholar 24. Young WF. Primary aldosteronism: renaissance of a syndrome. Clin Endocrinol. 2007;66:607–18. CAS Article Google Scholar 25. Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BM, Colao A. Complications of Cushing’s syndrome: state of the art. Lancet Diabetes Endocrinol. 2016;4:611–29. CAS Article Google Scholar 26. Funder JW. Mineralocorticoid receptors: distribution and activation. Heart Fail Rev. 2005;10:15–22. CAS Article Google Scholar 27. Ferrari P, Sansonnens A, Dick B, Frey FJ. In vivo 11beta-HSD-2 activity: variability, salt-sensitivity, and effect of licorice. Hypertension. 2001;38:1330–6. CAS Article Google Scholar 28. Zallocchi ML, Matkovic L, Calvo JC, Damasco MC. Adrenal gland involvement in the regulation of renal 11beta-hydroxysteroid dehydrogenase 2. J Cell Biochem. 2004;92:591–602. CAS Article Google Scholar 29. Gerards J, Heinrich DA, Adolf C, Meisinger C, Rathmann W, Sturm L, et al. Impaired glucose metabolism in primary aldosteronism is associated with cortisol co-secretion. J Clin Endocrinol Metab. 2019. https://doi.org/10.1210/jc.2019-00299 [Epub ahead of print]. Article Google Scholar 30. Wu VC, Chueh SJ, Chen L, Chang CH, Hu YH, Lin YH, et al. Risk of new-onset diabetes mellitus in primary aldosteronism: a population study over 5 years. J Hypertens. 2017;35:1698–708. CAS Article Google Scholar 31. Arlt W, Lang K, Sitch AJ, Dietz AS, Rhayem Y, Bancos I, et al. Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight. 2017;2:e93136. Article Google Scholar 32. Beuschlein F, Reincke M, Arlt W. The impact of Connshing’s syndrome - mild cortisol excess in primary aldosteronism drives diabetes risk. J Hypertens. 2017;35:2548. CAS Article Google Scholar 33. Akehi Y, Yanase T, Motonaga R, Umakoshi H, Tsuiki M, Takeda Y, et al. High prevalence of diabetes in patients with primary aldosteronism (PA) associated with subclinical hypercortisolism and prediabetes more prevalent in bilateral than unilateral PA: a large, multicenter cohort study in Japan. Diabetes Care. 2019;42:938–45. CAS Article Google Scholar 34. Späth M, Korovkin S, Antke C, Anlauf M, Willenberg HS. Aldosterone- and cortisol-co-secreting adrenal tumors: the lost subtype of primary aldosteronism. Eur J Endocrinol. 2011;164:447–55. Article Google Scholar 35. Maehana T, Tanaka T, Itoh N, Masumori N, Tsukamoto T. Clinical outcomes of surgical treatment and longitudinal non-surgical observation of patients with subclinical Cushing’s syndrome and nonfunctioning adrenocortical adenoma. Indian J Urol. 2012;28:179–83. Article Google Scholar 36. Rockall AG, Babar SA, Sohaib SA, Isidori AM, Diaz-Cano S, Monson JP, et al. CT and MR imaging of the adrenal glands in ACTH-independent Cushing syndrome. Radiographics. 2004;24:435–52. Article Google Scholar 37. Chiodini I, Vainicher CE, Morelli V, Palmieri S, Cairoli E, Salcuni AS, et al. Mechanisms in endocrinology: endogenous subclinical hypercortisolism and bone: a clinical review. Eur J Endocrinol. 2016;175:R265–82. CAS Article Google Scholar 38. Hardy RS, Zhou H, Seibel MJ, Cooper MS. Glucocorticoids and bone: consequences of endogenous and exogenous excess and replacement therapy. Endocr Rev. 2018;39:519–48. Article Google Scholar 39. Asbach E, Bekeran M, Reincke M. Parathyroid gland function in primary aldosteronism. Horm Metab Res. 2015;47:994–9. CAS Article Google Scholar 40. Ricciato MP, Di Donna V, Perotti G, Pontecorvi A, Bellantone R, Corsello SM. The role of adrenal scintigraphy in the diagnosis of subclinical Cushing’s syndrome and the prediction of post-surgical hypoadrenalism. World J Surg. 2014;38:1328–35. PubMed Google Scholar Download references Acknowledgments The authors would like to express their gratitude Kazuyuki Inoue, MD and Takujiro Iuchi, MD for their role in the data collection. The authors also thank Satoshi Sakima, MD, for valuable discussions about the manuscript. Funding No funding was obtained for this study. Author information Affiliations Department of Endocrinology and Diabetes, Saitama Medical University, Morohongo 38, Moroyama, Iruma-gun, Saitama, 350-0495, Japan Shigemitsu Yasuda , Yusuke Hikima , Shinichiro Iida , Yoichi Oikawa , Masashi Isshiki , Ikuo Inoue , Akira Shimada & Mitsuhiko Noda Department of Home Care Medicine, Sowa Hospital, Sagamihara, Kanagawa, Japan Yusuke Kabeya Department of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International University of Health and Welfare, Chiba, Japan Mitsuhiko Noda Contributions SY analyzed and interpreted the data, drafted, and finalized the manuscript. YK performed statistical analyses, YH, YK, SI, YO, MI, II, AS, and MN contributed to the discussion and critically revised the manuscript, AS and MN are taking full responsibility for the work as a whole. All authors read and approved the final manuscript. Corresponding author Correspondence to Shigemitsu Yasuda. Ethics declarations