Jump to content

Leaderboard

Popular Content

Showing content with the highest reputation since 09/27/2020 in Posts

  1. How stressed are you? Your earwax could hold the answer. A new method of collecting and analyzing earwax for levels of the stress hormone cortisol may be a simple and cheap way to track the mental health of people with depression and anxiety. Cortisol is a crucial hormone that spikes when a person is stressed and declines when they're relaxed. In the short-term, the hormone is responsible for the "fight or flight" response, so it's important for survival. But cortisol is often consistently elevated in people with depression and anxiety, and persistent high levels of cortisol can have negative effects on the immune system, blood pressure and other bodily functions. There are other disorders which involve abnormal cortisol, including Cushing's disease (caused by the overproduction of cortisol) and Addison's disease (caused by the underproduction of cortisol). People with Cushing's disease have abnormal fat deposits, weakened immune systems and brittle bones. People with Addison's disease have dangerously low blood pressure. There are a lot of ways to measure cortisol: in saliva, in blood, even in hair. But saliva and blood samples capture only a moment in time, and cortisol fluctuates significantly throughout the day. Even the experience of getting a needle stick to draw blood can increase stress, and thus cortisol levels. Hair samples can provide a snapshot of cortisol over several months instead of several minutes, but hair can be expensive to analyze — and some people don't have much of it. Andrés Herane-Vives, a lecturer at University College London's Institute of Cognitive Neuroscience and Institute of Psychiatry, and his colleagues instead turned to the ear. Earwax is stable and resistant to bacterial contamination, so it can be shipped to a laboratory easily for analysis. It also can hold a record of cortisol levels stretching over weeks. But previous methods of harvesting earwax involved sticking a syringe into the ear and flushing it out with water, which can be slightly painful and stressful. So Herane-Vives and his colleagues developed a swab that, when used, would be no more stressful than a Q-tip. The swab has a shield around the handle, so that people can't stick it too far into their ear and damage their eardrum, and a sponge at the end to collect the wax. In a small pilot study, researchers collected blood, hair and earwax from 37 participants at two different time points. At each collection point, they sampled earwax using a syringe from one ear, and using the new self-swab method from the other. The researchers then compared the reliability of the cortisol measurements from the self-swab earwax with that of the other methods. They found that cortisol was more concentrated in earwax than in hair, making for easier analysis. Analyzing the self-swabbed earwax was also faster and more efficient than analyzing the earwax from the syringe, which had to be dried out before using. Finally, the earwax showed more consistency in cortisol levels compared with the other methods, which were more sensitive to fluctuations caused by things like recent alcohol consumption. Participants also said that self-swabbing was more comfortable than the syringe method. The researchers reported their findings Nov. 2 in the journal Heliyon. Herane-Vives is also starting a company called Trears to market the new method. In the future, he hopes that earwax could also be used to monitor other hormones. The researchers also need to follow up with studies of Asian individuals, who were left out of this pilot study because a significant number only produce dry, flaky earwax as opposed to wet, waxy earwax. "After this successful pilot study, if our device holds up to further scrutiny in larger trials, we hope to transform diagnostics and care for millions of people with depression or cortisol-related conditions such as Addison's disease and Cushing syndrome, and potentially numerous other conditions," he said in a statement. Originally published in Live Science.
    3 points
  2. Christina Tatsi, Maria E. Bompou, Chelsi Flippo, Meg Keil, Prashant Chittiboina, Constantine A. Stratakis First published: 25 August 2021 https://doi.org/10.1111/cen.14560 Abstract Objective Diagnostic workup of Cushing disease (CD) involves imaging evaluation of the pituitary gland, but in many patients no tumour is visualised. The aim of this study is to describe the association of magnetic resonance imaging (MRI) findings with the postoperative course of paediatric and adolescent patients with CD. Patients Patients with a diagnosis of CD at less than 21 years of age with MRI evaluation of the pituitary before first transsphenoidal surgery were included. Measurements Clinical, imaging and biochemical data were analysed. Results One hundred and eighty-six patients with paediatric or adolescent-onset CD were included in the study. Of all patients, 127 (68.3%) had MRI findings consistent with pituitary adenoma, while the remaining had negative or inconclusive MRI. Patients with negative MRI were younger in age and had lower morning cortisol and adrenocorticotropin levels. Of 181 patients with data on postoperative course, patients with negative MRI had higher odds of not achieving remission after the first surgery (odds ratio = 2.6, 95% confidence intervals [CIs] = 1.1–6.0) compared to those with positive MRI. In patients with remission after first transsphenoidal surgery, long-term recurrence risk was not associated with the detection of a pituitary adenoma in the preoperative MRI (hazard risk = 2.1, 95% CI = 0.7–5.8). Conclusions Up to one-third of paediatric and adolescent patients with CD do not have a pituitary tumour visualised in MRI. A negative MRI is associated with higher odds of nonremission after surgery; however, if remission is achieved, long-term risk for recurrence is not associated with the preoperative MRI findings. Full text at https://onlinelibrary.wiley.com/doi/full/10.1111/cen.14560
    2 points
  3. SAN DIEGO, CA, USA I August 10, 2021 I Crinetics Pharmaceuticals, Inc. (Nasdaq: CRNX), a clinical stage pharmaceutical company focused on the discovery, development, and commercialization of novel therapeutics for rare endocrine diseases and endocrine-related tumors, today announced positive preliminary findings from the single ascending dose (SAD) portion of a first-in-human Phase 1 clinical study with CRN04894 demonstrating pharmacologic proof-of-concept for this first-in-class, investigational, oral, nonpeptide adrenocorticotropic hormone (ACTH) antagonist that is being developed for the treatment of conditions of ACTH excess, including Cushing’s disease and congenital adrenal hyperplasia. “ACTH is the central hormone of the endocrine stress response. Even though we’ve known about its clinical significance for more than 100 years, there has never been an ACTH antagonist available to intervene in diseases of excess stress hormones. This is an important milestone for the field of endocrinology and for our company,” said Scott Struthers, Ph.D., founder and chief executive officer of Crinetics. “I am extremely proud of our team that conceived, discovered and developed CRN04894 this far. This is the second molecule to emerge from our in-house discovery efforts and demonstrate pharmacologic proof of concept. I am very excited to see what it can do in upcoming clinical studies.” The 39 healthy volunteers who enrolled in the SAD cohorts were administered oral doses of CRN04894 (10 mg to 80 mg, or placebo) two hours prior to a challenge with synthetic ACTH. Analyses of basal cortisol levels (before ACTH challenge) showed that CRN04894 produced a rapid and dose-dependent reduction of cortisol by 25-56%. After challenge with a supra-pathophysiologic dose of ACTH (250 mcg), CRN04894 suppressed cortisol (as measured by AUC) up to 41%. After challenge with a disease-relevant dose of ACTH (1 mcg), CRN04894 showed a clinically meaningful reduction in cortisol AUC of 48%. These reductions in cortisol suggest that CRN04894 is bound with high affinity to its target receptor on the adrenal gland and blocking the activity of ACTH. CRN04894 was well tolerated in the healthy volunteers who enrolled in these SAD cohorts and all adverse events were considered mild. “We are very encouraged by these single ascending dose data which clearly demonstrate proof of ACTH antagonism with CRN04894 exposure in healthy volunteers,” stated Alan Krasner, M.D., chief medical officer of Crinetics. “We look forward to completing this study and assessing results from the multiple ascending dose cohorts. As a clinical endocrinologist, I recognize the pioneering nature of this work and eagerly look forward to further understanding the potential of CRN04894 for the treatment of diseases of ACTH excess.” Data Review Conference Call Crinetics will hold a conference call and live audio webcast today, August 10, 2021 at 4:30 p.m. Eastern Time to discuss the results of the CRN04894 SAD cohorts. To participate, please dial 800-772-3714 (domestic) or 212-271-4615 (international) and refer to conference ID 21996541. To access the webcast, please visit the Events page on the Crinetics website. The archived webcast will be available for 90 days. About the CRN04894-01 Phase 1 Study Crinetics is enrolling healthy volunteers in this double-blind, randomized, placebo-controlled Phase 1 study of CRN04894. Participants will be divided into multiple cohorts in the single ascending dose (SAD) and multiple ascending dose (MAD) phases of the study. In the SAD phase, safety and pharmacokinetics are assessed. In addition, pharmacodynamic responses are evaluated before and after challenges with injected synthetic ACTH to assess pharmacologic effects resulting from exposure to CRN04894. In the MAD phase, participants will be administered placebo or ascending doses of study drug daily for 10 days. Assessments of safety, pharmacokinetics and pharmacodynamics will also be performed after repeat dosing. About CRN04894 Adrenocorticotropic hormone (ACTH) is synthesized and secreted by the pituitary gland and binds to melanocortin type 2 receptor (MC2R), which is selectively expressed in the adrenal gland. This interaction of ACTH with MCR2 stimulates the adrenal production of cortisol, a stress hormone that is involved in the regulation of many systems. Cortisol is involved for example in the regulation of blood sugar levels, metabolism, inflammation, blood pressure, and memory formulation, and excess adrenal androgen production can result in hirsutism, menstrual dysfunction, infertility in men and women, acne, cardiometabolic comorbidities and insulin resistance. Diseases associated with excess of ACTH, therefore, can have significant impact on physical and mental health. Crinetics’ ACTH antagonist, CRN04894, has exhibited strong binding affinity for MC2R in preclinical models and demonstrated suppression of adrenally derived glucocorticoids and androgens that are under the control of ACTH, while maintaining mineralocorticoid production. About Cushing’s Disease and Congenital Adrenal Hyperplasia Cushing’s disease is a rare disease with a prevalence of approximately 10,000 patients in the United States. It is more common in women, between 30 and 50 years of age. Cushing’s disease often takes many years to diagnose and may well be under-diagnosed in the general population as many of its symptoms such as lethargy, depression, obesity, hypertension, hirsutism, and menstrual irregularity can be incorrectly attributed to other more common disorders. Congenital adrenal hyperplasia (CAH) encompasses a set of disorders that are caused by genetic mutations that result in impaired cortisol synthesis with a prevalence of approximately 27,000 patients in the United States. This lack of cortisol leads to a loss of feedback mechanisms and results in persistently high levels of ACTH, which in turn causes overstimulation of the adrenal cortex. The resulting adrenal hyperplasia and over-secretion of other steroids (particularly androgens) and steroid precursors can lead to a variety of effects from improper gonadal development to life-threatening adrenal crisis. About Crinetics Pharmaceuticals Crinetics Pharmaceuticals is a clinical stage pharmaceutical company focused on the discovery, development, and commercialization of novel therapeutics for rare endocrine diseases and endocrine-related tumors. The company’s lead product candidate, paltusotine, is an investigational, oral, selective nonpeptide somatostatin receptor type 2 agonist for the treatment of acromegaly, an orphan disease affecting more than 26,000 people in the United States. A Phase 3 program to evaluate safety and efficacy of paltusotine for the treatment of acromegaly is underway. Crinetics also plans to advance paltusotine into a Phase 2 trial for the treatment of carcinoid syndrome associated with neuroendocrine tumors. The company is also developing CRN04777, an investigational, oral, nonpeptide somatostatin receptor type 5 (SST5) agonist for congenital hyperinsulinism, as well as CRN04894, an investigational, oral, nonpeptide ACTH antagonist for the treatment of Cushing’s disease, congenital adrenal hyperplasia, and other diseases of excess ACTH. All of the company’s drug candidates are new chemical entities resulting from in-house drug discovery efforts and are wholly owned by the company. SOURCE: Crinetics Pharmaceuticals From https://pipelinereview.com/index.php/2021081178950/Small-Molecules/Crinetics-Pharmaceuticals-Oral-ACTH-Antagonist-CRN04894-Demonstrates-Pharmacologic-Proof-of-Concept-with-Dose-Dependent-Cortisol-Suppression-in-Single-Ascending-Dose-Port.html
    2 points
  4. All of our country is very encouraged by the declining rates in both COVID-19 infections and death, due mostly to President Trump’s vaccine production and trial effort called Operation Warp Speed and President Biden’s vaccine distribution efforts. As of July 2021, The United States has administered 334,600,770 doses of COVID-19 vaccines, 184,132,768 people had received at least one dose while 159,266,536 people are fully vaccinated. The pandemic is by no means over, as people are still getting infected with COVID-19 with the emergence of the Delta Variant. In fact, recently cases, hospitalizations and deaths due to COVID-19 have gone up. In Los Angeles, the increased infection rate has led to indoor mask requirements. The main reason that COVID-19 has not been eliminated is because of vaccine hesitancy, which is often due to misinformation propagated on websites and social media. One of Dr. Friedman's patients gave him a link of an alternative doctor who gave multiple episodes of misinformation subtitled “Evidence suggests people who have received the COVID “vaccine” may have a reduced lifespan” about the COVID-19 vaccine that Dr. Friedman wants to address. Almost 30% of American say they will not get the vaccine, up from 20% a few months ago. Statistics are that people who are vaccinated have a 1:1,000,000 chance of dying from COVID, while people who are unvaccinated have a 1:500 chance of dying from COVID. I think most people would take the 1:1,000,000 risk. Dr. Friedman has always been a proponent of the COVID-19 vaccine because he is a scientist and bases his decisions on peer-reviewed literature and not social media posts. As we are getting to the stage where the COVID-19 pandemic could end if vaccination rates increase, he feels that it is even more important for people to get correct information about the COVID-19 vaccine. MYTH: People are dying at high rates from the COVID-19 vaccine and the rates of complications and deaths are underreported. FACT: The rates of complications and deaths from the vaccine are overreported. It is a fact that when 200 million people get a vaccine, some of them will get blood clots, some of them will have a heart attack, some of them will have strokes, some of them will have optic neuritis and some will have Guillain-Barré syndrome. These complications may not be due to the vaccine, but people remember that they got the vaccine recently. Anti-vaccine websites seem to play up on this and give false information that COVID-19 complications are underreported and fail to note that there is no control group, so we do not know how many people would have gotten blood clots, strokes, and heart attacks if they did not get the vaccine. For example, one anti-vaccine website highlighted a Tamil (Indian) actor Vivek, who died of a massive heart attack 5 days after getting the COVID-19 vaccine and tried to make a case that the vaccine caused that. Of course, the massive heart attack was due to years of buildup of cholesterol in his coronary arteries and had nothing to do with the COVID-19 vaccine. In fact, the complications attributed to the COVID-19 vaccine occur less frequently in those vaccinated than unvaccinated. The only complication that seems to possibly be more common in people who get vaccinated is blood clots, and the rate of that is still quite low. Overwhelmingly, the COVID-19 vaccine is effective and safe. MYTH: I had COVID-19 before. I don't need a vaccine. Natural immunity is better than a vaccine immunity. FACT: Most studies have shown that the COVID-19 vaccines are more effective, with longer-lasting immunity, than only having the COVID-19 infection. The immunity after natural infection varies and may be quite minimal in patients who had mild COVID-19 and likely declines within a couple of months of infection. In contrast, those who got the vaccine seem to have high levels of immunity even months after getting the vaccine. The vaccine also protects against the COVID-19 variants. If someone had one variant, it is unlikely that their natural immunity would protect them against other variants. MYTH: The COVID-19 vaccine leads to spike proteins circulating in your body for months after the vaccine. FACT: The mRNA from the vaccine, the spike protein that it generates, and all of the products of the COVID-19 vaccine are gone within hours, if not days, and do not hang around the body. MYTH: There is likely to be long-term effects, including infertility effects, of the COVID-19 vaccine. FACT: As the viral particles and proteins are gone within a couple hours to days and the vaccine only enters the cytoplasm and does not enter the DNA, it is very unlikely that there will be long-term effects. So far, the clinical trials of the COVID-19 vaccine have not resulted in any detrimental effects, and it has been a year since the trials started. Other vaccines have been used safely and do not give long-term side effects. There is no reason to think that this vaccine would give long-term side effects, and we have not seen any evidence of long-term side effects currently. Pregnant women who received COVID-19 vaccines have similar rates adverse pregnancy and neonatal outcomes (e.g., fetal loss, preterm birth, small size for gestational age, congenital anomalies, and neonatal death) as with pregnant women who did not receive vaccines. MYTH: People with autoimmune disease should not get the vaccine. FACT: Persons with autoimmune disease are likely more susceptible to COVID-19, and they should especially get the vaccine. People with preexisting conditions, including autoimmune diseases, have been shown to be give generally excellent immune responses to the vaccine, and it should especially be given to patients with Addison’s disease or Cushing's disease who may have higher rates of getting more severe COVID-19. In fact, the CDC as well Dr. Friedman recommends EVERYONE getting the vaccine, except 1) those under 12, 2) those who had an anaphylactic reaction to their first COVID-19 vaccine. Patients with AIDS, and those on immunosuppressive therapy for cancers, organ transplants and rheumatological conditions, may not be fully protected from vaccines and should be cautious (including wearing masks and social distancing), but still should get vaccinated. MYTH: Patients with autoimmune diseases, and other conditions do not mount an adequate immune response to the vaccine and may even should get a booster shot. FACT: The only patients that have been found not to have a good immune response to the vaccine is those with AIDS or on immunosuppressive drugs that are used in people with rheumatological diseases or transplants. With these exception, patients appear to mount a good immune response to the vaccine regardless of their preexisting condition and do not need a booster shot. MYTH: Why should I bother with the vaccine if it is going to require a booster shot? FACT: It is unclear whether booster shots will be required or not. Currently, the CDC and FDA do not recommend a booster shot, but Pfizer has petitioned the FDA to consider it and is starting more studies on whether a booster shot is effective. It is currently believed that the vaccine retains effectiveness for months to years after it is given. MYTH: We are almost at herd immunity now. Why bother getting a vaccine? FACT: We are not at herd immunity as people are still getting sick and dying from COVID-19. Dr. Friedman recently lost to COVID-19 his 43-year old patient with obesity and diabetes at MLK Outpatient Center. There are pockets in the United States with low vaccine rates, especially in the South. The vaccine is spreading among unvaccinated people, while the rate of spread among vaccinated people is quite low. Approximately 98% of those hospitalized with COVID-19 are unvaccinated. It is important from a public health viewpoint for all Americans to get vaccinated. MYTH: There is nothing to be concerned with about the variants. FACT: Especially the delta variant appears to be more contagious and aggressive than the other variants currently. The vaccines do appear to be effective against the delta variant but possibly a little less so. Variants multiply and can generate new variants only if they are infected into patients who are unvaccinated. To end the emergence of new variants, it is important for all Americans to get vaccinated. MYTH: I could just be careful, and I will not get the COVID-19 vaccine. FACT: Thousands of people who were careful and got COVID-19 and either died from it or became extremely sick. The best prevention against getting COVID-19 is to get vaccinated. MYTH: I am young. I do not have to worry about getting COVID. FACT: Many young people have gotten sick and died of COVID-19 and also, they are contagious and can spread COVID-19 if they are not vaccinated. Everyone, regardless of their age, as long as they are over 12, should get vaccinated. MYTH: If children under 12 are not vaccinated, the virus will still spread. FACT: The FDA and CDC do not recommend the vaccine for those under 12. They are very unlikely to get COVID-19 and are very unlikely to transmit it to others. They are the one group that does not need to get vaccinated. MYTH: COVID-19 vaccines are an experimental vaccine. FACT: While it is true that the FDA approved COVID-19 vaccines were granted emergency use authorization in December 2020 (Pfizer and Moderna) and Johnson and Johnson in February 2021. Both Pfizer and Moderna have petitioned the FDA for full approval, but by no means are these vaccines experimental. As mentioned, over 180 million Americans and many more worldwide have received the vaccine. This is more than any other FDA approved medication. Clinical trials are still ongoing and have enrolled thousands of people and Israel has monitored the effect of COVID-19 vaccines in 7 million Israelis. MYTH: The COVID-19 vaccine is a government plot to kill or injure people or a war against G-d. FACT: Yeah right If you want the pandemic to end, please get vaccinated and encourage your friends and colleagues to get vaccinated. For more information or to schedule an appointment with Dr. Friedman, go to goodhormonehealth.com
    2 points
  5. Rachel Acree, Caitlin M Miller, Brent S Abel, Nicola M Neary, Karen Campbell, Lynnette K Nieman Journal of the Endocrine Society, Volume 5, Issue 8, August 2021, bvab109, https://doi.org/10.1210/jendso/bvab109 Abstract Context Cushing syndrome (CS) is associated with impaired health-related quality of life (HRQOL) even after surgical cure. Objective To characterize patient and provider perspectives on recovery from CS, drivers of decreased HRQOL during recovery, and ways to improve HRQOL. Design Cross-sectional observational survey. Participants Patients (n = 341) had undergone surgery for CS and were members of the Cushing’s Support and Research Foundation. Physicians (n = 54) were Pituitary Society physician members and academicians who treated patients with CS. Results Compared with patients, physicians underestimated the time to complete recovery after surgery (12 months vs 18 months, P = 0.0104). Time to recovery did not differ by CS etiology, but patients with adrenal etiologies of CS reported a longer duration of cortisol replacement medication compared with patients with Cushing disease (12 months vs 6 months, P = 0.0025). Physicians overestimated the benefits of work (26.9% vs 65.3%, P < 0.0001), exercise (40.9% vs 77.6%, P = 0.0001), and activities (44.8% vs 75.5%, P = 0.0016) as useful coping mechanisms in the postsurgical period. Most patients considered family/friends (83.4%) and rest (74.7%) to be helpful. All physicians endorsed educating patients on recovery, but 32.4% (95% CI, 27.3-38.0) of patients denied receiving sufficient information. Some patients did not feel prepared for the postsurgical experience (32.9%; 95% CI, 27.6-38.6) and considered physicians not familiar enough with CS (16.1%; 95% CI, 12.2-20.8). Conclusion Poor communication between physicians and CS patients may contribute to dissatisfaction with the postsurgical experience. Increased information on recovery, including helpful coping mechanisms, and improved provider-physician communication may improve HRQOL during recovery. Read the entire article in the enclosed PDF. bvab109.pdf
    2 points
  6. Mayela, I'm so sorry you went through COVID but glad you're on the other side of it now. And a relapse doesn't sound like any fun Thanks for the update on The GRACE trial, though. Please keep us updated on your recovery from COVID and your relapse.
