Jump to content
Strawberry Orange Banana Lime Leaf Slate Sky Blueberry Grape Watermelon Chocolate Marble
Strawberry Orange Banana Lime Leaf Slate Sky Blueberry Grape Watermelon Chocolate Marble


Popular Content

Showing content with the highest reputation since 04/06/2019 in Posts

  1. 2 points
    MENLO PARK, Calif., Aug. 28, 2019 (GLOBE NEWSWIRE) -- Corcept Therapeutics Incorporated (NASDAQ: CORT) announced today that the United States Patent and Trademark Office has issued a Notice of Allowance for a patent covering the administration of Korlym® with food. The patent will expire in November 2032. “This patent covers an important finding of our research – that for optimal effect, Korlym must be taken with food,” said Joseph K. Belanoff, MD, Corcept’s Chief Executive Officer. “Korlym’s label instructs doctors that ‘Korlym must always be taken with a meal.’” Upon issuance, Corcept plans to list the patent, entitled “Optimizing Mifepristone Absorption” (U.S. Pat. App. 13/677,465), in the U.S. Food and Drug Administration’s Approved Drug Products with Therapeutic Equivalence Evaluations (the “Orange Book”). Korlym is currently protected by ten patents listed in the Orange Book. Hypercortisolism Hypercortisolism, often referred to as Cushing’s syndrome, is caused by excessive activity of the hormone cortisol. Endogenous Cushing’s syndrome is an orphan disease that most often affects adults aged 20-50. In the United States, an estimated 20,000 patients have Cushing’s syndrome, with about 3,000 new patients diagnosed each year. Symptoms vary, but most people with Cushing’s syndrome experience one or more of the following manifestations: high blood sugar, diabetes, high blood pressure, upper-body obesity, rounded face, increased fat around the neck, thinning arms and legs, severe fatigue and weak muscles. Irritability, anxiety, cognitive disturbances and depression are also common. Hypercortisolism can affect every organ system in the body and can be lethal if not treated effectively. About Corcept Therapeutics Incorporated Corcept is a commercial-stage company engaged in the discovery and development of drugs that treat severe metabolic, oncologic and psychiatric disorders by modulating the effects of the stress hormone cortisol. Korlym® (mifepristone) was the first treatment approved by the U.S. Food and Drug Administration for patients with Cushing’s syndrome. Corcept has discovered a large portfolio of proprietary compounds, including relacorilant, exicorilant and miricorilant, that selectively modulate the effects of cortisol but not progesterone. Corcept owns extensive United States and foreign intellectual property covering the composition of its selective cortisol modulators and the use of cortisol modulators, including mifepristone, to treat a variety of serious disorders. Forward-Looking Statements Statements in this press release, other than statements of historical fact, are forward-looking statements, which are based on Corcept’s current plans and expectations and are subject to risks and uncertainties that might cause actual results to differ materially from those such statements express or imply. These risks and uncertainties include, but are not limited to, Corcept’s ability to generate sufficient revenue to fund its commercial operations and development programs; the availability of competing treatments, including generic versions of Korlym; Corcept’s ability to obtain acceptable prices or adequate insurance coverage and reimbursement for Korlym; and risks related to the development of Corcept’s product candidates, including regulatory approvals, mandates, oversight and other requirements. These and other risks are set forth in Corcept’s SEC filings, which are available at Corcept’s website and the SEC’s website. In this press release, forward-looking statements include those concerning Corcept’s plans to list the patent “Optimizing Mifepristone Absorption” in the Orange Book; Korlym’s current protection by ten patents listed in the Orange Book; and the scope and protective power of Corcept’s intellectual property. Corcept disclaims any intention or duty to update forward-looking statements made in this press release. CONTACT: Christopher S. James, MD Director, Investor Relations Corcept Therapeutics 650-684-8725 cjames@corcept.com www.corcept.com
  2. 2 points
    It sure sounds like you're on the right track!
  3. 2 points
    I received my dictation from Doctor F.. I pray that I am on the road to a diagnosis. I don’t know how much more of this I can take.
  4. 2 points
    Metoclopramide, a gastrointestinal medicine, can increase cortisol levels after unilateral adrenalectomy — the surgical removal of one adrenal gland — and conceal adrenal insufficiency in bilateral macronodular adrenal hyperplasia (BMAH) patients, a case report suggests. The study, “Retention of aberrant cortisol secretion in a patient with bilateral macronodular adrenal hyperplasia after unilateral adrenalectomy,” was published in Therapeutics and Clinical Risk Management. BMAH is a subtype of adrenal Cushing’s syndrome, characterized by the formation of nodules and enlargement of both adrenal glands. In this condition, the production of cortisol does not depend on adrenocorticotropic hormone (ACTH) stimulation, as usually is the case. Instead, cortisol production is triggered by a variety of stimuli, such as maintaining an upright posture, eating mixed meals — those that contain fats, proteins, and carbohydrates — or exposure to certain substances. A possible treatment for this condition is unilateral adrenalectomy. However, after the procedure, some patients cannot produce adequate amounts of cortisol. That makes it important for clinicians to closely monitor the changes in cortisol levels after surgery. Metoclopramide, a medicine that alleviates gastrointestinal symptoms and is often used during the postoperative period, has been reported to increase the cortisol levels of BMAH patients. However, the effects of metoclopramide on BMAH patients who underwent unilateral adrenalectomy are not clear. Researchers in Japan described the case of a 61-year-old postmenopausal woman whose levels of cortisol remained high after surgery due to metoclopramide ingestion. The patient was first examined because she had experienced high blood pressure, abnormal lipid levels in the blood, and osteoporosis for ten years. She also was pre-obese. She was given medication to control blood pressure with no results. The lab tests showed high serum cortisol and undetectable levels of ACTH, suggesting adrenal Cushing’s syndrome. Patients who have increased cortisol levels, but low levels of ACTH, often have poor communication between the hypothalamus, the pituitary, and the adrenal glands. These three glands — together known as the HPA axis — control the levels of cortisol in healthy people. Imaging of the adrenal glands revealed they were both enlarged and presented nodules. The patient’s cortisol levels peaked after taking metoclopramide, and her serum cortisol varied significantly during the day while ACTH remained undetectable. These results led to the BMAH diagnosis. The doctors performed unilateral adrenalectomy to control cortisol levels. The surgery was successful, and the doctors reduced the dose of glucocorticoid replacement therapy on day 6. Eight days after the surgery, however, the patient showed decreased levels of fasting serum cortisol, which indicated adrenal insufficiency — when the adrenal glands are unable to produce enough cortisol. The doctors noticed that metoclopramide was causing an increase in serum cortisol levels, which made them appear normal and masked the adrenal insufficiency. They stopped metoclopramide treatment and started replacement therapy (hydrocortisone) to control the adrenal insufficiency. The patient was discharged 10 days after the surgery. The serum cortisol levels were monitored on days 72 and 109 after surgery, and they remained lower than average. Therefore she could not stop hydrocortisone treatment. The levels of ACTH remained undetectable, suggesting that the communication between the HPA axis had not been restored. “Habitual use of metoclopramide might suppress the hypothalamus and pituitary via negative feedback due to cortisol excess, and lead to a delayed recovery of the HPA axis,” the researchers said. Meanwhile, the patient’s weight decreased, and high blood pressure was controlled. “Detailed surveillance of aberrant cortisol secretion responses on a challenge with exogenous stimuli […] is clinically important in BMAH patients,” the study concluded. “Caution is thus required for assessing the actual status of the HPA axis.” From https://cushingsdiseasenews.com/2019/05/07/metoclopramide-conceals-adrenal-insufficiency-after-gland-removal-bmah-patients-case-report/
  5. 1 point
    With the novel COVID-19 virus continuing to spread, it is crucial to adhere to the advice from experts and the Centers for Disease Control and Prevention (CDC) to help reduce risk of infection for individuals and the population at large. This is particularly important for people with adrenal insufficiency and people with uncontrolled Cushing’s Syndrome. Studies have reported that individuals with adrenal insufficiency have an increased rate of respiratory infection-related deaths, possibly due to impaired immune function. As such, people with adrenal insufficiency should observe the following recommendations: Maintain social distancing to reduce the risk of contracting COVID-19 Continue taking medications as prescribed Ensure appropriate supplies for oral and injectable steroids at home, ideally a 90-day preparation In the case of hydrocortisone shortages, ask your pharmacist and physician about replacement with different strengths of hydrocortisone tablets that might be available. Hydrocortisone (or brand name Cortef) tablets have 5 mg, 10 mg or 20 mg strength In cases of acute illness, increase the hydrocortisone dose per instructions and call the physician’s office for more details Follow sick day rules for increasing oral glucocorticoids or injectables per your physician’s recommendations In general, patients should double their usual glucocorticoid dose in times of acute illness In case of inability to take oral glucocorticoids, contact your physician for alternative medicines and regimens If experiencing fever, cough, shortness of breath or other symptoms, call both the COVID-19 hotline (check your state government website for contact information) and your primary care physician or endocrinologist Monitor symptoms and contact your physician immediately following signs of illness Acquire a medical alert bracelet/necklace in case of an emergency Individuals with uncontrolled Cushing’s Syndrome of any origin are at higher risk of infection in general. Although information on people with Cushing’s Syndrome and COVID-19 is scarce, given the rarity of the condition, those with Cushing’s Syndrome should strictly adhere to CDC recommendations: Maintain social distancing to reduce the risk of contracting COVID-19 If experiencing fever, cough, shortness of breath or other symptoms, call both the COVID-19 hotline (check your state government website for contact information) and your primary care physician or endocrinologist In addition, people with either condition should continue to follow the general guidelines at these times: Stay home as much as possible to reduce your risk of being exposed When you do go out in public, avoid crowds and limit close contact with others Avoid non-essential travel Wash your hands with soap and water regularly, for at least 20 seconds, especially before eating or drinking and after using the restroom and blowing your nose, coughing or sneezing If soap and water are not readily available, use an alcohol-based sanitizer with at least 60% alcohol Cover your nose and mouth when coughing or sneezing with a tissue or a flexed elbow, then throw the tissue in the trash Avoid touching your eyes, mouth or nose when possible From https://www.aace.com/recent-news-and-updates/aace-position-statement-coronavirus-covid-19-and-people-adrenal
  6. 1 point
    The U.S. Food and Drug Administration today approved Isturisa (osilodrostat) oral tablets for adults with Cushing's disease who either cannot undergo pituitary gland surgery or have undergone the surgery but still have the disease. Cushing's disease is a rare disease in which the adrenal glands make too much of the cortisol hormone. Isturisa is the first FDA-approved drug to directly address this cortisol overproduction by blocking the enzyme known as 11-beta-hydroxylase and preventing cortisol synthesis. "The FDA supports the development of safe and effective treatments for rare diseases, and this new therapy can help people with Cushing's disease, a rare condition where excessive cortisol production puts them at risk for other medical issues," said Mary Thanh Hai, M.D., acting director of the Office of Drug Evaluation II in the FDA's Center for Drug Evaluation and Research. "By helping patients achieve normal cortisol levels, this medication is an important treatment option for adults with Cushing's disease." Cushing's disease is caused by a pituitary tumor that releases too much of a hormone called adrenocorticotropin, which stimulates the adrenal gland to produce an excessive amount of cortisol. The disease is most common among adults between the ages of 30 to 50, and it affects women three times more often than men. Cushing's disease can cause significant health issues, such as high blood pressure, obesity, type 2 diabetes, blood clots in the legs and lungs, bone loss and fractures, a weakened immune system and depression. Patients may have thin arms and legs, a round red full face, increased fat around the neck, easy bruising, striae (purple stretch marks) and weak muscles. Isturisa's safety and effectiveness for treating Cushing's disease among adults was evaluated in a study of 137 adult patients (about three-quarters women) with a mean age of 41 years. The majority of patients either had undergone pituitary surgery that did not cure Cushing's disease or were not surgical candidates. In the 24-week, single-arm, open-label period, all patients received a starting dose of 2 milligrams (mg) of Isturisa twice a day that could be increased every two weeks up to 30 mg twice a day. At the end of this 24-week period, about half of patients had cortisol levels within normal limits. After this point, 71 patients who did not need further dose increases and tolerated the drug for the last 12 weeks entered an eight-week, double-blind, randomized withdrawal study where they either received Isturisa or a placebo (inactive treatment). At the end of this withdrawal period, 86% of patients receiving Isturisa maintained cortisol levels within normal limits compared to 30% of patients taking the placebo. The most common side effects reported in the clinical trial for Isturisa were adrenal insufficiency, headache, vomiting, nausea, fatigue and edema (swelling caused by fluid retention). Hypocortisolism (low cortisol levels), QTc prolongation (a heart rhythm condition) and elevations in adrenal hormone precursors (inactive substance converted into a hormone) and androgens (hormone that regulates male characteristics) may also occur in people taking Isturisa. Isturisa is taken by mouth twice a day, in the morning and evening as directed by a health care provider. After treatment has started, a provider may re-evaluate dosage, depending upon the patient's response. Isturisa received Orphan Drug Designation, which is a special status granted to a drug intended to treat a rare disease or condition. The FDA granted the approval of Isturisa to Novartis. Media Contact: Monique Richards, 240-402-3014 Consumer Inquiries: Email, 888-INFO-FDA The FDA, an agency within the U.S. Department of Health and Human Services, protects the public health by assuring the safety, effectiveness, and security of human and veterinary drugs, vaccines and other biological products for human use, and medical devices. The agency also is responsible for the safety and security of our nation's food supply, cosmetics, dietary supplements, products that give off electronic radiation, and for regulating tobacco products. SOURCE U.S. Food and Drug Administration Related Links http://www.fda.gov From https://www.prnewswire.com/news-releases/fda-approves-new-treatment-for-adults-with-cushings-disease-301019293.html
  7. 1 point
    Along with all of you, NADF is monitoring this outbreak by paying close attention to CDC and FDA updates. We have also asked our Medical Advisor to help answer your important questions as they come up. We asked Medical Director Paul Margulies, MD, FACE, FACP to help us with this question: Question: Does Adrenal Insufficiency cause us to have a weakened immune system and therefore make us more susceptible? Response: Individuals with adrenal insufficiency on replacement doses of glucocorticoids do not have a suppressed immune system. The autoimmune mechanism that causes Addison’s disease does not cause an immune deficiency that would make one more likely to get an infection. The problem is with the individual’s ability to deal with the stress of an infection once it develops. Those with adrenal insufficiency fall into that category. When sick with a viral infection, they can have a more serious illness, and certainly require stress dose steroids to help to respond to the illness. If someone with adrenal insufficiency contracts the coronavirus, it is more likely to lead to the need for supportive care, including hospitalization. This information from the CDC Website provides important information regarding Prevention & Treatment. You can find this information here: https://www.cdc.gov/coronavirus/2019-ncov/about/prevention-treatment.html From https://www.nadf.us/
  8. 1 point
    Presented by Varun Kshettry, MD Director, Advanced Endoscopic & Microscopic Neurosurgery Cleveland Clinic Lerner College of Medicine Register Now After registering you will receive a confirmation email with details about joining the webinar. Date: Tuesday, February 18, 2020 Time: 10:00 AM - 11:00 AM Pacific Standard Time, 1:00 PM - 2:00 PM Eastern Standard Time Learning Objectives: Discuss patient expectations for pituitary surgery and recovery Discuss best practices to minimize risk of complications What questions to ask your medical providers Presenter Bio Dr. Varun R. Kshettry, a neurosurgeon specializing in skull base and pituitary disorders at the Cleveland Clinic. He is also the director of the Advanced Endoscopic & Microscopic Neurosurgery Laboratory. He is an assistant professor of neurosurgery at Cleveland Clinic Lerner College of Medicine of Case Western Reserve University. Dr. Kshettry received his BA in philosophy at the University of Pennsylvania. He earned his medical degree from Northwestern University. He completed his residency training at the Cleveland Clinic, during which he performed a research fellowship in skull base & microsurgical anatomy at Ohio State University. He then performed a clinical fellowship in minimally invasive cranial base & pituitary surgery at Thomas Jefferson University under Dr. James Evans. Dr. Kshettry has authored more than 100 peer-reviewed publications and book chapters and is an editor for a book entitled Endoscopic and Keyhole Cranial Base Surgery. He serves as an editor or reviewer for multiple neurosurgical journals. He serves on the Value-Based Healthcare Committee for the North American Skull Base Society. He serves as faculty director for the Cleveland Clinic Pituitary Tumor Board and is an investigator in several multi-center pituitary clinical trials. Dr. Kshettry collaborates closely with pituitary endocrinologists, neuro-ophthalmologists, otolaryngologists, pituitary pathologists, and radiation oncologists for multi-disciplinary care for patients with pituitary diseases.