Ethics approval and consent to participate All participants gave written informed consent. The present study followed the recommendations of the Declaration of Helsinki and was approved by the ethics committee of Saitama Medical University (18049.01). Consent for publication This manuscript does not report personal data such as individual details, images or videos; therefore, consent for publication is not applicable. Competing interests The authors declare that they have no conflict of interest. Additional information Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Rights and permissions Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Reprints and Permissions About this article Cite this article Yasuda, S., Hikima, Y., Kabeya, Y. et al. Clinical characterization of patients with primary aldosteronism plus subclinical Cushing’s syndrome. BMC Endocr Disord 20, 9 (2020). https://doi.org/10.1186/s12902-020-0490-0 Download citation Received15 May 2019 Accepted08 January 2020 Published13 January 2020 DOIhttps://doi.org/10.1186/s12902-020-0490-0 Share this article Anyone you share the following link with will be able to read this content: Get shareable link Keywords Primary aldosteronism Subclinical Cushing’s syndrome Adrenal tumor Maximum tumor diameter Diabetes mellitus Serum potassium Download PDF
  33. 1 point
    Houston Methodist neurosurgeons and neuroscientists are looking at a new way to classify pituitary tumors that could lead to more precise and accurate diagnosing for patients in the future. Found in up to 10% of the population, pituitary tumors, also called adenomas, are noncancerous growths on the pituitary gland and very common. Although these pituitary tumors are benign in nature, they pose a major health challenge in patients. The new tests being investigated at Houston Methodist not only have the potential to lead to better diagnoses for patients with pituitary adenomas, but also for many other types of brain tumors in the future. The findings, which were published Jan. 28 in Scientific Reports, an online journal from Nature Publishing Group, describe a new way being looked at to study the blood of patients with pituitary tumors to determine exactly what tumor type they have and whether they might respond to medical treatment rather than surgery. "Often called the 'master gland,' the pituitary gland controls the entire endocrine system and regulates various body functions by secreting hormones into the bloodstream to control such things as metabolism, growth and development, reproduction and sleep," said corresponding author Kumar Pichumani, Ph.D., a research physicist at the Houston Methodist Research Institute. "When pituitary adenomas occur, they may secrete too much of one or more hormones that could lead to a variety of issues, ranging from infertility and sexual dysfunction to vision problems and osteoporosis, among many other health problems." Neurosurgeon David S. Baskin, M.D., director of the Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research in the Department of Neurosurgery at Houston Methodist Hospital, collaborated with Pichumani on this study. He said some pituitary tumors can be treated with medication rather than surgery, but a precise diagnosis of the type of tumor someone has and what hormone it's secreting is essential for proper treatment. This is sometimes very difficult to do based on standard endocrine hormone testing. "To guide our decisions on diagnosis and treatment, we currently rely on a blood-based hormone panel test that measures the levels of hormones in the blood to determine which hormones are overproducing in the tumor," Baskin said. "However, some tumors secrete too much of more than one hormone, making this test ambiguous for diagnosis." Led by Pichumani and Baskin, a team of researchers from the Peak Brain and Pituitary Tumor Treatment and Research Center and Houston Methodist Neurological Institute studied 47 pituitary adenoma patients of different subtypes by collecting blood during surgery to remove their tumors. They confirmed that elevated blood levels of a non-hormonal compound called betahydroxybutyrate, also known as BHB, was found only in patients with the prolactinoma subtype of noncancerous pituitary gland brain tumor that overproduces the hormone prolactin. This compound is known to supply energy to the brain during starvation, which led the researchers to speculate that BHB might be providing non-hormonal energy to these prolactinoma tumors causing them to grow and spread. The discovery could be further developed into a diagnostic lab test. This study is part of a developing field called metabolomics in which researchers study small molecules in tumors to see what's unique about their metabolism and how they're used as nutrients to supply energy. This contributes to better diagnoses and discovering new ways to kill tumors by poisoning the specific energy they use without causing damage to normal cells. The researchers are now enrolling more patients in a larger study currently underway to validate the results of their pilot study. If successful, they say BHB could be used as a non-hormonal metabolic biomarker for prolactinoma pituitary tumor diagnosis and prognosis to supplement the current hormone panel tests. They're also looking for biological reasons why only prolactin-secreting tumors have elevated BHB blood levels to inform therapeutic intervention. From https://medicalxpress.com/news/2020-02-pituitary-tumors-potential-treatments.html