    2 points
  7. Osilodrostat therapy was found to be effective in improving blood pressure parameters, health-related quality of life, depression, and other signs and symptoms in patients with Cushing disease, regardless of the degree of cortisol control, according to study results presented at the 30th Annual Scientific and Clinical Congress of the American Association of Clinical Endocrinologists (ENVISION 2021). Investigators of the LINC 3 study (ClinicalTrials.gov Identifier: NCT02180217), a phase 3, multicenter study with a double-blind, randomized withdrawal period, sought to assess the effects of twice-daily osilodrostat (2-30 mg) on signs, symptoms, and health-related quality of life in 137 patients with Cushing disease. Study endpoints included change in various parameters from baseline to week 48, including mean urinary free cortisol (mUFC) status, cardiovascular-related measures, physical features, Cushing Quality-of-Life score, and Beck Depression Inventory score. Participants were assessed every 2, 4, or 12 weeks depending on the study period, and eligible participants were randomly assigned 1:1 to withdrawal at week 24. The median age of participants was 40.0 years, and women made up 77.4% of the cohort. Of 137 participants, 132 (96%) achieved controlled mUFC at least once during the core study period. At week 24, patients with controlled or partially controlled mUFC showed improvements in blood pressure that were not seen in patients with uncontrolled mUFC; at week 48, improvement in blood pressure occurred regardless of mUFC status. Cushing Quality-of-Life and Beck Depression Inventory scores, along with other metabolic and cardiovascular risk factors, improved from baseline to week 24 and week 48 regardless of degree of mUFC control. Additionally, most participants reported improvements in physical features of hypercortisolism, including hirsutism, at week 24 and week 48. The researchers indicated that the high response rate with osilodrostat treatment was sustained during the 48 weeks of treatment, with 96% of patients achieving controlled mUFC levels; improvements in clinical signs, physical features, quality of life, and depression were reported even among patients without complete mUFC normalization. Disclosure: This study was sponsored by Novartis Pharma AG; however, as of July 12, 2019, osilodrostat is an asset of Recordati AG. Please see the original reference for a full list of authors’ disclosures. Visit Endocrinology Advisor‘s conference section for complete coverage from the AACE Annual Meeting 2021: ENVISION. Reference Pivonello R, Fleseriu M, Newell-Price J, et al. Effect of osilodrostat on clinical signs, physical features and health-related quality of life (HRQoL) by degree of mUFC control in patients with Cushing’s disease (CD): results from the LINC 3 study. Presented at: 2021 AACE Virtual Annual Meeting, May 26-29, 2021. From https://www.endocrinologyadvisor.com/home/conference-highlights/aace-2021/osilodrostat-improves-blood-pressure-hrqol-and-depression-in-patients-with-cushing-disease/
    2 points
  8. HRA Pharma Rare Diseases, an affiliate of privately-held French healthcare company HRA Pharma, has revealed data from the six-month extension of PROMPT, the first ever prospective study designed to evaluate metyrapone long-term efficacy and tolerability in endogenous Cushing’s syndrome. After confirming good efficacy and safety of metyrapone in the first phase of the study that ran for 12 weeks, the results of the six-month extension showed that metyrapone successfully maintains low urinary free cortisol (UFC) levels with good tolerability. The data will be presented at the European Congress of Endocrinology 2021 next week. Metyrapone is approved in Europe for the treatment of endogenous Cushing’s syndrome. It works by inhibiting the 11-beta-hydroxylase enzyme, the final step in cortisol synthesis. From https://www.thepharmaletter.com/in-brief/brief-metyrapone-effective-and-safe-in-endogenous-cushing-s-syndrome-in-long-term-says-hra-pharma-rare-diseases
    2 points
  9. WASHINGTON--Endogenous Cushing's syndrome, a rare hormonal disorder, is associated with a threefold increase in death, primarily due to cardiovascular disease and infection, according to a study whose results will be presented at ENDO 2021, the Endocrine Society's annual meeting. The research, according to the study authors, is the largest systematic review and meta-analysis to date of studies of endogenous (meaning "inside your body") Cushing's syndrome. Whereas Cushing's syndrome most often results from external factors--taking cortisol-like medications such as prednisone--the endogenous type occurs when the body overproduces the hormone cortisol, affecting multiple bodily systems. Accurate data on the mortality and specific causes of death in people with endogenous Cushing's syndrome are lacking, said the study's lead author, Padiporn Limumpornpetch, M.D., an endocrinologist from Prince of Songkla University, Thailand and Ph.D. student at the University of Leeds in Leeds, U.K. The study analyzed death data from more than 19,000 patients in 92 studies published through January 2021. "Our results found that death rates have fallen since 2000 but are still unacceptably high," Limumpornpetch said. Cushing's syndrome affects many parts of the body because cortisol responds to stress, maintains blood pressure and cardiovascular function, regulates blood sugar and keeps the immune system in check. The most common cause of endogenous Cushing's syndrome is a tumor of the pituitary gland called Cushing's disease, but another cause is a usually benign tumor of the adrenal glands called adrenal Cushing's syndrome. All patients in this study had noncancerous tumors, according to Limumpornpetch. Overall, the proportion of death from all study cohorts was 5 percent, the researchers reported. The standardized mortality ratio--the ratio of observed deaths in the study group to expected deaths in the general population matched by age and sex--was 3:1, indicating a threefold increase in deaths, she stated. This mortality ratio was reportedly higher in patients with adrenal Cushing's syndrome versus Cushing's disease and in patients who had active disease versus those in remission. The standardized mortality ratio also was worse in patients with Cushing's disease with larger tumors versus very small tumors (macroadenomas versus microadenomas). On the positive side, mortality rates were lower after 2000 versus before then, which Limumpornpetch attributed to advances in diagnosis, operative techniques and medico-surgical care. More than half of observed deaths were due to heart disease (24.7 percent), infections (14.4 percent), cerebrovascular diseases such as stroke or aneurysm (9.4 percent) or blood clots in a vein, known as thromboembolism (4.2 percent). "The causes of death highlight the need for aggressive management of cardiovascular risk, prevention of thromboembolism and good infection control and emphasize the need to achieve disease remission, normalizing cortisol levels," she said. Surgery is the mainstay of initial treatment of Cushing's syndrome. If an operation to remove the tumor fails to put the disease in remission, other treatments are available, such as medications. Study co-author Victoria Nyaga, Ph.D., of the Belgian Cancer Centre in Brussels, Belgium, developed the Metapreg statistical analysis program used in this study. ### Endocrinologists are at the core of solving the most pressing health problems of our time, from diabetes and obesity to infertility, bone health, and hormone-related cancers. The Endocrine Society is the world's oldest and largest organization of scientists devoted to hormone research and physicians who care for people with hormone-related conditions. The Society has more than 18,000 members, including scientists, physicians, educators, nurses and students in 122 countries. To learn more about the Society and the field of endocrinology, visit our site at http://www.endocrine.org. Follow us on Twitter at @TheEndoSociety and @EndoMedia. Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system. From https://www.eurekalert.org/pub_releases/2021-03/tes-lao031621.php
    2 points
  10. Urine Tests: These involve collecting urine, usually for periods of twenty-four hours at a time. Twenty-four Hour Urine: The doctor will give you a gallon collection jug, usually with boric acid in it. The instructions are usually printed on the side. Generally, you urinate first thing in the morning, as usual. after that, you collect the rest of the urine for the next 24 hours in the jug. The directions usually tell you to refrigerate the jug. Directions for the Twenty-four Hour Urine Test Physicians have always relied upon analysis of urine specimens in order to diagnosis and treat many disease processes. Twenty-four hour urine collections are often employed to estimate the production rates of various hormones. The accuracy of test results depends entirely on the accuracy of the urine collection technique. These instructions are provided as a guide to ensure that your 24-hour urine collection is obtained in a manner that will permit reliance upon the test results. Urine samples should be collected in a large cup, urine collection hat or other container and then poured into the large bottle. Do not try to urinate directly into the bottle. Void urine prior to bowel movements in order to avoid losing urine that might normally be passed during a bowel movement. Urine collection hats can usually be purchased at medical supply stores if not provided by your physician or lab. If you should have a bowel movement while urinating the urine collection hat should keep the urine clean if used correctly. Urine samples should be collected in a large cup or other container and then poured into the large bottle. Do not try to urinate directly into the bottle. Void urine prior to bowel movements in order to avoid losing urine that might normally be passed during a bowel movement. Some patients are asked to collect more than one consecutive 24-hour urine sample. If that is the case, you should complete the first collection as instructed. Then, begin the second collection by adding any urine made in the next 24-hours to the second bottle. You should not discard any urine when starting the second or any subsequent collections. Simply change bottles at the stop and start times after adding that last sample required to complete the previous collection. The bottles for some tests contain a weak acid as a preservative. Do not discard the acid. If you accidentally get acid or urine from the bottle on your skin or clothing, rinse the effected area immediately with plenty of cold water. Collection bottles must be refrigerated. This is best accomplished by using an ice chest, cooler, or if so inclined, your refrigerator. If you forget to collect all of the urine or perform the test improperly, discard the specimen and start again on another day. If the bottle contained an acid preservative, you will need to obtain a new bottle from the laboratory or your physician's office. Otherwise, you may reuse the bottle after rinsing it with distilled water. Finally, please remember to call your physician, medical provider or nurse if you have any questions about the proper collection of a 24-hour urine sample. This Topic on the Message Boards.
    1 point
  11. Cushing’s syndrome is a rare disorder that occurs when the body is exposed to too much cortisol. Cortisol is produced by the body and is also used in corticosteroid drugs. Cushing's syndrome can occur either because cortisol is being overproduced by the body or from the use of drugs that contain cortisol (like prednisone). Cortisol is the body’s main stress hormone. Cortisol is secreted by the adrenal glands in response to the secretion of adrenocorticotropic hormone (ACTH) by the pituitary. One form of Cushing’s syndrome may be caused by an oversecretion of ACTH by the pituitary leading to an excess of cortisol. Cortisol has several functions, including the regulation of inflammation and controlling how the body uses carbohydrates, fats, and proteins. Corticosteroids such as prednisone, which are often used to treat inflammatory conditions, mimic the effects of cortisol. Stay tuned for more basic info...
    1 point
  12. This article was originally published here J Clin Endocrinol Metab. 2021 Jul 29:dgab557. doi: 10.1210/clinem/dgab557. Online ahead of print. ABSTRACT CONTEXT: Coronavirus disease 2019 (COVID-19) is a proinflammatory and prothrombotic condition, but its impact on adrenal function has not been adequately evaluated. CASE REPORT: A 46-year-old woman presented with abdominal pain, hypotension, and skin hyperpigmentation after COVID-19 infection. The patient had hyponatremia, serum cortisol <1.0 µg/dL, adrenocorticotropin (ACTH) of 807 pg/mL, and aldosterone ❤️ ng/dL. Computed tomography (CT) findings of adrenal enlargement with no parenchymal and minimal peripheral capsular enhancement after contrast were consistent with bilateral adrenal infarction. The patient had autoimmune hepatitis and positive antiphospholipid antibodies, but no previous thrombotic events. The patient was treated with intravenous hydrocortisone, followed by oral hydrocortisone and fludrocortisone. DISCUSSION: We identified 9 articles, including case reports, of new-onset adrenal insufficiency and/or adrenal hemorrhage/infarction on CT in COVID-19. Adrenal insufficiency was hormonally diagnosed in 5 cases, but ACTH levels were measured in only 3 cases (high in 1 case and normal/low in other 2 cases). Bilateral adrenal nonhemorrhagic or hemorrhagic infarction was identified in 5 reports (2 had adrenal insufficiency, 2 had normal cortisol levels, and 1 case had no data). Interestingly, the only case with well-characterized new-onset acute primary adrenal insufficiency after COVID-19 had a previous diagnosis of antiphospholipid syndrome. In our case, antiphospholipid syndrome diagnosis was established only after the adrenal infarction triggered by COVID-19. CONCLUSION: Our findings support the association between bilateral adrenal infarction and antiphospholipid syndrome triggered by COVID-19. Therefore, patients with positive antiphospholipid antibodies should be closely monitored for symptoms or signs of acute adrenal insufficiency during COVID-19. PMID:34463766 | DOI:10.1210/clinem/dgab557
    1 point
  13. Dr. Friedman is getting a lot of emails on booster shots versus third shots. Third shots are for immuno-compromised patients that the FDA is recommending for a small group of patients The FDA also has the intention to soon make booster doses widely available to all healthy individuals. I am writing to clarify the difference between booster shots and third doses. Third Doses for Immuno-Compromised Patients The purpose of a third dose of mRNA vaccine is to give immuno-compromised patients the same level of protection that two doses provide someone who has a normal immune system. It is recommended that the following people get a third dose Been receiving cancer treatment for tumors or cancers of the blood Received an organ transplant and are taking medicine to suppress the immune system Received a stem cell transplant within the last two years or are taking medicine to suppress the immune system Been diagnosed with moderate or severe immunodeficiency conditions (such as DiGeorge syndrome, Wiskott-Aldrich syndrome) An advanced or untreated HIV infection Been under active treatment with high-dose corticosteroids (> 20 mg of prednisone or 100 mg of hydrocortisone) or other drugs that may suppress immune response Dr. Friedman thinks it is unlikely that any of his patients have these conditions. Patients with Cushing’s syndrome, Addison’s, diabetes or thyroid disorders do not qualify. In contrast, a Booster Dose is for Patients With Healthy Immune Systems A booster dose—which is different from a third dose for immuno-compromised patients—is for healthy patients and is meant to enhance immunity and may protect against new variants of the virus. The Biden administration has announced that it intends to make booster doses available for people with healthy immune systems in September 2021, after they are authorized or approved by the FDA. This has not happened yet, but when it happens, Dr. Friedman would encourage his patients to get it. Dr. Friedman is expecting a booster shot against the Delta variant to be released in the fall of 2021 and would recommend that for his patients. Dr. Friedman wishes everyone to stay healthy.
    1 point
  14. Cushing disease is caused by tumour in the pituitary gland which leads to excessive secretion of a hormone called adrenocorticotrophic (ACTH), which in turn leads to increasing levels of cortisol in the body. Cortisol is a steroid hormone released by the adrenal glands and helps the body to deal with injury or infection. Increasing levels of cortisol increases the blood sugar and can even cause diabetes mellitus. However the disease is also caused due to excess production of hypothalamus corticotropin releasing hormone (CRH) which stimulates the synthesis of cortisol by the adrenal glands. The condition is named after Harvey Cushing, the doctor who first identified the disease in 1912. Cushing disease results in Cushing syndrome. Cushing syndrome is a group of signs and symptoms developed due to prolonged exposure to cortisol. Signs and symptoms of Cushing syndrome includes hypertension, abdominal obesity, muscle weakness, headache, fragile skin, acne, thin arms and legs, red stretch marks on stomach, fluid retention or swelling, excess body and facial hair, weight gain, acne, buffalo hump, tiredness, fatigue, brittle bones, low back pain, moon shaped face etc. Symptoms vary from individual to individual depending upon the disease duration, age and gender of the patient. Get Sample Copy of this Report @ https://www.persistencemarketresearch.com/samples/14155 Disease diagnosis is done by measuring levels of cortisol in patient’s urine, saliva or blood. For confirming the diagnosis, a blood test for ACTH is performed. The first-line treatment of the disease is through surgical resection of ACTH-secreting pituitary adenoma, however disease management is also done through medications, Cushing disease treatment market comprises of the drugs designed for lowering the level of cortisol in the body. Thus patients suffering from Cushing disease are prescribed medications such as ketoconazole, mitotane, aminoglutethimide metyrapone, mifepristone, etomidate and pasireotide. Cushing’s disease treatment market revenue is growing with a stable growth rate, this is attributed to increasing number of pipeline drugs. Also increasing interest of pharmaceutical companies to develop Cushing disease drugs is a major factor contributing to the revenue growth of Cushing disease treatment market over the forecast period. Current and emerging players’ focuses on physician education and awareness regarding availability of different drugs for curing Cushing disease, thus increasing the referral speeds, time to diagnosis and volume of diagnosed Cushing disease individuals. Growing healthcare expenditure and increasing awareness regarding Cushing syndrome aids in the revenue growth of Cushing’s disease treatment market. Increasing number of new product launches also drives the market for Cushing’s disease Treatment devices. However availability of alternative therapies for curing Cushing syndrome is expected to hamper the growth of the Cushing’s disease treatment market over the forecast period. For entire list of market players, request for Table of content here @ https://www.persistencemarketresearch.com/toc/14155 The Cushing’s disease Treatment market is segment based on the product type, technology type and end user Cushing’s disease Treatment market is segmented into following types: By Drug Type Ketoconazole Mitotane Aminoglutethimide Metyrapone Mifepristone Etomidate Pasireotide By End User Hospital Pharmacies Retail Pharmacies Drug Stores Clinics e-Commerce/Online Pharmacies Cushing’s disease treatment market revenue is expected to grow at a good growth rate, over the forecast period. The market is anticipated to perform well in the near future due to increasing awareness regarding the condition. Also the market is anticipated to grow with a fastest CAGR over the forecast period, attributed to increasing investment in R&D and increasing number of new product launches which is estimated to drive the revenue growth of Cushing’s disease treatment market over the forecast period. Depending on geographic region, the Cushing’s disease treatment market is segmented into five key regions: North America, Latin America, Europe, Asia Pacific (APAC) and Middle East & Africa (MEA). North America is occupying the largest regional market share in the global Cushing’s disease treatment market owing to the presence of more number of market players, high awareness levels regarding Cushing syndrome. Healthcare expenditure and relatively larger number of R&D exercises pertaining to drug manufacturing and marketing activities in the region. Also Europe is expected to perform well in the near future due to increasing prevalence of the condition in the region. Asia Pacific is expected to grow at the fastest CAGR because of increase in the number of people showing the symptoms of Cushing syndrome, thus boosting the market growth of Cushing’s disease treatment market throughout the forecast period. Some players of Cushing’s disease Treatment market includes CORCEPT THERAPEUTICS, HRA Pharma, Strongbridge Biopharma plc, Novartis AG, etc. However there are numerous companies producing branded generics for Cushing disease. The companies in Cushing’s disease treatment market are increasingly engaged in strategic partnerships, collaborations and promotional activities to capture a greater pie of market share. The research report presents a comprehensive assessment of the market and contains thoughtful insights, facts, historical data, and statistically supported and industry-validated market data. It also contains projections using a suitable set of assumptions and methodologies. The research report provides analysis and information according to categories such as market segments, geographies, types, technology and applications.