  9. 1 point
    Published: 13 January 2020 Shigemitsu Yasuda, Yusuke Hikima, Yusuke Kabeya, Shinichiro Iida, Yoichi Oikawa, Masashi Isshiki, Ikuo Inoue, Akira Shimada & Mitsuhiko Noda BMC Endocrine Disorders volume 20, Article number: 9 (2020) Abstract Background Primary aldosteronism (PA) plus subclinical Cushing’s syndrome (SCS), PASCS, has occasionally been reported. We aimed to clinically characterize patients with PASCS who are poorly profiled. Methods A population-based, retrospective, single-center, observational study was conducted in 71 patients (age, 58.2 ± 11.2 years; 24 males and 47 females) who developed PA (n = 45), SCS (n = 12), or PASCS (n = 14). The main outcome measures were the proportion of patients with diabetes mellitus (DM), serum potassium concentration, and maximum tumor diameter (MTD) on the computed tomography (CT) scans. Results The proportion of DM patients was significantly greater in the PASCS group than in the PA group (50.0% vs. 13.9%, p <  0.05), without a significant difference between the PASCS and SCS groups. Serum potassium concentration was significantly lower in the PASCS group than in the SCS group (3.2 ± 0.8 mEq/L vs. 4.0 ± 0.5 mEq/L; p <  0.01), without a significant difference between the PASCS and PA groups. Among the 3 study groups of patients who had a unilateral adrenal tumor, MTD was significantly greater in the PASCS group than in the PA group (2.7 ± 0.1 cm vs. 1.4 ± 0.1 cm; p <  0.001), without a significant difference between the PASCS and SCS groups. Conclusions Any reference criteria were not obtained that surely distinguish patients with PASCS from those with PA or SCS. However, clinicians should suspect the presence of concurrent SCS in patients with PA when detecting a relatively large adrenal tumor on the CT scans. Peer Review reports Background Primary aldosteronism (PA), an adrenocortical disorder caused by an adrenal tumor that overproduces aldosterone, accounts for 5 to 15% of patients with hypertension [1]. Cushing’s syndrome (CS), an endocrinopathy resulting from the prolonged, excessive adrenocortical secretion of cortisol, falls roughly into the following 2 categories: adrenocorticotropic hormone (ACTH)-dependent CS and ACTH-independent CS; the former includes Cushing’s disease that is primarily caused by a pituitary ACTH-secreting tumor and ectopic ACTH syndrome resulting from extrapituitary ACTH-secreting tumors (eg, bronchial carcinoid) [2], while the latter is usually caused by unilateral adenomas or carcinomas that provoke the autonomous adrenal cortical secretion [3]. Subclinical Cushing’s syndrome (SCS), an ill-defined endocrine disorder leading to the ACTH-independent secretion of cortisol from an adrenal adenoma that is not fully restrained by pituitary feedback [4], is known to cause hypertension, glucose intolerance, and dyslipidemia [5]. The concurrence of clinically overt hyperaldosteronism and subclinical hypercortisolism is rare in PA patients [6]. To date, a few number of studies have examined the clinicopathological features of patients with PA plus SCS (PASCS), the incidences of which have ranged between about 10 and 20% [7, 8]. Lower plasma ACTH levels and a greater tumor size were found in patients with PASCS than in patients with PA alone [8]. In the clinical settings, we rarely encounter PASCS patients who show a small adrenal tumor on the computed tomography (CT) scans and/or do not have a low plasma ACTH level in blood samples collected in the early morning. To examine the clinical features of PASCS patients in the present study, we compared clinical, laboratory, and imaging characteristics among patients with PA, SCS, or PASCS. Methods Patients We conducted a population-based, retrospective, single-center, observational study in 187 patients (119 with PA, 54 with SCS, and 14 with PASCS) at Saitama Medical University Hospital, Saitama, Japan, between January 1999 and December 2016. Hypertensive patients with suspected PA or SCS, as well as normotensive or hypertensive patients with an adrenal incidentaloma were referred to our hospital. A total of 116 patients were excluded from the study: 31 who were diagnosed with PA or SCS only because tests required to definitely diagnose these endocrinopathies were not conducted; 61 who failed to meet the new Japanese diagnostic criteria of SCS [9]; 1 who failed to meet the new Korean diagnostic criteria of subclinical hypercortisolism [10]; and 23 who failed to meet the Japanese [11] and United States [12] diagnostic criteria of PA. Therefore, we investigated 71 patients who were definitely diagnosed with PA and/or SCS (45 with PA, 12 with SCS, and 14 with PASCS). This study was approved by the institutional review board of Saitama Medical University. Patients provided written informed consent to the use of their clinical and laboratory data in the study. Diagnosis of PA and SCS Hormones required for the diagnosis of PA and SCS were assayed according to the procedures described in the pertinent guidelines [9, 11]. Serum cortisol and plasma ACTH levels were determined by electrochemiluminescence immunoassay, plasma aldosterone concentration (PAC) and plasma renin activity (PRA) by radioimmunoassay, and serum dehydroepiandrosterone sulfate (DHEAS) level by chemiluminescent enzyme immunoassay (SRL Inc., Tokyo, Japan). Blood samples were collected in the early morning (7 a.m. to 9 a.m.). PA was suspected when detecting elevated PAC (≥ 150 pg/mL), low PRA (≤ 1.0 ng/mL/hr), and/or the elevated aldosterone-to-renin ratio (> 200). We conducted the following 3 challenge tests in accordance with the Japanese guidelines of PA [11]: captopril challenge test, furosemide upright posture challenge test, and ACTH challenge test. PA was diagnosed when at least 1 of these 3 challenge tests afforded results compatible with the disease. Furthermore, we also referred to the American guideline of PA [12] for selecting only patients who met the diagnostic criteria for PA. Prior to the confirmatory tests, patients had not received any antihypertensive drugs for at least 2 weeks except for those with severe hypertension treated with calcium-channel blockers and/or α-blockers. Adrenal venous sampling (AVS), whose usefulness was well documented in the Japanese and United States guidelines [11,12,13], was conducted in all of patients who had PA or PASCS to make the differential diagnosis of uni- or bilateral aldosterone hypersecretion. The low-dose (1-mg) dexamethasone suppression test (DST) and the corticotropin-releasing hormone (CRH) challenge test were conducted, and the diurnal rhythms of cortisol were also determined—all for the diagnosis of SCS. Moreover, the high-dose (8-mg) DST was also conducted to rule out ACTH-dependent CS. Test results were assessed in accordance with the diagnostic criteria advocated by the Japan Endocrine Society [9] to make the definite diagnosis of SCS. Concretely, patients were required to meet the requisites 1–3)—1) presence of an adrenal incidentaloma; 2) lack of characteristic features of Cushing’s syndrome; and 3) normal basal serum cortisol levels, as well as to have either of the requisites 4–6)—4) the cutoff value of serum cortisol level for the diagnosis of SCS was ≥ 5 μg/dL after the 1-mg DST, 5) the cutoff value of serum cortisol level for the diagnosis of SCS was ≥ 3 μg/dL after the 1-mg DST, and at least 1 of “Low plasma levels of ACTH in the early morning,” “No diurnal changes in serum cortisol levels,” “Unilateral uptake on adrenal scintigraphy,” “Low serum levels of DHEAS,” or the presence of “Transient adrenal insufficiency or atrophy of the attached normal adrenal cortex after removal of the adrenal tumor,” or 6) the cutoff value of serum cortisol level for the diagnosis of SCS was ≥ 1.8 μg/dL after the 1-mg DST, with the presence of “Low plasma levels of ACTH in the early morning” and “No diurnal changes in serum cortisol levels,” or the presence of “Transient adrenal insufficiency or atrophy of the attached normal adrenal cortex after removal of the adrenal tumor.” In the present study, we examined only patients who met the requisites 1–3) and either 1 of the requisites 4–6) as patients with SCS. All patients underwent 128-slice CT of the adrenal glands. 131I-adosterol adrenal scintigraphy was conducted in all of patients who had SCS or PASCS to specify the laterality of the adrenal tumor. Consequently, 7 of 12 patients with SCS and 8 of 14 patients with PASCS underwent adrenalectomy. Postsurgical histopathological examination confirmed cortisol hypersecretion based on the atrophy of the normal area adjacent to the adenoma of the removed adrenal gland [9]. Study outcome measures At the initial visit, all patients were checked up for their age and sex. Systolic blood pressure (SBP), diastolic blood pressure (DBP), and the outcome measures listed in Table 1 were examined in untreated patients. At the time of admission to the hospital for making the definite diagnosis, height and body weight were measured to calculate body mass index (BMI). In the early morning of the next day of admission to the hospital, blood pressures were measured. Blood samples were collected to determine PAC, PRA, as well as plasma ACTH, serum cortisol, and serum DHEAS levels. The laterality of the adrenal tumor was confirmed based on the results from AVS and/or CT. The Hounsfield number and MTD of adrenal tumors were determined on the CT scans. Table 1 Clinical, laboratory, and imaging characteristics of untreated patients with PA, SCS, or PASCS The following terms were defined for PASCS: hypertension, SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg [14]; diabetes mellitus (DM), an fasting plasma glucose (FPG) level ≥ 126 mg/dL, a 2-h plasma glucose level ≥ 200 mg/dL in the 75-g oral glucose tolerance test, and/or a serum hemoglobin A1c (HbA1c) level ≥ 6.5% in national glycohemoglobin standardization program [15]; and dyslipidemia, a serum triglyceride (TG) level ≥ 150 mg/dL, a serum high-density lipoprotein cholesterol (HDL-C) level < 40 mg/dL, or a serum low-density lipoprotein cholesterol (LDL-C) level ≥ 140 mg/dL [16]. To specify the source of aldosterone hypersecretion by AVS, the following diagnostic criteria were used: 1) the laterality ratio (LR) and the contralaterality ratio (CR) calculated before and after the ACTH challenge test in reference to the Japanese guidelines of PA [11]; 2) the absolute PAC value of ≥ 14,000 pg/mL in reference to the articles of Ohmura [17] and Makita [18]; and 3) the aldosterone ratio of the right and left adrenal veins. According to the Japanese guidelines of PA [11], an LR of > 4 and a CR of < 1 after the ACTH challenge test were used as the cutoff values. Tumor laterality was determined based on a CR of < 1 and the absolute PAC value of ≥ 14,000 pg/mL when the ACTH challenge test indicated an LR of 2 to 4 or a discrepancy occurred in tumor laterality before and after the ACTH challenge test. Since serum cortisol levels considerably differed in the adrenal veins of PASCS patients, the adrenal gland secreting cortisol predominantly was determined based on the aldosterone ratio and on the right-to-left ratio of aldosterone and cortisol in the adrenal veins in reference to the article of Hiraishi et al. [8]. Moreover, tumor laterality was determined based on the results from 131I-adosterol adrenal scintigraphy and on the absolute value of PAC in reference to the articles of Funder et al. [12] and Minami et al. [13]. We did not measure plasma metanephrine concentrations, although the measurement thereof is useful for determining the need for AVS [19] in patients with the suspected concurrence of aldosterone and cortisol hypersecretion. Statistical analyses Continuous and categorical variables were analyzed according to the one-way analysis of variance and Fisher’s exact test, respectively. Two of the 3 study groups were analyzed according to Student’s t-test. Bonferroni’s correction was applied to the p values from Student’s t-test or Fisher’s exact test in multiple comparisons between 2 among the 3 study groups. Blood steroid profiles were compared between 2 groups according to Student’s t-test or the Mann-Whitney U-test. In addition, the multiple linear regression analysis adjusted for age, sex, and BMI was performed to examine differences in MTD and serum potassium concentration among the PA, SCS, and PASCS groups. MTD was not measured in 1 of 42 patients in the PA group who had a unilateral adrenal tumor. Therefore, the data from the patient were excluded as the missing data. A value of p <  0.05 was considered statistically significant. The JMP software version 9.0 (SAS Institute, Cary, NC, USA) was used to make all statistical analyses except multiple linear regression analysis that was performed using the STATA software version 14 (Stata Corp, College Station, TX, USA). Results Study population The clinical, laboratory, and imaging characteristics of 71 patients are shown in Table 1. Mean age was 58.2 ± 11.2 years, females (n = 47, 66.2%) were predominant, and mean BMI was 25.2 ± 4.5 kg/m2. No significant difference was found in age, sex, and BMI among the PA, SCS, and PASCS groups (Table 1). SBP and DBP of patients with untreated hypertension were 165.6 ± 26.1 mmHg and 96.0 ± 13.6 mmHg, respectively, in the PA group in contrast to 145.6 ± 26.9 mmHg and 80.0 ± 12.7 mmHg, respectively, in the SCS groups. DBP was significantly greater (p <  0.01) in the PA group than in the SCS group. Comorbidities are shown in Table 1. Hypertension occurred in 45 (100%), 9 (75.0%), and 13 (92.9%) patients in the PA, SCS, and PASCS groups, respectively. The proportion of patients with hypertension was significantly greater (p <  0.05) in the PA group than in the SCS group; however, no significant difference was found between the PASCS group and the PA group. Notably, the incidence of hypertension was 100% in patients with PA. DM occurred in 6 (14.0%), 6 (50.0%), and 7 (50.0%) patients in the PA, SCS, and PASCS groups, respectively. The proportion of DM patients was significantly greater (p <  0.05) in the PASCS group than in the PA group. Dyslipidemia occurred in 25 (56.8%), 10 (83.3%), and 9 (64.3%) patients in the PA, SCS, and PASCS groups, respectively; however, no significant difference was found among these study groups. Results from laboratory tests are shown in Table 1. FPG was greater not statistically but numerically in the PASCS group than in the PA group (131.6 ± 52.1 mg/dL vs. 103.8 ± 28.5 mg/dL; p = 0.09). On the other hand, FPG was statistically greater in the SCS group than in the PA group (150.0 ± 60.7 mg/dL vs. 103.8 ± 28.5 mg/dL; p <  0.01). HbA1c was greater not statistically but numerically in the PASCS group than in the PA group (6.5 ± 2.1% vs. 5.7 ± 0.9%; p = 0.21). On the other hand, HbA1c was significantly greater in the SCS group than in the PA group (7.3 ± 2.2% vs. 5.7 ± 0.9%; p <  0.01). Serum potassium concentration was significantly lower in the PA group than in the SCS group (3.3 ± 0.7 mEq/L vs. 4.0 ± 0.5 mEq/L; p <  0.01) and in the PASCS group than in the SCS group (3.2 ± 0.8 mEq/L vs. 4.0 ± 0.5 mEq/L; p <  0.01). No significant difference was found in serum potassium concentration between the PA group and the PASCS group. Serum alkaline phosphatase (ALP) level was significantly greater in the PASCS group than in the PA group (279.1 ± 105.4 U/L vs. 212.3 ± 46.3 U/L; p <  0.01). No significant difference was found in serum ALP level between the SCS group and the PASCS group. Subsequently, differences in CT Hounsfield units and MTD of adrenal tumors among the 3 study groups were examined with respect to 65 patients who had a unilateral adrenal tumor (Table 2). MTD on the CT scans was significantly greater in the PASCS group than in the PA group (2.7 ± 0.1 cm vs. 1.3 ± 0.1 cm; p <  0.001) and was also greater in the SCS group than in the PA group (2.7 ± 0.2 cm vs. 1.3 ± 0.1 cm; p <  0.001). No significant difference was found in MTD between the SCS group and the PASCS group. MTD was significantly smaller in the PA group than in the other 2 groups, was second smallest in the SCS group, and was largest in the PASCS group (Table 2). MTD ranged as follows: 0.3–2.2 cm, 1.8–3.5 cm, and 1.1–5.0 cm in the PA, SCS, and PASCS groups, respectively (Fig. 1). Table 2 Maximum tumor diameters and computed tomography Hounsfield units of adrenal tumors in patients who had a unilateral adrenal tumor Full size table Fig. 1 Maximum tumor diameters in patients with PA, SCS, or PASCS who had a unilateral adrenal tumor. PA, primary aldosteronism; SCS, subclinical Cushing’s syndrome, PASCS, primary aldosteronism plus subclinical Cushing’s syndrome The blood steroid profiles of patients with PA or PASCS are shown in Table 3. PAC was significantly greater in the PASCS group than in the PA group (255.0 [713.3–153.5] vs. 208.0 [273.0–159.8]; p <  0.005). No significant difference was found in PRA in the morning, while the PAC/PRA ratio was significantly greater in the PASCS group than in the PA group (1450.0 [5010.0–529.4] vs. 1258.3 [1956.3–643.1]; p <  0.005). The PAC/PRA ratio in the captopril challenge test was significantly greater in the PASCS group than in the PA group (3028.5 ± 3648.9 vs. 730.7 ± 745.7; p <  0.001) as with PAC in the captopril challenge test (348.6 ± 340.1 vs. 149.0 ± 94.2; p <  0.005). Serum cortisol level was significantly greater in the PASCS group than in the PA group (16.4 ± 6.6 μg/dL vs. 12.4 ± 4.3 μg/dL; p <  0.05). The mean serum cortisol level was 17.8 ± 5.9 μg/dL in the SCS group and was not significantly greater in the SCS group than in the PASCS group (17.8 ± 5.9 μg/dL vs. 16.4 ± 6.6 μg/dL; p = 0.49). No significant difference was found in plasma ACTH and serum DHEAS levels in the early morning; however, these variables were not significantly lower in the PASCS than in the PA group (p = 0.29 for ACTH and p = 0.40 for DHEAS). On the other hand, the peak plasma ACTH levels in the CRH challenge test were significantly lower in the PASCS group than in the PA group (18.9 ± 8.9 vs. 57.1 ± 10.8; p <  0.005) (Table 3) and were not significantly greater in the SCS group than in the PASCS group (15.3 ± 5.6 μg/dL vs. 18.9 ± 8.9 μg/dL; p = 0.64). Table 3 Blood steroid profiles of patients with PA or PASCS Full size table Multiple linear regression analysis on MTD and serum potassium concentration with respect to patients in the PA, SCS, and PASCS groups who had a unilateral adrenal tumor MTD was significantly greater in the PASCS and SCS groups than in the PA group with respect to patients who had a unilateral adrenal tumor (Table 2). Therefore, we conducted a multiple linear regression analysis adjusted for age, sex, and BMI to examine differences in MTD among the PA, SCS, and PASCS groups. Consequently, MTD was significantly smaller in the PA group than in the PASCS group (difference, – 1.19 cm; 95% CI, – 1.66 to – 0.72 cm). However, no significant difference was found in MTD between the SCS group and the PASCS group (Table 4). Serum potassium concentration was significantly greater in the SCS group than in the PASCS group (difference, 0.97 mEq/L; 95% CI, 0.38 to 1.54 mEq/L). However, no significant difference was found in serum potassium concentration between the PASCS group and the PA group (Table 4). Table 4 Multiple regression analysis on maximum tumor diameter and serum potassium concentration with respect to patients in the PA, SCS, and PASCS groups who had a unilateral adrenal tumor (n = 65) Full size table The cutoff value of 2.4 cm for tumor size seemed to produce the largest proportion of classified patients (91.0%). Patients with PA who had a tumor size of > 2.4 cm almost certainly had the elements of PASCS (specificity 100%). Namely, the sensitivity and specificity were calculated to be 58.0 and 100%, respectively, when the cutoff point for tumor diameter was set to 2.4 cm. The odds ratio for tumor diameter when comparing PA with PASCS was 0.06 (95% CI, 0.006–0.261). Discussion We found several clinical and laboratory differences between patients with PASCS and patients with either PA or SCS. Regarding the impact of PA and SCS on glucose metabolism, the risk of developing DM in SCS is enhanced by the overproduction of cortisol that leads to increased gluconeogenesis [20]. Moreover, the risk is also enhanced by PA through 1) a hypokalemia-induced decrease in initial pancreatic insulin release and 2) a reduction in insulin sensitivity [21,22,23]. Hypokalemia is caused by the mineralocorticoid receptor-mediated overexcretion of potassium from the kidneys in both hypercortisolism and hyperaldosteronism [12, 24, 25]. Serum potassium concentration decreased significantly in the PA group than in the SCS group (p <  0.01). Similarly, the concurrence of PA and SCS significantly decreased serum potassium concentration against the SCS group (p <  0.01), but not the PA group. Of special note was the fact that the PASCS group involving both hyperaldosteronism and hypercortisolism did not show any greater decrease in serum potassium concentration as compared with the PA group. The mineralocorticoid receptors (MRs) bind both mineralocorticoids and glucocorticoids with high affinity (deoxycorticosterone = corticosterone ≥ aldosterone = cortisol) [26]. On the other hand, a cortisol-degrading enzyme—11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2)—is expressed in renal epithelial cells and regulates the binding of aldosterone to the MRs by impeding cortisol binding to the MRs through the inactivation of cortisol to cortisone [26, 27]. Namely, this physiological event explains the MR-mediated renal excretion of potassium that is enhanced by both cortisol and aldosterone. We hypothesize that the renal potassium excretion-enhancing activity is greater for aldosterone than for cortisol due to the 11β-HSD2-induced, extensive inactivation of cortisol and that the hyperaldosteronism-enhanced renal excretion of potassium in patients with PASCS becomes more apparent, with the less effect of hypercortisolism on renal potassium excretion. Zallocchi