  34. 1 point
    January 19, 2020 Adrenococortical carcinoma (ACC) is a rare cancer, occurring at the rate of one case in two million person years. Cushing syndrome or a mixed picture of excess androgen and glucocorticoid production are the most common presentations of ACC. Other uncommon presentations include abdominal pain and adrenal incidentalomas. In the present report, a 71-year-old male presented with abdominal pain and was eventually diagnosed with ACC. He was found to have pulmonary thromboembolism following an investigation for hypoxemia, with the tumor thrombus extending upto the right atrium. This interesting case represents the unique presentation of a rare tumor, which if detected late or left untreated is associated with poor outcomes, highlighting the need for a low index of suspicion for ACC when similar presentations are encountered in clinical practice. ACC is a rare but aggressive tumor. ACC commonly presents with rapid onset of hypercortisolism, combined hyperandrogenism and hypercortisolism, or uncommonly with compressive symptoms. Clinicians should have a low index of suspicion for ACC in patients presenting with rapid onset of symptoms related to hypercortisolism and/or hyperandrogenism. Venous thromboembolism and extension of the tumor thrombus to the right side of the heart is a very rare but serious complication of ACC that clinicans should be wary of. The increased risk of venous thromboembolism in ACC could be explained by direct tumor invasion, tumor thrombi or hypercoagulability secondary to hypercortisolism. Early diagnosis and prompt treatment can improve the long-term survival of patients with ACC. Endocrinology, diabetes & metabolism case reports. 2019 Nov 25 [Epub ahead of print] Skand Shekhar, Sriram Gubbi, Georgios Z Papadakis, Naris Nilubol, Fady Hannah-Shmouni Section on Endocrinology & Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA., Diabetes, Endocrinology, and Obesity Branch, National Institute of Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA., Department of Medical Imaging, Heraklion University Hospital, Medical School, University of Crete, Crete, Greece., Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. PubMed http://www.ncbi.nlm.nih.gov/pubmed/31765326 From https://www.urotoday.com/recent-abstracts/urologic-oncology/adrenal-diseases/118539-adrenocortical-carcinoma-and-pulmonary-embolism-from-tumoral-extension.html
  35. 1 point
    A diagnostic technique called bilateral inferior petrosal sinus sampling (BIPSS), which measures the levels of the adrenocorticotropic hormone (ACTH) produced by the pituitary gland, should only be used to diagnose cyclic Cushing’s syndrome patients during periods of cortisol excess, a case report shows. When it is used during a spontaneous remission period of cycling Cushing’s syndrome, this kind of sampling can lead to false results, the researchers found. The study, “A pitfall of bilateral inferior petrosal sinus sampling in cyclic Cushing’s syndrome,” was published in BMC Endocrine Disorders. Cushing’s syndrome is caused by abnormally high levels of the hormone cortisol. This is most often the result of a tumor on the pituitary gland that produces too much ACTH, which tells the adrenal glands to increase cortisol secretion. However, the disease may also occur due to adrenal tumors or tumors elsewhere in the body that also produce excess ACTH — referred to as ectopic Cushing’s syndrome. Because treatment strategies differ, doctors need to determine the root cause of the condition before deciding which treatment to choose. BIPSS can be useful in this regard. It is considered a gold standard diagnostic tool to determine whether ACTH is being produced and released by the pituitary gland or by an ectopic tumor. However, in people with cycling Cushing’s syndrome, this technique might not be foolproof. Researchers reported the case of a 43-year-old woman who had rapidly cycling Cushing’s syndrome, meaning she had periods of excess cortisol with Cushing’s syndrome symptoms — low potassium, high blood pressure, and weight gain — followed by normal cortisol levels where symptoms resolved spontaneously. In general, the length of each period can vary anywhere from a few hours to