    1 point
  15. Ahmed Saeed Mubarak Mohamed1, Ahmed Iqbal2, Suveera Prasad3, Nigel Hoggard4, Daniel Blackburn1 Correspondence to Dr Daniel Blackburn, Sheffield Teaching Hospitals NHS Foundation Trust Department of Clinical Neurology, Sheffield S10 2JF, UK; d.blackburn@sheffield.ac.uk Abstract Cushing’s disease is a rare endocrine condition in which a pituitary corticotroph adenoma drives excess adrenal cortisol production, and is one cause of endogenous Cushing’s syndrome. We present a young woman with 3 weeks of headaches and cognitive disturbance who subsequently developed florid psychosis requiring multiple admissions under neurology and psychiatry. Her clinical stigmata of hypercortisolism and biochemical abnormalities prompted an MR scan of the pituitary, which confirmed a pituitary microadenoma. Treatment with metyrapone and subsequent surgery led to complete recovery within 2 months. Cushing’s disease commonly causes neuropsychiatric symptoms and can present with psychosis. Diagnosing Cushing’s disease can be challenging, but with early diagnosis and treatment it has an excellent prognosis. http://dx.doi.org/10.1136/practneurol-2021-002974 Get the full text
    1 point
  16. From the abstract (appearing in JCEM Feb 2021): PATIENT We present the case of a 10-year-old child who presented with CS at an early age due to bilateral adrenocortical hyperplasia (BAH). The patient was placed on low-dose ketoconazole (KZL), which controlled hypercortisolemia and CS-related signs. Discontinuation of KZL for even 6 weeks led to recurrent CS. CONCLUSIONS We present a pediatric patient with CS due to BAH and a germline defect in KCNJ5. Molecular investigations of this KCNJ5 variant failed to show a definite cause of her CS. However, this KCNJ5 variant differed in its function from KCNJ5 defects leading to PA. We speculate that GIRK4 (Kir3.4) may play a role in early human adrenocortical development and zonation and participate in the pathogenesis of pediatric BAH. Official: Cushing Syndrome in a Pediatric Patient With a KCNJ5 Variant and Successful Treatment With Low-dose Ketoconazole Pre-print (pdf): https://www.researchgate.net/publication/349635365_Cushing_Syndrome_in_a_Pediatric_Patient_With_a_KCNJ5_Variant_and_Successful_Treatment_With_Low-dose_Ketoconazole
    1 point
  17. With the goal of reducing false positives for adrenal insufficiency (AI), scientists are recommending a new, more precise diagnostic cutoff of 14-15 μg/dL of serum cortisol, rather than the current 18 μg/dL. The new data were published in the Journal of the Endocrine Society. Among the 110 patients evaluated in the retrospective analysis, new cortisol cutoffs after adrenocorticotropic hormone (ACTH) stimulation were identified when using several of the newer, more widely used diagnostic assays currently available, including Elecsys II (14.6 μg/dL), Access (14.8 μg/dL), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) (14.5 μg/dL). Bradley Javorsky, MD, an endocrinologist and researcher at the Medical College of Wisconsin, served as the study's first author. He recently discussed the findings with MedPage Today. The exchange has been edited for length and clarity. What was the key knowledge gap your study was designed to address? Javorsky: It is safe to say that most clinicians, including many endocrinologists -- not to mention practice guidelines and clinical information resources -- still regard 18 μg/dL as the cutoff for making the biochemical diagnosis of AI after ACTH stimulation testing. However, this cutoff was derived from older polyclonal immunoassays that are no longer being used in many institutions. Newer, more specific monoclonal immunoassays and LC-MS/MS are being used instead. With these more specific assays, one might expect the cutoffs to be lower. What was your finding? Javorsky: After ACTH stimulation, the cutoff values for the newer, more specific cortisol assays were indeed lower at 14-15 μg/dL. Although there was excellent correlation between the new and older assays, the results from the new assays were 22-39% lower than those found by the older and less-specific Elecsys I assay, hence the lowered threshold. Did anything surprise you about the study results? Javorsky: Baseline cortisol had to be very low (approximately <2 μg/dL) in order to be predictive of subnormal cortisol values. This underscores the observation that ACTH stimulation testing is not perfectly sensitive. What are the clinical takeaways from these results? Javorsky: To avoid false-positive ACTH stimulation testing results -- and by extension avoid over-treating patients with glucocorticoids -- clinicians should be aware of the cortisol assay used in their institution and the new cortisol cutoff when evaluating patients for adrenal insufficiency. It should also be reinforced that careful interpretation in the context of clinical history is still essential to making the correct diagnosis. Discordant results among different assays underscore the importance of clinical judgment from an experienced physician when diagnosing AI. What are the takeaways? Javorsky: I think it is important that laboratories make the type of cortisol assay used in their institution easily accessible to clinicians and strongly consider posting the new cortisol cutoff after ACTH stimulation testing when reporting results. Read the study here and expert commentary on the clinical implications here. Disclosures Javorsky reported being a consultant for Clarus Therapeutics and a research investigator for Novartis Pharmaceuticals. Primary Source Journal of the Endocrine Society Source Reference: Javorsky BR, et al "New cutoffs for the biochemical diagnosis of adrenal insufficiency after ACTH stimulation using specific cortisol assays" J Endocrine Soc 2021; 5(4): bvab022. From https://www.medpagetoday.com/endocrine-society/adrenal-disorders/93188
    1 point
  18. Thank you very much Mary Hugs, MAYELA
    1 point
  19. Eleni Papakokkinou, Marta Piasecka, Hanne Krage Carlsen, Dimitrios Chantzichristos, Daniel S. Olsson, Per Dahlqvist, Maria Petersson, Katarina Berinder, Sophie Bensing, Charlotte Höybye, Britt Edén Engström, Pia Burman, Cecilia Follin, David Petranek, Eva Marie Erfurth, Jeanette Wahlberg, Bertil Ekman, Anna-Karin Åkerman, Erik Schwarcz, Gudmundur Johannsson, Henrik Falhammar & Oskar Ragnarsson Abstract Purpose Bilateral adrenalectomy (BA) still plays an important role in the management of Cushing's disease (CD). Nelson’s syndrome (NS) is a severe complication of BA, but conflicting data on its prevalence and predicting factors have been reported. The aim of this study was to determine the prevalence of NS, and identify factors associated with its development. Data sources Systematic literature search in four databases. Study Selection Observational studies reporting the prevalence of NS after BA in adult patients with CD. Data extraction Data extraction and risk of bias assessment were performed by three independent investigators. Data synthesis Thirty-six studies, with a total of 1316 CD patients treated with BA, were included for the primary outcome. Pooled prevalence of NS was 26% (95% CI 22–31%), with moderate to high heterogeneity (I2 67%, P < 0.01). The time from BA to NS varied from 2 months to 39 years. The prevalence of NS in the most recently published studies, where magnet resonance imaging was used, was 38% (95% CI 27–50%). The prevalence of treatment for NS was 21% (95% CI 18–26%). Relative risk for NS was not significantly affected by prior pituitary radiotherapy [0.9 (95% CI 0.5–1.6)] or pituitary surgery [0.6 (95% CI 0.4–1.0)]. Conclusions Every fourth patient with CD treated with BA develops NS, and every fifth patient requires pituitary-specific treatment. The risk of NS may persist for up to four decades after BA. Life-long follow-up is essential for early detection and adequate treatment of NS. Introduction Cushing´s disease (CD) is a rare disorder associated with excess morbidity and increased mortality [1, 2]. Previously, bilateral adrenalectomy (BA) was the mainstay treatment for CD. During the last decades, however, other treatment modalities have emerged, including pituitary surgery, radiotherapy and medical treatments. Despite this, BA is still considered when other treatment options have failed to achieve remission, or when a rapid relief of hypercortisolism is necessary [3]. BA is considered to be a safe and effective treatment for CD [4], especially after the laparoscopic approach was introduced during the 1990s [5]. There are, however, significant drawbacks with BA, mainly the unavoidable chronic adrenal insufficiency, as well as the risk for Nelson’s syndrome (NS), i.e., growth of the remaining pituitary tumor and excessive production of ACTH, that may cause optic nerve or chiasmal compression and mucocutaneous hyperpigmentation [6]. The prevalence of NS varies between studies, mainly due to a lack of consensus on the definition and diagnostic criteria for the syndrome [7, 8]. Previously published studies are also inconsistent as to whether factors such as previous radiotherapy, age at BA, gender and duration of CD, may affect the risk of developing NS. Furthermore, high ACTH concentrations after BA have been suggested as a risk factor for developing NS [9,10,11,12]. Thus, the primary aim of this systematic review and meta-analysis was to estimate the prevalence of NS after BA for CD, both the total prevalence of NS as well the prevalence of NS requiring treatment with pituitary surgery and/or radiotherapy. The secondary aim was to investigate risk factors associated with development of NS. Methods A systematic review and meta-analysis was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [13]. The PICO process was applied for the definition of the research question and eligibility criteria for the literature search. The protocol of this review was registered in the PROSPERO database (CRD42020163918). Search strategy We searched PubMed, Embase, Cochrane Library and Web of Science on February 25th 2020, with no start date restriction, for relevant articles by using the following terms: “Cushing´s syndrome” or “Cushing´s disease” or “Hypercortisolism” or “Pituitary ACTH hypersecretion” or “corticotroph tumor” or “corticotroph tumors” or “corticotroph adenoma” or “corticotroph adenomas” or “corticotropinoma” or “corticotropinomas” or “corticotrophinoma” or “corticotrophinomas” or “ACTH pituitary adenoma” or “ACTH pituitary adenomas” or “adrenocorticotropin pituitary adenoma” or “adrenocorticotropin pituitary adenomas” AND “bilateral adrenalectomy” or “bilateral adrenalectomies” or “total adrenalectomy” or “total adrenalectomies”. A detailed description of the search strategy is given in the Supplementary. Also, references of the included studies and relevant review articles were checked manually for additional articles. A new search was performed on January 12th 2021, prior submission, to identify any new publications. Study selection and eligibility criteria Eligible studies were observational studies (cohort or cross-sectional studies) reporting the prevalence of NS in adult patients with CD treated with BA. Studies including only children (age < 18 years), review articles, letters, commentaries and meeting abstracts were excluded. Moreover, case reports, case-series and studies with a population of fewer than 10 cases were excluded. Also, studies written in languages other than English were not considered for inclusion. Data collection process and data extraction Titles and abstracts from all identified articles were screened for eligibility and further full-text assessment by three independent investigators (EP, MP, OR). Discrepancies were resolved through discussion and consensus. Duplicate articles and studies with overlapping populations were excluded. In the latter case, the publication with the largest population, more comprehensive information on relevant clinical variables and/or lowest risk of bias was included. Full-text assessment and data extraction were conducted independently by the same investigators as above. Data on the following predefined variables were extracted: first author, year of publication, region/hospital, study period, characteristics of the study population (number of patients, gender, follow-up, age at CD, age at BA, previous treatment with radiotherapy and/or pituitary surgery, ACTH concentrations at BA, MRI findings at CD and at BA), intervention (BA as primary or secondary treatment, remission status) and outcome (criteria for NS, number of patients with NS, age at NS, time from BA to NS, ACTH concentrations one year after BA, number of patients treated for NS, type of treatment; pituitary radiotherapy and/or pituitary surgery). One of the studies included in the meta-analysis is our nationwide Swedish study on CD [2]. Additional clinical data, not provided in the original publication, was retrieved and used in the current analysis (Table 1). Table 1 Characteristics of the included studies Full size table Risk of bias assessment The Newcastle–Ottawa Scale [14], modified to suit the current study, was used for assessment of risk of bias of all included studies. Three investigators (EP, MP, OR) assessed the studies independently, and any disagreements were resolved by discussion. Selection, comparability and outcome were assessed through predefined criteria. All studies that provided information on NS as outcome, and/or corticotroph tumor progression, were included, and the definition as well as the treatment of NS were recorded (Table 1 and Table S1). A clear definition of NS and information on treatment were considered to be two of the most important components of the quality assessment. We considered the definition of NS to be clear when it included either a new visible pituitary tumor or progression of a pituitary tumor remnant following BA, alone, or in combination with high ACTH concentrations and/or hyperpigmentation. Detailed description of the criteria for the risk of bias assessment is provided in the Supplementary file. Studies with an overall score ≥ 5 (max overall grade 😎 and a clear definition of NS, were considered to have a low risk of bias. Data synthesis and statistical analysis Primary endpoints were the prevalence of NS, as well as the prevalence of pituitary-specific treatment for NS. Descriptive data are presented as median (range or interquartile range; IQR). Meta-analysis was performed by using the meta package in R (version 4.0.3) [15]. Statistical pooling was performed according to random-effects model due to the clinical heterogeneity among the included studies [16]. For all analyses, indices of heterogeneity, I2 statistics and Cochrane’s Q test, are reported. For the primary outcomes we estimated pooled prevalence with 95% confidence intervals (95% CI). Statistical significance was defined as P < 0.05. The possibility of publication bias was assessed by visual inspection of funnel plots as well as with the Egger’s test [17]. Sensitivity analyses were performed by excluding studies with an overall risk of bias < 5, and studies where information on diagnostic criteria for NS was lacking. By choosing the overall risk of bias < 5, all studies without adequate follow-up were also excluded (Table S2). Also, another sensitivity analysis was performed by including all studies reporting the number of patients with NS who received treatment for NS (Table 1). Subgroup analyses were performed to investigate factors that may affect the prevalence of NS, namely pituitary radiotherapy prior to BA, prophylactic pituitary radiotherapy, overall radiotherapy (prior to BA or prophylactic), pituitary surgery (transcranial or transsphenoidal surgery) prior to BA, and BA as primary or secondary treatment. For these outcomes, we estimated relative risks (RRs), or pooled prevalence, with 95% CIs. Also, in a subgroup analysis, the prevalence (with 95% CI) of NS and treatment for NS were estimated in studies where MRI was used at diagnosis and during follow-up. Uni- and bivariate meta-regression was used to investigate whether the prevalence of NS was influenced by median follow-up time or age at BA. The meta-analysis was performed by using the Metareg command in R. The estimated association is reported as β coefficient. Role of funding source The funding source had no role in the design and conduction of the study; i.e., collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. Results Identification and description of included studies After removal of duplicates, 1702 articles were identified (Fig. 1). Three additional articles were found after checking the reference lists of identified articles and review papers. After reviewing titles, abstracts and full-text articles, 48 articles were considered eligible for further analysis. Of these, however, 11 articles were excluded due to overlapping or identical patient cohorts. Thus, 37 studies published between 1976 and 2020, were included in the current meta-analysis (Fig. 1). All studies had a retrospective observational design. Characteristics of the included studies are presented in Table 1. Two of the included studies had an overlapping cohort where one was used for the main outcome [18] and one [19] for the subgroup analyses on the influence of radiotherapy on the development of NS. An overview of risk of bias assessment of the eligible studies is provided in Table S2. Fig. 1 Flowchart of study selection Full size image In total, 1316 patients with CD treated with BA were included. The median follow-up after BA was 7 years (23 studies, range 3.3–22). Median age at BA in patients with NS was 31 years (13 studies, IQR 26–34). Median time from BA to the diagnosis of NS was 4 years (19 studies) with the shortest reported time being 2 months [20] and the longest 39 years [2]. At diagnosis of NS, hyperpigmentation was reported in 155 of 188 (82%) patients (19 studies) and chiasmal compression in 24 of 129 (19%) patients [11 studies]. Prevalence of NS Thirty-six of 37 studies, with total 1316 patients with CD treated with BA, were included [2, 18, 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53]. Reported prevalence of NS ranged from 4 to 60%. The mean pooled prevalence was 26% (95% CI 22–31%) with a moderate to high heterogeneity (I2 67%, P < 0.01) (Fig. 2). The Egger’s test was statistically significant (P = 0.01), but visual inspection showed no obvious asymmetry. The significant Egger’s test indicates publication bias, probably explained by the fact that case reports and cohorts with fewer than 10 participants were excluded (Fig. S1). Fig. 2 Forest plot showing individual studies and pooled prevalence of Nelson’s syndrome after bilateral adrenalectomy in patients with Cushing’s disease. *Additional data Full size image In a sensitivity analysis, excluding all studies with high risk of bias (overall score < 5) and no clear definition of NS, the pooled prevalence was 31% (95% CI 24–38%; I2 76%, 17 studies, 822 patients; P < 0.01) (Fig. S2). In a subgroup analysis, the prevalence of NS in studies where MRI was used at diagnosis and during follow-up was 38% (Fig. 3; 95% CI 27–50%; I2 71%, 7 studies, 280 patients; P < 0.01). Fig. 3 Forest plot showing individual studies using magnetic resonance imaging and pooled prevalence of Nelson’s syndrome after bilateral adrenalectomy in patients with Cushing’s disease Full size image Prevalence of treated NS The pooled prevalence of treatment for NS was 21% (95% CI 18–26%; I2 52%, P < 0.01) (Table 1; 29 studies with 1074 patients). Thus, the pooled prevalence was slightly lower, compared to the pooled prevalence of NS in total, as well as the heterogeneity (Fig. S3). The funnel plot showed no asymmetry and Egger’s test was not statistically significant, indicating low possibility of publication bias (Fig. S4). In a subgroup analysis, the prevalence of treated NS in studies where MRI was used at diagnosis and during follow-up was 25% (95% CI 17–35%; I2 61%, 7 studies; P = 0.02). The indication for treatment was progression of the pituitary tumor in 23 out of 28 patients (82%, five studies), optic chiasmal compression in 11 out of 91 patients (12%, 11 studies), while four patients out of 14 (one study) had both these indications for treatment. Twenty-six studies provided information on treatment modalities (pituitary surgery and/or radiotherapy). Seventy-three out of 201 patients with NS (36%) were treated with pituitary surgery, 86 (43%) with radiotherapy and 41 (20%) received both treatments. Radiotherapy Nineteen studies provided information on radiotherapy prior to BA. However, nine studies had no events and no patients in one of the arms (radiotherapy or no radiotherapy) (Table S3). Thus, ten studies were eligible for further estimation, showing that the risk for NS in patients treated with radiotherapy prior to BA was comparable to the risk in patients not treated with radiotherapy (RR 0.9, 95% CI 0.5–1.6; 10 studies with 564 patients) (Fig. 4). Fig. 4 Forest plot showing the RR (relative risk) and 95% CI for Nelson’s syndrome in patients treated with radiotherapy prior to bilateral adrenalectomy versus no radiotherapy. RR could not be calculated when there were no cases in the RTX or no RTX arms, and when no events in either arm. *Additional data. RTX, radiotherapy prior to bilateral adrenalectomy or prophylactic radiotherapy Full size image Thirteen studies provided information on prophylactic radiotherapy. However, only one study provided applicable data for calculating RR, thus subgroup analysis was not performed (Table S4). In that study [20], none of the seventeen patients who received prophylactic radiotherapy developed NS, while 11 of 22 patients without radiotherapy developed NS after a mean follow-up of 4.4 years (range 10–16 years). By using studies with information on either previous or prophylactic radiotherapy (11 studies with 603 patients; Table S5), the pooled RR was 0.8 (95% CI 0.5–1.5). Pituitary surgery prior to BA Of 21 studies with information on pituitary surgery prior to BA (Table S6), only ten provided information for estimation of RR. A pooled RR of 0.6 (10 studies with 430 patients; 95% CI 0.4–1.0) was found (Fig. 5), indicating that the risk for developing NS was not influenced by previous pituitary surgery. Fig. 5 Forest plot showing the RR (relative risk) and 95% CI for Nelson’s syndrome in patients treated with pituitary surgery prior to bilateral adrenalectomy versus no pituitary surgery. RR could not be calculated when there were no cases in the surgery or no surgery arms, and when no events in either arm. *additional data. Abbreviations: Surgery, pituitary surgery prior to bilateral adrenalectomy Full size image BA as primary or secondary treatment for CD Information on whether patients with NS were treated primarily with BA or not, was provided in ten and nine studies, respectively (Fig. S5 and S6). The pooled prevalence of NS was 26% (95% CI 20–33%) for patients treated primarily with BA and 22% (95% CI 15–31%) for patients who had been treated with pituitary surgery and/or radiotherapy prior to BA. ACTH concentrations one year after BA Four studies provided information on ACTH concentrations during the first year after BA [45, 49, 52, 53]. In a study by Assié et al. the median ACTH concentration in patients who developed NS was 301 pmol/L, compared to 79 pmol/L in patients without NS (upper range of limit; URL 13 pmol/L) [52]. The median ACTH concentration in a study by Cohen et al. was 105 pmol/L in the NS group compared to 18 pmol/L in patients without NS (P = 0.007) (URL 10 pmol/L) [49]. Also, in a study by Das et al., there was a statistically significant difference in ACTH concentrations one year after BA between patients with and without NS (110 vs 21 pmol/L respectively; P = 0.002) [53]. On the contrary, Espinosa-de-Los-Monteros et al.found no difference in ACTH concentrations between the patients with NS and those without NS [45]. Thus, three of four studies found that high ACTH concentrations one year after BA were associated with the development of NS. However, since the ACTH assays and the conditions when ACTH was collected were different in these studies (Table S7), further comparison or a meta-analysis on ACTH levels after BA was not considered feasible. Influence of age at BA and duration of follow-up on prevalence of NS In a meta-regression analysis, age at BA (β-coefficient = – 0.03, P = 0.4; Fig. 6) and median duration of follow-up (β-coefficient = 0.01, P = 0.7; Fig. S7) were not associated with prevalence of NS. After adjustment for follow-up, age at BA was still not associated with prevalence of NS (β-coefficient = -0.03, P = 0.4). Fig. 6 Bubble plot showing the influence of age at BA on the prevalence of Nelson’s syndrome. The bubble sizes are proportional to the weight of the studies in the meta-analysis. Coefficient estimate (β) and p value for the effect of age at BA are indicated by the regression line Full size image Discussion In this study we have for the first