et al. [28] described that renal 11β-HSD2 activity is regulated by glucocorticoids, is downregulated following adrenalectomy, and is restored by corticosterone replacement. These findings lead us to hypothesize that 11β-HSD2 may suppress the binding of corticosteroids to the MRs almost completely in subclinical hypercortisolism or that the expression/activity of renal 11β-HSD2 may be increased in PA. However, these hypotheses require further research for its demonstration. The proportion of DM patients increased significantly in the PASCS group than in the PA group (p <  0.05), which is in line with a previous study that described abnormal glucose metabolism in PA patients with cortisol hypersecretion [29]. Hyperaldosteronism found in patients with PA also induces abnormal glucose metabolism [21,22,23], although being less intense as compared with hypercortisolism found in patients with SCS. The proportions of DM patients in the PA and SCS groups increased, which resulted to nullify a statistically significant difference in the proportion of DM patients between the 2 study groups. The fact that the risk for DM is increased in PA patients with mild glucocorticoid excess has been reported [30,31,32]; the finding was also described in Japanese patients with PA and patients with PASCS [33]. Interestingly, patients with PASCS involving hypercortisolism- and hyperaldosteronism-induced hypokalemia showed neither additive or synergic impact on abnormal glucose metabolism contrary to our prediction. The proportion of DM patients was comparable between the PASCS group and the SCS group. However, the reason for these findings is unknown, awaiting the further accumulation of clinical evidence. MTD was significantly smaller (p <  0.001) in the PA group than in the PASCS or SCS group, and multiple regression analysis on MTD revealed that MTD was significantly larger by 1.2 cm in the PASCS group than in the PA group (p <  0.001). Previous studies [8, 34] examined the clinical characteristics of patients with PA or PASCS and described significant differences in MTD between the 2 study groups. Their results were concordant with and support our results that indicated no significant difference in MTD between the PASCS group and the SCS group. Most of previous clinical studies in patients with SCS have described adrenal tumors of ≥ 2 cm in diameter [35, 36]. In addition, an adrenal adenoma causing the overproduction of both cortisol and aldosterone is considered to have a ≥ 2.5 cm diameter [34]. In the present study, however, the adrenal tumor was smaller in both patients with SCS and patients with PASCS. Concretely, the smallest MTD was 1.1 cm in patients with PASCS (Fig. 1). None of patients, who had PA and an adrenal tumor < 1 cm in diameter, developed SCS. Therefore, the dexamethasone suppression test may not be required for them. Regarding bone metabolism impairment in SCS, the risk of developing osteoporosis is enhanced by the overproduction of cortisol in SCS [37, 38]. On the other hand, hyperaldosteronism is also known to increase the risk for osteoporosis [39]. SCS and PA are the risk factors for a reduction in BMD and an increase in vertebral fracture [37,38,39]. In the present study, serum ALP level was significantly greater in the PASCS group than in the PA group (p <  0.01). No significant difference was found in serum ALP level between the SCS group and the PASCS group. If this ALP represents bone alkaline phosphatase (BAP), the deleterious effects of hyperaldosteronism on bone metabolism might be masked by the severe abnormalities of bone metabolism caused by hypercortisolism in patients with PASCS. However, the relevant effects are difficult to assess by means of bone metabolism markers [eg, BAP] in patients with hypercortisolism as found in SCS [37]. Unfortunately, we neither used bone metabolism markers, nor measured BMD. Therefore, we will intend to investigate these variables in the future. Limitations The present study has several limitations. First, the study was retrospective in design and had a relatively small number of patients. Therefore, selection bias and sampling bias cannot be discarded. Second, not all patients underwent AVS or had a histopathological diagnosis. Patients, to whom challenge tests for either PA or SCS were conducted, were not included in the present study. Hence, the number of patients resulted to be relatively small. Third, the lack of data in the present study impeded the analysis of BMD and bone metabolism markers. Fourth, 131I-adosterol adrenal scintigraphy is not only useful for the diagnosis of SCS, but also is a very important imaging modality to predict postsurgical hypoadrenalism [40]. However, we could not investigate the latter. Conclusions We could not obtain any reference criteria to surely distinguish patients with concurrent endocrinopathies from those with a single endocrinopathy. However, clinicians should suspect the presence of concurrent SCS in patients with PA when detecting an adrenal tumor (≥ 1 cm in diameter) on the CT scans. Availability of data and materials The datasets analyzed during the current study are available from the corresponding author on a reasonable request. Abbreviations ACTH: Adrenocorticotropic hormone ALP: Alkaline phosphatase BMI: Body mass index; CRH: corticotropin-releasing hormone CT: computed tomography DBP: Diastolic blood pressure DHEAS: Dehydroepiandrosterone sulfate FPG: Fasting plasma glucose HbA1c: Hemoglobin A1c HDL-C: High-density lipoprotein cholesterol HU: Hounsfield unit LDL-C: Low-density lipoprotein cholesterol MTD: Maximum tumor diameter NGSP: National glycohemoglobin standardization program PA: Primary aldosteronism PAC: Plasma aldosterone concentration PASCS: Primary aldosteronism plus subclinical Cushing’s syndrome PRA: Plasma renin activity SBP: Systolic blood pressure SCS: Subclinical Cushing’s syndrome TG: Triglyceride UA: Uric acid References 1. Mulatero P, Stowasser M, Loh KC, Fardella CE, Gordon RD, Mosso L, et al. Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents. J Clin Endocrinol Metab. 2004;89:1045–50. CAS Article Google Scholar 2. Kageyama K, Oki Y, Sakihara S, Nigawara T, Terui K, Suda T. Evaluation of the diagnostic criteria for Cushing's disease in Japan. Endocr J. 2013;60:127–35. CAS Article Google Scholar 3. Newell-Price J, Bertagna X, Grossman AB, Nieman LK. Cushing’s syndrome. Lancet. 2006;367:1605–17. CAS Article Google Scholar 4. Terzolo M, Pia A, Reimondo G. Subclinical Cushing’s syndrome: definition and management. Clin Endocrinol. 2012;76:12–8. CAS Article Google Scholar 5. Iacobone M, Citton M, Scarpa M, Viel G, Boscaro M, Nitti D. Systematic review of surgical treatment of subclinical Cushing’s syndrome. Br J Surg. 2015;102:318–30. CAS Article Google Scholar 6. Fallo F, Bertello C, Tizzani D, Fassina A, Boulkroun S, Sonino N, et al. Concurrent primary aldosteronism and subclinical cortisol hypersecretion: a prospective study. J Hypertens. 2011;29:1773–7. CAS Article Google Scholar 7. Piaditis GP, Kaltsas GA, Androulakis II, Gouli A, Makras P, Papadogias D, et al. High prevalence of autonomous cortisol and aldosterone secretion from adrenal adenomas. Clin Endocrinol. 2009;71:772–8. CAS Article Google Scholar 8. Hiraishi K, Yoshimoto T, Tsuchiya K, Minami I, Doi M, Izumiyama H, et al. Clinicopathological features of primary aldosteronism associated with subclinical Cushing’s syndrome. Endocr J. 2011;58:543–51. CAS Article Google Scholar 9. Yanase T, Oki Y, Katabami T, Otsuki M, Kageyama K, Tanaka T, et al. New diagnostic criteria of adrenal subclinical Cushing’s syndrome: opinion from the Japan Endocrine Society. Endocr J. 2018;65:383–93. CAS Article Google Scholar 10. Lee SH, Song KH, Kim J, Park S, Ahn SH, Kim H, et al. New diagnostic criteria for subclinical hypercortisolism using postsurgical hypocortisolism: the co-work of adrenal research study. Clin Endocrinol. 2017;86:10–8. CAS Article Google Scholar 11. Nishikawa T, Omura M, Satoh F, Shibata H, Takahashi K, Tamura N, et al. Task force committee on primary Aldosteronism, the Japan Endocrine Society guidelines for the diagnosis and treatment of primary aldosteronism—the Japan Endocrine Society 2009. Endocr J. 2011;58:711–21. CAS Article Google Scholar 12. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: Case detection, diagnosis, and treatment: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:1889–916. CAS Article Google Scholar 13. Minami I, Yoshimoto T, Hirono Y, Izumiyama H, Doi M, Hirata Y. Diagnostic accuracy of adrenal venous sampling in comparison with other parameters in primary aldosteronism. Endocr J. 2008;55:839–46. Article Google Scholar 14. Ogihara T, Saruta T, Rakugi H, Fujimoto A, Ueshima K, Yasuno S, et al. CASE-J trial group, relationship between the achieved blood pressure and the incidence of cardiovascular events in Japanese hypertensive patients with complications: a sub-analysis of the CASE-J trial. Hypertens Res. 2009;32:248–54. Article Google Scholar 15. Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus, Seino Y, Nanjo K, Tajima N, Kadowaki T, Kashiwagi A, Araki E, et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Investig. 2010;1:212–28. Article Google Scholar 16. Teramoto T, Sasaki J, Ueshima H, Egusa G, Kinoshita M, Shimamoto K, et al. Japan atherosclerosis society (JAS) Committee for Epidemiology and Clinical Management of atherosclerosis. Diagnostic criteria for dyslipidemia, executive summary of Japan atherosclerosis society (JAS) guideline for diagnosis and prevention of atherosclerotic cardiovascular diseases for Japanese. J Atheroscler Thromb. 2007;14:155–8. CAS Article Google Scholar 17. Omura M, Saito J, Yamaguchi K, Kakuta Y, Nishikawa T. Prospective study on the prevalence of secondary hypertension among hypertensive patients visiting a general outpatient clinic in Japan. Hypertens Res. 2004;27:193–202. Article Google Scholar 18. Makita K, Nishimoto K, Kiriyama-Kitamoto K, Karashima S, Seki T, Yasuda M, et al. A novel method: super-selective adrenal venous sampling. J Vis Exp. 2017;127:55716. 19. Dekkers T, Deinum J, Schultzekool LJ, Blondin D, Vonend O, Hermus AR, et al. Plasma metanephrine for assessing the selectivity of adrenal venous sampling. Hypertension. 2013;62:1152–7. CAS Article Google Scholar 20. Bancos I, Alahdab F, Crowley RK, Chortis V, Delivanis DA, Erickson D, et al. Therapy of endocrine disease: improvement of cardiovascular risk factors after adrenalectomy in patients with adrenal tumors and subclinical Cushing’s syndrome: a systematic review and meta-analysis. Eur J Endocrinol. 2016;175:R283–95. CAS Article Google Scholar 21. Corry DB, Tuck ML. The effect of aldosterone on glucose metabolism. Curr Hypertens Rep. 2003;5:106–9. Article Google Scholar 22. Remde H, Hanslik G, Rayes N, Quinkler M. Glucose metabolism in primary aldosteronism. Horm Metab Res. 2015;47:987–93. CAS Article Google Scholar 23. Watanabe D, Yatabe M, Ichihara A. Evaluation of insulin sensitivity and secretion in primary aldosteronism. Clin Exp Hypertens. 2016;38:613–7. CAS Article Google Scholar 24. Young WF. Primary aldosteronism: renaissance of a syndrome. Clin Endocrinol. 2007;66:607–18. CAS Article Google Scholar 25. Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BM, Colao A. Complications of Cushing’s syndrome: state of the art. Lancet Diabetes Endocrinol. 2016;4:611–29. CAS Article Google Scholar 26. Funder JW. Mineralocorticoid receptors: distribution and activation. Heart Fail Rev. 2005;10:15–22. CAS Article Google Scholar 27. Ferrari P, Sansonnens A, Dick B, Frey FJ. In vivo 11beta-HSD-2 activity: variability, salt-sensitivity, and effect of licorice. Hypertension. 2001;38:1330–6. CAS Article Google Scholar 28. Zallocchi ML, Matkovic L, Calvo JC, Damasco MC. Adrenal gland involvement in the regulation of renal 11beta-hydroxysteroid dehydrogenase 2. J Cell Biochem. 2004;92:591–602. CAS Article Google Scholar 29. Gerards J, Heinrich DA, Adolf C, Meisinger C, Rathmann W, Sturm L, et al. Impaired glucose metabolism in primary aldosteronism is associated with cortisol co-secretion. J Clin Endocrinol Metab. 2019. https://doi.org/10.1210/jc.2019-00299 [Epub ahead of print]. Article Google Scholar 30. Wu VC, Chueh SJ, Chen L, Chang CH, Hu YH, Lin YH, et al. Risk of new-onset diabetes mellitus in primary aldosteronism: a population study over 5 years. J Hypertens. 2017;35:1698–708. CAS Article Google Scholar 31. Arlt W, Lang K, Sitch AJ, Dietz AS, Rhayem Y, Bancos I, et al. Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight. 2017;2:e93136. Article Google Scholar 32. Beuschlein F, Reincke M, Arlt W. The impact of Connshing’s syndrome - mild cortisol excess in primary aldosteronism drives diabetes risk. J Hypertens. 2017;35:2548. CAS Article Google Scholar 33. Akehi Y, Yanase T, Motonaga R, Umakoshi H, Tsuiki M, Takeda Y, et al. High prevalence of diabetes in patients with primary aldosteronism (PA) associated with subclinical hypercortisolism and prediabetes more prevalent in bilateral than unilateral PA: a large, multicenter cohort study in Japan. Diabetes Care. 2019;42:938–45. CAS Article Google Scholar 34. Späth M, Korovkin S, Antke C, Anlauf M, Willenberg HS. Aldosterone- and cortisol-co-secreting adrenal tumors: the lost subtype of primary aldosteronism. Eur J Endocrinol. 2011;164:447–55. Article Google Scholar 35. Maehana T, Tanaka T, Itoh N, Masumori N, Tsukamoto T. Clinical outcomes of surgical treatment and longitudinal non-surgical observation of patients with subclinical Cushing’s syndrome and nonfunctioning adrenocortical adenoma. Indian J Urol. 2012;28:179–83. Article Google Scholar 36. Rockall AG, Babar SA, Sohaib SA, Isidori AM, Diaz-Cano S, Monson JP, et al. CT and MR imaging of the adrenal glands in ACTH-independent Cushing syndrome. Radiographics. 2004;24:435–52. Article Google Scholar 37. Chiodini I, Vainicher CE, Morelli V, Palmieri S, Cairoli E, Salcuni AS, et al. Mechanisms in endocrinology: endogenous subclinical hypercortisolism and bone: a clinical review. Eur J Endocrinol. 2016;175:R265–82. CAS Article Google Scholar 38. Hardy RS, Zhou H, Seibel MJ, Cooper MS. Glucocorticoids and bone: consequences of endogenous and exogenous excess and replacement therapy. Endocr Rev. 2018;39:519–48. Article Google Scholar 39. Asbach E, Bekeran M, Reincke M. Parathyroid gland function in primary aldosteronism. Horm Metab Res. 2015;47:994–9. CAS Article Google Scholar 40. Ricciato MP, Di Donna V, Perotti G, Pontecorvi A, Bellantone R, Corsello SM. The role of adrenal scintigraphy in the diagnosis of subclinical Cushing’s syndrome and the prediction of post-surgical hypoadrenalism. World J Surg. 2014;38:1328–35. PubMed Google Scholar Download references Acknowledgments The authors would like to express their gratitude Kazuyuki Inoue, MD and Takujiro Iuchi, MD for their role in the data collection. The authors also thank Satoshi Sakima, MD, for valuable discussions about the manuscript. Funding No funding was obtained for this study. Author information Affiliations Department of Endocrinology and Diabetes, Saitama Medical University, Morohongo 38, Moroyama, Iruma-gun, Saitama, 350-0495, Japan Shigemitsu Yasuda , Yusuke Hikima , Shinichiro Iida , Yoichi Oikawa , Masashi Isshiki , Ikuo Inoue , Akira Shimada & Mitsuhiko Noda Department of Home Care Medicine, Sowa Hospital, Sagamihara, Kanagawa, Japan Yusuke Kabeya Department of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International University of Health and Welfare, Chiba, Japan Mitsuhiko Noda Contributions SY analyzed and interpreted the data, drafted, and finalized the manuscript. YK performed statistical analyses, YH, YK, SI, YO, MI, II, AS, and MN contributed to the discussion and critically revised the manuscript, AS and MN are taking full responsibility for the work as a whole. All authors read and approved the final manuscript. Corresponding author Correspondence to Shigemitsu Yasuda. Ethics declarations Ethics approval and consent to participate All participants gave written informed consent. The present study followed the recommendations of the Declaration of Helsinki and was approved by the ethics committee of Saitama Medical University (18049.01). Consent for publication This manuscript does not report personal data such as individual details, images or videos; therefore, consent for publication is not applicable. Competing interests The authors declare that they have no conflict of interest. Additional information Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Rights and permissions Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Reprints and Permissions About this article Cite this article Yasuda, S., Hikima, Y., Kabeya, Y. et al. Clinical characterization of patients with primary aldosteronism plus subclinical Cushing’s syndrome. BMC Endocr Disord 20, 9 (2020). https://doi.org/10.1186/s12902-020-0490-0 Download citation Received15 May 2019 Accepted08 January 2020 Published13 January 2020 DOIhttps://doi.org/10.1186/s12902-020-0490-0 Share this article Anyone you share the following link with will be able to read this content: Get shareable link Keywords Primary aldosteronism Subclinical Cushing’s syndrome Adrenal tumor Maximum tumor diameter Diabetes mellitus Serum potassium Download PDF
  10. 1 point
    Houston Methodist neurosurgeons and neuroscientists are looking at a new way to classify pituitary tumors that could lead to more precise and accurate diagnosing for patients in the future. Found in up to 10% of the population, pituitary tumors, also called adenomas, are noncancerous growths on the pituitary gland and very common. Although these pituitary tumors are benign in nature, they pose a major health challenge in patients. The new tests being investigated at Houston Methodist not only have the potential to lead to better diagnoses for patients with pituitary adenomas, but also for many other types of brain tumors in the future. The findings, which were published Jan. 28 in Scientific Reports, an online journal from Nature Publishing Group, describe a new way being looked at to study the blood of patients with pituitary tumors to determine exactly what tumor type they have and whether they might respond to medical treatment rather than surgery. "Often called the 'master gland,' the pituitary gland controls the entire endocrine system and regulates various body functions by secreting hormones into the bloodstream to control such things as metabolism, growth and development, reproduction and sleep," said corresponding author Kumar Pichumani, Ph.D., a research physicist at the Houston Methodist Research Institute. "When pituitary adenomas occur, they may secrete too much of one or more hormones that could lead to a variety of issues, ranging from infertility and sexual dysfunction to vision problems and osteoporosis, among many other health problems." Neurosurgeon David S. Baskin, M.D., director of the Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research in the Department of Neurosurgery at Houston Methodist Hospital, collaborated with Pichumani on this study. He said some pituitary tumors can be treated with medication rather than surgery, but a precise diagnosis of the type of tumor someone has and what hormone it's secreting is essential for proper treatment. This is sometimes very difficult to do based on standard endocrine hormone testing. "To guide our decisions on diagnosis and treatment, we currently rely on a blood-based hormone panel test that measures the levels of hormones in the blood to determine which hormones are overproducing in the tumor," Baskin said. "However, some tumors secrete too much of more than one hormone, making this test ambiguous for diagnosis." Led by Pichumani and Baskin, a team of researchers from the Peak Brain and Pituitary Tumor Treatment and Research Center and Houston Methodist Neurological Institute studied 47 pituitary adenoma patients of different subtypes by collecting blood during surgery to remove their tumors. They confirmed that elevated blood levels of a non-hormonal compound called betahydroxybutyrate, also known as BHB, was found only in patients with the prolactinoma subtype of noncancerous pituitary gland brain tumor that overproduces the hormone prolactin. This compound is known to supply energy to the brain during starvation, which led the researchers to speculate that BHB might be providing non-hormonal energy to these prolactinoma tumors causing them to grow and spread. The discovery could be further developed into a diagnostic lab test. This study is part of a developing field called metabolomics in which researchers study small molecules in tumors to see what's unique about their metabolism and how they're used as nutrients to supply energy. This contributes to better diagnoses and discovering new ways to kill tumors by poisoning the specific energy they use without causing damage to normal cells. The researchers are now enrolling more patients in a larger study currently underway to validate the results of their pilot study. If successful, they say BHB could be used as a non-hormonal metabolic biomarker for prolactinoma pituitary tumor diagnosis and prognosis to supplement the current hormone panel tests. They're also looking for biological reasons why only prolactin-secreting tumors have elevated BHB blood levels to inform therapeutic intervention. From https://medicalxpress.com/news/2020-02-pituitary-tumors-potential-treatments.html
  11. 1 point