several months; in the case of this woman, they alternated relatively rapidly — over the course of weeks. After conducting a series of blood tests and physical exams, researchers suspected of Cushing’s syndrome caused by an ACTH-producing tumor. The patient eventually was diagnosed with ectopic Cushing’s disease, but a BIPSS sampling performed during a spontaneous remission period led to an initial false diagnosis of pituitary Cushing’s. As a result, the woman underwent an unnecessary exploratory pituitary surgery that revealed no tumor on the pituitary. Additional imaging studies then identified a few metastatic lesions, some of which were removed surgically, as the likely source of ACTH. However, the primary tumor still hasn’t been definitively identified. At the time of publication, the patient was still being treated for Cushing’s-related symptoms and receiving chemotherapy. There is still a question of why the initial BIPSS result was a false positive. The researchers think that the likely explanation is that BIPSS was performed during an “off phase,” when cortisol levels were comparatively low. In fact, a later BIPSS performed during a period of high cortisol levels showed no evidence of ACTH excess in the pituitary. This case “demonstrates the importance of performing diagnostic tests only during the phases of active cortisol secretion, as soon as first symptoms appear,” the researchers concluded. From https://cushingsdiseasenews.com/2020/01/02/cushings-syndrome-case-study-shows-drawback-in-bipss-method/
  36. 1 point
    Wed, Jan 8, 2020, from 4:00 PM - 5:00 PM EST Presented by Paul Gardner, MD Associate Professor of Neurological Surgery Neurosurgical Director, Center for Cranial Base Surgery Executive Vice Chairman for Surgical Services University Pittsburgh Medical Center (UPMC) Learning Objectives: Upon completion of this webinar, participants should be able to: Recognize the role for surgery in treating recurrent adenomas Understand the risk and role of radiosurgery for treatment of recurrent Identify treatment indications for recurrent adenomas. Presenter Bio Paul A. Gardner, MD, is an Associate Professor in the Department of Neurological Surgery at the University of Pittsburgh School of Medicine and Neurosurgical Director of the Center for Cranial Base Surgery as well as Executive Vice Chairman for Surgical Services for the Department of Neurological Surgery at the University of Pittsburgh Medical Center (UPMC). Dr. Gardner joined the faculty of the Department of Neurological Surgery at the University of Pittsburgh School of Medicine in 2008 after completing his residency and fellowship training at the University of Pittsburgh. He completed his undergraduate studies at Florida State University, majoring in biochemistry, and received his Medical Degree from the University of Pittsburgh School of Medicine. Dr. Gardner completed a two-year fellowship in endoscopic endonasal pituitary and endoscopic and open skull base surgery at the University of Pittsburgh Medical Center. His research has focused on evaluating patient outcomes following these surgeries and more recently on molecular phenotyping of rare tumors. He is recognized internationally as a leader in the field of endoscopic endonasal surgery, a minimally invasive surgical approach to the skull base. His other surgical interests include pituitary tumors, open cranial base surgery, and vascular surgery. Register here
  37. 1 point
    Approximately 20% of a cohort of adults with Cushing’s syndrome experienced at least one thrombotic event after undergoing pituitary or adrenal surgery, with the highest risk observed for those undergoing bilateral adrenalectomy, according to findings from a retrospective analysis published in the Journal of the Endocrine Society. “We have previously showed in a recent meta-analysis that Cushing’s syndrome is associated with significantly increased venous thromboembolic events odds vs. the general population, though the risk is lower than in patients undergoing major orthopedic surgery,” Maria Fleseriu, MD, FACE, professor of neurological surgery and professor of medicine in the division of endocrinology, diabetes and clinical nutrition in the School of Medicine at Oregon Health & Science University and director of the OHSU Northwest Pituitary Center, told Healio. “However, patients undergoing many types of orthopedic surgeries have scheduled thromboprophylaxis, especially postsurgery, which is not the standard of care in patients with Cushing’s syndrome. In this study, we wanted to look in more detail at the rates of all thrombotic events, both arterial and venous, in patients at our specialized pituitary center over more than a decade.” In a retrospective, longitudinal study, Fleseriu and colleagues analyzed data from 208 individuals with Cushing’s syndrome undergoing surgical (pituitary, unilateral