time evaluated the pooled prevalence of NS by using a meta-analysis on data from 36 studies, including more than 1300 patients with CD treated with BA. The overall prevalence of NS was 26% and the median time from BA to diagnosis of NS was 4 years, ranging from 0.2 to 39 years. The prevalence of patients requiring pituitary-specific treatment for NS was 21%. Furthermore, radiotherapy and pituitary surgery prior to BA, as well as age at BA, did not seem to affect the risk of developing NS. Various definitions have been used for NS over the past decades [12]. Historically, the diagnosis was based on clinical findings related to mucocutaneous hyperpigmentation and chiasmal compression, together with signs of an enlarged sella turcica on skull radiography [6]. Since then, the diagnosis of NS in most studies has been based on (i) radiological evidence of a pituitary tumor that becomes visible, or a progression of a preexisting tumor, (ii) “high” ACTH concentrations, and (iii) hyperpigmentation [54]. In the studies with the highest prevalence of NS [45, 46], the diagnosis was based on rising ACTH concentrations and an expanding pituitary mass, where 2 mm increment in tumor size on MRI was considered to be a significant growth. On the contrary, the criteria for NS in studies with the lowest prevalence were based on hyperpigmentation, often but not always combined with a pituitary tumor responding to radiotherapy and/or a radiographic evidence of pituitary tumor on skull radiography [21, 23]. Thus, the great variance in the prevalence of NS between studies can, at least partly, be explained by the different definitions of NS. Consequently, in an expert opinion published in 2010, it was suggested that the diagnosis of NS should be based on an elevated level of ACTH >500 ng/L (110 pmol/L) in addition to rising levels of ACTH on at least three consecutive occasions and/or an expanding pituitary mass on MRI or CT following BA [54]. Similarly, in a recently published expert consensus recommendation, based on a systematic review, it was suggested that NS should be defined as radiological progression or new detection of a pituitary tumor on a thin-section MRI [55]. Furthermore, the authors recommend active surveillance with MRI three months after BA, and every 12 months for the first 3 years, and every 2–4 years thereafter, based on clinical findings. The meta-regression of the current analysis did not show an association between median follow-up time and prevalence of NS. Nevertheless, NS occurred as early as 2 months [20], and up to 39 years after BA [2], supporting that life-long surveillance after BA is necessary for patients with CD. Active surveillance with MRI was more common in studies published during the last two decades. In fact, the use of MRI in recent studies resulted in earlier detection of a growing pituitary adenoma and, subsequently, contributed to a higher prevalence of NS. Namely, the seven studies including patients treated with BA after 1990 and using MRI reported higher prevalence of NS, both overall NS and treated NS. Whether factors such as pituitary radiotherapy affects the risk for development of NS has been evaluated in several studies. Some studies have shown that radiotherapy prior to BA, or administrated prophylactically, can prevent or delay the development of NS [20, 39]. On the contrary, other studies have not demonstrated a protective effect of radiotherapy prior to BA [18, 37] and, moreover, one study found an association with tumor progression [46]. Nevertheless, the current meta-analysis indicates that radiotherapy prior to BA does not decrease the risk of developing NS. Neither did previous pituitary surgery affect the risk for NS. Elevated ACTH concentrations during the first year after BA have been considered to be a strong predictor of NS [49, 52]. In fact, seven studies in the current analysis included cut-off levels for ACTH concentration, arbitrarily defined, for the diagnosis of NS [18, 25, 34, 36, 41, 45, 49]. Due to the different ACTH assays, and different conditions when ACTH was collected, no further analysis on ACTH levels was performed. Nevertheless, four studies [45, 49, 52, 53] reported ACTH concentrations one year after BA in both patients with and without NS. Three of these studies found that high ACTH concentrations one year after BA [49, 52, 53] were associated with pituitary tumor progression. Thus, these findings support the suggestion that ACTH should be monitored following BA in patients with CD [54, 55]. The prevalence of treatment for NS (21%), and the heterogeneity index (52%), were slightly lower than in the analysis of total prevalence of NS (26%, I2 67%). The majority of the patients was treated with radiotherapy, followed by pituitary surgery and combination of pituitary surgery and radiotherapy. Today, surgical removal of the pituitary tumor is considered to be the first-line therapy of NS whereas radiotherapy is considered if surgery has failed or is not possible [12, 54, 56]. In a large multi-center study by Fountas et al., the 10-year progression-free survival rates after surgery alone, or with radiotherapy, for patients with NS was 80% and 81%, respectively [57]. In comparison, progression-free survival rate in patients who did not receive treatment was 51%. Reports on the efficacy of medical therapy for NS have shown inconsistent results [56]. Strengths and limitations This is the largest systematic review, and the first meta-analysis, on NS published to date. However, some limitations have to be acknowledged. Most important are the different diagnostic methods used to detect NS, and the different definitions of the syndrome between the studies. The majority of the studies have used the combination of hyperpigmentation, high ACTH concentrations and radiological findings for the diagnosis of NS. Notwithstanding these common criteria, there were still differences in the cut-offs of ACTH levels, the use of different radiological modalities over time as well as the radiological definition of progress of pituitary tumors. Moreover, in some studies radiological findings were used solely or in combination with either hyperpigmentation and/or bitemporal hemianopsia, ACTH concentrations or response to treatment of NS. Furthermore, in several studies a clear definition of NS was not provided. Nevertheless, we consider our attempt to address the heterogeneity of the included studies, through systematic review, quality assessment, and sensitivity and subgroup analyses to be a strength. Conclusions The risk of NS after BA in patients with CD is considerable and may first become clinically evident many decades later. Thus, life-long close follow-up is necessary for an early detection of a growing pituitary tumor, and adequate treatment when needed. Although this meta-analysis did not find prior surgery or radiotherapy to be associated with risk of NS, the findings are based on a limited number of studies. Thus, in order to individualize the treatment for patients with CD, further studies are needed where these and other factors possibly associated with risk of NS are evaluated. Data availability The data generated or analyzed during this study are included in this published article or in the Supplementary file. Abbreviations CD: Cushing's disease BA: Bilateral adrenalectomy NS: Nelson’s syndrome ACTH: Adrenocorticotropic hormone RR: Relative risk MRI: Magnet resonance imaging CT: Computer tomography References 1. Papakokkinou E, Olsson DS, Chantzichristos D, Dahlqvist P, Segerstedt E, Olsson T, Petersson M, Berinder K, Bensing S, Hoybye C, Eden-Engstrom B, Burman P, Bonelli L, Follin C, Petranek D, Erfurth EM, Wahlberg J, Ekman B, Akerman AK, Schwarcz E, Bryngelsson IL, Johannsson G, Ragnarsson O (2020) Excess morbidity persists in patients with cushing's disease during long-term remission: a swedish nationwide study. J Clin Endocrinol Metab 105(8):2616–2624 2. Ragnarsson O, Olsson DS, Papakokkinou E, Chantzichristos D, Dahlqvist P, Segerstedt E, Olsson T, Petersson M, Berinder K, Bensing S, Hoybye C, Eden-Engstrom B, Burman P, Bonelli L, Follin C, Petranek D, Erfurth EM, Wahlberg J, Ekman B, Akerman AK, Schwarcz E, Bryngelsson IL, Johannsson G (2019) Overall and disease-specific mortality in patients with cushing disease: a swedish nationwide study. J Clin Endocrinol Metab 104(6):2375–2384 PubMed Article Google Scholar 3. Nieman LK, Biller BM, Findling JW, Murad MH, Newell-Price J, Savage MO, Tabarin A, Endocrine S (2015) Treatment of cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 100(8):2807–2831 CAS PubMed PubMed Central Article Google Scholar 4. Ritzel K, Beuschlein F, Mickisch A, Osswald A, Schneider HJ, Schopohl J, Reincke M (2013) Clinical review: outcome of bilateral adrenalectomy in Cushing’s syndrome: a systematic review. J Clin Endocrinol Metab 98(10):3939–3948 CAS PubMed Article Google Scholar 5. Reincke M, Ritzel K, Osswald A, Berr C, Stalla G, Hallfeldt K, Reisch N, Schopohl J, Beuschlein F (2015) A critical reappraisal of bilateral adrenalectomy for ACTH-dependent Cushing’s syndrome. Eur J Endocrinol 173(4):M23-32 CAS PubMed Article Google Scholar 6. Nelson DH, Meakin JW, Dealy JB Jr, Matson DD, Emerson K Jr, Thorn GW (1958) ACTH-producing tumor of the pituitary gland. N Engl J Med 259(4):161–164 CAS PubMed Article Google Scholar 7. Guerin C, Taieb D, Treglia G, Brue T, Lacroix A, Sebag F, Castinetti F (2016) Bilateral adrenalectomy in the 21st century: when to use it for hypercortisolism? Endocr Relat Cancer 23(2):R131-142 CAS PubMed Article Google Scholar 8. Katznelson L (2015) Bilateral adrenalectomy for Cushing’s disease. Pituitary 18(2):269–273 CAS PubMed Article Google Scholar 9. Banasiak MJ, Malek AR (2007) Nelson syndrome: comprehensive review of pathophysiology, diagnosis, and management. Neurosurg Focus 23(3):E13 PubMed Article Google Scholar 10. Assie G, Bahurel H, Bertherat J, Kujas M, Legmann P, Bertagna X (2004) The Nelson’s syndrome revisited. Pituitary. 7(4):209–215 PubMed Article Google Scholar 11. Ragnarsson O (2020) Cushing’s syndrome disease monitoring: recurrence, surveillance with biomarkers or imaging studies. Best Pract Res Clin Endocrinol Metab. 34(2):101382 PubMed Article Google Scholar 12. Fountas A, Karavitaki N (2020) Nelson’s syndrome: an update. Endocrinol Metab Clin North Am 49(3):413–432 PubMed Article Google Scholar 13. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097 PubMed PubMed Central Article Google Scholar 14. Wells GA SB, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp 15. Balduzzi S, Rucker G, Schwarzer G (2019) How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health 22(4):153–160 PubMed Article Google Scholar 16. Lau J, Ioannidis JP, Schmid CH (1998) Summing up evidence: one answer is not always enough. Lancet 351(9096):123–127 CAS PubMed Article Google Scholar 17. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634 CAS PubMed PubMed Central Article Google Scholar 18. Smith PW, Turza KC, Carter CO, Vance ML, Laws ER, Hanks JB (2009) Bilateral adrenalectomy for refractory Cushing disease: a safe and definitive therapy. J Am Coll Surg 208(6):1059–1064 PubMed Article Google Scholar 19. Mehta GU, Sheehan JP, Vance ML (2013) Effect of stereotactic radiosurgery before bilateral adrenalectomy for Cushing’s disease on the incidence of Nelson’s syndrome. J Neurosurg 119(6):1493–1497 PubMed Article Google Scholar 20. Gil-Cardenas A, Herrera MF, Diaz-Polanco A, Rios JM, Pantoja JP (2007) Nelson's syndrome after bilateral adrenalectomy for Cushing's disease. Surgery. 141(2):147–151 21. Moore TJ, Dluhy RG, Williams GH, Cain JP (1976) Nelson’s syndrome: frequency, prognosis, and effect of prior pituitary irradiation. Ann Intern Med 85(6):731–734 CAS PubMed Article Google Scholar 22. Nabarro JDN (1977) ACTH secreting pituitary tumours. J R Coll Physicians Lond 11(4):363–375 CAS PubMed PubMed Central Google Scholar 23. Scott HW Jr, Liddle GW, Mulherin JL Jr, McKenna TJ, Stroup SL, Rhamy RK (1977) Surgical experience with Cushing’s disease. Ann Surg 185(5):524–534 PubMed PubMed Central Article Google Scholar 24. Cohen KL, Noth RH, Pechinski T (1978) Incidence of pituitary tumors following adrenalectomy. A long-term follow-up study of patients treated for Cushing’s disease. Arch Internal Med 138(4):575–579 CAS Article Google Scholar 25. Jordan RM, Cook DM, Kendall JW, Kerber CW (1979) Nelson’s syndrome and spontaneous pituitary tumor infarction. Arch Intern Med 139(3):340–342 CAS PubMed Article Google Scholar 26. Barnett AH, Livesey JH, Friday K, Donald RA, Espiner EA (1983) Comparison of preoperative and postoperative ACTH concentrations after bilateral adrenalectomy in Cushing’s disease. Clin Endocrinol (Oxf) 18(3):301–305 CAS Article Google Scholar 27. Kasperlik-Zaluska AA, Nielubowicz J, Wislawski J, Hartwig W, Zaluska J, Jeske W, Migdalska B (1983) Nelson’s syndrome: incidence and prognosis. Clin Endocrinol (Oxf) 19(6):693–698 CAS Article Google Scholar 28. Kelly WF, MacFarlane IA, Longson D, Davies D, Sutcliffe H (1983) Cushing’s disease treated by total adrenalectomy: long-term observations of 43 patients. Q J Med 52(206):224–231 CAS PubMed Google Scholar 29. Kuhn JM, Proeschel MF, Seurin DJ, Bertagna XY, Luton JP, Girard FL (1989) Comparative assessment of ACTH and lipotropin plasma levels in the diagnosis and follow-up of patients with Cushing’s syndrome: a study of 210 cases. Am J Med 86(6 Pt 1):678–684 CAS PubMed Article Google Scholar 30. Grabner P, Hauerjensen M, Jervell J, Flatmark A (1991) Long-term results of treatment of cushings-disease by adrenalectomy. Acta Chirurgica- Eur J Surgery 157(8):461–464 CAS Google Scholar 31. McCance DR, Russell CF, Kennedy TL, Hadden DR, Kennedy L, Atkinson AB (1993) Bilateral adrenalectomy: low mortality and morbidity in Cushing’s disease. Clin Endocrinol 39(3):315–321 CAS Article Google Scholar 32. Zeiger MA, Fraker DL, Pass HI, Nieman LK, Cutler GB Jr, Chrousos GP, Norton JA (1993) Effective reversibility of the signs and symptoms of hypercortisolism by bilateral adrenalectomy. Surgery 114(6):1138–1143 CAS PubMed Google Scholar 33. Favia G, Boscaro M, Lumachi F, D’Amico DF (1994) Role of bilateral adrenalectomy in Cushing’s disease. World J Surg 18(4):462–466 CAS PubMed Article Google Scholar 34. Kemink L, Pieters G, Hermus A, Smals A, Kloppenborg P (1994) Patient’s age is a simple predictive factor for the development of Nelson’s syndrome after total adrenalectomy for Cushing’s disease. J Clin Endocrinol Metab 79(3):887–889 CAS PubMed Google Scholar 35. Misra D, Kapur MM, Gupta DK (1994) Incidence of Nelson’s syndrome and residual adrenocortical function in patients of Cushing’s disease after bilateral adrenalectomy. J Assoc Physicians India 42(4):304–305 CAS PubMed Google Scholar 36. Jenkins PJ, Trainer PJ, Plowman PN, Shand WS, Grossman AB, Wass JA, Besser GM (1995) The long-term outcome after adrenalectomy and prophylactic pituitary radiotherapy in adrenocorticotropin-dependent Cushing’s syndrome. J Clin Endocrinol Metab 80(1):165–171 CAS PubMed Google Scholar 37. Pereira MA, Halpern A, Salgado LR, Mendonca BB, Nery M, Liberman B, Streeten DH, Wajchenberg BL (1998) A study of patients with Nelson’s syndrome. Clin Endocrinol (Oxf) 49(4):533–539 CAS Article Google Scholar 38. Imai T, Kikumori T, Funahashi H, Nakao A (2000) Surgical management of Cushing’s syndrome. Biomed Pharmacother 54(1):140–145 Article Google Scholar 39. Nagesser SK, van Seters AP, Kievit J, Hermans J, Krans HM, van de Velde CJ (2000) Long-term results of total adrenalectomy for Cushing’s disease. World J Surg 24(1):108–113 CAS PubMed Article Google Scholar 40. Hofmann BM, Fahlbusch R (2006) Treatment of Cushing’s disease: A retrospective clinical study of the latest 100 cases. Pituitary Surgery - A Modern Approach 34:158–184 Article Google Scholar 41. Thompson SK, Hayman AV, Ludlam WH, Deveney CW, Loriaux DL, Sheppard BC (2007) Improved quality of life after bilateral laparoscopic adrenalectomy for Cushing’s disease: a 10-year experience. Ann Surg 245(5):790–794 PubMed PubMed Central Article Google Scholar 42. Ding XF, Li HZ, Yan WG, Gao Y, Li XQ (2010) Role of adrenalectomy in recurrent Cushing’s disease. Chin Med J 123(13):1658–1662 PubMed Google Scholar 43. Osswald A, Plomer E, Dimopoulou C, Milian M, Blaser R, Ritzel K, Mickisch A, Knerr F, Stanojevic M, Hallfeldt K, Schopohl J, Kuhn KA, Stalla G, Beuschlein F, Reincke M (2014) Favorable long-term outcomes of bilateral adrenalectomy in Cushing’s disease. Eur J Endocrinol 171(2):209–215 CAS PubMed Article Google Scholar 44. Prajapati OP, Verma AK, Mishra A, Agarwal G, Agarwal A, Mishra SK (2015) Bilateral adrenalectomy for Cushing’s syndrome: pros and cons. Indian J Endocrinol Metabol 19(6):834–840 CAS Article Google Scholar 45. Espinosa-de-Los-Monteros AL, Sosa-Eroza E, Espinosa E, Mendoza V, Arreola R, Mercado M (2017) Long-term outcome of the different treatment alternatives for recurrent and persistent cushing disease. Endocrine Pract: Off J Am College Endocrinol Am Assoc Clin Endocrinol 23(7):759–767 Article Google Scholar 46. Graffeo CS, Perry A, Carlstrom LP, Meyer FB, Atkinson JLD, Erickson D, Nippoldt TB, Young WF, Pollock BE, Van Gompel JJ (2017) Characterizing and predicting the Nelson-Salassa syndrome. J Neurosurg 127(6):1277–1287 CAS PubMed Article Google Scholar 47. Nankova A, Yaneva M, Elenkova A, Tcharaktchiev D, Marinov M, Hadzhiyanev A, Sechanov T, Gantchev G, Todorov G, Kirilov G, Kalinov K, Andreeva M, Zacharieva S (2018) Cushing’s syndrome: a historic review of the treatment strategies and corresponding outcomes in a single tertiary center over the past half-century. Hormone Metab Res 50(4):280–289 CAS Article Google Scholar 48. Chiloiro S, Giampietro A, Raffaelli M, D’Amato G, Bima C, Lauretti L, Anile C, Lombardi CP, Rindi G, Bellantone R, De Marinis L, Pontecorvi A, Bianchi A (2019) Synchronous bilateral adrenalectomy in ACTH-dependent hypercortisolism: predictors, biomarkers and outcomes. Endocrine 66(3):642–649 CAS PubMed Article Google Scholar 49. Cohen AC, Goldney DC, Danilowicz K, Manavela M, Rossi MA, Gomez RM, Cross GE, Bruno OD (2019) Long-term outcome after bilateral adrenalectomy in Cushing’s disease with focus on Nelson’s syndrome. Arch Endocrinol Metab 63(5):470–477 50. Nagendra L, Bhavani N, Pavithran PV, Kumar GP, Menon UV, Menon AS, Kumar L, Kumar H, Nair V, Abraham N, Narayanan P (2019) Outcomes of bilateral adrenalectomy in Cushing’s syndrome. Indian J Endocrinol Metab 23(2):193–197 PubMed PubMed Central Article Google Scholar 51. Sarkis P, Rabilloud M, Lifante JC, Siamand A, Jouanneau E, Gay E, Chaffanjon P, Chabre O, Raverot G (2019) Bilateral adrenalectomy in Cushing’s disease: altered long-term quality of life compared to other treatment options. Ann Endocrinol 80(1):32–37 Article Google Scholar 52. Assie G, Bahurel H, Coste J, Silvera S, Kujas M, Dugue MA, Karray F, Dousset B, Bertherat J, Legmann P, Bertagna X (2007) Corticotroph tumor progression after adrenalectomy in Cushing’s disease: a reappraisal of Nelson’s Syndrome. J Clin Endocrinol Metab 92(1):172–179 CAS PubMed Article Google Scholar 53. Das L, Bhansali A, Pivonello R, Dutta P, Bhadada SK, Ahuja CK, Mavuduru R, Kumar S, Behera A, Saikia UN, Dhandapani S, Walia R (2020) ACTH increment post total bilateral adrenalectomy for Cushing’s disease: a consistent biosignature for predicting Nelson’s syndrome. Pituitary 23(5):488–497 CAS PubMed Article Google Scholar 54. Barber TM, Adams E, Ansorge O, Byrne JV, Karavitaki N, Wass JA (2010) Nelson’s syndrome. Eur J Endocrinol 163(4):495–507 CAS PubMed Article Google Scholar 55. Reincke M, Albani A, Assie G, Bancos I, Brue T, Buchfelder M, Chabre O, Ceccato F, Daniele A, Detomas M, Di Dalmazi G, Elenkova A, Findling J, Grossman AB, Gomez-Sanchez CE, Heaney AP, Honegger J, Karavitaki N, Lacroix A, Laws ER, Losa M, Murakami M, Newell-Price J, Pecori Giraldi F, Perez-Rivas LG, Pivonello R, Rainey WE, Sbiera S, Schopohl J, Stratakis CA, Theodoropoulou M, van Rossum EFC, Valassi E, Zacharieva S, Rubinstein G, Ritzel K (2021) Corticotroph tumor progression after bilateral adrenalectomy (Nelson’s syndrome): systematic review and expert consensus recommendations. Eur J Endocrinol. https://doi.org/10.1530/EJE-20-1088 56. Patel J, Eloy JA, Liu JK (2015) Nelson’s syndrome: a review of the clinical manifestations, pathophysiology, and treatment strategies. Neurosurg Focus 38(2):E14 PubMed Article Google Scholar 57. Fountas A, Lim ES, Drake WM, Powlson AS, Gurnell M, Martin NM, Seejore K, Murray RD, MacFarlane J, Ahluwalia R, Swords F, Ashraf M, Pal A, Chong Z, Freel M, Balafshan T, Purewal TS, Speak RG, Newell-Price J, Higham CE, Hussein Z, Baldeweg SE, Dales J, Reddy N, Levy MJ, Karavitaki N (2020) Outcomes of patients with Nelson's syndrome after primary treatment: a multicenter study from 13 UK pituitary centers. J Clin Endocrinol Metab 105(5):1527–1537 Download references Acknowledgements We would like to thank Therese Svanberg, librarian at the Medical Library at Sahlgrenska University Hospital for her expert assistance with the literature search. Funding Open access funding provided by University of Gothenburg. The study was financed by grants from the Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALFGBG-593301) and a grant from the Gothenburg Society of Medicine. Author information Affiliations Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden Eleni Papakokkinou, Marta Piasecka, Dimitrios Chantzichristos, Daniel S. Olsson, Gudmundur Johannsson & Oskar Ragnarsson The Department of Endocrinology, Sahlgrenska University Hospital, Blå stråket 5, 413 45, Gothenburg, Sweden Eleni Papakokkinou, Marta Piasecka, Dimitrios Chantzichristos, Daniel S. Olsson, Gudmundur Johannsson & Oskar Ragnarsson Department of Environmental and Occupational Health School of Public Health and Community Medicine, University of Gothenburg, 4053, Gothenburg, Sweden Hanne Krage Carlsen Department of Public Health and Clinical Medicine, Umeå University, 901 87, Umeå, Sweden Per Dahlqvist Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176, Stockholm, Sweden Maria Petersson, Katarina Berinder, Sophie Bensing, Charlotte Höybye & Henrik Falhammar Department of Endocrinology, Karolinska University Hospital, 171 76, Stockholm, Sweden Maria Petersson, Katarina Berinder, Sophie Bensing, Charlotte Höybye & Henrik Falhammar Department of Endocrinology and Diabetes, Uppsala University Hospital, and Department of Medical Sciences, Endocrinology and Mineral Metabolism, Uppsala University, 751 85, Uppsala, Sweden Britt Edén Engström Department of Endocrinology, Skåne University Hospital, University of Lund, 205 02, Malmö, Sweden Pia Burman Department of Endocrinology, Skåne University Hospital, 222 42, Lund, Sweden Cecilia Follin, David Petranek & Eva Marie Erfurth Department of Endocrinology and Department of Medical and Health Sciences, Linköping University, 581 83, Linköping, Sweden Jeanette Wahlberg & Bertil Ekman Department of Internal Medicine, School of Health and Medical Sciences, Örebro University, 702 81, Örebro, SE, Sweden Jeanette Wahlberg, Anna-Karin Åkerman & Erik Schwarcz Corresponding author Correspondence to Oskar Ragnarsson. Ethics declarations Conflict of interest The authors have nothing to disclose. Additional information Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Supplementary Information Below is the link to the electronic supplementary material. Supplementary file1 (DOCX 1208 kb) Rights and permissions Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Reprints and Permissions About this article Cite this article Papakokkinou, E., Piasecka, M., Carlsen, H.K. et al. Prevalence of Nelson’s syndrome after bilateral adrenalectomy in patients with cushing’s disease: a systematic review and meta-analysis. Pituitary (2021). https://doi.org/10.1007/s11102-021-01158-z Download citation Accepted18 May 2021 Published25 May 2021 DOIhttps://doi.org/10.1007/s11102-021-01158-z Share this article Anyone you share the following link with will be able to read this content: Get shareable link Provided by the Springer Nature SharedIt content-sharing initiative Keywords Bilateral adrenalectomy Cushing’s disease Corticotroph adenoma Nelson’s syndrome From https://link.springer.com/article/10.1007/s11102-021-01158-z
    1 point
  20. Wow, Letisia - your numbers are very high. I'd definitely ask the endo about your numbers and the possibility of Cushing's. If s/he blows you off please try to find another one. You said you were taking progesterone. That can cause your cortisol numbers to go up but you need to talk to your doctor so s/he is aware of your concerns. What are your symptoms? Your doctor needs to hear about those, too. If you have "before" pictures, those can be really useful, especially if you've gained a lot of weight, gotten a buffalo hump, grown facial hair, etc. Best of luck to you and please keep up posted! If you join these boards, you'll find lots of potentially helpful info already available to you.