    January 19, 2020 Adrenococortical carcinoma (ACC) is a rare cancer, occurring at the rate of one case in two million person years. Cushing syndrome or a mixed picture of excess androgen and glucocorticoid production are the most common presentations of ACC. Other uncommon presentations include abdominal pain and adrenal incidentalomas. In the present report, a 71-year-old male presented with abdominal pain and was eventually diagnosed with ACC. He was found to have pulmonary thromboembolism following an investigation for hypoxemia, with the tumor thrombus extending upto the right atrium. This interesting case represents the unique presentation of a rare tumor, which if detected late or left untreated is associated with poor outcomes, highlighting the need for a low index of suspicion for ACC when similar presentations are encountered in clinical practice. ACC is a rare but aggressive tumor. ACC commonly presents with rapid onset of hypercortisolism, combined hyperandrogenism and hypercortisolism, or uncommonly with compressive symptoms. Clinicians should have a low index of suspicion for ACC in patients presenting with rapid onset of symptoms related to hypercortisolism and/or hyperandrogenism. Venous thromboembolism and extension of the tumor thrombus to the right side of the heart is a very rare but serious complication of ACC that clinicans should be wary of. The increased risk of venous thromboembolism in ACC could be explained by direct tumor invasion, tumor thrombi or hypercoagulability secondary to hypercortisolism. Early diagnosis and prompt treatment can improve the long-term survival of patients with ACC. Endocrinology, diabetes & metabolism case reports. 2019 Nov 25 [Epub ahead of print] Skand Shekhar, Sriram Gubbi, Georgios Z Papadakis, Naris Nilubol, Fady Hannah-Shmouni Section on Endocrinology & Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA., Diabetes, Endocrinology, and Obesity Branch, National Institute of Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA., Department of Medical Imaging, Heraklion University Hospital, Medical School, University of Crete, Crete, Greece., Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. PubMed http://www.ncbi.nlm.nih.gov/pubmed/31765326 From https://www.urotoday.com/recent-abstracts/urologic-oncology/adrenal-diseases/118539-adrenocortical-carcinoma-and-pulmonary-embolism-from-tumoral-extension.html
  12. 1 point
    Sponsor: Cedars-Sinai Medical Center Information provided by (Responsible Party): Shlomo Melmed, MD, Cedars-Sinai Medical Center Brief Summary: This phase 2 multicenter, open-label clinical trial will evaluate safety and efficacy of 4 weeks of oral seliciclib in patients with newly diagnosed, persistent, or recurrent Cushing disease. Funding Source - FDA Office of Orphan Products Development (OOPD) Condition or disease Intervention/treatment Phase Cushing Disease Drug: Seliciclib Phase 2 Detailed Description: This phase 2 multicenter, open-label clinical trial will evaluate safety and efficacy of two of three potential doses/schedules of oral seliciclib in patients with newly diagnosed, persistent, or recurrent Cushing disease. Up to 29 subjects will be treated with up to 800 mg/day oral seliciclib for 4 days each week for 4 weeks and enrolled in sequential cohorts based on efficacy outcomes. The study will also evaluate effects of seliciclib on quality of life and clinical signs and symptoms of Cushing disease. Ages Eligible for Study: 18 Years and older (Adult, Older Adult) Sexes Eligible for Study: All Accepts Healthy Volunteers: No Criteria Inclusion criteria: Male and female patients at least 18 years old Patients with confirmed pituitary origin of excess adrenocorticotropic hormone (ACTH) production: Persistent hypercortisolemia established by two consecutive 24 h UFC levels at least 1.5x the upper limit of normal Normal or elevated ACTH levels Pituitary macroadenoma (>1 cm) on MRI or inferior petrosal sinus sampling (IPSS) central to peripheral ACTH gradient >2 at baseline and >3 after corticotropin-releasing hormone (CRH) stimulation Recurrent or persistent Cushing disease defined as pathologically confirmed resected pituitary ACTH-secreting tumor or IPSS central to peripheral ACTH gradient >2 at baseline and >3 after CRH stimulation, and 24 hour UFC above the upper limit of normal reference range beyond post-surgical week 6 Patients on medical treatment for Cushing disease. The following washout periods must be completed before screening assessments are performed: Inhibitors of steroidogenesis (metyrapone, ketoconazole): 2 weeks Somatostatin receptor ligand pasireotide: short-acting, 2 weeks; long-acting, 4 weeks Progesterone receptor antagonist (mifepristone): 2 weeks Dopamine agonists (cabergoline): 4 weeks CYP3A4 strong inducers or inhibitors: varies between drugs; minimum 5-6 times the half-life of drug Exclusion criteria: Patients with compromised visual fields, and not stable for at least 6 months Patients with abutment or compression of the optic chiasm on MRI and normal visual fields Patients with Cushing's syndrome due to non-pituitary ACTH secretion Patients with hypercortisolism secondary to adrenal tumors or nodular (primary) bilateral adrenal hyperplasia Patients who have a known inherited syndrome as the cause for hormone over secretion (i.e., Carney Complex, McCune-Albright syndrome, Multiple endocrine neoplasia (MEN) 1 Patients with a diagnosis of glucocorticoid-remedial aldosteronism (GRA) Patients with cyclic Cushing's syndrome defined by any measurement of UFC over the previous 1 months within normal range Patients with pseudo-Cushing's syndrome, i.e., non-autonomous hypercortisolism due to overactivation of the hypothalamic-pituitary-adrenal (HPA) axis in uncontrolled depression, anxiety, obsessive compulsive disorder, morbid obesity, alcoholism, and uncontrolled diabetes mellitus Patients who have undergone major surgery within 1 month prior to screening Patients with serum K+< 3.5 while on replacement treatment Diabetic patients whose blood glucose is poorly controlled as evidenced by HbA1C >8% Patients who have clinically significant impairment in cardiovascular function or are at risk thereof, as evidenced by congestive heart failure (NYHA Class III or IV), unstable angina, sustained ventricular tachycardia, clinically significant bradycardia, high grade atrioventricular (AV) block, history of acute MI less than one year prior to study entry Patients with liver disease or history of liver disease such as cirrhosis, chronic active hepatitis B and C, or chronic persistent hepatitis, or patients with alanine aminotransferase (ALT) or aspartate aminotransferase (AST) more than 1.5 x ULN, serum total bilirubin more than ULN, serum albumin less than 0.67 x lower limit of normal (LLN) at screening Serum creatinine > 2 x ULN Patients not biochemically euthyroid Patients who have any current or prior medical condition that can interfere with the conduct of the study or the evaluation of its results, such as History of immunocompromise, including a positive HIV test result (ELISA and Western blot). An HIV test will not be required, however, previous medical history will be reviewed Presence of active or suspected acute or chronic uncontrolled infection History of, or current alcohol misuse/abuse in the 12 month period prior to screening Female patients who are pregnant or lactating, or are of childbearing potential and not practicing a medically acceptable method of birth control. If a woman is participating in the trial then one form of contraception is sufficient (pill or diaphragm) and the partner should use a condom. If oral contraception is used in addition to condoms, the patient must have been practicing this method for at least two months prior to screening and must agree to continue the oral contraceptive throughout the course of the study and for 3 months after the study has ended. Male patients who are sexually active are required to use condoms during the study and for three month afterwards as a precautionary measure (available data do not suggest any increased reproductive risk with the study drugs) Patients who have participated in any clinical investigation with an investigational drug within 1 month prior to screening or patients who have previously been treated with seliciclib Patients with any ongoing or likely to require additional concomitant medical treatment to seliciclib for the tumor Patients with concomitant treatment of strong CYP3A4 inducers or inhibitors. Patients who were receiving mitotane and/or long-acting somatostatin receptor ligands octreotide long-acting release (LAR) or lanreotide Patients who have received pituitary irradiation within the last 5 years prior to the baseline visit Patients who have been treated with radionuclide at any time prior to study entry Patients with known hypersensitivity to seliciclib Patients with a history of non-compliance to medical regimens or who are considered potentially unreliable or will be unable to complete the entire study Patients with presence of Hepatitis B surface antigen (HbsAg) Patients with presence of Hepatitis C antibody test (anti-HCV) Read more at https://clinicaltrials.gov/ct2/show/NCT03774446
  13. 1 point
    Lacroix A, et al. Pituitary. 2019;doi:10.1007/s11102-019-01021-2. January 7, 2020 Andre Lacroix Most adults with persistent or recurrent Cushing’s disease treated with the somatostatin analogue pasireotide experienced a measurable decrease in MRI-detectable pituitary tumor volume at 12 months, according to findings from a post hoc analysis of a randomized controlled trial. “Pasireotide injected twice daily during up to 12 months to control cortisol excess in patients with residual or persistent Cushing's disease was found to reduce the size of pituitary tumors in a high proportion of the 53 patients in which residual tumor was still visible at initiation of this medical therapy,” Andre Lacroix, MD, FCAHS, professor of medicine at the University of Montreal Teaching Hospital in Montreal, Canada, told Healio. “Pituitary tumors causing Cushing's syndrome which cannot be removed completely by surgery have the capacity to grow in time, and a medical therapy that can reduce tumor growth in addition to control excess cortisol production should be advantageous for the patients.” Lacroix and colleagues analyzed data from 53 adults with persistent or recurrent Cushing’s disease, or those with newly diagnosed Cushing’s disease who were not surgical candidates, who had measurable tumor volume data (78% women). Researchers randomly assigned participants to 600 g or 900 g subcutaneous pasireotide (Signifor LAR, Novartis) twice daily. Tumor volume was assessed independently at 6 and 12 months by two masked radiologists and compared with baseline value and urinary free cortisol response. Most adults with persistent or recurrent Cushing’s disease treated with the somatostatin analogue pasireotide experienced a measurable decrease in MRI-detectable pituitary tumor volume at 12 months. Source: Shutterstock Researchers found that reductions in tumor volume were both dose and time dependent. Tumor volume reduction was more frequently observed at month 6 in the 900 g group (75%) than in the 600 g group (44%). Similarly, at month 12 (n = 32), tumor volume reduction was observed more frequently in the 900 g group (89%) than in the 600 g group (50%). Results were independent of urinary free cortisol levels. The researchers did not observe a relationship between baseline tumor size and change in tumor size. “Taken together, the results of the current analysis demonstrate that treatment with pasireotide, a pituitary-directed medical therapy that targets somatostatin receptors, can frequently lead to radiologically measurable reductions in pituitary tumor volume in patients with Cushing’s disease,” the researchers wrote. “Tumor volume reduction is especially relevant in patients with larger microadenomas, suggesting that pasireotide is an attractive option for these patients, especially in cases in which patients cannot undergo transsphenoidal surgery or do not respond to surgical management of disease.” – by Regina Schaffer For more information: Andre Lacroix, MD, FCAHS, can be reached at the University of Montreal Teaching Hospital, Endocrine Division, 3840 Saint-Urbain, Montreal, H2W 1T8, Canada; email: andre.lacroix@umontrael.ca. Disclosures: Novartis supported this study and provided writing support. Lacroix reports he has received funding from Novartis Pharmaceuticals to conduct clinical studies with pasireotide and osilodrostat in Cushing’s disease and served as a consultant, advisory board member or speaker for EMD Serono, Ipsen and Novartis. Please see the study for all other authors’ relevant financial disclosures. From https://www.healio.com/endocrinology/neuroendocrinology/news/online/%7B8e4d31fb-d61a-4cf8-b4c4-7d0bdf012fbd%7D/pasireotide-reduces-pituitary-tumor-volume-in-cushings-disease
  14. 1 point
    Sethi A, et al. Clin Endocrinol. 2019;doi:10.1111/CEN.14146. January 5, 2020 Obesity is common at diagnosis of pituitary adenoma in childhood and may persist despite successful treatment, according to findings published in Clinical Endocrinology. “The importance of childhood and adolescent obesity on noncommunicable disease in adult life is well recognized, and in this new cohort of patients, we report that obesity is common at presentation of pituitary adenoma in childhood and that successful treatment is not necessarily associated with weight loss,” Aashish Sethi, MD, MBBS, a pediatric endocrinologist in the department of endocrinology at Alder Hey Children’s Hospital in Liverpool, United Kingdom, and colleagues wrote. “We have reported obesity, and obesity-related morbidity in a mixed cohort of children and young adults previously, but [to] our knowledge, this is the first time this observation has been reported in a purely pediatric cohort.” In a retrospective study, Sethi and colleagues analyzed clinical and radiological data from 24 white children from Alder Hey Children’s Hospital followed for a median of 3.3 years between 2000 and 2019 (17 girls; mean age at diagnosis, 15 years). Researchers assessed treatment modality (medical, surgical or radiation therapy), pituitary hormone deficiencies and BMI, as well as results of any genetic testing. Within the cohort, 13 girls had prolactinomas (mean age, 15 years), including 10 macroadenomas between 11 mm and 35 mm in size. Children presented with menstrual disorders (91%), headache (46%), galactorrhea (46%) and obesity (38%). Nine children were treated with cabergoline alone, three also required surgery, and two were treated with the dopamine agonist cabergoline, surgery and radiotherapy. Five children had Cushing’s disease (mean age, 14 years; two girls), including one macroadenoma. Those with Cushing’s disease presented with obesity (100%), short stature (60%) and headache (40%). Transsphenoidal resection resulted in biochemical cure; however, two patients experienced relapse 3 and 6 years after surgery, respectively, requiring radiotherapy. One patient also required bilateral adrenalectomy. Six children had a nonfunctioning pituitary adenoma (mean age, 16 years; two girls), including two macroadenomas. These children presented with obesity (67%), visual field defects (50%) and headache (50%). Four required surgical resections, with two experiencing disease recurrence after surgery and requiring radiotherapy. During the most recent follow-up exam, 13 children (54.1%) had obesity, including 11 who had obesity at diagnosis. “The persistence of obesity following successful treatment, in patients with normal pituitary function, suggests that mechanisms other than pituitary hormone excess or deficiency may be important,” the researchers wrote. “It further signifies that obesity should be a part of active management in cases of pituitary adenoma from diagnosis.” – by Regina Schaffer Disclosures: The authors report no relevant financial disclosures. From https://www.healio.com/endocrinology/adrenal/news/online/%7Bde3fd83b-e8e0-4bea-a6c2-99eb896356ab%7D/long-term-obesity-persists-despite-pituitary-adenoma-treatment-in-childhood
  15. 1 point
    A diagnostic technique called bilateral inferior petrosal sinus sampling (BIPSS), which measures the levels of the adrenocorticotropic hormone (ACTH) produced by the pituitary gland, should only be used to diagnose cyclic Cushing’s syndrome patients during periods of cortisol excess, a case report shows. When it is used during a spontaneous remission period of cycling Cushing’s syndrome, this kind of sampling can lead to false results, the researchers found. The study, “A pitfall of bilateral inferior petrosal sinus sampling in cyclic Cushing’s syndrome,” was published in BMC Endocrine Disorders. Cushing’s syndrome is caused by abnormally high levels of the hormone cortisol. This is most often the result of a tumor on the pituitary gland that produces too much ACTH, which tells the adrenal glands to increase cortisol secretion. However, the disease may also occur due to adrenal tumors or tumors elsewhere in the body that also produce excess ACTH — referred to as ectopic Cushing’s syndrome. Because treatment strategies differ, doctors need to determine the root cause of the condition before deciding which treatment to choose. BIPSS can be useful in this regard. It is considered a gold standard diagnostic tool to determine whether ACTH is being produced and released by the pituitary gland or by an ectopic tumor. However, in people with cycling Cushing’s syndrome, this technique might not be foolproof. Researchers reported the case of a 43-year-old woman who had rapidly cycling Cushing’s syndrome, meaning she had periods of excess cortisol with Cushing’s syndrome symptoms — low potassium, high blood pressure, and weight gain — followed by normal cortisol levels where symptoms resolved spontaneously. In general, the length of each period can vary anywhere from a few hours to several months; in the case of this woman, they alternated relatively rapidly — over the course of weeks. After conducting a series of blood tests and physical exams, researchers suspected of Cushing’s syndrome caused by an ACTH-producing tumor. The patient eventually was diagnosed with ectopic Cushing’s disease, but a BIPSS sampling performed during a spontaneous remission period led to an initial false diagnosis of pituitary Cushing’s. As a result, the woman underwent an unnecessary exploratory pituitary surgery that revealed no tumor on the pituitary. Additional imaging studies then identified a few metastatic lesions, some of which were removed surgically, as the likely source of ACTH. However, the primary tumor still hasn’t been definitively identified. At the time of publication, the patient was still being treated for Cushing’s-related symptoms and receiving chemotherapy. There is still a question of why the initial BIPSS result was a false positive. The researchers think that the likely explanation is that BIPSS was performed during an “off phase,” when cortisol levels were comparatively low. In fact, a later BIPSS performed during a period of high cortisol levels showed no evidence of ACTH excess in the pituitary. This case “demonstrates the importance of performing diagnostic tests only during the phases of active cortisol secretion, as soon as first symptoms appear,” the researchers concluded. From https://cushingsdiseasenews.com/2020/01/02/cushings-syndrome-case-study-shows-drawback-in-bipss-method/
  16. 1 point
    Approximately 20% of a cohort of adults with Cushing’s syndrome experienced at least one thrombotic event after undergoing pituitary or adrenal surgery, with the highest risk observed for those undergoing bilateral adrenalectomy, according to findings from a retrospective analysis published in the Journal of the Endocrine Society. “We have previously showed in a recent meta-analysis that Cushing’s syndrome is associated with significantly increased venous thromboembolic events odds vs. the general population, though the risk is lower than in patients undergoing major orthopedic surgery,” Maria Fleseriu, MD, FACE, professor of neurological surgery and professor of medicine in the division of endocrinology, diabetes and clinical nutrition in the School of Medicine at Oregon Health & Science University and director of the OHSU Northwest Pituitary Center, told Healio. “However, patients undergoing many types of orthopedic surgeries have scheduled thromboprophylaxis, especially postsurgery, which is not the standard of care in patients with Cushing’s syndrome. In this study, we wanted to look in more detail at the rates of all thrombotic events, both arterial and venous, in patients at our specialized pituitary center over more than a decade.” In a retrospective, longitudinal study, Fleseriu and colleagues analyzed data from 208 individuals with Cushing’s syndrome undergoing surgical (pituitary, unilateral and bilateral adrenalectomy) and medical treatment at a single center (79.3% women; mean age at presentation, 45 years; mean BMI, 33.9 kg/m²; 41.8% with diabetes). Individuals with severe illness and immediate mortality were excluded. Thromboembolic events (myocardial infarction, deep venous thrombosis [DVT], and pulmonary embolism or stroke) were recorded at any point up until last patient follow-up. Researchers assessed all patients who received anticoagulation in the immediate postoperative period and up to 3 months after surgery, recording doses and complications for anticoagulation. Within the cohort, 39 patients (18.2%) experienced at least one thromboembolic event (56 total events; 52% venous), such as extremity DVT (32%), cerebrovascular accident (27%), MI (21%), and pulmonary embolism (14%). Of those who experienced a thromboembolic event, 40.5% occurred within 60 days of surgery. Researchers found that 14 of 36 patients who underwent bilateral adrenalectomy experienced a thromboembolic event, for an OR of 3.74 (95% CI, 1.69-8.27). Baseline 24-hour urinary free cortisol levels did not differ for patients with or without thromboembolic event after bilateral adrenalectomy. “Despite following these patients over time, results almost surprised us,” said Fleseriu, also an Endocrine Today Editorial Board Member. “The risk of thromboembolic events in patients with Cushing’s syndrome was higher than we expected, approximately 20%. Many patients had more than one event, with higher risk at 30 to 60 days postoperatively. Use of a peripherally inserted central catheter line clearly increased risk of upper extremity DVT.” Among 197 patients who underwent surgery, 50 (25.38%) received anticoagulation after surgery with 2% experiencing bleeding complications. “We clearly need to understand more about what happens in patients with Cushing’s syndrome for all comorbidities, but especially thrombosis, and find the factors that predict higher risk and use anticoagulation in those patients,” Fleseriu said. “We have shown that among patients who had anticoagulation, risks were minimal. We also have to think more about timelines for these thromboembolic events and the duration of anticoagulation, and probably to expand it up to 30 to 60 days postoperatively if there are no contraindications, especially for patients undergoing bilateral adrenalectomy.” Fleseriu cautioned that the findings do not necessarily suggest that every individual with Cushing’s syndrome needs anticoagulation therapy, as the study was retrospective. Additionally, sex, age, BMI, smoking status, estrogen or testosterone supplementation, diabetes and hypertension — all known factors for increased thrombosis risk among the general population — were not found to significantly increase the risk for developing a thromboembolic event, Fleseriu said. “As significantly more patients have exogenous Cushing’s syndrome than endogenous Cushing’s syndrome and many of these patients undergo surgeries, we hope that our study increased awareness regarding thromboembolic risks and the need to balance advantages of thromboprophylaxis with risk of bleeding,” Fleseriu said. – by Regina Schaffer For more information: Maria Fleseriu, MD, FACE, can be reached at fleseriu@ohsu.edu. Disclosure: Fleseriu reports she has received research funding paid to her institution from Novartis and Strongbridge and has received consultant fees from Novartis and Strongbridge. From https://www.healio.com/endocrinology/neuroendocrinology/news/online/%7Bce267e5a-0d32-4171-abc8-34369b455fcf%7D/risk-for-thrombotic-events-high-after-cushings-syndrome-surgery