and bilateral adrenalectomy) and medical treatment at a single center (79.3% women; mean age at presentation, 45 years; mean BMI, 33.9 kg/m²; 41.8% with diabetes). Individuals with severe illness and immediate mortality were excluded. Thromboembolic events (myocardial infarction, deep venous thrombosis [DVT], and pulmonary embolism or stroke) were recorded at any point up until last patient follow-up. Researchers assessed all patients who received anticoagulation in the immediate postoperative period and up to 3 months after surgery, recording doses and complications for anticoagulation. Within the cohort, 39 patients (18.2%) experienced at least one thromboembolic event (56 total events; 52% venous), such as extremity DVT (32%), cerebrovascular accident (27%), MI (21%), and pulmonary embolism (14%). Of those who experienced a thromboembolic event, 40.5% occurred within 60 days of surgery. Researchers found that 14 of 36 patients who underwent bilateral adrenalectomy experienced a thromboembolic event, for an OR of 3.74 (95% CI, 1.69-8.27). Baseline 24-hour urinary free cortisol levels did not differ for patients with or without thromboembolic event after bilateral adrenalectomy. “Despite following these patients over time, results almost surprised us,” said Fleseriu, also an Endocrine Today Editorial Board Member. “The risk of thromboembolic events in patients with Cushing’s syndrome was higher than we expected, approximately 20%. Many patients had more than one event, with higher risk at 30 to 60 days postoperatively. Use of a peripherally inserted central catheter line clearly increased risk of upper extremity DVT.” Among 197 patients who underwent surgery, 50 (25.38%) received anticoagulation after surgery with 2% experiencing bleeding complications. “We clearly need to understand more about what happens in patients with Cushing’s syndrome for all comorbidities, but especially thrombosis, and find the factors that predict higher risk and use anticoagulation in those patients,” Fleseriu said. “We have shown that among patients who had anticoagulation, risks were minimal. We also have to think more about timelines for these thromboembolic events and the duration of anticoagulation, and probably to expand it up to 30 to 60 days postoperatively if there are no contraindications, especially for patients undergoing bilateral adrenalectomy.” Fleseriu cautioned that the findings do not necessarily suggest that every individual with Cushing’s syndrome needs anticoagulation therapy, as the study was retrospective. Additionally, sex, age, BMI, smoking status, estrogen or testosterone supplementation, diabetes and hypertension — all known factors for increased thrombosis risk among the general population — were not found to significantly increase the risk for developing a thromboembolic event, Fleseriu said. “As significantly more patients have exogenous Cushing’s syndrome than endogenous Cushing’s syndrome and many of these patients undergo surgeries, we hope that our study increased awareness regarding thromboembolic risks and the need to balance advantages of thromboprophylaxis with risk of bleeding,” Fleseriu said. – by Regina Schaffer For more information: Maria Fleseriu, MD, FACE, can be reached at fleseriu@ohsu.edu. Disclosure: Fleseriu reports she has received research funding paid to her institution from Novartis and Strongbridge and has received consultant fees from Novartis and Strongbridge. From https://www.healio.com/endocrinology/neuroendocrinology/news/online/%7Bce267e5a-0d32-4171-abc8-34369b455fcf%7D/risk-for-thrombotic-events-high-after-cushings-syndrome-surgery
  38. 1 point
    Presented by Andrew Lin, MD Neuro-Oncologist & Neurologist Memorial Sloak Kettering Cancer Center After registering you will receive a confirmation email with details about joining the webinar. Contact us at webinar@pituitary.org with any questions or suggestions. Date: September 18, 2019 Time: 10:00 AM - 11:00 AM. Pacific Daylight Time, 1:00 PM - 2:00 PM Eastern Daylight Time Learning Objectives: During the conversation I will be: 1) Defining aggressive pituitary tumors. 2) Reviewing the current treatment options for aggressive pituitary tumors. 3) Discussing experimental treatment options including a phase II trial investigating the activity of the immunotherapies nivolumab and ipilimumab. Presenter Biography: I am a neuro-oncologist at Memorial Sloan Kettering Cancer Center (MSK) and a member of the Multidisciplinary Pituitary & Skull Base Tumor Center. In collaboration with my colleagues in endocrine, neurosurgery, and radiation oncology, I treat patients with aggressive pituitary tumors, who are resistant to conventional treatments (i.e. surgery and radiation), with chemotherapy. With my colleagues at MSK, I have published several research articles on pituitary tumors and opened several clinical trials.