    1 point
  21. Abstract Background Subclinical Cushing’s disease (SCD) is defined by corticotroph adenoma-induced mild hypercortisolism without typical physical features of Cushing’s disease. Infection is an important complication associated with mortality in Cushing’s disease, while no reports on infection in SCD are available. To make clinicians aware of the risk of infection in SCD, we report a case of SCD with disseminated herpes zoster (DHZ) with the mortal outcome. Case presentation An 83-year-old Japanese woman was diagnosed with SCD, treated with cabergoline in the outpatient. She was hospitalized for acute pyelonephritis, and her fever gradually resolved with antibiotics. However, herpes zoster appeared on her chest, and the eruptions rapidly spread over the body. She suddenly went into cardiopulmonary arrest and died. Autopsy demonstrated adrenocorticotropic hormone-positive pituitary adenoma, renal abscess, and DHZ. Conclusions As immunosuppression caused by SCD may be one of the triggers of severe infection, the patients with SCD should be assessed not only for the metabolic but also for the immunodeficient status. Read the rest of the article at https://bmcendocrdisord.biomedcentral.com/articles/10.1186/s12902-021-00757-y
    1 point
  22. The FDA accepted for review a new drug application for the steroidogenesis inhibitor levoketoconazole for the treatment of endogenous Cushing’s syndrome, according to an industry press release. “We are pleased with the FDA’s acceptance for filing of the Recorlev new drug application,” John H. Johnson, CEO of Strongbridge Biopharma, said in the release. “We believe this decision reflects the comprehensive clinical evidence that went into the NDA submission, including the positive and statistically significant efficacy and safety results from the multinational phase 3 SONICS and LOGICS studies evaluating Recorlev as a potential treatment option for adults with endogenous Cushing’s syndrome. We are advancing our commercial readiness plans and look forward to potentially bringing a new therapeutic option to the Cushing’s syndrome community in the first quarter of 2022.” As Healio previously reported, top-line findings from the LOGICS study demonstrated that levoketoconazole (Recorlev, Strongbridge Biopharma) improved and normalized morning urinary free cortisol concentrations for adults with endogenous Cushing’s disease compared with placebo. The drug was generally well tolerated, with safety data mirroring those from the earlier phase 3 SONICS trial. Endogenous Cushing’s syndrome — caused by chronic hypercortisolism — is rare, with estimates ranging from 40 to 70 people per million affected worldwide, according to the National Institute of Diabetes and Digestive and Kidney Diseases. The FDA set a Prescription Drug User Fee Act target action date of Jan. 1, 2022, for levoketoconazole, according to the company. The FDA letter made no mention of a plan to hold an advisory committee meeting. From https://www.healio.com/news/endocrinology/20210513/fda-accepts-nda-for-novel-cushings-syndrome-treatment
    1 point
  23. Excess mortality among people with endogenous Cushing syndrome (CS) has declined in the past 20 years yet remains three times higher than in the general population, new research finds. Among more than 90,000 individuals with endogenous CS, the overall proportion of mortality ― defined as the ratio of the number of deaths from CS divided by the total number of CS patients ― was 0.05, and the standardized mortality rate was an "unacceptable" three times that of the general population, Padiporn Limumpornpetch, MD, reported on March 20 at ENDO 2021: The Endocrine Society Annual Meeting. Excess deaths were higher among those with adrenal CS compared to those with Cushing disease. The most common causes of death among those with CS were cardiovascular diseases, cerebrovascular accident, infection, and malignancy, noted Limumpornpetch, of Songkla University, Hat Yai, Thailand, who is also a PhD student at the University of Leeds, Leeds, United Kingdom. "While mortality has improved since 2000, it is still significantly compromised compared to the background population.... The causes of death highlight the need for aggressive management of cardiovascular risk, prevention of thromboembolism, infection control, and a normalized cortisol level," she said. Asked to comment, Maria Fleseriu, MD, told Medscape Medical News that the new data show "we are making improvements in the care of patients with CS and thus outcomes, but we are not there yet.... This meta-analysis highlights the whole spectrum of acute and life-threatening complications in CS and their high prevalence, even before disease diagnosis and after successful surgery." She noted that although she wasn't surprised by the overall results, "the improvement over time was indeed lower than I expected. However, interestingly here, the risk of mortality in adrenal Cushing was unexpectedly high despite patients with adrenal cancer being excluded." Fleseriu, who is director of the Pituitary Center at Oregon Health and Science University, Portland, Oregon, advised, "Management of hyperglycemia and diabetes, hypertension, hypokalemia, hyperlipidemia, and other cardiovascular risk factors is generally undertaken in accordance with standard of clinical care. "But we should focus more on optimizing more aggressively this care in addition to the specific Cushing treatment," she stressed. In addition, she noted, "Medical therapy for CS may be needed even prior to surgery in severe and/or prolonged hypercortisolism to decrease complications.... We definitely need a multidisciplinary approach to address complications and etiologic treatment as well as the reduced long-term quality of life in patients with CS." Largest Study in Scale and Scope of Cushing Syndrome Mortality Endogenous Cushing syndrome occurs when the body overproduces cortisol. The most common cause of the latter is a tumor of the pituitary gland (Cushing disease), but another cause is a usually benign tumor of the adrenal glands (adrenal Cushing syndrome). Surgery is the mainstay of initial treatment of Cushing syndrome. If an operation to remove the tumor fails to cause remission, medications are available. Prior to this new meta-analysis, there had been limited data on mortality among patients with endogenous CS. Research has mostly been limited to single-cohort studies. A previous systematic review/meta-analysis comprised only seven articles with 780 patients. All the studies were conducted prior to 2012, and most were limited to Cushing disease. "In 2021, we lacked a detailed understanding of patient outcomes and mortality because of the rarity of Cushing syndrome," Limumpornpetch noted. The current meta-analysis included 91 articles that reported mortality among patients with endogenous CS. There was a total of 19,181 patients from 92 study cohorts, including 49 studies on CD (n = 14,971), 24 studies on adrenal CS (n = 2304), and 19 studies that included both CS types (n = 1906). Among 21 studies that reported standardized mortality rate (SMR) data, including 13 CD studies (n = 2160) and seven on adrenal CS (n = 1531), the overall increase in mortality compared to the background population was a significant 3.00 (range, 1.15 – 7.84). This SMR was higher among patients with adrenal Cushing syndrome (3.3) vs Cushing disease (2.8) (P = .003) and among patients who had active disease (5.7) vs those whose disease was in remission (2.3) (P < .001). The SMR also was worse among patients with Cushing disease with larger tumors (macroadenomas), at 7.4, than among patients with very small tumors (microadenomas), at 1.9 (P = .004). The proportion of death was 0.05 for CS overall, with 0.04 for CD and 0.02 for adrenal adenomas. Compared to studies published prior to the year 2000, more recent studies seem to reflect advances in treatment and care. The overall proportion of death for all CS cohorts dropped from 0.10 to 0.03 (P < .001); for all CD cohorts, it dropped from 0.14 to 0.03; and for adrenal CS cohorts, it dropped from 0.09 to 0.03 (P = .04). Causes of death were cardiovascular diseases (29.5% of cases), cerebrovascular accident (11.5%), infection (10.5%), and malignancy (10.1%). Less common causes of death were gastrointestinal bleeding and acute pancreatitis (3.7%), active CS (3.5%), adrenal insufficiency (2.5%), suicide (2.5%), and surgery (1.6%). Overall, in the CS groups, the proportion of deaths within 30 days of surgery dropped from 0.04 prior to 2000 to 0.01 since (P = .07). For CD, the proportion dropped from 0.02 to 0.01 (P = .25). Preventing Perioperative Mortality: Consider Thromboprophylaxis Fleseriu told Medscape Medical News that she believes hypercoagulability is "the least recognized complication with a big role in mortality." Because most of the perioperative mortality is due to venous thromboembolism and infections, "thromboprophylaxis should be considered for CS patients with severe hypercortisolism and/or postoperatively, based on individual risk factors of thromboembolism and bleeding." Recently, Fleseriu's group showed in a single retrospective study that the risk for arterial and venous thromboembolic events among patients with CS was approximately 20%. Many patients experienced more than one event. Risk was higher 30 to 60 days postoperatively. The odds ratio of venous thromoboembolism among patients with CS was 18 times higher than in the normal population. "Due to the additional thrombotic risk of surgery or any invasive procedure, anticoagulation prophylaxis should be at least considered in all patients with Cushing syndrome and balanced with individual bleeding risk," Fleseriu advised. A recent Pituitary Society workshop discussed the management of complications of CS at length; proceedings will be published soon, she noted. Limumpornpetch commented, "We look forward to the day when our interdisciplinary approach to managing these challenging patients can deliver outcomes similar to the background population." Limumpornpetch has disclosed no relevant financial relationships. Fleseriu has been a scientific consultant to Recordati, Sparrow, and Strongbridge and has received grants (inst) from Novartis and Strongbridge. ENDO 2021: The Endocrine Society Annual Meeting: Presented March 20, 2021 Miriam E. Tucker is a freelance journalist based in the Washington, DC, area. She is a regular contributor to Medscape. Other work of hers has appeared in the Washington Post, NPR's Shots blog, and Diabetes Forecast magazine. She can be found on Twitter @MiriamETucker. From https://www.medscape.com/viewarticle/949257
    1 point
  24. Updates on Treating Hypothyroidism Dr. Theodore Friedman will be giving a webinar on Updates on Treating Hypothyroidism. Topics to be discussed include: New articles showing patients prefer desiccated thyroid New thyroid hormone preparations Update on desiccated thyroid recalls New article on why TSH is less important than thyroid hormone measurements What is the difference between desiccated thyroid and synthetic thyroid hormones? Is rT3 important? Sunday • April 25• 6 PM PDT Via Zoom Click here to join the meeting or https://us02web.zoom.us/j/4209687343?pwd=amw4UzJLRDhBRXk1cS9ITU02V1pEQT09 OR +16699006833,,4209687343#,,,,*111116# Slides will be available before the webinar and recording after the meeting at slides Meeting ID: 420 968 7343 Passcode: 111116 Your phone/computer will be muted on entry. There will be plenty of time for questions using the chat button. For more information, email us at mail@goodhormonehealth.com
    1 point
  25. Some of the latest research advancements in the field of endocrinology presented at the Endocrine Society's virtual ENDO 2021 meeting included quantifying diabetic ketoacidosis readmission rates, hyperglycemia as a severe COVID-19 predictor, and semaglutide as a weight loss therapy. Below are a few more research highlights: More Safety Data on Jatenzo In a study of 81 men with hypogonadism -- defined as a serum testosterone level below 300 ng/dL -- oral testosterone replacement therapy (Jatenzo) was both safe and effective in a manufacturer-sponsored study. After 24 months of oral therapy, testosterone concentration increased from an average baseline of 208.3 ng/dL to 470.1 ng/dL, with 84% of patients achieving a number in the eugonadal range. And importantly, the treatment also demonstrated liver safety, as there were no significant changes in liver function tests throughout the 2-year study -- including alanine aminotransferase (28.0 ± 12.3 to 26.6 ± 12.8 U/L), aspartate transaminase (21.8 ± 6.8 to 22.0 ± 8.2 U/L), and bilirubin levels (0.58 ± 0.22 to 0.52 ± 0.19 mg/dL). Throughout the trial, only one participant had elevation of liver function tests. "Our study finds testosterone undecanoate is an effective oral therapy for men with low testosterone levels and has a safety profile consistent with other approved testosterone products, without the drawbacks of non-oral modes of administration," said lead study author Ronald Swerdloff, MD, of the Lundquist Research Institute in Torrance, California, in a statement. In addition, for many men with hypogonadism, "an oral option is preferred to avoid issues associated with other modes of administration, such as injection site pain or transference to partners and children," he said. "Before [testosterone undecanoate] was approved, the only orally approved testosterone supplemental therapy in the United States was methyltestosterone, which was known to be associated with significant chemical-driven liver damage." Oral testosterone undecanoate received FDA approval in March 2019 following a rocky review history. COVID-19 Risk With Adrenal Insufficiency Alarming new data suggested that children with adrenal insufficiency were more than 23 times more likely to die from COVID-19 than kids without this condition (relative risk 23.68, P<0.0001). This equated to 11 deaths out of 1,328 children with adrenal insufficiency compared with 215 deaths out of 609,788 children without this condition (0.828% vs 0.035%). These young patients with adrenal insufficiency also saw a much higher rate of sepsis (RR 21.68, P<0.0001) and endotracheal intubation with COVID-19 infection (RR 25.45, P<0.00001). Data for the analysis were drawn from the international TriNetX database, which included patient records of children ages 18 and younger diagnosed with COVID-19 from 60 healthcare organizations in 31 different countries. "It's really important that you take your hydrocortisone medications and start stress dosing as soon as you're sick," study author Manish Raisingani, MD, of the University of Arkansas for Medical Sciences and Arkansas Children's in Little Rock, explained during a press conference. "This will help prevent significant complications due to COVID-19 or any other infections. A lot of the complications that we see in kids with adrenal insufficiency are due to inadequate stress dosing of steroids." And with kids starting to return back to in-person schooling, "parents should also be reeducated about using the emergency injections of hydrocortisone," Raisingani added. He noted that the COVID-19 complication rates were likely so high in this patient population because many had secondary adrenal insufficiency due to being on long-term, chronic steroids. Many also had comorbid respiratory illnesses, as well. Cushing's Death Risk In a systematic review and meta-analysis of 87 studies -- including data on 17,276 patients with endogenous Cushing's syndrome -- researchers found that these patients face a much higher death rate than those without this condition. Overall, patients with endogenous Cushing's syndrome faced a nearly three times higher mortality ratio (standardized mortality ratio 2.91, 95% CI 2.41-3.68, I2=40.3%), with those with Cushing's disease found to have an even higher mortality risk (SMR 3.27, 95% CI 2.33-4.21, I2=55.6%). And those with adrenal Cushing's syndrome also saw an elevated death risk, although not as high as patients with the disease (SMR 1.62, 95% CI 0.08-3.16, I2=0.0%). The most common causes of mortality among these patients included cardiac conditions (25%), infection (14%), and cerebrovascular disease (9%). "The causes of death highlight the need for aggressive management of cardiovascular risk, prevention of thromboembolism, and good infection control, and emphasize the need to achieve disease remission, normalizing cortisol levels," said lead study author Padiporn Limumpornpetch, MD, of the University of Leeds in England, in a statement. From https://www.medpagetoday.com/meetingcoverage/endo/91808
    1 point
  26. Zarina Brady, Aoife Garrahy, Claire Carthy, Michael W. O’Reilly, Christopher J. Thompson, Mark Sherlock, Amar Agha & Mohsen Javadpour BMC Endocrine Disorders volume 21, Article number: 36 (2021) Cite this article 160 Accesses Metricsdetails Abstract Background Transsphenoidal surgery (TSS) to resect an adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma is the first-line treatment for Cushing’s disease (CD), with increasing usage of endoscopic transsphenoidal (ETSS) technique. The aim of this study was to assess remission rates and postoperative complications following ETSS for CD. Methods A retrospective analysis of a prospective single-surgeon database of consecutive patients with CD who underwent ETSS between January 2012–February 2020. Post-operative remission was defined, according to Endocrine Society Guidelines, as a morning serum cortisol < 138 nmol/L within 7 days of surgery, with improvement in clinical features of hypercortisolism. A strict cut-off of < 50 nmol/L at day 3 post-op was also applied, to allow early identification of remission. Results A single surgeon (MJ) performed 43 ETSS in 39 patients. Pre-operative MRI localised an adenoma in 22 (56%) patients; 18 microadenoma and 4 macroadenoma (2 with cavernous sinus invasion). IPSS was carried out in 33 (85%) patients. The remission rates for initial surgery were 87% using standard criteria, 58% using the strict criteria (day 3 cortisol < 50 nmol/L). Three patients had an early repeat ETSS for persistent disease (day 3 cortisol 306-555 nmol/L). When the outcome of repeat early ETSS was included, the remission rate was 92% (36/39) overall. Remission rate was 94% (33/35) when patients with macroadenomas were excluded. There were no cases of CSF leakage, meningitis, vascular injury or visual deterioration. Transient and permanent diabetes insipidus occurred in 33 and 23% following first ETSS, respectively. There was one case of recurrence of CD during the follow-up period of 24 (4–79) months. Conclusion Endoscopic transsphenoidal surgery produces satisfactory remission rates for the primary treatment of CD, with higher remission rates for microadenomas. A longer follow-up period is required to assess recurrence rates. Patients should be counselled regarding risk of postoperative diabetes insipidus. Peer Review reports Introduction With an estimated annual incidence of 1.7 per million [1], Cushing’s disease is rare. Untreated, it poses serious complications including osteoporosis, hypertension, dyslipidaemia, insulin resistance, and hypercoagulability [2] and is associated with a 4.8 fold increase in mortality rate [3,4,5]. Patients who are in remission from CD have a mortality rate which decreases towards (although not reaching) that of the general population [6]. Endoscopic transsphenoidal surgery (ETSS) offers patients potential remission from Cushing’s disease, although long term surveillance is required as recurrence rates range from 5 to 22%% [7,8,9,10,11,12]. Since the first report in 1997 [13], the selective removal of an adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma by endoscopic transsphenoidal surgery has gained popularity as the first line treatment for Cushing’s disease. The primary goal of ETSS treatment in Cushing’s disease is to produce disease remission and to provide long-term control, while minimising complications. Remission rates are dependent on tumour size, preoperative MRI, cavernous sinus invasion, intraoperative visualisation of the tumour and pre- and postoperative ACTH and cortisol concentration [11]. Several studies also report pituitary neurosurgeon experience as a major factor for operative success [2, 14, 15]. Reported remission and recurrence rates after TSS for CD vary widely according to the criteria utilised to define remission [11], and in some studies due to limited patient numbers or short follow-up periods. Indeed, there is no clear consensus on how best to define post-operative remission; an early morning serum cortisol concentration < 138 nmol/L (5μg/dl) within 7 days of TSS is quoted in the 2015 Endocrine Society Clinical Practice Guideline as indicative of remission [16]. A more strict day 3 cut-off of 50 nmol/L (1.8 μg/dl) has been reported in paediatric studies [17], and also included in the Endocrine Society Guideline [16]; the literature suggests this cut-off is associated with remission, and a low recurrence rate of approximately 10% at 10 years [14]. The main objective of this study was to assess the outcomes of endoscopic transsphenoidal surgery for Cushing’s disease in a tertiary pituitary centre; remission using two widely accepted criteria [16], recurrence and postoperative complications. Methods Study design This is a retrospective analysis of a prospectively-maintained database of patients operated on by a single neurosurgeon (MJ), via image-guided endoscopic transsphenoidal approach for Cushing’s disease. Patient data was gathered over 8 years (January 2012 to February 2020) and identified from the institution’s prospective database. Clinical and biochemical data during the follow-up period was reviewed. Approval was granted by the Hospital Audit Committee. Study population Patients were screened for Cushing’s syndrome by the presence of typical clinical features, together with failure to adequately suppress cortisol to < 50 nmol/L following overnight dexamethasone suppression test (ONDST) and/or elevated late night salivary cortisol (LNSF) concentration and/or elevated 24 h urinary free cortisol measurements. As per standard guidelines, Cushing’s disease was diagnosed on the basis of elevated serum ACTH measurements, along with confirmatory hormone responses to peripheral corticotropin releasing hormone (CRH) test and inferior petrosal sinus sampling (IPSS). Patients with previous TSS prior to the study period were excluded. Surgical procedure A single neurosurgeon subspecialising in endoscopic pituitary and anterior skull base surgery, M.J, carried out all ETSS surgical procedures. The surgical technique has been described in detail in publications by Cappabianca et al. (1998, 1999) and Jho et al. (1997, 2000, 2001) [13, 18,19,20,21]. In summary, the procedure consists of a binostril endoscopic transsphenoidal approach. A selective adenomectomy was performed on patients with adenomas noted on pre-operative MRI. In cases of negative pre-operative MRI, exploration of the pituitary gland was performed. To confirm the diagnosis of ACTH-secreting adenoma or hyperplasia, all specimens removed underwent histopathological and immunohistochemical staining for pituitary hormones. Postoperative assessment Patients received empiric oral hydrocortisone on day 1 and on the morning of day 2 post-operatively, prior to assessment of 0800 h serum cortisol on day 3. A blood sample for serum cortisol was drawn at 0800 h on the morning of day 3, if clinically stable, prior to administration of hydrocortisone. The Endocrine Society Clinical Practice Guideline define post-operative biochemical remission as morning serum cortisol < 138 nmol/L (5μg/dl) within 7 days postoperatively [16], ‘standard criteria’. In our institution, we also apply a biochemical cut-off of < 50 nmol/L (1.8 μg/dl) at day 3 postoperatively to allow early indication of biochemical remission, ‘strict criteria’. If serum cortisol on day 3 is 50–138 nmol/L, serial measurements are taken daily to determine if cortisol will fall further, and assessment for improvement/resolution of clinical sequalae of hypercortisolaemia made (such as improvement in blood pressure or glycaemic control), before repeat endoscopic transsphenoidal surgery is considered. Transient cranial diabetes insipidus (DI) was defined as the development of hypotonic polyuria postoperatively requiring at least one dose of desmopressin [22], which resolved prior to discharge. Permanent DI was confirmed by water deprivation test according to standard criteria [23]. Thyroid stimulating hormone (TSH) deficiency was defined by low fT4 with either low or inappropriately normal TSH. Growth hormone (GH) deficiency was confirmed using either Insulin Tolerance Test or Glucagon Stimulation Test [24]. Gonadotrophin deficiency was defined in premenopausal women as amenorrhoea with inappropriately low FSH and LH concentration, and in postmenopausal patients as inappropriately low FSH and LH concentration. Recovery of hypothalamic-pituitary-adrenal axis was assessed by short synacthen (250 μg) test or insulin tolerance test 3 months post-operatively, and every 3–6 months thereafter in cases of initial fail or borderline result. Patients were assessed annually for recurrence of Cushing’s disease, recurrence was defined by failure to suppress cortisol to < 50 nmol/L following an 1 mg overnight dexamethasone suppression test, an elevated late night salivary cortisol (LNSF) or urinary free cortisol (UFC) in patients no longer taking hydrocortisone. Laboratory analysis Prior to 2019, serum cortisol was measured using a chemiluminescent immunoassay with the Beckman Coulter UniCel Dxl 800. Intra-assay CV for serum cortisol was 8.3, 5 and 4.6% at concentrations of 76, 438 and 865 nmol/L, respectively. From January 2019 onwards, serum cortisol was measured using Elecsys® Cortisol II assay on the Roche Cobas e801; intra-assay precision for serum cortisol was 1.2, 1.1 and 1.6% at concentrations of 31.8, 273 and 788 nmol/L, respectively. Statistics Data are expressed as median (range) and number (%). The Fishers Exact test was used to compare categorical variables between groups. All p-values were considered statistically significant at a level < 0.05. Statistical analysis was performed using GraphPad Prism 8 statistical software (GraphPad Software, La Jolla, California, USA). Results Demographics Forty-three endoscopic transsphenoidal procedures were performed in 39 patients. Demographics are summarised in Table 1. Median (range) age was 37 years (8–75), 30 were female. Median (range) duration of symptoms was 24 months (6–144), 72% (28/39) had hypertension, and 28% (11/39) had type 2 diabetes. Table 1 Summary of demographics and post-operative outcomes Full size table Preoperative imaging and IPSS Pre-operative MRI localised an adenoma in 22 (56%) patients; 18 microadenoma and 4 macroadenoma (2 with cavernous