  17. 1 point
    Written by Kathleen Doheny with Maria Fleseriu, MD, FACE, and Vivien Herman-Bonert, MD Cushing's disease, an uncommon but hard to treat endocrine disorder, occurs when a tumor on the pituitary gland, called an adenoma—that is almost always benign—leads to an overproduction of ACTH (adrenocorticotropic hormone), which is responsible for stimulating the release of cortisol, also known as the stress hormone. Until now, surgery to remove the non-cancerous but problematic tumor has been the only effective treatment. Still, many patients will require medication to help control their serum cortisol levels, and others cannot have surgery or would prefer to avoid it. Finally, a drug proves effective as added on or alternative to surgery in managing Cushing's disease. Photo; 123rf New Drug Offers Alternative to Surgery for Cushing's Disease Now, there is good news about long-term positive results achieved with pasireotide (Signifor)—the first medication to demonstrate effectiveness in both normalizing serum cortisol levels and either shrinking or slowing growth of tumors over the long term.1,2 These findings appear in the journal, Clinical Endocrinology, showing that patients followed for 36 months as part of an ongoing study had improved patient outcomes for Cushing’s disease.2 "What we knew before this extension study was—the drug will work in approximately half of the patients with mild Cushing's disease," says study author Maria Fleseriu, MD, FACE, director of the Northwest Pituitary Center and professor of neurological surgery and medicine in the division of endocrinology, diabetes and clinical nutrition at the Oregon Health and Sciences University School of Medicine. “Pasireotide also offers good clinical benefits," says Dr. Fleseriu who is also the president of the Pituitary Society, “which includes improvements in blood pressure, other signs and symptoms of Cushing’s symptom], and quality of life.”2 What Symptoms Are Helped by Drug for Cushing's Disease? Among the signs and symptoms of Cushing’s disease that are lessened with treatment are:3 Changes in physical appearance such as wide, purple stretch marks on the skin (eg, chest, armpits, abdomen, thighs) Rapid and unexplained weight gain A more full, rounder face Protruding abdomen from fat deposits Increased fat deposits around the neck area The accumulation of adipose tissue raises the risk of heart disease, which adds to the urgency of effective treatment. In addition, many individuals who have Cushing’s disease also complain of quality of life issues such as fatigue, depression, mood and behavioral problems, as well as poor memory.2 As good as the results appear following the longer term use of pasireotide,2 Dr. Fleseriu admits that in any extension study in which patients are asked to continue on, there are some built-in limitations, which may influence the findings. For example, patients who agree to stay on do so because they are good responders, meaning they feel better, so they’re happy to stick with the study. “Fortunately, for the patients who have responded to pasireotide initially, this is a drug that can be continued as there are no new safety signals with longer use," Dr. Fleseriu tells EndocrineWeb, "and when the response at the start is good, very few patients will lose control of their urinary free cortisol over time. That's a frequent marker used to monitor patient's status. For those patients with large tumors, almost half of them had a significant shrinkage, and all the others had a stable tumor size." What Are the Reasons to Consider Drug Treatment to Manage Cushing’s Symptoms The extension study ''was important because we didn't have any long-term data regarding patient response to this once-a-month treatment to manage Cushing's disease," she says. While selective surgical removal of the tumor is the preferred treatment choice, the success rate in patients varies, and Cushing's symptoms persist in up to 35% of patients after surgery. In addition, recurrent rates (ie, return of disease) range from 13% to 66% after individuals experience different durations remaining in remission.1 Therefore, the availability of an effective, long-lasting drug will change the course of therapy for many patients with Cushing’s disease going forward. Not only will pasireotide benefit patients who have persistent and recurrent disease after undergoing surgery, but also this medication will be beneficial for those who are not candidates for surgery or just wish to avoid having this procedure, he said. Examining the Safety and Tolerability of Pasireotide This long-acting therapy, pasireotide, which is given by injection, was approved in the US after reviewing results of a 12-month Phase 3 trial.1 In the initial study, participants had a confirmed pituitary cause of the Cushing's disease. After that, the researchers added the optional 12-month open-label, extension study, and now patients can continue on in a separate long-term safety study. Those eligible for the 12-month extension had to have mean urinary free cortisol not exceeding the upper limit of normal (166.5 nanomoles per 24 hour) and/or be considered by the investigator to be getting substantial clinical benefit from treatment with long-action pasireotide, and to demonstrate tolerability of pasireotide during the core study.1 Of the 150 in the initial trial, 81 participants, or 54% of the patients, entered the extension study. Of those, 39 completed the next phase, and most also enrolled in another long-term safety study—these results not yet available).2 During the core study, 1 participants were randomly assigned to 10 or 30 mg of the drug every 28 days, with doses based on effectiveness and tolerability. When they entered the extension, patients were given the same dose they received at month.1,2 Study Outcomes Offer Advantages in Cushing’s Disease Of those who received 36 months of treatment with pasireotide, nearly three in four (72.2%) had controlled levels of urinary free cortisol at this time point.2 Equally good news for this drug was that tumors either shrank or did not grow. Of those individuals who started the trial with a measurable tumor (adenoma) as well as those with an adenoma at the two year mark (35 people), 85.7% of them experienced a reduction of 20% or more or less than a 20% change in tumor volume. No macroadenomas present at the start of the study showed a change of more than 20% at either month 24 or 36.2 Improvements in blood pressure, body mass index (BMI) and waist circumference continued throughout the extension study.1 Those factors influence CVD risk, the leading cause of death in those with Cushing's.4 As for adverse events, most of the study participants, 91.4%, did report one or more complaint during the extension study—most commonly, it was high blood sugar, which was reported by nearly 40% of participants.2. This is not surprising when you consider that most (81.5%) of the individuals participating in the extension trial entered with a diagnosis of diabetes or use of antidiabetic medication, and even more of them (88.9%) had diabetes at the last evaluation.1 This complication indicates the need for people with Cushing’s disease to check their blood glucose, as appropriate. Do You Have Cushing’s Disese? Here's What You Need to Know Women typically develop Cushing’s disease more often than men. What else should you be aware of if you and your doctor decide this medication will help you? Monitoring is crucial, says Dr. Fleseriu, as you will need to have your cortisol levels checked, and you should be on alert for any diabetes signals, which will require close monitoring and regular follow-up for disease management. Another understanding gained from the results of this drug study: "This medication works on the tumor level," she says. "If the patient has a macroadenoma (large tumor), this would be the preferred treatment." However, it should be used with caution in those with diabetes given the increased risk of experiencing high blood sugar. The researchers conclude that "the long-term safety profile of pasireotide was very favorable and consistent with that reported during the first 12 months of treatment. These data support the use of long-acting pasireotide as an effective long-term treatment option for some patients with Cushing's Disease."1 Understanding Benefits of New Drug to Treat Cushing's Diseease Vivien S. Herman-Bonert, MD, an endocrinologist and clinical director of the Pituitary Center at Cedars-Sinai Medical Center in Los Angeles, agreed to discuss the study findings, after agreeing to review the research for EndocrineWeb. As to who might benefit most from monthly pasireotide injections? Dr. Herman-Bonert says, "any patient with Cushing's disease that requires long-term medical therapy, which includes patients with persistent or recurrent disease after surgery." Certainly, anyone who has had poor response to any other medical therapies for Cushing's disease either because they didn't work well enough or because the side effects were too much, will likely benefit a well, she adds. Among the pluses that came out of the study, she says, is that nearly half of the patients had controlled average urinary free cortisol levels after two full years, and 72% of the participants who continued on with the drug for 36 months were able to remain in good urinary cortisol control .1 As the authors stated, tumor shrinkage was another clear benefit of taking long-term pasireotide. That makes the drug a potentially good choice for those even with large tumors or with progressive tumor growth, she says. It’s always good for anyone with Cushing’s disease to have an alterative to surgery, or a back-up option when surgery isn’t quite enough, says Dr. Herman-Bonert. The best news for patients is that quality of life scores improved,1 she adds. Dr Herman-Bonert did add a note of caution: Although the treatment in this study is described as ''long-term, patients will need to be on this for far longer than 2 to 3 years," she says. So, the data reported in this study may or may not persist, and we don’t yet know what the impact will be 10 or 25 years out. Also, the issue of hyperglycemia-related adverse events raises a concern, given the vast majority (81%) of patients who have both Cushing’s disease and diabetes. Most of those taking this drug had a dual diagnosis—having diabetes, a history of diabetes, or taking antidiabetic medicine. If you are under care for diabetes and you require treatment for Cushing’s disease, you must be ver mindful that taking pasireotide will likely lead to high blood sugar spikes, so you should plan to address this with your healthcare provider. Dr. Fleseriu reports research support paid to Oregon Health & Science University from Novartis and other 0companies and consultancy fees from Novartis and Strongbridge Biopharma. Dr. Herman-Bonert has no relevant disclosures. The study was underwritten by Novartis Pharma AG, the drug maker. From https://www.endocrineweb.com/news/pituitary-disorders/62449-cushings-disease-monthly-injection-good-alternative-surgery
  18. 1 point
    In patients with Cushing’s disease, removing the pituitary tumor via an endoscopic transsphenoidal surgery (TSS) leads to better remission rates than microscopic TSS, according to new research. But regardless of surgical approach, plasma cortisol levels one day after surgery are predictive of remission, researchers found. The study, “Management of Cushing’s disease: Changing trend from microscopic to endoscopic surgery,” was published in the journal World Neurosurgery. Because it improves visualization and accessibility, endoscopic TSS has been gaining popularity over microscopic TSS to remove pituitary tumors in Cushing’s disease patients. Yet, although this surgery has been associated with high remission rates, whether it outperforms microscopic surgery and determining the factors affecting long-term outcomes may further ease disease recurrence after TSS. A team with the All India Institute of Medical Sciences addressed this topic in 104 patients who underwent surgery from January 2009 to June 2017. Among these patients, 47 underwent microscopic surgery and 55 endoscopic surgery. At presentation, their ages ranged from 9 to 55 (mean age of 28). Also, patients had been experiencing Cushing’s symptoms over a mean duration of 24 months. Eighty-seven patients showed weight gain. Hypertension (high blood pressure) and diabetes mellitus were among the most common co-morbidities, found in 76 and 33 patients, respectively. Nineteen patients had osteoporosis and 12 osteopenia, which refers to lower-than-normal bone mineral density. As assessed with magnetic resonance imaging, 68 patients had a microadenoma (a tumor diameter smaller than one centimeter) and 27 had a macroadenoma (a tumor one centimeter or larger). Only two patients had an invasive pituitary adenoma. Two patients with larger tumors were operated on transcranially (through the skull). The surgery resulted in total tumor removal in 90 cases (86.5%). A blood loss greater than 100 milliliter was more common with endoscopic than with microscopic TSS. Ten patients developed transient diabetes inspidus, two experienced seizures after surgery, and six of nine patients with macroadenoma and visual deterioration experienced vision improvements after TSS. The incidence of intraoperative leak of cerebrospinal fluid — the liquid surrounding the brain and spinal cord — was 23.2%, while that of post-operative leak was 7.7% and was more common in microadenoma than macroadenoma surgery (9.8% vs. 5.0%). Seventeen patients were lost to follow-up and two died due to metabolic complications and infections. The average follow-up was shorter for endoscopic than with microscopic surgery (18 months vs. 35 months). Among the remaining 85 cases, 65 (76.5%) experienced remission, as defined by a morning cortisol level under 5.0 μg/dL, restored circadian rhythm (the body’s internal clock, typically impaired in Cushing’s patients), and suppression of serum cortisol to below 2 μg/dl after overnight dexamethasone suppression test. The remission rate was 54.5% in pediatric patients and was higher with endoscopic than with microscopic TSS (88.2% vs. 56.6%). Also, patients with microadenoma showed a trend toward more frequent remission than those with macroadenoma (73.2% vs. 64.3%). Ten of the remaining 20 patients experienced disease recurrence up to 28 months after surgery. Sixteen cases revealed signs of hypopituitarism, or pituitary insufficiency, which were managed with replacement therapy. A subsequent analysis found that morning cortisol level on day one after surgery was the only significant predictor of remission. Specifically, a one-unit increase in cortisol lowered the likelihood of remission by 7%. A cortisol level lower than 10.7 μgm/dl was calculated as predicting remission. Overall, the study showed that “postoperative plasma cortisol level is a strong independent predictor of remission,” the researchers wrote, and that “remission provided by endoscopy is significantly better than microscopic approach.” From https://cushingsdiseasenews.com/2019/09/24/cortisol-levels-predict-remission-cushings-patients-undergoing-transsphenoidal-surgery/
  19. 1 point
    So do we need to get our bones checked too? https://www.sciencealert.com/our-bones-provide-our-bodies-with-a-secret-weapon-that-saves-us-in-times-of-danger Bizarre Discovery Shows Your Bones Could Be Triggering The 'Fight-or-Flight' Response MIKE MCRAE 13 SEP 2019 When faced with a threat, hormones flood our bodies in preparation either for battle or a quick escape - what's commonly known as the 'fight-or-flight' response. For decades, we've generally thought this response was driven by hormones such as adrenaline. But it now seems that one of the most important of these messengers could come from a rather unexpected place – our skeleton. We usually think of chemicals like cortisol and adrenaline as the things that get the heart racing and muscles pumping. But the real star player could actually be osteocalcin, a calcium-binding protein produced by our bones. As a response to acute stress, steroids of the glucocorticoid variety are released by the body's endocrine system, where they manage the production of a cascade of other 'get ready to rumble' chemicals throughout various tissues. Researchers from the US, the UK, and India argue there's one tiny problem with this explanation of the fight-or-flight reaction. It isn't exactly fast. While nobody is disputing that our bodies produce cortisol when stressed, the fact their main action is to trigger cells into transcribing specific genes – a process that takes time – makes it an unlikely candidate for a rapid physiological response. "Although this certainly does not rule out that glucocorticoid hormones may be implicated in some capacity in the acute stress response, it suggests the possibility that other hormones, possibly peptide ones, could be involved," says geneticist Gerard Karsenty of Columbia University. So Karsenty and colleagues went on the hunt for something a little more expedient, focussing on proteins released by bone cells that would potentially have a more immediate effect on animal metabolism. Looking to the skeleton as a source might not be as weird as it first seems. After all, our bones evolved as a way to protect our squishy bits from being squashed, either by predator or accident. "If you think of bone as something that evolved to protect the organism from danger – the skull protects the brain from trauma, the skeleton allows vertebrates to escape predators, and even the bones in the ear alert us to approaching danger – the hormonal functions of osteocalcin begin to make sense," says Karsenty. Osteocalcin isn't in any way new to science, either. We've understood its function in bone development for nearly half a century, and in recent years begun to suspect it also has a hand in regulating our energy levels by affecting glucose metabolism. It also seems to give an ageing memory a boost, at least in lab rodents. All useful things in moments of danger. But it's still a surprising discovery that osteocalcin might also help to kickstart our acute stress response. "It completely changes how we think about how acute stress responses occur," says Karsenty. To test their suspicions, the researchers put lab mice under duress by restraining them for a 45 minute period. During that time, osteocalcin levels in the peripheral blood rose by half, while other skeletal hormones barely budged. In another test, just 15 minutes after a few harmless (but uncomfortable) shocks to the feet, osteocalcin levels in the stressed mice jumped by a whole 150 percent. Giving the test subjects a whiff of a chemical found in fox urine also elevated their peripheral osteocalcin levels. Importantly, these went up before their corticosterone levels began to climb, starting a few minutes after exposure and remaining high for another three hours. Just to make sure it wasn't only a mouse thing, the team also checked the hormone in humans who volunteered to do a public speech and undergo a pulse-raising cross-examination. Sure enough, up the osteocalcin went. In yet another series of tests, the team used rodents that were genetically engineered to lack the usual corticosteroid and other stress hormones, and found these animals continued to present a stress response. In addition, a shot of osteocalcin in otherwise unstressed mice was all they needed to get twitchy, raising their heart rate, temperature, and levels of circulating glucose. "Osteocalcin could explain past observations of an intact flight-or-flight response in humans and other animals lacking glucocorticoids and additional molecules produced by the adrenal glands," says Karsenty. With the evidence building for the bone protein as such a strong motivator for dealing with stress, it stands to ask why we need hormones like cortisol at all. The researchers plan to unravel this mystery in future investigations. This research was published in Cell Metabolism.