  39. 1 point
    For patients with persistent or recurring Cushing’s disease, monthly pasireotide therapy was safe and effective, leading to normal urinary free cortisol levels in 47% of patients after 2 years, according to findings published in Clinical Endocrinology. Maria Fleseriu “The management of Cushing’s syndrome, and particularly Cushing’s disease, remains challenging,” Maria Fleseriu, MD, FACE, professor of neurological surgery and professor of medicine in the division of endocrinology, diabetes and clinical nutrition in the School of Medicine at Oregon Health & Science University and director of the OHSU Northwest Pituitary Center, told Endocrine Today. “Long-acting pasireotide provided sustained biochemical improvements and clinical benefit in a significant proportion of patients with Cushing’s disease who elected to continue in this extension study. There were many adverse events reported overall, but no new safety signals emerging over long-term treatment.” In the last decade, medical treatment for Cushing’s disease has progressed from a few steroidogenesis inhibitors to three novel drug groups: new inhibitors for steroidogenic enzymes with possibly fewer adverse effects, pituitary-directed drugs that aim to inhibit the pathophysiological pathways of Cushing’s disease, and glucocorticoid receptor antagonists that block cortisol’s action, Fleseriu, who is also an Endocrine Today Editorial Board member, said. In an open-label extension study, Fleseriu and colleagues analyzed data from 81 adults with confirmed Cushing’s disease with mean urinary free cortisol not exceeding the upper limit of normal, who transitioned from a 12-month, randomized controlled trial where they were assigned 10 mg or 30 mg once-monthly intramuscular pasireotide (Signifor LAR, Novartis). During the main study, researchers recruited participants with mean urinary free cortisol level concentration 1.5 to five times the upper limit of normal, normal or greater than normal plasma and confirmed pituitary source of Cushing’s disease. Participants who elected to continue in the extension were considered biochemical responders or benefited from the study drug per the clinical investigator, Fleseriu said. “As in all extension studies, the bias is inherent that patients deemed responders tend to continue, but for any type of treatment for pituitary tumors, and particularly Cushing’s disease, long-term, robust data on efficacy and safety parameters is essential,” Fleseriu said. Median overall exposure to pasireotide at the end of the extension study was 23.9 months, with nearly half of patients receiving at least 1 year of treatment during the extension phase. Researchers found that improvements in clinical signs of hypercortisolism were sustained throughout the study and median urinary free cortisol remained within normal range. Overall, 38 participants (47%) had controlled urinary free cortisol at month 24 (after 12 months of treatment during the extension phase), with researchers noting that the proportion of participants with controlled or partially controlled urinary free cortisol was stable throughout the extension phase. “Interestingly, the median salivary cortisol level decreased but remained above normal (1.3 times upper limit of normal) at 3 years,” Fleseriu said. As seen in other pasireotide studies, and expected based on the mechanism of action, researchers observed hyperglycemia-related adverse events in 39.5% of participants, with diabetes medications initiated or escalated in some patients, Fleseriu said. However, mean fasting glucose and HbA1c were stable during the extension phase, after increasing in the main study. Within the cohort, 81.5% had type 2 diabetes at baseline (entering extension phase) and 88.9% patients had type 2 diabetes at last assessment. “Pasireotide acts at the tumor level, and tumor shrinkage is seen in many patients,” Fleseriu said. “In this study, 42% and 32.1% had a measurable microadenoma or macroadenoma, respectively, on MRI at the start of pasireotide treatment; an adenoma was not visible in almost a quarter of patients at 2 years.” Among patients with a measurable adenoma at baseline and at month 24 (n = 35), 85.7% experienced a reduction of at least 20% or a 20% change in tumor volume between the two time points. Improvements in median systolic and diastolic blood pressure, BMI and waist circumference were sustained during the extension, Fleseriu said. “The long-term safety profile of pasireotide was favorable and consistent with that reported during the first 12 months of treatment,” the researchers wrote. “These data support the use of long-acting pasireotide as an effective long-term treatment option for some patients with [Cushing’s disease].” Fleseriu said individualized treatment selecting patients who will derive benefit from therapy will be crucial, balancing both efficacy and the potential risks and costs. – by Regina Schaffer Disclosures: Fleseriu reports she has received consultant fees and her institution has received research support from Novo Nordisk and Pfizer. Please see the study for all other authors’ relevant financial disclosures. From https://www.healio.com/endocrinology/neuroendocrinology/news/online/%7B5da4611f-34b2-4306-80b8-46babd2aad4a%7D/long-acting-pasireotide-provides-sustained-biochemical-improvements-in-cushings-disease?page=2
  40. 1 point