sinus invasion). No adenoma was identified in 17 patients (44%). IPSS was carried out in 33 (85%) patients. Postoperative remission Post-operative outcomes are summarised in Table 1 and Fig. 1. Using standard criteria (0800 h serum cortisol < 138 nmol/l within 7 days of operation and improvement in clinical features of hypercortisolism), postoperative remission rates for initial surgery were 87% (34/39) for the entire group and 89% (31/35) when patients with macroadenomas were excluded, Fig. 1. Three patients had an early repeat ETSS for persistent disease; day 3 serum cortisol ranged from 306 to 555 nmol/L and interval to repeat ETSS from 10 days–3 months. When the outcome of early repeat ETSS was factored in, overall remission rate was 92% (36/39) overall, and 94% (33/35) when patients with macroadenomas were excluded. Fig. 1 Schema of patients who underwent ETSS. *Day 3 cortisol was not measured in one patient due to intercurrent illness requiring treatment with intravenous glucocorticoids Full size image Using strict criteria of early remission (day 3 serum cortisol concentration < 50 nmol/L), postoperative remission rates were 58% (22/38) overall, and 62% (21/34) excluding macroadenomas. Including the three patients with early repeat ETSS, remission rate was 61% (23/38) overall, and 65% excluding macroadenomas (22/34). Day 3 cortisol was not measured in one patient due to intercurrent illness requiring treatment with intravenous glucocorticoids. Eleven patients (28%) had a cortisol measurement between 50 and 138 nmol/L on day 3, seven of whom had received metyrapone therapy prior to ETSS. Six patients had serial measurements of 0800 h cortisol up to a maximum follow-up of 14 days post-op, serum cortisol concentration fell after day 3 in all six patients. Ten (91%) were glucocorticoid-dependent at 3 months based on synacthen/ITT; 0800 h cortisol had fallen to < 50 nmol/L in six patients. Predictors of remission No statistical difference was found in the rates of remission in those patients with or without tumour target on preoperative MRI, using either strict criteria for remission (12/21 target vs 10/17 no target, p > 0.99) or standard criteria (19/22 target vs 15/17 no target, p > 0.99). Similar results were found when the four patients with macroadenoma were excluded. Persistent disease Five patients (13%) had persistent hypercortisolaemia after the initial endoscopic transsphenoidal surgery (Table 2). Three patients underwent a repeat early endoscopic transsphenoidal surgery, Fig. 1. Remission rate after repeat early ETSS was 67% (2/3) using standard criteria, and 33% (1/3), using the strict criteria. Of the patients with persistent disease following repeat ETSS, one received radiosurgery, while the other has been commenced on medical therapy, with a view to refer for radiotherapy. Table 2 Outcome of five patients with persistent hypercortisolaemia after initial ETSS Full size table Postoperative complications The rate of transient diabetes insipidus after first ETSS was 33% (13/39), while permanent diabetes insipidus occurred in 23% (9/39). Postoperatively, there were five cases of new thyroid stimulating hormone deficiency (13%) and four cases of gonadotrophin deficiency (10%) (in pre-menopausal females). There were no cases of postoperative CSF leak, no cases of meningitis and no visual complications. There were no other complications. Recurrence No patients were lost to follow-up. Over a median (range) duration of follow-up of 24 (4–79) months, one patient had recurrence of Cushing’s disease. Pre-operative MRI had shown a macroadenoma; serum cortisol on day 3 after the initial ETSS was 71 nmol/L, which fulfilled standard criteria for remission, but not the more strict criteria. The patient underwent a second ETSS 13 months later. No tumour was visible intra-operatively so no tissue was removed, day 3 serum cortisol concentration was 308 nmol/L and the patient was commenced on a trial of metyrapone. Recovery of the hypothalamic-pituitary-adrenal axis Recovery of the hypothalamic-pituitary-adrenal axis occurred in nine patients (27%), at median 13 (3–27) months post-operatively. There was no statistical difference in rates of recovery of HPA axis in patients with day 3 cortisol < 50 nmol/l, and those who only passed standard criteria for remission (< 138 nmol/l) [7/20 (follow-up 25 (3–59) months) versus 2/11 (follow-up 16 (3–79) months) respectively, p = 0.43]. One patient died 5 weeks post-operatively; post-mortem revealed bilateral haemorrhagic adrenal necrosis. Discussion Reported remission rates following ETSS in patients with Cushing’s disease (CD) vary widely, predominantly due to differences in criteria used to define remission [11]. There is no uniform consensus on the criteria used to define ‘remission’, with institutions using a combination of biochemical and clinical criteria; this makes comparing surgical outcome studies challenging. The normal corticotroph cells of the pituitary gland are suppressed due to sustained hypercortisolaemia, therefore following successful removal of the ACTH-secreting adenoma, serum ACTH and cortisol concentrations should fall postoperatively. A morning serum cortisol concentration < 138 nmol/L (5 μg/dl) within 7 days of ETSS is usually indicative of remission, and this biochemical cut-off is quoted in the Endocrine Society Clinical Practice Guideline [16], and many surgical outcome studies [8, 11, 25]. Other studies have applied a more strict serum cortisol cut-off of < 50 nmol/L (1.8 μg/L) at day 3 postoperatively to allow early indication of biochemical remission [10, 11, 26,27,28]; the literature suggests this cutoff is associated with remission, and a low recurrence rate of approximately 10% at 10 years [14]. Our practice is to apply this latter approach; if serum cortisol on day 3 is 50–138 nmol/L, serial measurements are taken daily to determine if cortisol will fall further, and assessment for improvement/resolution of clinical signs of hypercortisolaemia made, before repeat endoscopic transsphenoidal surgery is considered. It is important to ensure that serum cortisol has reached a nadir, before further intervention is considered. In this single-centre single-surgeon study, we report two very different remission rates using these two widely accepted criteria. Our remission rate, including those patients who had an early second ETSS, using standard guidelines, is 92%, on par with other larger studies [7, 8, 11, 25, 29]. When patients with corticotroph macroadenomas were excluded, the remission rate was even higher at 94%. In comparison, when we applied the more strict criteria of day 3 cortisol < 50 nmol/L, the remission rate was considerably lower at 61%. This criteria is in place in our institution so that we can safely identify patients who have early signs of remission to facilitate discharge on day 3 post-operatively; however reporting these rates in isolation lead to a misleadingly low remission rate compared to the more lenient criteria proposed by the Endocrine Society [16]. Evidence has suggested that higher day 3 cortisol concentration is associated with greater risk of recurrence of CD. A recent retrospective cohort analysis of 81 ETSS for CD by Mayberg et al. reported significantly higher recurrence rates in patients with post-operative cortisol nadir between 58 and 149 nmol/L (2.1–5.4 μg/dL) compared with those with cortisol < 55 nmol/L (2 μg/dL) (33% vs 6%, p = 0.01) [30]. Recurrence of CD was low in our series at 3%, and occurred in a patient with a corticotroph macroadenoma, which have been shown to be associated with higher rates of recurrence [31]. On post-operative assessment, serum cortisol fell between the two criteria for remission and if remission was strictly defined as a day 3 cortisol < 50 nmol/L, then this patient had in fact persistent hypercortisolaemia. This case highlights the difficulty when comparing studies reporting ETSS outcomes in CD – the distinction between persistent post-operative hypercortisolism and early recurrence of CD is not always clear-cut, and is dictated by the local protocol. Whilst our recurrence data are encouraging in comparison to other reports on CD recurrence, which published rates of up to 22% [11], longer term follow-up is necessary before recurrence rates can be accurately defined. The criteria used to define long term recurrence of CD also varies widely in the literature; a large systematic review (n = 6400) by Petersenn et al. (2015) reported decreased recurrence rates when studies used UFC with ONDST vs. UFC only, and UFC with morning serum cortisol vs. UFC only [11]. This highlights the requirement for standardization of remission and recurrence criteria, for consistency in clinical practice and in the literature. The post-operative surgical complication rate in our series was very low, with no cases of CSF leak, vascular injury or visual compromise. Other published case series have reported incidence rates for CSF leakage and meningitis of 0–7.2% and 0–7.9% [2, 12, 32, 33] respectively. Postoperative meningitis is strongly associated with CSF leakage [34]. Some studies suggest that the endoscopic approach results in higher rates of carotid artery injury compared with the microscopic approach, which could be attributed to the nature of the extended lateral approach [35]. However, in this series of 43 ETSS, we report no cases of surgical related carotid artery injury, similar to other studies reporting 0% serious morbidity or mortality due to carotid artery injury [33, 36]. Finally, postoperative visual disturbance is a major concern, as it can be life changing for patients. Factors linked with visual complications include tumour size, patient age and any pre-existing visual conditions [37,38,39]. Visual deterioration after TSS for Cushing’s disease has been reported to occur in some large case series at rates of 1.9% [32] and 0.86% [12]. There were no cases of postoperative visual disturbance in our series. While the surgical complication rate was low, our endocrine complication rate was higher than that reported in other studies, particularly the rate of DI. Transient DI occurred in 33% of cases, and permanent DI in 23%. These relatively high rates of transient DI may be due to the diagnostic criteria used in our protocol; we defined transient post-operative DI as one episode of hypotonic polyuria in the setting of normal or elevated plasma sodium concentration, requiring at least one dose of desmopressin. In contrast, some studies discount any polyuria which lasts less than 2 days [10], while others require the documentation of hypernatremia for the diagnosis of DI [40]. These more stringent criteria will not capture cases of mild transient DI; therefore it is not surprising that the rates of transient DI reported in a 2018 meta-analysis were lower than that in our study, 11.3% [29]. The rates of permanent DI in our study merits particular attention. TSS for CD has been shown to be associated with a higher risk of post-operative DI [41, 42]. It may be that a more aggressive surgical approach resulted in high remission rates, but at a cost of higher rates of DI. All patients are reviewed post-operatively in the National Pituitary Centre, where there is a low threshold for water deprivation testing and/or 3% saline testing. We did not routinely re-test patients for resolution of DI after their initial water deprivation test at 3 months, and it is possible that some cases subsequently resolved after 3 months [41, 43]. Regardless, the rate reported in this study is significant, and emphasises the importance of counselling the patient about the risk of DI long-term. Strengths and limitations The reporting of two remission rates based on widely accepted criteria is a strength of this study, and allows for direct comparison of our outcomes with other studies. All ETSS were performed by a single pituitary surgeon; while this removes bias from surgeon experience, the disadvantage of this is that the sample size is relatively low. Furthermore, because we included patients who were recently operated on to maximise numbers for analysis of surgical complications, the follow-up period is relatively short. A longer follow-up is required to comment accurately on recurrence of CD. We did not have full ascertainment of longitudinal post-operative data including dexamethasone suppression tests, and this has highlighted the need for protocolised follow-up to allow for consistency when reporting our results. Conclusion Endoscopic transsphenoidal surgery in patients with Cushing’s disease offers excellent remission rates and low morbidity. Remission rates are much higher when standard criteria [morning serum cortisol < 138 nmol/L (5μg/dl) within 7 days postoperatively] are used compared with day 3 cortisol < 50 nmol/l. Higher remission rates were found for patients with microadenomas. Patients should be counselled regarding risk of post-operative endocrine deficiencies, in particular permanent diabetes insipidus. Longer follow-up is required to accurately assess recurrence rates. Availability of data and materials The data that support the findings of this study are not publicly available due to restrictions by General Data Protection Regulation (GDPR), but are available from the corresponding author on reasonable request. Abbreviations TSS: Transsphenoidal surgery ACTH: Adrenocorticotropic hormone CD: Cushing’s disease ETSS: Endoscopic transsphenoidal surgery ONDST: Overnight dexamethasone suppression test LNSF: Late night salivary cortisol CRH: Corticotropin releasing hormone IPSS: Inferior petrosal sinus sampling DI: Diabetes insipidus TSH: Thyroid stimulating hormone GH: Growth hormone UFC: Urinary free cortisol References 1. Lindholm J, Juul S, Jorgensen JO, et al. Incidence and late prognosis of cushing's syndrome: a population-based study. J Clin Endocrinol Metab. 2001;86(1):117–23. CAS PubMed PubMed Central Google Scholar 2. Broersen LHA, van Haalen FM, Biermasz NR, et al. Microscopic versus endoscopic transsphenoidal surgery in the Leiden cohort treated for Cushing's disease: surgical outcome, mortality, and complications. Orphanet J Rare Dis. 2019;14(1):64. PubMed PubMed Central Article Google Scholar 3. Hammer GD, Tyrrell JB, Lamborn KR, et al. Transsphenoidal microsurgery for Cushing’s disease: initial outcome and long-term results. J Clin Endocrinol Metab. 2004;89:6348–57. CAS PubMed Article PubMed Central Google Scholar 4. Nieman LK. Cushing’s syndrome: update on signs, symptoms and biochemical screening. Eur J Endocrinol/Eur Fed Endoc Soc. 2015;173:M33–8. CAS Article Google Scholar 5. Swearingen B, Biller BM, Barker FG, et al. Long-term mortality after transsphenoidal surgery for Cushing disease. Ann Intern Med. 1999;130:821–4. CAS PubMed Article PubMed Central Google Scholar 6. Clayton RN, Jones PW, Reulen RC, et al. Mortality in patients with Cushing's disease more than 10 years after remission: a multicentre, multinational, retrospective cohort study. Lancet Diabetes Endocrinol. 2016;4(7):569–76. PubMed Article PubMed Central Google Scholar 7. Berker M, Işikay I, Berker D, et al. Early promising results for the endoscopic surgical treatment of Cushing's disease. Neurosurg Rev. 2014;37:105–14. Article Google Scholar 8. Cebula H, Baussart B, Villa C, et al. Efficacy of endoscopic endonasal transsphenoidal surgery for Cushing's disease in 230 patients with positive and negative MRI. Acta Neurochir. 2017;159(7):1227–36. PubMed Article PubMed Central Google Scholar 9. Shimon I, Ram Z, Cohen ZR, et al. Transsphenoidal surgery for Cushing's disease: endocrinological follow-up monitoring of 82 patients. Neurosurgery. 2002;51(1):57–62. PubMed Article PubMed Central Google Scholar 10. Wagenmakers MA, Boogaarts HD, Roerink SH, et al. Endoscopic transsphenoidal pituitary surgery: a good and safe primary treatment option for Cushing's disease, even in case of macroadenomas or invasive adenomas. Eur J Endocrinol. 2013;169(3):329–37. CAS PubMed Article PubMed Central Google Scholar 11. Petersenn S, Beckers A, Ferone D, et al. Therapy of endocrine disease: outcomes in patients with Cushing's disease undergoing transsphenoidal surgery: systematic review assessing criteria used to define remission and recurrence. Eur J Endocrinol. 2015;172(6):R227–39. CAS PubMed Article PubMed Central Google Scholar 12. Atkinson AB, Kennedy A, Wiggam MI, et al. Long-term remission rates after pituitary surgery for Cushing’s disease: the need for long-term surveillance. Clin Endocrinol. 2005;63:549–59. Article Google Scholar 13. Jho HD, Carrau RL. Endoscopic endonasal transsphenoidal surgery: experience with 50 patients. J Neurosurg. 1997;87(1):44–51. CAS PubMed Article PubMed Central Google Scholar 14. Biller BM, Grossman AB, Stewart PM, et al. Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab. 2008;93:2454–6. CAS PubMed PubMed Central Article Google Scholar 15. Ciric I, Ragin A, Baumgartner C, et al. Complications of transsphenoidal surgery: results of a national survey, review of the literature, and personal experience. Neurosurgery. 1997;40(2):225–36. CAS PubMed Article PubMed Central Google Scholar 16. Nieman LK, Biller BM, Findling JW, et al. Treatment of Cushing's syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(8):2807–31. CAS PubMed PubMed Central Article Google Scholar 17. Storr H, Alexandraki K, Martin L, et al. Comparisons in the epidemiology, diagnostic features and cure rate by transsphenoidal surgery between paediatric and adult-onset Cushing's disease. Eur J Endocrinol. 2011;164(5):667–74. CAS PubMed Article PubMed Central Google Scholar 18. Cappabianca P, Alfieri A, de Divitiis E. Endoscopic endonasal transsphenoidal approach to the Sella: towards functional endoscopic pituitary surgery (FEPS). Minim Invasive Neurosurg. 1998;41(2):66–73. CAS PubMed Article PubMed Central Google Scholar 19. Cappabianca P, Alfieri A, Thermes S, et al. Instruments for endoscopic endonasal transsphenoidal surgery. Neurosurgery. 1999;45(2):392–6. CAS PubMed Article PubMed Central Google Scholar 20. Jho H. Endoscopic transsphenoidal surgery. J Neuro-Oncol. 2001;54:187–95. CAS Article Google Scholar 21. Jho HD, Alfieri A. Endoscopic transsphenoidal pituitary surgery: various surgical techniques and recommended steps for procedural transition. Br J Neurosurg. 2000;14(5):432–40. CAS PubMed Article PubMed Central Google Scholar 22. Seckl J, Dunger D. Postoperative diabetes insipidus. Br Med J. 1989;298:2. CAS Article Google Scholar 23. Garrahy A, Moran C, Thompson CJ. Diagnosis and management of central diabetes insipidus in adults. Clin Endocrinol. 2019;90(1):23–30. Article Google Scholar 24. Glynn N, Agha A. Diagnosing growth hormone deficiency in adults. Int J Endocrinol. 2012;2012:972617. PubMed PubMed Central Article CAS Google Scholar 25. Starke RM, Reames DL, Chen CJ, et al. Pure endoscopic transsphenoidal surgery for Cushing’s disease: techniques, outcomes, and predictors of remission. Neurosurgery. 2013;72:240–7. PubMed Article PubMed Central Google Scholar 26. McCance DR, Besser M, Atkinson AB. Assessment of cure after transsphenoidal surgery for Cushing's disease. Clin Endocrinol. 1996;44:1–06. CAS Article Google Scholar 27. Trainer PJ, Lawrie HS, Verhelst J, et al. Transsphenoidal resection in Cushing's disease: undetectable serum cortisol as the definition of successfuI treatment. Clin Endocrinol. 1993;38:73–8. CAS Article Google Scholar 28. Yap LB, Turner HE, Adams CBT, et al. Undetectable postoperative cortisol does not always predict long-term remission in Cushing’s disease: a single Centre audit. Clin Endocrinol. 2002;56:25–31. CAS Article Google Scholar 29. Broersen LHA, Biermasz NR, van Furth WR, et al. Endoscopic vs. microscopic transsphenoidal surgery for Cushing's disease: a systematic review and meta-analysis. Pituitary. 2018;21(5):524–34. PubMed PubMed Central Article Google Scholar 30. Mayberg M, Reintjes S, Patel A, et al. Dynamics of postoperative serum cortisol after transsphenoidal surgery for Cushing's disease: implications for immediate reoperation and remission. J Neurosurg. 2018;129(5):1268–77. PubMed Article PubMed Central Google Scholar 31. Patil CG, Prevedello DM, Lad SP, et al. Late recurrences of Cushing’s disease after initial successful transsphenoidal surgery. J Clin Endocrinol Metab. 2008;93:358–62. CAS PubMed Article PubMed Central Google Scholar 32. Fahlbusch R, Buchfelder M, Müller OA. Transsphenoidal surgery for Cushing's disease. J R Soc Med. 1986;79(5):262–9. CAS PubMed PubMed Central Article Google Scholar 33. Sarkar S, Rajaratnam S, Chacko G, et al. Pure endoscopic transsphenoidal surgery for functional pituitary adenomas: outcomes with Cushing's disease. Acta Neurochir. 2016;158(1):77–86. PubMed Article PubMed Central Google Scholar 34. Magro E, Graillon T, Lassave J, et al. Complications related to the endoscopic Endonasal Transsphenoidal approach for nonfunctioning pituitary macroadenomas in 300 consecutive patients. World Neurosurg. 2016;89:442–53. PubMed Article PubMed Central Google Scholar 35. Ammirati M, Wei L, Ciric I. Short-term outcome of endoscopic versus microscopic pituitary adenoma surgery: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2013;84(8):843–9. PubMed Article PubMed Central Google Scholar 36. Dehdashti AR, Gentili F. Current state of the art in the diagnosis and surgical treatment of Cushing disease: early experience with a purely endoscopic endonasal technique. Neurosurg Focus. 2007;23:E9. PubMed Article PubMed Central Google Scholar 37. Barzaghi LR, Medone M, Losa M, et al. Prognostic factors of visual field improvement after trans-sphenoidal approach for pituitary macroadenomas: review of the literature and analysis by quantitative method. Neurosurg Rev. 2012;35(3):369–78. PubMed Article PubMed Central Google Scholar 38. Mortini P, Losa M, Barzaghi R, et al. Results of transsphenoidal surgery in a large series of patients with pituitary adenoma. Neurosurgery. 2005;56(6):1222–33. PubMed Article PubMed Central Google Scholar 39. Nomikos P, Buchfelder M, Fahlbusch R. Current management of prolactinomas. J Neuro-Oncol. 2001;54(2):139–50. CAS Article Google Scholar 40. Mamelak AN, Carmichael J, Bonert VH, et al. Single-surgeon fully endoscopic endonasal transsphenoidal surgery: outcomes in three-hundred consecutive cases. Pituitary. 2013;16(3):393–401. PubMed Article PubMed Central Google Scholar 41. Hensen J, Henig A, Fahlbusch R, et al. Prevalence, predictors and patterns of postoperative polyuria and hyponatraemia in the immediate course after transsphenoidal surgery for pituitary adenomas. Clin Endocrinol. 1999;50:431–9. CAS Article Google Scholar 42. Nemergut EC, Zuo Z, Jane JA Jr, et al. Predictors of diabetes insipidus after transsphenoidal surgery: a review of 881 patients. J Neurosurg. 2005;103(3):448–54. PubMed Article PubMed Central Google Scholar 43. Adams JR, Blevins LS Jr, Allen GS, et al. Disorders of water metabolism following transsphenoidal pituitary surgery: a single institution's experience. Pituitary. 2006;9(2):93–9. PubMed Article PubMed Central Google Scholar
    1 point
  27. A large study of mortality in Cushing’s syndrome calculated a threefold higher mortality rate for these patients, with cerebrovascular and atherosclerotic vascular diseases and infection accounting for 50% of deaths, researchers reported. “[We have seen] improvement in outcome since 2000, but mortality is still unacceptably high,” Padiporn Limumpornpetch, MD, an endocrinologist at Prince of Songkla University in Thailand and PhD student at the University of Leeds, U.K., told Healio during the ENDO annual meeting. “The mortality outcome has shown an unacceptable standardized mortality rate of 3:1, with poorer outcomes in patients with adrenal Cushing’s [and] active and larger tumors in Cushing’s disease.” Atherosclerotic vascular disease was the top cause of death in Cushing's disease, with infection coming in as the second-highest cause of death. Data were derived from Limumpornpetch P. OR04-4. Presented at: ENDO annual meeting; March 20-23, 2021 (virtual meeting). For a meta-analysis and meta-regression analysis of cause of death among patients with benign endogenous Cushing’s syndrome, Limumpornpetch and colleagues reviewed data published from 1952 to January 2021 from 92 study cohorts with 19,181 patients that reported mortality rates, including 66 studies that reported causes of death. The researchers calculated the standardized mortality rate (SMR) for Cushing’s syndrome at 3 (95% CI, 2.3-3.9). For patients with adrenal Cushing’s syndrome, SMR was 3.3 (95% CI, 0.5-6.6) — higher than for those with Cushing’s disease, with an SMR of 2.8 (95% CI, 2.1-3.7). Rates were similar by sex and by type of adrenal tumor. Deaths occurring within 30 days of surgery for Cushing’s syndrome fell to 3% after 2000 from 10% before that date (P < .005). During the entire study period, atherosclerotic vascular disease accounted for 27.4% of deaths in Cushing’s syndrome, and 12.7% were attributable to infection, 11.7% to cerebrovascular diseases, 10.6% to malignancy, 4.4% to thromboembolism, 2.9% to active disease, 3% to adrenal insufficiency and 2.2% to suicide. “We look forward to the day when our interdisciplinary approach to managing these challenging patients can deliver outcomes similar to the background population,” Limumpornpetch said. From https://www.healio.com/news/endocrinology/20210322/mortality-rate-in-cushings-syndrome-unacceptably-high
    1 point
  28. Adrenal insufficiency increases the risk for severe outcomes, including death, 23-fold for children who contract COVID-19, according to a data analysis presented at the ENDO annual meeting. “Adrenal insufficiency in pediatrics does increase risk of complications with COVID-19 infections,” Manish Gope Raisingani, MD, assistant professor in the department of pediatrics in the division of pediatric endocrinology at Arkansas Children's Hospital, University of Arkansas for Medical Sciences, told Healio. “The relative risk of complications is over 20 for sepsis, intubation and mortality, which is very significant.” Source: Adobe Stock Using the TriNetX tool and information on COVID-19 from 54 health care organizations, Raisingani and colleagues analyzed data from children (aged 0-18 years) with COVID-19; 846 had adrenal insufficiency and 252,211 did not. The mortality rate among children with adrenal insufficiency was 2.25% compared with 0.097% for those without, for a relative risk for death of 23.2 (P < .0001) for children with adrenal insufficiency and COVID-19. RRs for these children were 21.68 for endotracheal intubation and 25.45 for sepsis. “Children with adrenal insufficiency should be very careful during the pandemic,” Raisingani said. “They should take their steroid medication properly. They should also be appropriately trained on stress steroids for infection, other significant events.” From https://www.healio.com/news/endocrinology/20210321/severe-covid19-risks-greatly-increased-for-children-with-adrenal-insufficiency