  20. 1 point
    Presented by Andrew Lin, MD Neuro-Oncologist & Neurologist Memorial Sloak Kettering Cancer Center After registering you will receive a confirmation email with details about joining the webinar. Contact us at webinar@pituitary.org with any questions or suggestions. Date: September 18, 2019 Time: 10:00 AM - 11:00 AM. Pacific Daylight Time, 1:00 PM - 2:00 PM Eastern Daylight Time Learning Objectives: During the conversation I will be: 1) Defining aggressive pituitary tumors. 2) Reviewing the current treatment options for aggressive pituitary tumors. 3) Discussing experimental treatment options including a phase II trial investigating the activity of the immunotherapies nivolumab and ipilimumab. Presenter Biography: I am a neuro-oncologist at Memorial Sloan Kettering Cancer Center (MSK) and a member of the Multidisciplinary Pituitary & Skull Base Tumor Center. In collaboration with my colleagues in endocrine, neurosurgery, and radiation oncology, I treat patients with aggressive pituitary tumors, who are resistant to conventional treatments (i.e. surgery and radiation), with chemotherapy. With my colleagues at MSK, I have published several research articles on pituitary tumors and opened several clinical trials.
  21. 1 point
    For patients with persistent or recurring Cushing’s disease, monthly pasireotide therapy was safe and effective, leading to normal urinary free cortisol levels in 47% of patients after 2 years, according to findings published in Clinical Endocrinology. Maria Fleseriu “The management of Cushing’s syndrome, and particularly Cushing’s disease, remains challenging,” Maria Fleseriu, MD, FACE, professor of neurological surgery and professor of medicine in the division of endocrinology, diabetes and clinical nutrition in the School of Medicine at Oregon Health & Science University and director of the OHSU Northwest Pituitary Center, told Endocrine Today. “Long-acting pasireotide provided sustained biochemical improvements and clinical benefit in a significant proportion of patients with Cushing’s disease who elected to continue in this extension study. There were many adverse events reported overall, but no new safety signals emerging over long-term treatment.” In the last decade, medical treatment for Cushing’s disease has progressed from a few steroidogenesis inhibitors to three novel drug groups: new inhibitors for steroidogenic enzymes with possibly fewer adverse effects, pituitary-directed drugs that aim to inhibit the pathophysiological pathways of Cushing’s disease, and glucocorticoid receptor antagonists that block cortisol’s action, Fleseriu, who is also an Endocrine Today Editorial Board member, said. In an open-label extension study, Fleseriu and colleagues analyzed data from 81 adults with confirmed Cushing’s disease with mean urinary free cortisol not exceeding the upper limit of normal, who transitioned from a 12-month, randomized controlled trial where they were assigned 10 mg or 30 mg once-monthly intramuscular pasireotide (Signifor LAR, Novartis). During the main study, researchers recruited participants with mean urinary free cortisol level concentration 1.5 to five times the upper limit of normal, normal or greater than normal plasma and confirmed pituitary source of Cushing’s disease. Participants who elected to continue in the extension were considered biochemical responders or benefited from the study drug per the clinical investigator, Fleseriu said. “As in all extension studies, the bias is inherent that patients deemed responders tend to continue, but for any type of treatment for pituitary tumors, and particularly Cushing’s disease, long-term, robust data on efficacy and safety parameters is essential,” Fleseriu said. Median overall exposure to pasireotide at the end of the extension study was 23.9 months, with nearly half of patients receiving at least 1 year of treatment during the extension phase. Researchers found that improvements in clinical signs of hypercortisolism were sustained throughout the study and median urinary free cortisol remained within normal range. Overall, 38 participants (47%) had controlled urinary free cortisol at month 24 (after 12 months of treatment during the extension phase), with researchers noting that the proportion of participants with controlled or partially controlled urinary free cortisol was stable throughout the extension phase. “Interestingly, the median salivary cortisol level decreased but remained above normal (1.3 times upper limit of normal) at 3 years,” Fleseriu said. As seen in other pasireotide studies, and expected based on the mechanism of action, researchers observed hyperglycemia-related adverse events in 39.5% of participants, with diabetes medications initiated or escalated in some patients, Fleseriu said. However, mean fasting glucose and HbA1c were stable during the extension phase, after increasing in the main study. Within the cohort, 81.5% had type 2 diabetes at baseline (entering extension phase) and 88.9% patients had type 2 diabetes at last assessment. “Pasireotide acts at the tumor level, and tumor shrinkage is seen in many patients,” Fleseriu said. “In this study, 42% and 32.1% had a measurable microadenoma or macroadenoma, respectively, on MRI at the start of pasireotide treatment; an adenoma was not visible in almost a quarter of patients at 2 years.” Among patients with a measurable adenoma at baseline and at month 24 (n = 35), 85.7% experienced a reduction of at least 20% or a 20% change in tumor volume between the two time points. Improvements in median systolic and diastolic blood pressure, BMI and waist circumference were sustained during the extension, Fleseriu said. “The long-term safety profile of pasireotide was favorable and consistent with that reported during the first 12 months of treatment,” the researchers wrote. “These data support the use of long-acting pasireotide as an effective long-term treatment option for some patients with [Cushing’s disease].” Fleseriu said individualized treatment selecting patients who will derive benefit from therapy will be crucial, balancing both efficacy and the potential risks and costs. – by Regina Schaffer Disclosures: Fleseriu reports she has received consultant fees and her institution has received research support from Novo Nordisk and Pfizer. Please see the study for all other authors’ relevant financial disclosures. From https://www.healio.com/endocrinology/neuroendocrinology/news/online/%7B5da4611f-34b2-4306-80b8-46babd2aad4a%7D/long-acting-pasireotide-provides-sustained-biochemical-improvements-in-cushings-disease?page=2
  22. 1 point
    Abstract OBJECTIVE: To report our management of bilateral adrenalectomy with autologous adrenal gland transplantation for persistent Cushing's disease, and to discuss the feasibility of autologous adrenal transplantation for the treatment of refractory Cushing's disease. MATERIAL AND METHODS: A retrospective analysis was performed in 4 patients (3 females, aged 14-36 years) who underwent autologous adrenal transplantation for persistent Cushing's disease after endonasal transsphenoidal resection of a pituitary tumor. The procedure was performed by implanting a vascularized adrenal graft into the left iliac fossa with direct and indirect anastomoses. Postoperative follow-up was performed in 1, 1.5, 8, and 10 years, and an over 8-year long-term follow-up was reached in 2 out of the 4 cases. Hormone replacement dosage was guided by clinical symptoms and endocrine results including serum cortisol (F), 24 h urine-free cortisol, and adrenocorticotrophic hormone levels. RESULTS: All 4 patients with symptomatic Cushing's disease experienced resolution of symptoms after autotransplantation without Nelson Syndrome. Functional autografts were confirmed through clinical evaluation and endocrine results. One year after transplantation, adrenal function and hormone replacement dosage remained stable without adrenal hyperplasia. After long-term follow-up, dosages of hormone replacement were reduced in all patients. CONCLUSIONS: In this series of 4 patients, we demonstrate the long-term efficacy of bilateral adrenalectomy with autologous adrenal transplantation and propose this procedure as a viable treatment option for refractory Cushing's disease. © 2019 S. Karger AG, Basel. KEYWORDS: Cortisol; Adrenalectomy; Autologous adrenal gland transplantation ; Cushing’s disease; Nelson syndrome PubMed http://www.ncbi.nlm.nih.gov/pubmed/31434089 TAGS: cortisol, adrenalectomy, Autologous adrenal gland transplantation , Cushing's disease, Nelson syndrome
  23. 1 point
    Levels of adrenocorticotropic hormone (ACTH) in circulation after pituitary surgery may help predict which Cushing’s disease patients will achieve early remission and which will eventually see the disease return, a study shows. Also, the earlier that patients reached their lowest peak of ACTH levels, the better their long-term outcomes. The study, “Prognostic usefulness of ACTH in the postoperative period of Cushing’s disease,” was published in the journal Endocrine Connections. Removing the pituitary tumor through a minimally invasive surgery called transsphenoidal surgery is still the treatment of choice for Cushing’s disease patients. But not all patients enter remission, and even among those who do, a small proportion will experience disease recurrence. While cortisol levels have been suggested as a main predictor of remission and recurrence, there is no consensus as to which cutoff point should be used after surgery, or the best time for measuring this hormone. Because Cushing’s disease is caused by an ACTH-producing tumor in the pituitary gland, and ACTH has a short half-life (approximately 10 minutes), it is expected that ACTH levels drop markedly within a few hours after surgery. Thus, a group of researchers in Spain aimed to determine whether blood levels of ACTH could be useful for predicting remission of Cushing’s disease both immediately after surgery (defined as less than 72 hours) and in the long term. Researchers analyzed 65 patients with Cushing’s disease who had undergone transsphenoidal surgery (seven required a second intervention) between 2005 and 2016. Remission within three months was seen in 56 of 65 cases; late disease recurrence was seen in 18 of 58 cases. Investigators measured the ACTH nadir concentration (defined as the lowest concentration) and the time taken to reach nadir levels after surgery, as well as the plasma ACTH concentration before hospital discharge. While ACTH levels had no predictive value, the team found that people who went into remission had significantly lower ACTH nadir levels and ACTH levels at discharge. On the other hand, levels of ACHT nadir and at discharge were significantly higher for people who experienced a relapse, compared to those who remained in remission. Using artificial intelligence algorithms, the researchers further found that ACTH nadir, ACTH at discharge, and cortisol nadir values were all of great relevance to predict remission within three months. Analysis indicated that using a cutoff point of 3.3 pmol/L of ACTH after surgery and before discharge gave the best sensitivity and specificity for predicting a patient’s prognosis. Researchers further found that the time patients took to reach their ACTH nadir, regardless of nadir levels, also influenced their outcomes. In fact, patients reaching this nadir in less than than 46 hours more likely achieved early remission. And taking longer than 39 hours to reach the ACTH nadir was significantly more frequent in patients who experienced recurrence. This indicates that the time to ACTH nadir is an important measure for prognosis. “In the immediate postoperative period of patients with [Cushing’s disease], the ACTH concentration is of prognostic utility in relation to late disease remission,” the researchers said. Overall, “we propose an ACTH value <3.3 pmol/L as a good long-term prognostic marker in the postoperative period of CD. Reaching the ACTH nadir in less time is associated to a lesser recurrence rate,” the study concluded. PATRICIA INACIO, PHD EDITOR Patricia holds her Ph.D. in Cell Biology from University Nova de Lisboa, and has served as an author on several research projects and fellowships, as well as major grant applications for European Agencies. She also served as a PhD student research assistant in the Laboratory of Doctor David A. Fidock, Department of Microbiology & Immunology, Columbia University, New York. From https://cushingsdiseasenews.com/2019/08/29/acth-levels-after-surgery-help-predict-remission-recurrence-in-cushings-study-suggests/
  24. 1 point
    Authors Ježková J, Ďurovcová V, Wenchich L, Hansíková H, Zeman J, Hána V, Marek J, Lacinová Z, Haluzík M, Kršek M Received 18 March 2019 Accepted for publication 13 June 2019 Published 19 August 2019 Volume 2019:12 Pages 1459—1471 DOI https://doi.org/10.2147/DMSO.S209095 Checked for plagiarism Yes Review by Single-blind Peer reviewers approved by Dr Melinda Thomas Peer reviewer comments 3 Editor who approved publication: Dr Antonio Brunetti Jana Ježková,1 Viktória Ďurovcová,1 Laszlo Wenchich,2,3 Hana Hansíková,3 Jiří Zeman,3Václav Hána,1 Josef Marek,1 Zdeňka Lacinová,4,5 Martin Haluzík,4,5 Michal Kršek1 1Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; 2Institute of Rheumatology, Prague, Czech Republic; 3Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; 4Institute of Medical Biochemistry and Laboratory Diagnostic, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; 5Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic Correspondence: Jana Ježková Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 1128 02 Praha 2, Prague, Czech Republic Tel +420 60 641 2613 Fax +420 22 491 9780 Email fjjezek@cmail.cz Purpose: Cushing’s syndrome is characterized by metabolic disturbances including insulin resistance. Mitochondrial dysfunction is one pathogenic factor in the development of insulin resistance in patients with obesity. We explored whether mitochondrial dysfunction correlates with insulin resistance and other metabolic complications. Patients and methods: We investigated the changes of mRNA expression of genes encoding selected subunits of oxidative phosphorylation system (OXPHOS), pyruvate dehydrogenase (PDH) and citrate synthase (CS) in subcutaneous adipose tissue (SCAT) and peripheral monocytes (PM) and mitochondrial enzyme activity in platelets of 24 patients with active Cushing’s syndrome and in 9 of them after successful treatment and 22 healthy control subjects. Results: Patients with active Cushing’s syndrome had significantly increased body mass index (BMI), homeostasis model assessment of insulin resistance (HOMA-IR) and serum lipids relative to the control group. The expression of all investigated genes for selected mitochondrial proteins was decreased in SCAT in patients with active Cushing’s syndrome and remained decreased after successful treatment. The expression of most tested genes in SCAT correlated inversely with BMI and HOMA-IR. The expression of genes encoding selected OXPHOS subunits and CS was increased in PM in patients with active Cushing’s syndrome with a tendency to decrease toward normal levels after cure. Patients with active Cushing’s syndrome showed increased enzyme activity of complex I (NQR) in platelets. Conclusion: Mitochondrial function in SCAT in patients with Cushing’s syndrome is impaired and only slightly affected by its treatment which may reflect ongoing metabolic disturbances even after successful treatment of Cushing’s syndrome. Keywords: Cushing’s syndrome, insulin resistance, mitochondrial enzyme activity, gene expression This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms. Download Article [PDF] View Full Text [Machine readable]
  25. 1 point
    I would be very interested to learn the current status of any Disability Claim for Agent Orange with Cushing. My 47 year old daughter had surgery in 2008 for unilateral adrenal Cushings in Orlando, FL. Frank
  26. 1 point
    Presented by Nathan T Zwagerman MD Director of Pituitary and Skull base surgery Department of Neurosurgery Medical College of Wisconsin After registering you will receive a confirmation email with details about joining the webinar. Date: Wednesday, August 21, 2019 Time: 10:00 AM - 11:00 AM Pacific Daylight Time 1:00 PM - 2:00 PM Eastern Daylight Time Webinar Description: Learning Objectives: Describe the signs and symptoms of Cushing's Disease Describe the work up for patients with Cushing's Disease Understand the goals, risks, and expected outcomes for treatment Describe alternative treatments when surgery is not curative. Presenter Bio: Dr. Zwagerman is a Professor of Neurosurgery at the Medical College of Wisconsin. He did his undergraduate work in psychology at Calvin College in Grand Rapids, Michigan. He earned his medical degree at Wayne State University in Detroit. He did his fellowship in endoscopic and open cranial base surgery, and then his residency in neurological surgery at the University of Pittsburgh Medical Center.