    Authors Ježková J, Ďurovcová V, Wenchich L, Hansíková H, Zeman J, Hána V, Marek J, Lacinová Z, Haluzík M, Kršek M Received 18 March 2019 Accepted for publication 13 June 2019 Published 19 August 2019 Volume 2019:12 Pages 1459—1471 DOI https://doi.org/10.2147/DMSO.S209095 Checked for plagiarism Yes Review by Single-blind Peer reviewers approved by Dr Melinda Thomas Peer reviewer comments 3 Editor who approved publication: Dr Antonio Brunetti Jana Ježková,1 Viktória Ďurovcová,1 Laszlo Wenchich,2,3 Hana Hansíková,3 Jiří Zeman,3Václav Hána,1 Josef Marek,1 Zdeňka Lacinová,4,5 Martin Haluzík,4,5 Michal Kršek1 1Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; 2Institute of Rheumatology, Prague, Czech Republic; 3Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; 4Institute of Medical Biochemistry and Laboratory Diagnostic, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; 5Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic Correspondence: Jana Ježková Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 1128 02 Praha 2, Prague, Czech Republic Tel +420 60 641 2613 Fax +420 22 491 9780 Email fjjezek@cmail.cz Purpose: Cushing’s syndrome is characterized by metabolic disturbances including insulin resistance. Mitochondrial dysfunction is one pathogenic factor in the development of insulin resistance in patients with obesity. We explored whether mitochondrial dysfunction correlates with insulin resistance and other metabolic complications. Patients and methods: We investigated the changes of mRNA expression of genes encoding selected subunits of oxidative phosphorylation system (OXPHOS), pyruvate dehydrogenase (PDH) and citrate synthase (CS) in subcutaneous adipose tissue (SCAT) and peripheral monocytes (PM) and mitochondrial enzyme activity in platelets of 24 patients with active Cushing’s syndrome and in 9 of them after successful treatment and 22 healthy control subjects. Results: Patients with active Cushing’s syndrome had significantly increased body mass index (BMI), homeostasis model assessment of insulin resistance (HOMA-IR) and serum lipids relative to the control group. The expression of all investigated genes for selected mitochondrial proteins was decreased in SCAT in patients with active Cushing’s syndrome and remained decreased after successful treatment. The expression of most tested genes in SCAT correlated inversely with BMI and HOMA-IR. The expression of genes encoding selected OXPHOS subunits and CS was increased in PM in patients with active Cushing’s syndrome with a tendency to decrease toward normal levels after cure. Patients with active Cushing’s syndrome showed increased enzyme activity of complex I (NQR) in platelets. Conclusion: Mitochondrial function in SCAT in patients with Cushing’s syndrome is impaired and only slightly affected by its treatment which may reflect ongoing metabolic disturbances even after successful treatment of Cushing’s syndrome. Keywords: Cushing’s syndrome, insulin resistance, mitochondrial enzyme activity, gene expression This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms. Download Article [PDF] View Full Text [Machine readable]
  41. 1 point
    I would be very interested to learn the current status of any Disability Claim for Agent Orange with Cushing. My 47 year old daughter had surgery in 2008 for unilateral adrenal Cushings in Orlando, FL. Frank
  42. 1 point
    Presented by Nathan T Zwagerman MD Director of Pituitary and Skull base surgery Department of Neurosurgery Medical College of Wisconsin After registering you will receive a confirmation email with details about joining the webinar. Date: Wednesday, August 21, 2019 Time: 10:00 AM - 11:00 AM Pacific Daylight Time 1:00 PM - 2:00 PM Eastern Daylight Time Webinar Description: Learning Objectives: Describe the signs and symptoms of Cushing's Disease Describe the work up for patients with Cushing's Disease Understand the goals, risks, and expected outcomes for treatment Describe alternative treatments when surgery is not curative. Presenter Bio: Dr. Zwagerman is a Professor of Neurosurgery at the Medical College of Wisconsin. He did his undergraduate work in psychology at Calvin College in Grand Rapids, Michigan. He earned his medical degree at Wayne State University in Detroit. He did his fellowship in endoscopic and open cranial base surgery, and then his residency in neurological surgery at the University of Pittsburgh Medical Center.
  43. 1 point
    Metoclopramide, a gastrointestinal medicine, can increase cortisol levels after unilateral adrenalectomy — the surgical removal of one adrenal gland — and conceal adrenal insufficiency in bilateral macronodular adrenal hyperplasia (BMAH) patients, a case report suggests. The study, “Retention of aberrant cortisol secretion in a patient with bilateral macronodular adrenal hyperplasia after unilateral adrenalectomy,” was published in Therapeutics and Clinical Risk Management. BMAH is a subtype of adrenal Cushing’s syndrome, characterized by the formation of nodules and enlargement of both adrenal glands. In this condition, the production of cortisol does not depend on adrenocorticotropic hormone (ACTH) stimulation, as usually is the case. Instead, cortisol production is triggered by a variety of stimuli, such as maintaining an upright posture, eating mixed meals — those that contain fats, proteins, and carbohydrates — or exposure to certain substances. A possible treatment for this condition is unilateral adrenalectomy. However, after the procedure, some patients cannot produce adequate amounts of cortisol. That makes it important for clinicians to closely monitor the changes in cortisol levels after surgery. Metoclopramide, a medicine that alleviates gastrointestinal symptoms and is often used during the postoperative period, has been reported to increase the cortisol levels of BMAH patients. However, the effects of metoclopramide on BMAH patients who underwent unilateral