    1 point
  29. Here's your chance to make your voice heard on Growth Hormone Issues. Anyone interested would sign up with Rare Patient Voice using the CushingsHelp referral Link. You would then get an email invite to the actual study. Study Opportunity for Idiopathic Short Stature (ISS) Caregivers This is a 30 min online survey and Compensation is $50 Please sign up at the link below for more information or to see if you qualify https://rarepatientvoice.com/CushingsHelp/
    1 point
  30. From board member @sharm - Please Join Us to Celebrate 20 Years-Pituitary Patient Support Group. Saturday April 10, 2021: 9:00am-11:00am (PST) (Scroll below for Zoom meeting links) We invite you to join the conversation with our experts: Pejman Cohan, neuro-endocrinologist & Daniel Kelly, neurosurgery. Email me or leave your questions in the chat below. We will answer as many questions as time allows. We can't wait to see you on Zoom! Thank you, Sharmyn McGraw, patient advocate, community outreach. pituitarybuddy@hotmail.com Meeting ID: 849 6356 9824 Passcode: 596170 Zoom: https:/zoom.us/join One tap mobile +16699006833,,84963569824#,,,,*596170# US (San Jose) +12532158782,,84963569824#,,,,*596170# US (Tacoma) Dial by your location +1 669 900 6833 US (San Jose) +1 253 215 8782 US (Tacoma) +1 346 248 7799 US (Houston) +1 929 205 6099 US (New York) +1 301 715 8592 US (Washington DC) +1 312 626 6799 US (Chicago) Meeting ID: 849 6356 9824 Passcode: 596170 Find your local number: https://us02web.zoom.us/u/kdgrvRLBP7
    1 point
  31. Yu Wang, Zhixiang Sun, Zhiquan Jiang Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People’s Republic of China Correspondence: Zhiquan Jiang Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui 233004, People’s Republic of China Tel +86-13966075971 Email bbjiangzhq@163.com Abstract: Cushing’s disease (CD), also known as adrenocorticotropic hormone (ACTH)-dependent pituitary Cushing’s syndrome, is a rare and serious chronic endocrine disease that is usually caused by a pituitary adenoma (especially a pituitary microadenoma). Meningioma is the most common type of primary intracranial tumor and is usually benign. The patient in this case report presented with CD coexisting with pituitary microadenoma and meningioma, which is an extremely rare comorbidity. The pathogenesis of CD associated with meningioma remains unclear. Here, we describe the case of bilateral lower extremity edema, lower limb pain, abdominal purplish striae, and abdominal distension for 9 months in a 47-year-old woman. Two years ago, the patient underwent a hysterectomy at a local hospital for hysteromyoma. She had no previous radiotherapeutic treatment or other medical history. Magnetic resonance imaging of her head revealed a sellar lesion (7.8 mm × 6.4 mm) and a spherical mass (3.0 cm × 3.0 cm) in the right frontal convexity. Her level of serum adrenocorticotropic hormone (ACTH) was 169 pg/mL, and her cortisol levels were 933 nmol/mL and 778 nmol/mL at 8 am and 4 pm, respectively. Preoperatively, she was diagnosed with ACTH-secreting pituitary microadenoma and meningioma. Excision of the meningioma was performed through a craniotomy, while an endoscopic endonasal transsphenoidal approach was used to remove the pituitary adenoma. Meningioma and pituitary adenoma were confirmed by postoperative pathology. On the basis of this unusual case, the relevant literature was reviewed to illustrate the diagnosis and treatment of Cushing’s disease and to explore the pathogenesis of pituitary adenoma associated with meningioma. Keywords: Cushing’s disease, pituitary adenoma, meningioma Introduction Cushing’s disease (CD) is a severe condition caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary tumor that accounts for approximately 70% of all cases of endogenous Cushing’s syndrome. It has a total incidence of 1–2 cases per million per year and a prevalence rate of approximately 30 patients per million per year, making it an uncommon disease.1 Meningiomas account for 15–25% of all intracranial tumors, with an annual incidence of 6 cases per 100,000 persons.2 CD combined with meningioma is a rare condition, and even rarer in patients who have no previously known risk factors for either tumor. To the best of our knowledge, its pathogenesis have not been clearly described to date. Case Presentation Clinical History and Laboratory Findings A 47-year-old woman was admitted to the endocrinology department of our hospital with chief complaints of bilateral lower extremity edema, left lower limb pain, abdominal purplish striae, and abdominal distension for 9 months. Two years ago, the patient had a hysterectomy at a local hospital for hysteromyoma. She had no previous radiotherapeutic treatment or other medical history. She weighed 90 kg and was 165 cm tall with a body mass index (BMI) of 33. Physical examination showed typical features of Cushing’s syndrome, including centripetal obesity, moon face, pedal edema, and buffalo hump. Her skin was thin and dry, with acne and hirsutism. On admission, her blood pressure was 146/115 mmHg and routine biochemical blood tests confirmed comorbidity with diabetes mellitus, hyperlipidemia, and hypokalemia. Endocrine measurements showed that her serum ACTH was 169 pg/mL (reference value: 5–50 pg/mL), cortisol (8 am) was 933 nmol/L (reference value: 138–690 nmol/L), and cortisol (4 pm) was 778 nmol/L (reference value: 69–345 nmol/L), indicating that her ACTH and cortisol levels were dramatically increased. Cortisol secretion was increased and had lost its circadian rhythm. The low-dose dexamethasone suppression test showed that cortisol suppression was < 50%, while a >50% suppression of cortisol was found in the high-dose dexamethasone suppression test. Serum prolactin, follicle-stimulating hormone, luteinizing hormone, testosterone, free thyroid hormone (FT3 and FT4), and thyrotropin values were normal. Endocrinological evaluation suspected that pituitary lesions caused Cushing syndrome. Imaging Analysis The patient underwent a magnetic resonance imaging (MRI) scan to image her head. T1-weighted MRI with contrast enhancement showed a spherical enhancing mass (3.0 cm × 3.0 cm) in the right frontal convexity and a dural tail sign (Figure 1A). In the sellar area, the enhancement degree of the lesion (7.8 mm × 6.4 mm) was significantly lower than that of the surrounding pituitary tissue, and the pituitary stalk was displaced to the right (Figure 1A and B). No abnormalities were found on plain or enhanced adrenal computed tomography scans. Figure 1 Enhanced magnetic resonance imaging (MRI) of the patient’s head: (A) Coronal view of the gadolinium-enhanced T1-weighted image showing a spherical enhancing mass in the right frontal convexity and a dural tail sign. A round low-intensity lesion can be seen on the right side of the pituitary gland, and the pituitary stalk is displaced to the right. (B) Sagittal T1-weighted sequence with contrast showing the degree of enhancement is lower than that of the pituitary in the sellar region. Treatment and Pathological Examination Physical examination, endocrine examination, and head MRI successfully proved that pituitary microadenoma caused Cushing’s syndrome (specifically CD) comorbid with asymptomatic meningioma. In order to receive surgical treatment, the patient was referred from the endocrinology department to neurosurgery. She underwent neuroendoscopic transsphenoidal surgery and the pituitary microadenoma was removed. The sellar floor was reconstructed with artificial dura mater, and after this reconstruction, no cerebrospinal fluid leakage was observed. The pathological specimen was examined and was determined to be consistent with a pituitary microadenoma (Figure 2A). One month later, excision of the meningioma was performed through a right frontal trephine craniotomy. Histological examination revealed a WHO grade I meningioma (Figure 2B). Figure 2 (A) Histopathologic examination revealed a pituitary adenoma (Hematoxylin and eosin staining, 100×). (B) Histopathologic examination revealed a meningioma (Hematoxylin and eosin staining, 100×). Outcome and Follow Up On the second day after the operation, her cortisol level dropped below the normal range in the morning. Hydrocortisone replacement therapy was started on the same day. In addition, she had developed transient diabetes insipidus, which was treated with desmopressin. Three months postoperatively, after hydrocortisone replacement therapy, the symptoms of Cushing’s disease were alleviated, and the cortisol level returned to normal, which was 249nmol/L (reference value: 138~690nmol/L). At the 1-year follow-up, no lesions were observed on the MRI scan and the symptoms of Cushing’s syndrome were in remission. The use of hydrocortisone supplements were discontinued and hormone levels remained normal, indicating recovery of the hypothalamic–pituitary–adrenal (HPA) axis. The patient had lost 30 kg and her BMI had dropped to 22, while her blood glucose, triglyceride level, and blood pressure had all returned to normal. Physical changes in the patient pre- and post-treatment are shown in Figure 3A and B. Figure 3 Abdominal appearance with striae (A) preoperation and (B) 4 months postoperation. Discussion Cushing’s Disease CD is a serious clinical condition caused by a pituitary adenoma secreting a high level of ACTH, leading to hypercortisolism. The proportion of ACTH-secreting pituitary adenomas (corresponding to CD) among hormone-secreting pituitary adenomas is 4.8%–10%, which affects women three times more frequently than men, mainly occurs in those 40–60 years old.3,4 Exposure to excessive cortisol can lead to various manifestations of Cushing’s syndrome and increases in morbidity and mortality.5 Therefore, early diagnosis and treatment of CD are very important. The diagnosis and differential diagnosis of CD is very complicated, and these have always been challenging problems in clinical endocrinology. Once Cushing’s syndrome is diagnosed, its etiology should be determined. A diagnosis of Cushing’s disease is made based on a biochemical examination confirming the pituitary origin of the condition and exclude other sources (namely, ectopic ACTH secretion and adrenocortical tumors).3 High-dose dexamethasone suppression and corticotropin-releasing-hormone stimulation tests may be used to distinguish high-secretion sources of pituitary and ectopic ACTH. More than 90% of the pituitary adenomas that cause CD are microadenomas (≤10 mm in diameter), and 40% of the cases cannot be located by radiological examination.5 Examination with bilateral inferior petrosal sinus sampling (BIPSS) is necessary for CD patients in whom noninvasive biochemical and imaging examinations do not lead to a definitive diagnosis.6 The first-line treatment for CD is transsphenoidal selective tumor resection (TSS) with approximately 78% of the patients in remission after the operation, and 13% of patients relapse within 10 years after surgery. Therefore, there are a considerable number of patients who have experienced long-term surgical failure and require additional second-line treatment, such as radiotherapy, bilateral adrenalectomy, or medication.4 The pathogenesis of CD is unclear, but recent studies have confirmed that there are somatic activation mutations of multiple genes in adrenocorticotropin adenomas, while ubiquitin specific peptidase 8 (USP8) is the most common, accounting for about 50% of the mutations in these adenomas.7 Pituitary Adenoma Associated with Meningioma Radiotherapy used to treat pituitary tumors is a well-known reason for the development of meningiomas. Gene mutations are a common molecular characteristic of meningiomas, with inactivation of the neurofibromatosis type 2 (NF2) tumor suppressor gene found in 55% of meningiomas, and a further 25% of meningiomas accounted for by recently described mutations in other genes.8 Simultaneous occurrence of pituitary adenoma and meningioma without a history of radiotherapy is a rare condition clinically, having only been described in 49 cases before 2019,9 while ACTH-secreting pituitary adenomas (CD) comorbid with meningioma have been reported even less frequently. In the reported cases, the most common site of meningioma is parasellar, accounting for 44.9%, while meningioma located in the distant part of the adenoma is rare.9,10 A number of clinicians have suggested that the coexistence of meningiomas and pituitary adenomas is incidental, with no relationship between the two diseases.2,11 Genetic imbalances have been found in pituitary adenomas, including in particular the chromosomal deletions of 1p, 2q, 4, 5, 6, 11q, 12q, 13q, and 18q, and the overexpression of 9q, 16p, 17p, 19, and 20q. Functional adenomas have more such imbalances than nonfunctional adenomas, corresponding in particular to deletions of chromosomes 4 and 18q, and the overexpression of chromosomes 17 and 19.12 Meanwhile, estrogen receptor positive de novo meningiomas significantly involve chromosomes 14 and 22.13 The study by Hwang et al14 reported that the expression levels of heterogeneous nuclear ribonucleoprotein (hnRNP) family proteins were significantly higher in pituitary adenomas and meningiomas than that in normal brain tissues. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) and its downstream signaling pathways play an pivotal role in pituitary tumor, meningioma, and other brain tumors. Zhu et al15 reported that multiple endocrine neoplasia type 1 (MEN1) plays an important role in pituitary adenoma associated with meningioma by upregulating the mammalian target of rapamycin signaling pathway. They found that rapamycin treatment promotes apoptosis in primary cells of the pituitary adenoma and meningioma in cases of pituitary adenoma associated with meningioma. Recurrence of pituitary adenoma, younger age, and larger size of meningioma have been shown to be significantly associated with MEN1 mutation.16 Mathuriya et al17 suggested that hormones may contribute to the occurrence of meningiomas. de Vries et al9 reported that compared with other types of adenomas, the proportion of growth hormone adenomas is higher, accounting for about one third of cases. Meanwhile, Friend et al18 demonstrated that activation of GH/insulin-like growth factor-1 (IGF-1) axis clearly increased the growth rate of meningiomas. However, in the present case, we observed the coexistence of ACTH-secreting adenoma and meningioma. Further studies are required to understand whether ACTH or cortisol are related to the occurrence and development of meningioma. In our case, pituitary microadenoma was the cause of Cushing’s syndrome, while the meningioma was an incidental imaging observation. With the popularity and technological progress of high-resolution imaging technology, the reported prevalence of intracranial lesions related to dominant pathology has increased.2 However, when imaging examinations are limited to specific regions, the diagnosis of lesions in other locations is likely to be omitted. For example, in our case, performing MRI of the sellar region alone may have meant that the meningioma was missed. Conclusion Cushing’s disease is the most common cause of endogenous Cushing’s syndrome and is caused by ACTH-secreting pituitary adenoma.It is associated with severe complications and reduced quality of life, so early diagnosis and treatment are critical. The coexistence of CD, pituitary adenoma, and meningioma is very rare, and the exact mechanisms underlying such comorbidity are currently unclear and need further study. Data Sharing Statement The data that support the findings of this study are available on request from the corresponding author, Zhiquan Jiang. Ethics and Consent Statement Based on the regulations of the department of research of the Bengbu Medical College, institutional review board approval is not required for case reports. Consent for Publication Written informed consent has been provided by the patient to have the case details and any accompanying images published. Author Contributions All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work. Funding The authors declared that this case has received no financial support. Disclosure The authors report no conflicts of interest in this work. References 1. Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing’s syndrome. Lancet. 2015;386(9996):913–927. doi:10.1016/S0140-6736(14)61375-1 2. Curto L, Squadrito S, Almoto B, et al. MRI finding of simultaneous coexistence of growth hormone-secreting pituitary adenoma with intracranial meningioma and carotid artery aneurysms: report of a case. Pituitary. 2007;10(3):299–305. doi:10.1007/s11102-007-0011-4 3. Mehta GU, Lonser RR. Management of hormone-secreting pituitary adenomas. Neuro Oncol. 2017;19(6):762–773. doi:10.1093/neuonc/now130 4. Pivonello R, De Leo M, Cozzolino A, Colao A. The treatment of Cushing’s disease. Endocr Rev. 2015;36(4):385–486. doi:10.1210/er.2013-1048 5. Tritos NA, Biller BMK. Current management of Cushing’s disease. J Intern Med. 2019;286(5):526–541. doi:10.1111/joim.12975 6. Fan C, Zhang C, Shi X, et al. Assessing the value of bilateral inferior petrosal sinus sampling in the diagnosis and treatment of a complex case of Cushing’s disease. Intractable Rare Dis Res. 2013;2(1):24–29. doi:10.5582/irdr.2013.v2.1.24 7. Sbiera S, Kunz M, Weigand I, Deutschbein T, Dandekar T, Fassnacht M. The new genetic landscape of Cushing’s disease: deubiquitinases in the spotlight. Cancers. 2019;11(11):1761. doi:10.3390/cancers11111761 8. Apra C, Peyre M, Kalamarides M. Current treatment options for meningioma. Expert Rev Neurother. 2018;18(3):241–249. doi:10.1080/14737175.2018.1429920 9. de Vries F, Lobatto DJ, Zamanipoor Najafabadi AH, et al. Unexpected concomitant pituitary adenoma and suprasellar meningioma: a case report and review of the literature. Br J Neurosurg. 2019:1–5. doi:10.1080/02688697.2018.1556782. 10. Gosal JS, Shukla K, Praneeth K, et al. Coexistent pituitary adenoma and frontal convexity meningioma with frontal sinus invasion: a rare association. Surg Neurol Int. 2020;11:270. doi:10.25259/SNI_164_2020 11. Cannavo S, Curto L, Fazio R, et al. Coexistence of growth hormone-secreting pituitary adenoma and intracranial meningioma: a case report and review of the literature. J Endocrinol Invest. 1993;16(9):703–708. doi:10.1007/BF03348915 12. Szymas J, Schluens K, Liebert W, Petersen I. Genomic instability in pituitary adenomas. Pituitary. 2002;5(4):211–219. doi:10.1023/a:1025313214951 13. Pravdenkova S, Al-Mefty O, Sawyer J, Husain M. Progesterone and estrogen receptors: opposing prognostic indicators in meningiomas. J Neurosurg. 2006;105(2):163–173. doi:10.3171/jns.2006.105.2.163 14. Hwang M, Han MH, Park HH, et al. LGR5 and downstream intracellular signaling proteins play critical roles in the cell proliferation of neuroblastoma, meningioma and pituitary adenoma. Exp Neurobiol. 2019;28(5):628–641. doi:10.5607/en.2019.28.5.628 15. Zhu H, Miao Y, Shen Y, et al. The clinical characteristics and molecular mechanism of pituitary adenoma associated with meningioma. J Transl Med. 2019;17(1):354. doi:10.1186/s12967-019-2103-0 16. Zhu H, Miao Y, Shen Y, et al. Germline mutations in MEN1 are associated with the tumorigenesis of pituitary adenoma associated with meningioma. Oncol Lett. 2020;20(1):561–568. doi:10.3892/ol.2020.11601 17. Mathuriya SN, Vasishta RK, Dash RJ, Kak VK. Pituitary adenoma and parasagittal meningioma: an unusual association. Neurol India. 2000;48(1):72. 18. Friend KE, Radinsky R, McCutcheon IE. Growth hormone receptor expression and function in meningiomas: effect of a specific receptor antagonist. J Neurosurg. 1999;91(1):93–99. doi:10.3171/jns.1999.91.1.0093 This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms. From https://www.dovepress.com/cushingrsquos-disease-caused-by-a-pituitary-microadenoma-coexistent-wi-peer-reviewed-fulltext-article-IJGM
    1 point
  32. Rosario Pivonello,a,b Rosario Ferrigno,a Andrea M Isidori,c Beverly M K Biller,d Ashley B Grossman,e,f and Annamaria Colaoa,b Over the past few months, COVID-19, the pandemic disease caused by severe acute respiratory syndrome coronavirus 2, has been associated with a high rate of infection and lethality, especially in patients with comorbidities such as obesity, hypertension, diabetes, and immunodeficiency syndromes.1 These cardiometabolic and immune impairments are common comorbidities of Cushing's syndrome, a condition characterised by excessive exposure to endogenous glucocorticoids. In patients with Cushing's syndrome, the increased cardiovascular risk factors, amplified by the increased thromboembolic risk, and the increased susceptibility to severe infections, are the two leading causes of death.2 In healthy individuals in the early phase of infection, at the physiological level, glucocorticoids exert immunoenhancing effects, priming danger sensor and cytokine receptor expression, thereby sensitising the immune system to external agents.3 However, over time and with sustained high concentrations, the principal effects of glucocorticoids are to produce profound immunosuppression, with depression of innate and adaptive immune responses. Therefore, chronic excessive glucocorticoids might hamper the initial response to external agents and the consequent activation of adaptive responses. Subsequently, a decrease in the number of B-lymphocytes and T-lymphocytes, as well as a reduction in T-helper cell activation might favour opportunistic and intracellular infection. As a result, an increased risk of infection is seen, with an estimated prevalence of 21–51% in patients with Cushing's syndrome.4 Therefore, despite the absence of data on the effects of COVID-19 in patients with Cushing's syndrome, one can make observations related to the compromised immune state in patients with Cushing's syndrome and provide expert advice for patients with a current or past history of Cushing's syndrome. Fever is one of the hallmarks of severe infections and is present in up to around 90% of patients with COVID-19, in addition to cough and dyspnoea.1 However, in active Cushing's syndrome, the low-grade chronic inflammation and the poor immune response might limit febrile response in the early phase of infection.2 Conversely, different symptoms might be enhanced in patients with Cushing's syndrome; for instance, dyspnoea might occur because of a combination of cardiac insufficiency or weakness of respiratory muscles.2 Therefore, during active Cushing's syndrome, physicians should seek different signs and symptoms when suspecting COVID-19, such as cough, together with dysgeusia, anosmia, and diarrhoea, and should be suspicious of any change in health status of their patients with Cushing's syndrome, rather than relying on fever and dyspnoea as typical features. The clinical course of COVID-19 might also be difficult to predict in patients with active Cushing's syndrome. Generally, patients with COVID-19 and a history of obesity, hypertension, or diabetes have a more severe course, leading to increased morbidity and mortality.1 Because these conditions are observed in most patients with active Cushing's syndrome,2 these patients might be at an increased risk of severe course, with progression to acute respiratory distress syndrome (ARDS), when developing COVID-19. However, a key element in the development of ARDS during COVID-19 is the exaggerated cellular response induced by the cytokine increase, leading to massive alveolar–capillary wall damage and a decline in gas exchange.5 Because patients with Cushing's syndrome might not mount a normal cytokine response,4 these patients might parodoxically be less prone to develop severe ARDS with COVID-19. Moreover, Cushing's syndrome and severe COVID-19 are associated with hypercoagulability, such that patients with active Cushing's syndrome might present an increased risk of thromboembolism with COVID-19. Consequently, because low molecular weight heparin seems to be associated with lower mortality and disease severity in patients with COVID-19,6 and because anticoagulation is also recommended in specific conditions in patients with active Cushing's syndrome,7 this treatment is strongly advised in hospitalised patients with Cushing's syndrome who have COVID-19. Furthermore, patients with active Cushing's syndrome are at increased risk of prolonged duration of viral infections, as well as opportunistic infections, particularly atypical bacterial and invasive fungal infections, leading to sepsis and an increased mortality risk,2 and COVID-19 patients are also at increased risk of secondary bacterial or fungal infections during hospitalisation.1 Therefore, in cases of COVID-19 during active Cushing's syndrome, prolonged antiviral treatment and empirical prophylaxis with broad-spectrum antibiotics1, 4 should be considered, especially for hospitalised patients (panel ). Panel Risk factors and clinical suggestions for patients with Cushing's syndrome who have COVID-19 Reduction of febrile response and enhancement of dyspnoea Rely on different symptoms and signs suggestive of COVID-19, such as cough, dysgeusia, anosmia, and diarrhoea. Prolonged duration of viral infections and susceptibility to superimposed bacterial and fungal infections Consider prolonged antiviral and broad-spectrum antibiotic treatment. Impairment of glucose metabolism (negative prognostic factor) Optimise glycaemic control and select cortisol-lowering drugs that improve glucose metabolism. Hypertension (negative prognostic factor) Optimise blood pressure control and select cortisol-lowering drugs that improve blood pressure. Thrombosis diathesis (negative prognostic factor) Start antithrombotic prophylaxis, preferably with low-molecular-weight heparin treatment. Surgery represents the first-line treatment for all causes of Cushing's syndrome,8, 9 but during the pandemic a delay might be appropriate to reduce the hospital-associated risk of COVID-19, any post-surgical immunodepression, and thromboembolic risks.10 Because immunosuppression and thromboembolic diathesis are common Cushing's syndrome features,2, 4 during the COVID-19 pandemic, cortisol-lowering medical therapy, including the oral drugs ketoconazole, metyrapone, and the novel osilodrostat, which are usually effective within hours or days, or the parenteral drug etomidate when immediate cortisol control is required, should be temporarily used.9 Nevertheless, an expeditious definitive diagnosis and proper surgical resolution of hypercortisolism should be ensured in patients with malignant forms of Cushing's syndrome, not only to avoid disease progression risk but also for rapidly ameliorating hypercoagulability and immunospuppression;9 however, if diagnostic procedures cannot be easily secured or surgery cannot be done for limitations of hospital resources due to the pandemic, medical therapy should be preferred. Concomitantly, the optimisation of medical treatment for pre-existing comorbidities as well as the choice of cortisol-lowering drugs with potentially positive effects on obesity, hypertension, or diabates are crucial to improve the eventual clinical course of COVID-19. Once patients with Cushing's syndrome are in remission, the risk of infection is substantially decreased, but the comorbidities related to excess glucocorticoids might persist, including obesity, hypertension, and diabetes, together with thromboembolic diathesis.2 Because these are features associated with an increased death risk in patients with COVID-19,1 patients with Cushing's syndrome in remission should be considered a high-risk population and consequently adopt adequate self-protection strategies to minimise contagion risk. In conclusion, COVID-19 might have specific clinical presentation, clinical course, and clinical complications in patients who also have Cushing's syndrome during the active hypercortisolaemic phase, and therefore careful monitoring and specific consideration should be given to this special, susceptible population. Moreover, the use of medical therapy as a bridge treatment while waiting for the pandemic to abate should be considered. Go to: Acknowledgments RP reports grants and personal fees from Novartis, Strongbridge, HRA Pharma, Ipsen, Shire, and Pfizer; grants from Corcept Therapeutics and IBSA Farmaceutici; and personal fees from Ferring and Italfarmaco. AMI reports non-financial support from Takeda and Ipsen; grants and non-financial support from Shire, Pfizer, and Corcept Therapeutics. BMKB reports grants from Novartis, Strongbridge, and Millendo; and personal fees from Novartis and Strongbridge. AC reports grants and personal fees from Novartis, Ipsen, Shire, and Pfizer; personal fees from Italfarmaco; and grants from Lilly, Merck, and Novo Nordisk. All other authors declare no competing interests. Go to: References 1. Kakodkar P, Kaka N, Baig MN. A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19) Cureus. 2020;12 [PMC free article] [PubMed] [Google Scholar] 2. Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BMK, Colao A. Complications of Cushing's syndrome: state of the art. Lancet Diabetes Endocrinol. 2016;4:611–629. [PubMed] [Google Scholar] 3. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17:233–247. [PubMed] [Google Scholar] 4. Hasenmajer V, Sbardella E, Sciarra F, Minnetti M, Isidori AM, Venneri MA. The immune system in Cushing's syndrome. Trends Endocrinol Metab. 2020 doi: 10.1016/j.tem.2020.04.004. published online May 6, 2020. [PubMed] [CrossRef] [Google Scholar] 5. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect. 2020;80:607–613. [PMC free article] [PubMed] [Google Scholar] 6. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18:1094–1099. [PubMed] [Google Scholar] 7. Isidori AM, Minnetti M, Sbardella E, Graziadio C, Grossman AB. Mechanisms in endocrinology: the spectrum of haemostatic abnormalities in glucocorticoid excess and defect. Eur J Endocrinol. 2015;173:R101–R113. [PubMed] [Google Scholar] 8. Nieman LK, Biller BM, Findling JW. Treatment of Cushing's syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2015;100:2807–2831. [PMC free article] [PubMed] [Google Scholar] 9. Pivonello R, De Leo M, Cozzolino A, Colao A. The treatment of Cushing's disease. Endocr Rev. 2015;36:385–486. [PMC free article] [PubMed] [Google Scholar] 10. Newell-Price J, Nieman L, Reincke M, Tabarin A. Endocrinology in the time of COVID-19: management of Cushing's syndrome. Eur J Endocrinol. 2020 doi: 10.1530/EJE-20-0352. published online April 1. [PubMed] [CrossRef] [Google Scholar] From https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282791/