  27. 1 point
    Recovery of the hypothalamus-pituitary-adrenal (HPA) axis can occur as late as 12 months after transsphenoidal adenomectomy (TSA), according to study results published in The Journal of Clinical Endocrinology & Metabolism. These findings emphasize the need to periodically assess these patients to avoid unnecessary hydrocortisone replacement. The primary treatment for most pituitary lesions is TSA. After pituitary surgery, the recovery of pituitary hormone deficits may be delayed; limited data are available regarding the postsurgical recovery of hormonal axes or predictors of recovery. The goal of this study was to assess HPA axis dysfunction and predictive markers of recovery following TSA, as well as time to recovery, to identify subgroups of patients who may be more likely to recover. This single-center observational retrospective study enrolled 109 patients in the United Kingdom (71 men; mean age, 56 years; range, 17 to 82 years) who underwent TSA between February 2015 and September 2018 and had ≥1 reevaluation of the HPA axis with the short Synacthen (cosyntropin) test. The primary outcome was recovery of HPA axis function 6 weeks, 3 months, 6 months, and 9 to 12 months after TSA. In 23 patients (21.1%), there was no evidence of pituitary hormone deficit before TSA. In 44 patients (40.4%), there was 1 hormone deficiency and in 25 patients (22.9%), preoperative evaluation showed >1 hormone deficiency. Of the 23 patients with abnormal HPA function before surgery, 8 patients (34.8%) had recovered 6 weeks after the surgery. Patients who recovered were younger (mean age, 50±14 vs 70±9 years; P =.008) compared with patients who did not respond. Of the 15 remaining patients, 2 (13.3%) recovered at 3 months and 3 (20%) recovered at 9 to 12 months. With regard to HPA function in the entire cohort 6 weeks after surgery, 32 patients (29.4%) did not pass the short Synacthen test. Of this group, 5 patients (15.6%) recovered at 3 months, 4 (12.5%) at 6 months, and 2 (6.2%) recovered 9 to 12 months after the surgery. Predictors of future adrenal recovery at 6 weeks included having preoperative 30-minute cortisol >430 nmol/L (P <.001) and a day 8 postoperative cortisol >160 nmol/L (P =.001). With these cutoffs, 80% of patients with preoperative 30-minute cortisol >430 nmol/L (odds ratio [OR], 7.556; 95% CI, 2.847-20.055) and 80% of patients with day 8 postoperative cortisol >160 nmol/L (OR, 9.00; 95% CI, 2.455-32.989) passed the short Synacthen test at 6 weeks postsurgery. In addition, a 6-week baseline short Synacthen test cortisol level above or below 180 nmol/L (P <.001) predicted adrenal recovery at that time point. None of the patients with all 3 variables below the aforementioned cutoffs recovered HPA axis within 1 year. On the other hand, 91.8% of patients with all 3 variables above those cutoffs had normal adrenal function at 6 weeks (OR, 12.200; 95% CI, 5.268-28.255). In addition to the retrospective design, the study had other limitations, including the potential for selection bias, a heterogeneous patient cohort, and no data beyond 12 months after the surgery. “[T]hese data offer the opportunity for patients who may have been given life-long replacement, to safely come off therapy and therefore avoid unnecessary glucocorticoid exposure,” wrote the researchers. Reference Pofi R, Gunatilake S, Macgregor V, et al. Recovery of the hypothalamo-pituitary-adrenal axis following transsphenoidal adenomectomy for non-ACTH secreting macroadenomas [published online June 21, 2019]. J Clin Endocrinol Metab. doi:10.1210/jc.2019-00406 From https://www.endocrinologyadvisor.com/home/topics/adrenal/recovery-of-hpa-axis-can-occur-late-after-transsphenoidal-adenomectomy/
  28. 1 point
    Dr. Theodore Friedman hosts Gautam Mehta, MD for a fascinating webinar on Approaches for Pituitary Surgery Dr. Mehta is a neurosurgeon specializing in pituitary surgery at the House Clinic in Los Angeles. He was trained by Ian McCutcheon, MD and Ed Oldfield, MD Topics to be discussed include: • How does Dr. Friedman diagnose Cushing’s Disease • How does Dr. Friedman determine who goes to surgery? • What type of patients need surgery besides those with Cushing’s Disease? • How do the neurosurgeon and the Endocrinologist work together? • How does the neurosurgeon read pituitary MRIs? • What types of surgical approaches are used for pituitary surgery? • How long does surgery take and how long will a patient be in the hospital? • What are the risks of pituitary surgery and how can they be minimized? Sunday • August 4 • 6 PM PDT Click here to start your meeting. or https://axisconciergemeetings.webex.com/axisconciergemeetings/j.php?MTID=ma1d8d5ef99605e305980e2f7cdfdb7bd OR Join by phone: (855) 797-9485 Meeting Number (Access Code): 807 028 597 Your phone/computer will be muted on entry. Slides will be available on the day of the talk at slides There will be plenty of time for questions using the chat button. Meeting Password: hormones For more information, email us at mail@goodhormonehealth.com
  29. 1 point
    Cases of adrenocorticotropic hormone (ACTH)-independent Cushing’s syndrome are often caused by unilateral tumors in the adrenal glands, but Indian researchers have now reported a rare case where the condition was caused by tumors in both adrenal glands. Fewer than 40 cases of bilateral tumors have been reported so far, but an accurate diagnosis is critical for adequate and prompt treatment. Sampling the veins draining the adrenal glands may be a good way to diagnose the condition, researchers said. The study, “Bilateral adrenocortical adenomas causing adrenocorticotropic hormone-independent Cushing’s syndrome: A case report and review of the literature,” was published in the World Journal of Clinical Cases. Cushing’s syndrome, a condition characterized by excess cortisol in circulation, can be divided into two main forms, depending on ACTH status. Some patients have tumors that increase the amount of ACTH in the body, and this hormone will act on the adrenal glands to produce cortisol in excess. Others have tumors in the adrenal glands, which produce excess cortisol by themselves, without requiring ACTH activation. This is known as ACTH-independent Cushing’s syndrome. Among the latter, the disease is mostly caused by unilateral tumors — in one adrenal gland only — with cases of bilateral tumors being extremely rare in this population. Now, researchers reported the case of a 31-year-old Indian woman who developed ACTH-independent Cushing’s syndrome because of tumors in both adrenal glands. The patient complained of weight gain, red face, moon face, bruising, and menstrual irregularity for the past two years. She recently had been diagnosed with high blood pressure and had started treatment the month prior to the presentation. A physical examination confirmed obesity in her torso, moon face, buffalo hump, thin skin, excessive hair growth, acne, swollen legs and feet, and skin striae on her abdomen, arms, and legs. Laboratory examinations showed that the woman had an impaired tolerance to glucose, excess insulin, and elevated cortisol in both the blood and urine. Consistent with features of Cushing’s syndrome, cortisol levels had no circadian rhythm and were non-responsive to a dexamethasone test, which in normal circumstances lowers cortisol production. Because ACTH levels were within normal levels, researchers suspected an adrenal tumor, which led them to conduct imaging scans. An abdominal computed tomography (CT) scan showed adrenal adenomas in both adrenal glands (right: 3.1 cm × 2.0 cm × 1.9 cm; left: 2.2 cm × 1.9 cm × 2.1 cm). A magnetic resonance imaging (MRI) scan showed that the pituitary gland (which normally produces ACTH) was normal. To determine whether both adrenal tumors were producing cortisol, researchers sampled the adrenal veins and compared their cortisol levels to those of peripheral veins. They found that the left adrenal gland was producing higher amounts of cortisol, thought the right adrenal gland was also producing cortisol in excess. “Our case indicates that adrenal vein [blood] sampling might be useful for obtaining differential diagnoses” in cases of Cushing’s syndrome, researchers stated. Also, they may help design a surgical plan that makes much more sense.” The tumors were surgically removed — first the left, and three months later the right — which alleviated many of her symptoms. She also started prednisolone treatment, which helped resolve many disease symptoms. “Bilateral cortisol-secreting tumors are a rare cause of Cushing’s syndrome,” researchers said. So when patients present bilateral adrenal lesions, “it is crucial to make a definitive diagnosis before operation since various treatments are prescribed for different causes,” they said. The team recommends that in such cases the two tumors should not be removed at the same time, as this approach may cause adrenal insufficiency and the need for glucocorticoid replacement therapy. From https://cushingsdiseasenews.com/2019/06/27/rare-case-of-cs-due-to-bilateral-tumors-in-the-adrenal-glands/
  30. 1 point
    Are adrenal incidentalomas, which are found by chance on imaging, really harmless? In this paper, the authors looked at 32 studies, including 4121 patients with benign non-functioning adrenal tumours (NFATs) or adenomas that cause mild autonomous cortisol excess (MACE). Only 2.5% of the tumours grew to a clinically significant extent over a mean follow-up period of 50 months, and no one developed adrenal cancer. Of those patients with NFAT or MACE, 99.9% didn’t develop clinically significant hormone (cortisol) excess. This was a group (especially those with MACE) with a high prevalence of hypertension, diabetes, and obesity. This could be because adrenal adenomas promote cardiometabolic problems, or vice versa, or maybe this group with multimorbidities is more likely be investigated. Adrenal incidentalomas are already found in around 1 in 20 abdominal CT scans, and this rate is likely to increase as imaging improves. So it’s good news that this study supports existing recommendations, which say that follow-up imaging in the 90% of incidentalomas that are smaller than 4 cm diameter is unnecessary. From https://blogs.bmj.com/bmj/2019/07/03/ann-robinsons-journal-review-3-july-2019/
  31. 1 point
    Patients with Cushing’s disease may develop post-traumatic stress symptoms, which are generally resolved once they undergo surgery to remove the tumor, but can persist in some cases, a study shows. The study, “Posttraumatic stress symptoms (PTSS) in patients with Cushing’s disease before and after surgery: A prospective study,” was published in the Journal of Clinical Neuroscience. Cushing’s disease is an endocrine disorder characterized by excess secretion of the adrenocorticotropic hormone (ACTH) by a pituitary adenoma (tumor of the pituitary gland). This leads to high levels of cortisol, a condition known as hypercortisolism. Chronic hypercortisolism is associated with symptoms such as central obesity, buffalo hump, body bruising, muscle weakness, high blood pressure, high blood sugar, and weak bones. Additionally, patients can develop psychiatric disorders including depression, anxiety, and cognitive dysfunction, all of which contribute considerably to a lower health-related quality of life. Depression and anxiety rates are particularly high in Cushing’s disease patients, with 54% of them experiencing major depression and 79% having anxiety. Due to the significant impact of psychological factors in these patients, they may be susceptible to post-traumatic stress symptoms (PTSS). But more information on this phenomenon in these patients is still needed. To address this lack of data, a group of Chinese researchers conducted a prospective study to investigate the occurrence, correlated factors, and prognosis of PTSS in patients with Cushing’s disease. A total of 49 patients newly diagnosed with Cushing’s disease who underwent transsphenoidal removal of the tumor as their first-line treatment were asked to participate in this study. Another group of 49 age- and sex-matched healthy individuals were included as controls. PTSS was measured using the Impact of Event Scale-Revised (IES-R), depression/anxiety were measured using the Hospital Anxiety and Depression scale (HADS), and quality of life was measured using the 36-item short-form (SF-36). These parameters were measured before surgery, and then at six and 12 months after the procedure. Before surgery, 15 patients (30.6%) had PTSS. These patients also had higher cortisol levels, worse levels of depression/anxiety, and worse quality of life scores than those without PTSS. While most of the patients recovered after the operation, there were five (33.3%) for whom PTSS persisted for more than a year. Additionally, one patient who had a recurrence of Cushing’s disease developed PTSS between six and 12 months after the first surgery. PTSS severity showed consistent improvement after surgery, which was correlated with better depression/anxiety scores and psychological aspects of the SF-36. However, Cushing’s disease patients in remission still performed worse than healthy individuals concerning their physical and mental health. Therefore, “patients with [Cushing’s disease] can develop PTSS, and they may persist for over a year even after successful surgery. Combined psychological intervention is advised for these patients,” the researchers concluded. From https://cushingsdiseasenews.com/2019/06/25/cushings-patients-often-have-post-traumatic-stress-symptoms
  32. 1 point
    The oral chemotherapy temozolomide might be an effective treatment for Cushing’s disease caused by aggressive tumors in the pituitary gland that continue to grow after surgery and taking other medications, a case report suggests. The study, “Successful reduction of ACTH secretion in a case of intractable Cushing’s disease with pituitary Crooke’s cell adenoma by combined modality therapy including temozolomide,” was published in the journal J-Stage. Cushing’s disease is often caused by a tumor in the pituitary gland that secretes high levels of adrenocorticotropic hormone (ACTH), leading to high levels of cortisol and other symptoms. Macroadenomas are aggressive, fast-growing tumors that reach sizes larger than 10 millimeters. Crooke’s cell adenoma is a type of macroadenoma that does not respond to conventional therapies, but has deficient mechanisms of DNA repair. That is why chemotherapeutic agents that damage the DNA, such as temozolomide, might be potential treatments. Researchers in Japan reported the case of a 56-year-old woman with Cushing’s disease caused by a Crooke’s cell adenoma in the pituitary gland who responded positively to temozolomide. The patient was diagnosed with Cushing’s disease at age 39 when she went to the hospital complaining of continuous weight gain. She also had excessive production of urine and a loss of vision in the right eye. The lab tests showed high levels of cortisol and ACTH, and the MRI detected a tumor of 4.5 centimeters in the pituitary gland. The doctors removed a part of the tumor surgically, which initially reduced the levels of ACTH and cortisol. However, the hormone levels and the size of the residual tumor started to increase gradually after the surgery, despite treatment with several medications. By the time the patient was 56 years old, she went to the hospital complaining of general fatigue, leg edema (swelling from fluid), high blood pressure, and central obesity (belly fat). Further examination showed a 5.7 cm tumor, identified as a Crooke’s cell macroadenoma. The patient underwent a second surgery to remove as much tumor as possible, but the levels of ACTH remained high. She took temozolomide for nine months, which normalized the levels of ACTH and cortisol. After the treatment, the patient no longer had high blood pressure or leg edema. The tumor shrunk considerably in the year following temozolomide treatment. The patient started radiation therapy to control tumor growth. The levels of cortisol and ACHT remained normal, and the tumor did not grow in the seven years following temozolomide treatment. “These clinical findings suggest that [temozolomide] treatment to patients with Crooke’s cell adenoma accompanied with elevated ACTH may be a good indication to induce lowering ACTH levels and tumor shrinkage,” researchers wrote. Other cases of Cushing’s disease caused by aggressive macroadenomas showed positive results, such as reduction of tumor size and decrease in plasma ACTH, after temozolomide treatment. However, more studies are needed to establish the ideal course of chemotherapy to treat these tumors, the researchers noted. From https://cushingsdiseasenews.com/2019/06/18/temozolomide-effective-cushings-disease-aggressive-tumors-case-report/
  33. 1 point
    Removal of pituitary adenomas by inserting surgical instruments through the nose (transsphenoidal resection) remains the best treatment option for pediatric patients, despite its inherent technical difficulties, a new study shows. The study, “Transsphenoidal surgery for pituitary adenomas in pediatric patients: a multicentric retrospective study,” was published in the journal Child’s Nervous System. Pituitary adenomas are rare, benign tumors that slowly grow in the pituitary gland. The incidence of such tumors in the pediatric population is reported to be between 1% and 10% of all childhood brain tumors and between 3% and 6% of all surgically treated adenomas. Characteristics of patients that develop these pituitary adenomas vary significantly in different studies with regards to their age, gender, size of adenoma, hormonal activity, and recurrence rates. As the pituitary gland is responsible for hormonal balance, alterations in hormone function due to a pituitary adenoma can significantly affect the quality of life of a child. In most cases, pituitary adenomas can be removed surgically. A common removal method is with a transsphenoidal resection, the goal of which is to completely remove the growing mass and cause the least harm to the surrounding structures. In this study, the researchers report the surgical treatment of pediatric pituitary adenomas at three institutions. They collected data from 27 children who were operated for pituitary adenoma using one of two types of transsphenoidal surgeries — endoscopic endonasal transsphenoidal surgery (EETS) and transsphenoidal microsurgery (TMS) — at the University Cerrahpasa Medical Faculty in Istanbul, Turkey, at San Matteo Hospital in Pavia, and at the University of Insubria-Varese in Varese, Italy. The study included 11 males (40.7%) and 16 females (59.3%), with a mean age of 15.3 (ranging between 4 and 18). Medical records indicated that 32 surgical procedures were performed in the 27 patients, as six children required a second operation. Among the patients, 13 had Cushing’s disease, while the rest had growth-hormone-secreting adenomas, prolactinomas, or non-functional adenomas. The researchers found that most patients underwent remission following their surgery. Among the 27 patients, 22 patients (81.4%) underwent remission while five patients (18.5%) did not. Four patients underwent remission after a second operation. Based on these findings, the team believes that the transsphenoidal surgical approach adequately removes pituitary tumors and restores normal hormonal balance in the majority of pediatric patients with pituitary adenomas. “Satisfactory results are reported with both EETS and TMS in the literature,” they wrote. “Despite the technical difficulties in pediatric age, transsphenoidal resection of adenoma is still the mainstay treatment that provides cure in pediatric patients.” From https://cushingsdiseasenews.com/2019/05/30/transsphenoidal-surgery-effective-remove-pituitaty-adenomas-children-study/
  34. 1 point
    In patients with a diagnosis of Cushing disease in whom magnetic resonance imaging (MRI) shows either no abnormalities or nonspecific abnormalities, surgery is preferable to medical treatment, according to study results published in The Journal of Clinical Endocrinology & Metabolism. There is a consensus that the first line of treatment for Cushing disease is transsphenoidal surgery to remove the pituitary adenoma causing the disease, with an 80% remission rate following the intervention. However, in the absence of clear evidence of a pituitary adenoma on imaging, there is some controversy regarding the best treatment. The goal of this retrospective single-center study was to assess the outcomes of surgery in patients with Cushing disease with clear evidence of a pituitary adenoma on MRI compared with outcomes in patients with inconclusive or normal MRI. The cohort included 195 patients treated with transsphenoidal surgery between 1992 and 2018 (156 women; mean age at surgery, 41 years) classified into 4 MRI groups: 89 patients were found to have microadenoma, 18 had macroadenoma, 44 had nonspecific/inconclusive abnormalities on MRI results, and 44 had normal imaging results. The researchers reported that MRI performance in their neuroradiology department improved with time; the proportion of inconclusive or normal MRI results decreased from 60% in 1992 to 1996 to 27% in 2012 to 2018 (P =.037). In analyzing the influence of MRI findings on remission rates, the researchers found no significant difference among the 4 groups: remission rate was 85% for microadenomas, 94% for macroadenomas, 73% for inconclusive MRI, and 75% for negative MRI (P =.11). This finding indicates the overall percentage of patients in remission after transsphenoidal surgery is only slightly lower in those with normal or inconclusive MRI results compared with patients with clear evidence of microadenoma or macroadenoma. There was no difference in remission rate after a microscopic vs endoscopic surgical approach (P =.16). The researchers found that endoscopic-assisted surgery allowed a higher visualization rate than microscopic-assisted surgery. Although the neurosurgeon had a better visualization rate than MRI (100% vs 72%, respectively), there were some false-positive findings; thus, positive predictive value was similar (84% vs 78%, respectively). The study had several limitations including the retrospective design. In addition, in light of the long study duration, the researchers noted that changes in MRI technology and surgical procedures occurred over time. The researchers proposed that after exclusion of nonneoplastic hypercortisolism, patients with Cushing disease, an inconclusive or normal MRI, and a pituitary adrenocorticotropic hormone gradient at bilateral inferior petrosal sampling be directed to an expert neurosurgeon for transsphenoidal surgery rather than treated medically. Reference Cristante J, Lefournier V, Sturm N, et al. Why we should still treat by neurosurgery patients with Cushing’s disease and a normal or inconclusive pituitary MRI [published online May 14, 2019]. J Clin Endocrinol Metab. doi:10.1210/jc.2019-00333 From https://www.endocrinologyadvisor.com/home/topics/adrenal/transsphenoidal-surgery-recommended-for-cushing-disease-with-inconclusive-or-normal-mri/
  35. 1 point
    Presented by Irina Bancos, MD Assistant Professor of Medicine Endocrinology Department Mayo Clinic, Rochester, MN Space is limited. Reserve your webinar seat. After registering you will receive a confirmation email containing information about joining the webinar. Contact us at webinar@pituitary.org if you have any questions. Date: Tuesday, May 28, 2019 Time: 10:00 AM - 11:00 AM Pacific Daylight Time, 1:00 PM - 2:00 PM Eastern Daylight Time Webinar Description Learning Objectives: To distinguish between primary and secondary adrenal insufficiency To understand the pitfalls of current diagnostic tests to diagnose adrenal insufficiency. To describe physiological replacement therapy for adrenal insufficiency To distinguish between adrenal insufficiency and glucocorticoid withdrawal syndrome. Presenter Bio Dr. Irina Bancos is the Assistant Professor of Medicine and works in the Pituitary-Adrenal-Gonadal subdivision of Endocrinology division at Mayo Clinic, Rochester. She also serves as Director of the Endocrine testing center. Dr. Bancos received her M.D. from the Iuliu Hatieganu Medical University in Cluj-Napoca, Romania. She has completed her Internal Medicine Residency at Danbury Hospital in CT and Endocrinology Fellowship at Mayo Clinic, Rochester. In addition, Dr. Bancos completed a two year research fellowship (Mayo Foundation Scholarship) at the University of Birmingham, United Kingdom where she received training in steroid profiling and adrenal disorders. In 2015 she returned to Mayo Clinic, where her clinical and research interests include adrenal and pituitary tumors, adrenal insufficiency, congenital adrenal hyperplasia, Cushing syndrome, and mechanisms of steroid regulation of metabolism. Between 2015 and 2018, Dr. Bancos was the principal investigator and leader of the Transform the Adrenal Practice team at Mayo Clinic. Dr. Bancos has published 77 scientific articles. In addition to clinical practice in the pituitary-adrenal-gonadal clinic, Dr. Bancos enjoys teaching fellows, residents and medical students. She is the principal investigator of several ongoing prospective studies in Cushing syndrome, adrenal insufficiency, prolactinoma, and adrenal tumors. Dr. Bancos currently holds several grants in the field of steroid regulation of aging, metabolism and body composition.