adrenalectomy are not clear. Researchers in Japan described the case of a 61-year-old postmenopausal woman whose levels of cortisol remained high after surgery due to metoclopramide ingestion. The patient was first examined because she had experienced high blood pressure, abnormal lipid levels in the blood, and osteoporosis for ten years. She also was pre-obese. She was given medication to control blood pressure with no results. The lab tests showed high serum cortisol and undetectable levels of ACTH, suggesting adrenal Cushing’s syndrome. Patients who have increased cortisol levels, but low levels of ACTH, often have poor communication between the hypothalamus, the pituitary, and the adrenal glands. These three glands — together known as the HPA axis — control the levels of cortisol in healthy people. Imaging of the adrenal glands revealed they were both enlarged and presented nodules. The patient’s cortisol levels peaked after taking metoclopramide, and her serum cortisol varied significantly during the day while ACTH remained undetectable. These results led to the BMAH diagnosis. The doctors performed unilateral adrenalectomy to control cortisol levels. The surgery was successful, and the doctors reduced the dose of glucocorticoid replacement therapy on day 6. Eight days after the surgery, however, the patient showed decreased levels of fasting serum cortisol, which indicated adrenal insufficiency — when the adrenal glands are unable to produce enough cortisol. The doctors noticed that metoclopramide was causing an increase in serum cortisol levels, which made them appear normal and masked the adrenal insufficiency. They stopped metoclopramide treatment and started replacement therapy (hydrocortisone) to control the adrenal insufficiency. The patient was discharged 10 days after the surgery. The serum cortisol levels were monitored on days 72 and 109 after surgery, and they remained lower than average. Therefore she could not stop hydrocortisone treatment. The levels of ACTH remained undetectable, suggesting that the communication between the HPA axis had not been restored. “Habitual use of metoclopramide might suppress the hypothalamus and pituitary via negative feedback due to cortisol excess, and lead to a delayed recovery of the HPA axis,” the researchers said. Meanwhile, the patient’s weight decreased, and high blood pressure was controlled. “Detailed surveillance of aberrant cortisol secretion responses on a challenge with exogenous stimuli […] is clinically important in BMAH patients,” the study concluded. “Caution is thus required for assessing the actual status of the HPA axis.” From https://cushingsdiseasenews.com/2019/05/07/metoclopramide-conceals-adrenal-insufficiency-after-gland-removal-bmah-patients-case-report/
  44. 1 point
    How sad. He never got to know life after Cushings, either.
  45. 1 point
    Thanks for posting this Robin. The poor unfortunate man and his family - it is dreadful. And so very descriptive - makes you wish you could have been there for him to help.
  46. 1 point
    Boy Oh Boy this one scares the H- E DOUBLE TOOTHPICKS out of me, it hits so close to MY home! Lisa I think I will wear the Xtra gear this week!
  47. 1 point
    MK---I think things are much the same way here---the doctor's look for the obvious---and just treat the symptoms---which doesn't always save any of us money...sadly, some pay with their lives---as you've indicated. Healthy people are productive people---that should be what we're aiming for...not trying to save a nickel...
  48. 1 point
    Thanks for sharing this story... although it is so sad!! Especially when we know something could have helped this man so much sooner. Thanks for sharing!! I guess even though these stories are awful to read, they spread awareness... which is exactly what we need... Paige
  49. 1 point
    Wow, What a heart wrenching story. I think we all must have a double dose of empathy when we read about the trials of another cushings patient. I agree that publishing the story will really help raise awareness. It also makes me even more resolved to fight and encourage others to fight diligently to get a diagnosis and treatment plan as soon as possible!!!! Time is not our friend with this disease! Gina
  50. 1 point
    This must be so devastating for his family, but I'm glad they are bringing this disease to public view. It makes me more thankful that I saw a GP who was able to put all my symptoms together & immediately referred me. This is not always the case over here. Most GP's treat symptoms, they do not look for an underlying cause, that's the way it is over here, they are constantly under pressure to reduce the costs to the NHS, so any referral to a specialist has to be for a DAMNED GOOD REASON! For diagnosis they look for the lowest common denominator, this goes for all diseases, the simplest illness is the one they DX. My father was DX'd with asthma at 62, he went on to have a stroke, then passed away suddenly with a heart-attack at 69. It turned out, when he was opened-up, he didn't have asthma at all, his lungs were fine, his arteries were clogged which caused his breathing difficulties, and he could have had an operation to resolve this. My father-in-law died from pneumonia, because when he had a chest x-ray, they said he had a massive cancerous lung tumour which was inoperable, so didn't offer any kind of treatment. When he was opened up, there was no tumour, he also died needlessly. That's just the way it is over here, it varies from region to region though, we call it the Postcode Lottery, it's difficult to see how it will ever change. Melanie XXX
×
×
  • Create New...