  36. 1 point
  37. 1 point
    LOS ANGELES — More than a century has passed since the neurosurgeon and pathologist Harvey Cushing first discovered the disease that would eventually bear his name, but only recently have several key discoveries offered patients with the condition real hope for a cure, according to a speaker here. There are several challenges clinicians confront in the diagnosis and treatment of Cushing’s disease, Shlomo Melmed, MB, ChB, FRCP, MACP, dean, executive vice president and professor of medicine at Cedars-Sinai Medical Center in Los Angeles, said during a plenary presentation. Patients who present with Cushing’s disease typically have depression, impaired mental function and hypertension and are at high risk for stroke, myocardial infarction, thrombosis, dyslipidemia and other metabolic disorders, Melmed said. Available therapies, which range from surgery and radiation to the somatostatin analogue pasireotide (Signifor LAR, Novartis), are often followed by disease recurrence. Cushing’s disease is fatal without treatment; the median survival if uncontrolled is about 4.5 years, Melmed said. “This truly is a metabolic, malignant disorder,” Melmed said. “The life expectancy today in patients who are not controlled is apparently no different from 1930.” The outlook for Cushing’s disease is now beginning to change, Melmed said. New targets are emerging for treatment, and newly discovered molecules show promise in reducing the secretion of adrenocorticotropic hormone (ACTH) and pituitary tumor size. “Now, we are seeing the glimmers of opportunity and optimism, that we can identify specific tumor drivers — SST5, [epidermal growth factor] receptor, cyclin inhibitors — and we can start thinking about personalized, precision treatment for these patients with a higher degree of efficacy and optimism than we could have even a year or 2 ago,” Melmed said. “This will be an opportunity for us to broaden the horizons of our investigations into this debilitating disorder.” Challenges in diagnosis, treatment Overall, about 10% of the U.S. population harbors a pituitary adenoma, the most common type of pituitary disorder, although the average size is only about 6 mm and 40% of them are not visible, Melmed said. In patients with Cushing’s disease, surgery is effective in only about 60% to 70% of patients for initial remission, and overall, there is about a 60% chance of recurrence depending on the surgery center, Melmed said. Radiation typically leads to hypopituitarism, whereas surgical or biochemical adrenalectomy is associated with adverse effects and morbidity. Additionally, the clinical features of hypercortisolemia overlap with many common illnesses, such as obesity, hypertension and type 2 diabetes. “There are thousands of those patients for every patient with Cushing’s disease who we will encounter,” Melmed said. The challenge for the treating clinician, Melmed said, is to normalize cortisol and ACTH with minimal morbidity, to resect the tumor mass or control tumor growth, preserve pituitary function, improve quality of life and achieve long-term control without recurrence. “This is a difficult challenge to meet for all of us,” Melmed said. Available options Pituitary surgery is typically the first-line option offered to patients with Cushing’s disease, Melmed said, and there are several advantages, including rapid initial remission, a one-time cost and potentially curing the disease. However, there are several disadvantages with surgery; patients undergoing surgery are at risk for postoperative venous thromboembolism, persistent hypersecretion of ACTH, adenoma persistence or recurrence, and surgical complications. Second-line options are repeat surgery, radiation, adrenalectomy or medical therapy, each with its own sets of pros and cons, Melmed said. “The reality of Cushing’s disease — these patients undergo first surgery and then recur, second surgery and then recur, then maybe radiation and then recur, and then they develop a chronic illness, and this chronic illness is what leads to their demise,” Melmed said. “Medical therapy is appropriate at every step of the spectrum.” Zebrafish clues Searching for new options, Melmed and colleagues introduced a pituitary tumor transforming gene discovered in his lab into zebrafish, which caused the fish to develop the hallmark features of Cushing’s disease: high cortisol levels, diabetes and cardiovascular disease. In the fish models, researchers observed that cyclin E activity, which drives the production of ACTH, was high. Melmed and colleagues then screened zebrafish larvae in a search for cyclin E inhibitors to derive a therapeutic molecule and discovered R-roscovitine, shown to repress the expression of proopiomelanocortin (POMC), the pituitary precursor of ACTH. In fish, mouse and in vitro human cell models, treatment with R-roscovitine was associated with suppressed corticotroph tumor signaling and blocked ACTH production, Melmed said. “Furthermore, we asked whether or not roscovitine would actually block transcription of the POMC gene,” Melmed said. “It does. We had this molecule (that) suppressed cyclin E and also blocks transcription of POMC leading to blocked production of ACTH.” In a small, open-label, proof-of-principal study, four patients with Cushing’s disease who received roscovitine for 4 weeks developed normalized urinary free cortisol, Melmed said. Currently, the FDA Office of Orphan Products Development is funding a multicenter, phase 2, open-label clinical trial that will evaluate the safety and efficacy of two of three potential doses of oral roscovitine (seliciclib) in patients with newly diagnosed, persistent or recurrent Cushing disease. Up to 29 participants will be treated with up to 800 mg per day of oral seliciclib for 4 days each week for 4 weeks and enrolled in sequential cohorts based on efficacy outcomes. “Given the rarity of the disorder, it will probably take us 2 to 3 years to recruit patients to give us a robust answer,” Melmed said. “This zebrafish model was published in 2011, and we are now in 2019. It has taken us 8 years from publication of the data to, today, going into humans with Cushing’s. Hopefully, this will light the pathway for a phase 2 trial.” ‘ Offering optimism’ Practitioners face a unique paradigm when treating patients with Cushing’s disease, Melmed said. Available first- and second-line therapy options often are not a cure for many patients, who develop multimorbidity and report a low quality of life. “Then, we are kept in this difficult cycle of what to do next and, eventually, running out of options,” Melmed said. “Now, we can look at novel, targeted molecules and add those to our armamentarium and at least offer our patients the opportunity to participate in trials, or at least offer the optimism that, over the coming years, there will be a light at the end of the tunnel for their disorder.” Melmed compared the work to Lucas Cranach’s Fons Juventutis (The Fountain of Youth). The painting, completed in 1446, shows sick people brought by horse-drawn ambulance to a pool of water, only to emerge happy and healthy. “He was imagining this ‘elixir of youth’ (that) we could offer patients who are very ill and, in fact, that is what we as endocrinologists do,” Melmed said. “We offer our patients these elixirs. These Cushing’s patients are extremely ill. We are trying with all of our molecular work and our understanding of pathogenesis and signaling to create this pool of water for them, where they can emerge with at least an improved quality of life and, hopefully, a normalized mortality. That is our challenge.” – by Regina Schaffer Reference: Melmed S. From zebrafish to humans: translating discoveries for the treatment of Cushing’s disease. Presented at: AACE Annual Scientific and Clinical Congress; April 24-28, 2019; Los Angeles. Disclosure: Melmed reports no relevant financial disclosures. From https://www.healio.com/endocrinology/neuroendocrinology/news/online/%7B585002ad-640f-49e5-8d62-d1853154d7e2%7D/new-discoveries-offer-possible-cushings-disease-cure
  38. 1 point
    I am currently looking into what seems to be a limited study. Can i ask if any Cushies have been tested for Alpha 1 antitrypsin deficiency and then where diagnosed with Cushing's. Or Were treated for Cushing's, now in remission but experiencing lung issues or found to have liver issues..... have since been tested for A1AD and found to be deficient? I am looking for any studies, papers, personal stories in this area. Any info would be gratefully accepted.
  39. 1 point
  40. 1 point
    I just did a search of these boards and there are 3 other topics on antitrypsin...
  41. 1 point
    Hi, Deb - I looked in the bios but couldn't find anyone who mentioned Alpha 1 antitrypsin deficiency There are several people who mentioned liver issues -https://cushingsbios.com/?s=liver and some who mentioned lung problems - https://cushingsbios.com/?s=lung Best of luck to you.
  42. 1 point
    Dr. Theodore Friedman hosts Jay Khorsandi, DDS and Barbara Burggraaff, MD from Snore Experts for an important webinar on insomnia Topics to be discussed include: • What are the causes of insomnia? • How do hormone imbalances lead to insomnia? • What lifestyle changes can you do to help with insomnia? • What supplements are helpful for insomnia? • What medicines are helpful for insomnia? Sunday • June 2nd • 6 PM PST Click here on start your meeting.or https://axisconciergemeetings.webex.com/axisconciergemeetings/j.php?MTID=m2f7d9547a80ec47e43869517ef006f34 OR Join by phone: (855) 797-9485 Meeting Number (Access Code): 807 924 444 Meeting Password: hormones Your phone/computer will be muted on entry. There will be plenty of time for questions using the chat button. For more information, email us at mail@goodhormonehealth.com
  43. 1 point
    this is terrifying to read. is this accurate and current?
  44. 1 point
    I'm so sorry to read this, Donna I'll never understand how a doctor can't "believe in" a disease. Boggles my mind. I sure hope Dr. F can help you - he's helped so many others over the years. Please keep us posted.
  45. 1 point
    Oh no, Donna - does this mean Dr. Zwart didn't work out after all? I've heard very good things about Dr. F, though. Got my fingers crossed that he's the answer for you.
  46. 1 point
    I have decided to stop wasting my precious time with these worthless Doctors. I have an appt in 2 weeks to see Dr F. In California.
  47. 1 point
    by Kristen Monaco, Staff Writer, MedPage Today LOS ANGELES -- An investigational therapy improved quality of life and reduced disease symptoms for patients with endogenous Cushing's syndrome, according to new findings from the phase III SONICS study. Patients taking oral levoketoconazole twice daily had significant reductions in mean scores for acne (-1.8), peripheral edema (-0.4), and hirsutism (-2.6), all secondary endpoints of the pivotal trial (P<0.03 for all), reported Maria Fleseriu, MD, of Oregon Health and Science University in Portland. "We're looking forward to see the results of further studies and to add this therapy to the landscape of Cushing's," Fleseriu said here during a presentation of the findings at AACE 2019, the annual meeting of the American Association of Clinical Endocrinologists. "We have a newer medication and still we cannot make a dent in the outcomes of Cushing's, especially for patient-reported outcomes." Free testosterone levels significantly decreased in women taking levoketoconazole (a ketoconazole stereoisomer and potent steroidogenesis inhibitor), from an average of 0.32 ng/dL down to 0.12 ng/dL (0.011 to 0.004 nmol/L, P<0.0001). Men had a non-significant increase: 5.1 ng/dL up to 5.8 ng/dL (0.177 to 0.202 nmol/L). There were no significant changes from baseline to the end of maintenance for other secondary endpoints in the analysis: moon facies, facial plethora, striae, bruising, supraclavicular fat, irregular menstruation, and dysmenorrhea. However, significant improvements after 6 months of therapy were seen in patient-reported quality of life compared with baseline (mean 10.6 change on the Cushing QOL questionnaire) as well as a significant reduction in depressive symptoms (mean -4.3 change on the Beck Depression Inventory II). The open-label, multicenter SONICS (Study of Levoketoconazole in Cushing's Syndrome) trial included 94 adult men and women with a confirmed diagnosis of Cushing's syndrome and elevated 24-hour mean urinary free cortisol (mUFC) levels at least 1.5 times the upper limit of normal. In the dose-titration phase of the study (weeks 2 to 21), patients were titrated up to a max dose of 600 mg levoketoconazole twice daily until mUFC normalization. A 6-month maintenance phase followed with no dose increases, but decreases were allowed if adverse events emerged. An additional 6-month extended evaluation phase followed thereafter. The study met it's previously reported primary endpoint, with 30% of patients achieving normalized mUFC levels after 6 months of maintenance therapy without a dose increase (95% CI 21%-40%, P=0.0154). Levoketoconazole was well tolerated, with only 12.8% of patients discontinuing treatment due to adverse events. The most commonly reported adverse events were nausea (31.9%), headache (27.7%), peripheral edema (19.1%), hypertension (17%), and fatigue (16%), some of which were expected due to steroid withdrawal, Fleseriu said. Serious adverse events were reported in 14 patients, including prolonged QTc interval in two patients, elevated liver function in one patient, and adrenal insufficiency in another, events similar to those seen with ketoconazole (Nizoral) therapy. Fleseriu explained that drug-drug interaction is a problem in Cushing's, as all of the available medications prolong QT interval. She noted that in SONICS, QT prolongation with levoketoconazole was observed in few patients. It's still a "concern," said Fleseriu, especially for patients on other drugs that prolong QT. Although not yet approved, levoketoconazole has received orphan drug designation from the FDA and the European Medicines Agency for endogenous Cushing's syndrome. The tentative brand name is Recorlev. The study was supported by Strongbridge Biopharma. Fleseriu reported relationships with Strongbridge, Millendo Therapeutics, and Novartis. Co-authors also disclosed relevant relationships with industry. Primary Source American Association of Clinical Endocrinologists Source Reference: Fleseriu M, et al "Levoketoconazole in the treatment of endogenous Cushing's syndrome: Improvements in clinical signs and symptoms, patient-reported outcomes, and associated biochemical markers in the phase 3 SONICS study" AACE 2019; Poster 369. From https://www.medpagetoday.com/meetingcoverage/aace/79465
  48. 1 point
    Corcept Therapeutics is recruiting participants for its Phase 3 clinical trial evaluating relacorilant as a potential treatment for Cushing’s syndrome-related side effects such as high blood pressure and impaired glucose tolerance. Also, findings from the study “A Randomized-Withdrawal, Placebo-Controlled, Phase 3 Study to Assess the Efficacy and Safety of Selective Glucocorticoid Receptor Antagonist, Relacorilant, in Patients with Cushing Syndrome (GRACE Study),” were presented at the 2019 Annual Meeting of the Endocrine Society (ENDO), in New Orleans, Louisiana. In endogenous Cushing’s syndrome there is an “internal” culprit — usually a benign tumor — that makes the body produce too much of the hormone cortisol. The excessive amount of circulating cortisol can lead to serious problems, such as type 2 diabetes and high blood pressure. Relacorilant is designed to prevent the effects of excess cortisol by blocking one of its receptors, the glucocorticoid receptor. Results from a Phase 2 trial (NCT02804750) suggest that relacorilant may manage the effects of prolonged cortisol excess in Cushing’s patients faster and without the known side effects of approved medications like Korlym (mifepristone). Also, the treatment improved glucose tolerance and improved blood pressure in patients, suggesting it could be used to treat those with endogenous Cushing’s syndrome and concurrent type 2 diabetes mellitus, impaired glucose tolerance, and/or uncontrolled high blood pressure (hypertension). Corcept has now designed the GRACE Phase 3 trial (NCT03697109), a multicenter, double-blind, placebo-controlled, randomized-withdrawal study, to evaluate relacorilant’s safety and effectiveness in these patients. GRACE will be conducted in two stages. First, all patients will be given oral relacorilant each day for 22 weeks, at doses rising from 100 mg to a maximum of 400 mg. Those who complete that stage and show improvements in pre-specified parameters of glucose tolerance or hypertension will move into the second, randomized phase of the trial. Here, they will be randomly assigned to placebo or relacorilant at the same dose they received at the end of the first stage. This new round of treatment will last 12 weeks. Treatment-related adverse events (side effects) also will be assessed for up to 48 weeks (about 11 months) as a main outcome. Additional primary goals include changes in glucose tolerance and blood pressure between the end of the first and second stages of the study. Secondary objectives include identifying the proportion of patients achieving a response in glucose tolerance and high blood pressure criteria and the proportion of those who worsened at the end of the first stage, and the changes in quality of life throughout the study. Researchers plan to enroll 130 people in these U.S. cities: Indianapolis, Indiana; Metairie, Louisiana; Jackson, Mississippi; Albany, New York; Jamaica, New York; Wilmington, North Carolina; Miami, Florida; Summerville, South Carolina; El Paso, Texas; Oklahoma City, Oklahoma, and; Aurora, Colorado. More detailed information is available here. “We look forward to presenting new findings concerning cortisol modulation in patients with hypercortisolism,” Joseph K. Belanoff, MD, Corcept’s CEO, said in a press release.
  49. 1 point
    The use of an insulin pump to deliver continuous pulsatile cortisol may be a viable treatment option in patients with severe adrenal insufficiency who are unresponsive to oral corticosteroids, according to study results presented at the 28th Annual Congress of the American Association of Clinical Endocrinologists, held April 24 to 28, 2019, in Los Angeles, California. According to the investigators, increasing oral steroid doses may be required to prevent adrenal crisis in patients with adrenal insufficiency. However, in light of the associated side effects of long-term use of steroids, an alternative treatment method is needed. Insulin pumps, typically used to treat patients with diabetes, can be used to deliver steroids and may provide symptom control, prevent adrenal crisis, and lower required corticosteroid dose. The current study enrolled patients with adrenal insufficiency who could not absorb oral corticosteroid treatment or were not responding to treatment. Of 118 patients with adrenal insufficiency, 6 patients were switched to pump treatment. The results indicated that the use of cortisol pumps was associated with a 78.5% risk reduction for adrenal crisis compared with oral corticosteroids. As hydrocortisone dose was gradually tapered using the cortisol pump, there was a mean dose reduction of 62.77 mg compared with oral corticosteroid therapy. The researchers noted that in addition to reducing the number of adrenal crises, use of a cortisol pump was found to be associated with better symptom control and quality of life. “Continuous pulsatile cortisol replacement via pump is an option for management of severe adrenal insufficiency in patients unresponsive to oral therapy,” concluded the researchers. Reference Khalil A, Ahmed F, Alzohaili O. Insulin pump for adrenal insufficiency, a novel approach to the use of insulin pumps to deliver corticosteroids in patients with poor cortisol absorption. Presented at: American Association of Clinical Endocrinologists 28th Annual Scientific & Clinical Congress; April 24-28, 2019; Los Angeles, CA. From https://www.endocrinologyadvisor.com/home/conference-highlights/aace-2019/cortisol-pumps-may-be-viable-option-to-reduce-adrenal-crisis-in-severe-adrenal-insufficiency/
  50. 1 point
    Increased cortisol secretion may follow a cyclic pattern in patients with adrenal incidentalomas, a phenomenon that may lead to misdiagnosis, a study reports. Since cyclic subclinical hypercortisolism may increase the risk for heart problems, researchers recommend extended follow-up with repeated tests to measure cortisol levels in these patients. The study, “Cyclic Subclinical Hypercortisolism: A Previously Unidentified Hypersecretory Form of Adrenal Incidentalomas,” was published in the Journal of Endocrine Society. Adrenal incidentalomas (AI) are asymptomatic masses in the adrenal glands discovered on an imaging test ordered for a problem unrelated to adrenal disease. While most of these benign tumors are considered non-functioning, meaning they do not produce steroid hormones like cortisol, up to 30% do produce and secrete steroids. Subclinical Cushing’s syndrome is an asymptomatic condition characterized by mild cortisol excess without the specific signs of Cushing’s syndrome. The long-term exposure to excess cortisol may lead to cardiovascular problems in these patients. While non-functioning adenomas have been linked with metabolic problems, guidelines say that if excess cortisol is ruled out after the first evaluation, patients no longer need additional follow-up. However, cortisol secretion can be cyclic in Cushing’s syndrome, meaning that clinicians might not detect excess amounts of cortisol at first and misdiagnose patients. In an attempt to determine whether cyclic cortisol production is also seen in patients with subclinical Cushing’s syndrome and whether these patients have a higher risk for metabolic complications, researchers in Brazil reviewed the medical records of 251 patients with AI — 186 women, median 60 years old — followed from 2006 to 2017 in a single reference center. Cortisol levels were measured after a dexamethasone suppression test (DST). Dexamethasone is used to stop the adrenal glands from producing cortisol. In healthy patients, this treatment is expected to reduce cortisol levels, but in patients whose tumors also produce cortisol, the levels often remain elevated. Patients were diagnosed with cyclic subclinical Cushing’s syndrome if they had at least two normal and two abnormal DST tests. From the 251 patients, only 44 performed the test at least three times and were included in the analysis. The results showed that 20.4% of patients had a negative DST test and were considered non-functioning adenomas. An additional 20.4% had elevated cortisol levels in all DST tests and received a diagnosis of sustained subclinical Cushing’s syndrome. The remaining 59.2% had discordant results in their tests, with 18.3% having at least two positive and two negative test results, matching the criteria for cyclic cortisol production, and 40.9% having only one discordant test, being diagnosed as possibly cyclic subclinical Cushing’s syndrome. Interestingly, 20 of the 44 patients had a normal cortisol response at their first evaluation. However, 11 of these patients failed to maintain normal responses in subsequent tests, with four receiving a diagnosis of cyclic subclinical Cushing’s syndrome and seven as possibly cyclic subclinical Cushing’s. Overall, the findings suggest that patients with adrenal incidentalomas should receive extended follow-up with repeated DST tests, helping identify those with cyclic cortisol secretion. “Lack of recognition of this phenomenon makes follow-up of patients with AI misleading because even cyclic SCH may result in potential cardiovascular risk,” the study concluded. From https://cushingsdiseasenews.com/2019/04/11/cyclic-cortisol-production-may-lead-to-misdiagnosis-in-cushings-study-finds/
  • Create New...