    1 point
  33. https://doi.org/10.1002/jbmr.4033 ABSTRACT Endogenous Cushing's syndrome (CS) is a rare cause of secondary osteoporosis. The long‐term consequences for bone metabolism after successful surgical treatment remain largely unknown. We assessed bone mineral density and fracture rates in 89 patients with confirmed Cushing's syndrome at the time of diagnosis and 2 years after successful tumor resection. We determined five bone turnover markers at the time of diagnosis, 1 and 2 years postoperatively. The bone turnover markers osteocalcin, intact procollagen‐IN‐propeptide (PINP), alkaline bone phosphatase, CTX‐I, and TrAcP 5b were measured in plasma or serum by chemiluminescent immunoassays. For comparison, 71 sex‐, age‐, and body mass index (BMI)‐matched patients in whom Cushing's syndrome had been excluded were studied. None of the patients received specific osteoanabolic treatment. At time of diagnosis, 69% of the patients had low bone mass (mean T‐score = −1.4 ± 1.1). Two years after successful surgery, the T‐score had improved in 78% of patients (mean T‐score 2 years postoperatively −1.0 ± 0.9). The bone formation markers osteocalcin and intact PINP were significantly decreased at time of diagnosis (p ≤ 0.001 and p = 0.03, respectively), and the bone resorption marker CTX‐I and TrAcP 5b increased. Postoperatively, the bone formation markers showed a three‐ to fourfold increase 1 year postoperatively, with a moderate decline thereafter. The bone resorption markers showed a similar but less pronounced course. This study shows that the phase immediately after surgical remission from endogenous CS is characterized by a high rate of bone turnover resulting in a striking net increase in bone mineral density in the majority of patients. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research. Introduction Cushing's syndrome (CS) is a rare disease with approximately 0.7 to 2.4 new cases per 1 million per year.1 Osteoporosis and osteopenia are typical comorbidities of patients with endogenous and exogenous CS. Depending on the study, 60% to 80% of patients have evidence for a reduced bone mineral density2 characteristically affecting the entire skeleton.3 About 5% of all cases of secondary osteoporosis are caused by hypercortisolism.4 However, data from prospective, well‐powered studies are rare, and few risk factors that would predict bone health have been identified so far. Guidelines for the management of osteoporosis due to endogenous CS are still missing.5 In terms of risk assessment, the subtype of CS does not seem to influence osteoporosis risk,6 whereas the morning cortisol levels are negatively correlated with lumbar bone mineral density.6 The duration of endogenous Cushing's syndrome (or the duration of exogenous replacement therapy after successful surgery) obviously affects bone mineral density.7 Whether the T‐score is the best predictor for fracture risk is not quite clear.2 Another area of uncertainty is the natural course of osteoporosis and bone turnover markers once the diagnosis of Cushing's syndrome has been established. A number of studies have addressed this topic, but the interpretation of the results is hampered because of limited patient numbers, concomitant osteoanabolic treatment, or both.8-10 In‐depth insight on bone remodeling in CS might come from bone turnover marker studies. For example, the bone formation marker osteocalcin is suppressed in untreated CS,3 a consistent observation making it useful as a diagnostic marker for CS.2 Based on the paucity of data, the lack of evidence for treatment guidelines, and the pressing open questions regarding risk assessment and management of osteoporosis, we performed a sufficiently powered study to analyze the natural course of bone turnover and bone mineral density in a monocentric cohort of patients with endogenous Cushing's syndrome. To the best of our knowledge, this is the first such study, and the data obtained will be instrumental for clinicians who care for patients with Cushing's syndrome. Materials and Methods Patients This study was performed as part of the prospective German Cushing registry, which has included 450 consecutive patients referred to our department for suspected CS since 2012. Structure and general characteristics of the registry have been described in detail previously.11-14 All patients included in the registry underwent a standardized biochemical screening and clinical examination at time of diagnosis and a yearly follow‐up after treatment to treat comorbidities and diagnose recurrence of the disease early. In all patients, standard screening for CS with a 1 mg low‐dose overnight dexamethasone suppression test (LDDST), collection of 24‐hour urine (UFC), and sampling of midnight salivary cortisol were performed. When the diagnosis of CS was confirmed, further subtyping was based on plasma adrenocorticotropic hormone (ACTH), corticotropin‐releasing hormone (CRH) test, high‐dose dexamethasone suppression test, imaging, and inferior petrosal sinus sampling (in case of ACTH dependence). Final diagnosis was CS in 156 patients and exclusion of CS in the remaining 294 patients. Patients with excluded CS were a quite heterogenic group with lead symptoms such as obesity (73%), arterial hypertension (50%), or hirsutism (33%). Final diagnoses in these subjects were metabolic syndrome, polycystic ovary syndrome (PCOS), obesity, depression, or primary hyperaldosteronism. Patient selection is shown in Fig. 1. Figure 1 Open in figure viewerPowerPoint Patient selection. *Very young age; patient conducted densitometry in a different clinic/outpatient clinic; patient refused densitometry. CS = Cushing's syndrome; BMD = bone mineral density; BMI = body mass index. Bold text indicates actual cohort of the study. In our analysis, we excluded patients for whom no densitometry data were available (n = 63) and patients receiving pharmacologic treatment for osteoporosis following diagnosis (n = 4). Densitometry data were not available for multiple reasons (very young age, external densitometry in a different clinic, missing consent to perform densitometry). We matched the remaining 89 patients with 71 controls subjects selected from those subjects in whom CS was excluded. Matching was done according to sex, age, and body mass index (BMI). None of the patients and controls received specific osteoanabolic or antiresorptive treatment, but 47% of patients with CS received vitamin D supplementation after remission. At time of diagnosis, 11% of controls and 17% of patients with CS received vitamin D supplementation. Methods In patients with confirmed CS, a bone mineral densitometry was conducted. Bone mineral density (BMD) was determined at the lumbar spine and the femur (neck and total femur). If a reduced bone mineral density was diagnosed, a follow‐up densitometry was performed 2 years after surgery. If bone mineral density was normal initially or during follow‐up, only one further densitometry was performed 2 or 3 years after initial diagnosis. An improvement or decrease of bone mineral density was defined according to the least significant change (LSC = 2.8 × 1.8%).15 Accordingly, an alteration of more than 5.04% of BMD was rated as significant. A detailed fracture history was taken and X‐ray of the spine was performed when clinical suspicion for fractures was high. In all patients, blood samples (serum and plasma) were taken at time of diagnosis and also 1 and 2 years after successful transsphenoidal surgery or adrenalectomy. Blood was taken in the fasting state between 8:00 and 10:00 a.m. Samples were centrifuged within 20 minutes at 4°C and stored at −80° until assayed. Three bone formation markers and two bone resorption markers were measured: osteocalcin, intact procollagen I‐N‐propeptide (PINP), and bone alkaline phosphatase (BAP) as bone formation markers, and CrossLaps (CTX‐I) and tartrate‐resistant acid phosphatase (5b TrAcP5b) as bone resorption marker, on basis of published data demonstrating their usefulness in CS and primary osteoporosis.2, 16 Samples were measured at the Endocrine Laboratory of the Department of Internal Medicine IV on the iSYS automated analyzer (IDS‐iSYS, Boldon, UK) by well‐validated assays.17, 18 Published, method‐specific reference intervals are available from a large healthy population.19, 20 For the determination of osteocalcin, an N‐MID assay was used, as pre‐analytics are less critical in this assay.21 TrAcp 5b is a new marker, which, in contrast to CTX‐1, can also reliably be measured in the non‐fasting state.22 Statistical analysis In a priori power analysis, we calculated that a total sample size of 102 would be sufficient to identify significant differences between groups, assuming a medium effect size (0.5), a power of 1 – β = 0.80 and a type I error of α = 0.05, with 51 subjects having Cushing's syndrome and 51 subjects being control subjects after excluding Cushing's syndrome. For statistical analysis, SPSS 25 (IBM Corp., Armonk, NY, USA) was used. Clinical characteristics are shown as mean and standard deviation when data is normal distributed; otherwise as median and ranges. Because of the lack of normal distribution of bone turnover markers, nonparametric tests were used to test differences between groups. Differences between bone turnover markers at different times were tested by Friedman test. Multiple regression analysis was used to investigate differences between CS and the control group regarding bone turnover markers adjusted for sex, age, and BMI. Any p values < 0.05 were considered to indicate statistical significance. Results Patient characteristics The clinical and biochemical characteristics of the patient sample are summarized in Table 1. Sixty‐five percent of patients had pituitary CS, 28% adrenal, and 7% suffered from ectopic CS. Patients and controls were well‐matched regarding sex, age, and vitamin D levels and supplementation, but differed in terms of diabetes prevalence. Table 1. Clinical and Biochemical Baseline Characteristics of Patients with Cushing's Syndrome (CS) and Control Subjects in Whom CS Has Been Excluded CS at time of diagnosis (n = 89) CS excluded (n = 71) p Value Sex 66 women (74%), 23 men (26%) 53 women (75%), 18 men (25%) 0.94 Age (years) 44 ± 13 43 ± 14 0.56 BMI 30 ± 7 31 ± 6 0.11 Vitamin D (ng/mL) 24 ± 10 24 ± 12 0.59 Vitamin D supplementation 17% 11% 0.37 Diabetes mellitus 30% (26) 11% (7) 0.007 Morning serum cortisol (μg/dL) 18 (11.7–24.9) 8.4 (5.9–11.6) ≤0.001 LDDST (μg/dL) 14.7 (7.7–23.7) 1.0 (0.8–1.2) ≤0.001 UFC (μg/24 h) 587 (331–843) 140 (78–216) ≤0.001 ACTH (pg/mL) 47 (9–76) 13 (9–18) ≤0.001 Late‐night salivary cortisol (ng/mL) 7.9 (3.3–11.8) 1.2 (0.6–1.8) ≤0.001 Bone turnover markers Osteocalcin (ng/mL) 8 (5–13) 13 (10–17) <0.001 PINP (ng/mL) 35 (29–62) 52 (35–73) 0.025 BAP (μg/L) 23 (16–31) 17 (14–24) 0.006 CTX‐I (ng/mL) 0.28 (0.17–0.42) 0.23 (0.12–0.32) 0.033 TrAcP (U/L) 2.3 (1.7–3.4) 1.9 (1.3–2.4) 0.009 Date are shown as mean ± standard deviation or median and ranges. BMI = body mass index; LDDST = low‐dose dexamethasone suppression test; UFC = urinary free cortisol; ACTH = adrenocorticotropic hormone; PINP = intact procollagen I‐N‐propeptide; BAP = bone alkaline phosphatase; CTX‐I = CrossLaps; TrAcP = tartrate‐resistant acid phosphatase. Bold numbers indicate statistical significance. Baseline evaluation At time of diagnosis, the mean levels of bone formation markers osteocalcin and intact PINP were significantly decreased compared with the controls, and the bone formation marker bone alkaline phosphatase was increased (Table 1; Fig. 2). Both bone degradation markers CTX and TrAcP were increased (Table 1). Taken together, this demonstrates increased bone resorption and decreased bone formation in florid CS. Results of multiple linear regression analysis comparing Cushing's syndrome patients and controls are shown in Table 2. Bone markers were similar in patients with a reduced bone mass versus those with a normal bone mass (data not shown). Figure 2 Open in figure viewerPowerPoint Bone turnover markers and bone mineral density at baseline and 1 and 2 years after remission. Boxplot = median and ranges of bone turnover marker in patients with Cushing's syndrome.Gray box = median and ranges of bone turnover markers in the control group.PINP = procollagen I‐N‐propeptide; BAP = bone alkaline phosphatase; TrAcP = tartrate‐resistant acid phosphatase; CTX‐I = CrossLaps. Table 2. Results of Multiple Linear Regression Analysis Comparing Cushing's Syndrome Patients Versus Controls Dependent variable Standardized regression coefficient and p value for group variable Unadjusted Adjusted for age, sex, and BMI Osteocalcin (ng/mL) −0.392, 0.006 −0.375, 0.010 PINP (ng/mL) −0.215, 0.204 −0.256, 0.145 BAP (μg/L) 0.404, 0.001 0.470, <0.001 CTX‐I (ng/mL) 0.111, 0.366 0.065, 0.616 TrAcP (U/L) 0.227, 0.014 0.186, 0.069 PINP = procollagen I‐N‐propeptide; BAP = bone alkaline phosphatase; CTX‐I = CrossLaps; TrAcP = tartrate‐resistant acid phosphatase. Bold numbers indicate statistical significance. Overall, bone mineral density was decreased with an average lowest T‐score of −1.4 (±1.1). BMD was significantly lower (p = 0.001) at the femoral neck (T‐score = −0.9 ± 1.0) and the spine (T‐score = −1.0 ± 1.5) compared with the total femur (T‐score = −0.5 ± 1.2). Twenty‐eight patients (32%) had a normal bone mineral density, 46 (52%) osteopenia, and the other 15 patients (17%) osteoporosis with a T‐score lower than −2.5. Seventeen of the patients (19%) had a history of low‐trauma osteoporotic fractures (9 vertebral fractures, 8 nonvertebral fractures). The fractures took place shortly before diagnosis (58%) or more than 2 years before diagnosis of the CS (42%). Patients with osteoporotic fractures had a significantly lower T‐score than patients without fractures (T‐score = −1.9 ± 0.8 versus −1.3 ± 1.1, p = 0.03) but did not differ in the values of the bone turnover markers or standard biochemical screening. Subtype, age, or BMI also did not differ between groups. However, men were significantly at higher risk of having fractures than women (35% of men had fractures versus 14% of women, p = 0.03). Both severity of hypercortisolism and duration of CS did not contribute to fractures rates (data not shown), but UFC was significantly higher in patients with a T‐score lower than −1.5 (Table 3). Table 3. Biochemical Markers in Patients With Cushing's Syndrome With a T‐Score Lower Than −1.5 and Above −1.5 Shown in Median and Ranges Variable T‐score < −1.5 (n = 39) T‐score ≥ −1.5 (n = 42) p Values LDDST (μg/dL) 16.6. (10.3–28.3) 11.9 (6.1–21.9) 0.12 UFC (μg/24 h) 706 (410–906) 398 (285–787) 0.03 Late‐night salivary cortisol (ng/mL) 8.3 (3.5–13.6) 5.7 (2.9–11.7) 0.39 ACTH (pg/mL) 53 (16–73) 42 (6–82) 0.88 LDDST = low‐dose dexamethasone suppression test; UFC = urinary free cortisol; ACTH = adrenocorticotropic hormone. Bold numbers indicate statistical significance. One‐ and 2‐year follow‐up Surgical tumor resection leading to biochemical remission of CS resulted in a strong increase of bone formation markers tested at 1‐year follow‐up (Table 4; Fig. 2A, B). After 2 years, the markers had decreased slightly but remained elevated. Bone resorption markers were mildly increased at time of diagnosis, increased further at 1 year post‐surgery, and returned almost to normal levels at 2 years (Table 4; Fig. 2D, E). A follow‐up bone densitometry conducted in 40 patients showed a parallel increase of the T‐score of 0.6 ± 0.8 (Fig. 2F). In particular, BMD of the spine improved (Table 5). Table 4. Bone Turnover Markers and Bone Mass in Patients With Cushing's Syndrome at Time of Diagnosis and During 2 Years of Follow‐Up Time of diagnosis (n = 50) 1 year in remission (n = 45) 2 years in remission (n = 38) p (0 versus 1) p (0 versus 2) p (1 versus 2) T‐score −1.5 (−2.0 to −0.8) – −1.1 (−1.5 to −0.4) – <0.001 – Osteocalcin (ng/mL) 8 (5–13) 30 (14–60) 21 (13–31) <0.001 0.008 0.3 PINP (ng/mL) 35 (29–62) 117 (52–221) 69 (46–113) <0.001 0.1 0.1 BAP (μg/L) 23 (16–31) 26 (19–38) 22 (15–31) 0.2 0.4 0.1 CTX‐I (ng/mL) 0.28 (0.17–0.42) 0.51 (0.22–0.91) 0.25 (0.18–0.73) 0.01 0.1 0.04 TrAcP (U/L) 2.3 (1.7–3.4) 2.8 (1.8–4.0) 2.3 (2–3.2) 0.1 0.6 0.002 PINP = procollagen I‐N‐propeptide; BAP = bone alkaline phosphatase; CTX‐I = CrossLaps; TrAcP = tartrate‐resistant acid phosphatase. Bold numbers indicate statistical significance. Table 5. Overview: T‐Scores, Z‐Scores, and BMD Values With Percent Changes (Mean and Standard Deviation) Variable CS at time of diagnosis CS 2 years in remission p Values, percent changes (↑) Femoral neck T‐score femoral neck −0.81 ± 0.97 −0.59 ± 0.86 0.06 Z‐score femoral neck −0.59 ± 0.98 −0.28 ± 0.79 0.02 BMD (g/cm2) femoral neck 0.91 ± 0.12 0.95 ± 0.12 0.16; 4% ↑ Femur T‐score femur −0.49 ± 1.11 −0.42 ± 1.04 0.67 Z‐score femur −0.40 ± 1.04 −0.37 ± 0.85 0.31 BMD (g/cm2) femur 0.95 ± 0.15 0.97 ± 0.14 0.77, 2% ↑ Spine T‐score spine −0.96 ± 1.56 −0.55 ± 1.25 <0.001 Z‐score spine −0.85 ± 1.53 −0.58 ± 1.14 <0.001 BMD (g/cm2) spine 1.08 ± 0.22 1.13 ± 0.15 0.001, 0.6% ↑ BMD = bone mineral density; CS = Cushing's syndrome. Bold numbers indicate statistical significance. In 78% of patients, bone mineral density improved after 2 years; in 45% of patients, T‐score improved more than 0.5. No clinical fractures occurred after successful treatment of the CS. There was no significant correlation between improvement of bone mineral density and any of the bone turnover markers. Discussion This study investigated for the first time to our knowledge a panel of bone formation and resorption markers in a large cohort of patients with CS over the long term. The unique and comprehensive data show that initially bone metabolism is characterized by decreased bone formation and increased bone resorption, in line with the classical action of glucocorticoids. Successful treatment of endogenous Cushing's syndrome leads to a strong activation of bone turnover, characterized by increased bone formation and bone resorption, a process that is continuous beyond year 2 after remission of CS, although at a reduced activity level. In parallel, bone mineral density increases in the majority of patients. Although 19% had low‐trauma fractures at baseline, none of the subjects experienced clinical fractures during follow‐up. In summary, these data give new insight into bone healing after remission of CS. They strongly suggest that an observational approach to the bone phenotype is justified as long as remission from CS is secured. Reversibility of osteoporosis and bone turnover markers Although established in osteoporosis research, bone turnover markers are not measured on a routine basis in patients with CS. However, it is a consistent result from different studies that osteocalcin is depressed in patients with CS. In fact, this finding is so reliable that it was even suggested to use osteocalcin in the diagnosis of CS.2 P1NP and procollagen carboxy‐terminal propeptide (P1CP) have also been studied in several studies, with contradictory results.23 In a retrospective study with 21 patients with CS, it was shown that osteocalcin is depressed; this applies also for PINP, whereas CTX is increased.24 Some studies already have focused on the reversibility of osteoporosis after treatment of CS. In the majority of patients, bone mineral density increased within 2 years after successful treatment8-10, 25 Hermus and colleagues showed in a study with 20 patients that bone mineral density did not change 3 or 6 months after surgery but increased thereafter in almost all patients.8 In a study with 68 patients, the patients were followed up for 4 years. Bone mineral density increased over lumbar spine and femur but decreased at the forearm.25 The authors concluded that bone minerals were redistributed from the peripheral to the axial skeleton. In our study, bone mineral density also improved in the majority of patients but remained reduced in some. We did not find any difference in bone turnover markers between patients with improvement and without improvement. Current treatment guidelines and treatment suggestions As observed in our study, bone formation markers increase significantly after surgical cure, whereas bone degradation markers are mildly elevated at baseline and increase slightly at 1 year, returning within the normal range at 2 years. So far, there is no international guideline on the treatment of osteoporosis induced by endogenous CS and very few controlled interventional studies. In an opinion paper, Scillitani and colleagues recommended to treat all patients with vitamin D and calcium but not with bisphosphonates.5 In a randomized open‐label study by Di Somma and colleagues,26 39 patients (18 patients with active CS and 21 patients with CS in remission) received alendronate or no medication. Patients with active CS also received ketoconazole to control hypercortisolism. Bone mineral density improved and serum levels of osteocalcin increased in patients who received alendronate to a greater extent than those receiving no alendronate. In a small study by the same research group,27 15 patients with CS (9 adolescent patients and 6 adults) were observed for 2 years after successful treatment, showing that osteocalcin levels and bone mineral density increased significantly. Strengths and limitations Although this study has several strengths, including the large prospective design and measuring a panel of bone formation and resorption markers, there are a few limitations. Some asymptomatic fractures may have been overlooked because an X‐ray was not taken systematically in each patient. Furthermore, a follow‐up bone densitometry was not available for all patients. Additionally, patients in the control group suffered from diabetes, overweight, arterial hypertension, or other diseases. Novel aspects and outlook This study analyzes for the first time in a comprehensive way bone turnover markers during the course of CS. The data show that cure from CS leads to increases in bone remodeling and bone mineral density, in line with spontaneous “bone healing.” Our data support a wait‐and‐watch strategy despite a high endogenous risk for additional fractures, based on the baseline assessment. This observation will influence future therapeutic strategies in patients with CS. Our data suggest that the phase immediately after remission from CS is characterized by a high rate of bone turnover, resulting in a spontaneous net increase in bone mineral density in the majority of patients. Both bone attachment and bone degradation markers increase significantly, leading to an increase in bone mass and to a reduced risk of osteoporotic fractures. This unconstrained increase in bone formation markers after remission should be considered before specific therapy is initiated. Our data do not favor specific pharmacologic interventions with bisphosphonates or denosumab during this phase of remodeling because they may disrupt the osteoblast‐mediated bone mass increase. Disclosures All authors state that they have no conflicts of interest. Acknowledgments This work is part of the German Cushing's Registry CUSTODES and has been supported by a grant from the Else Kröner‐Fresenius Stiftung to MR (2012_A103 and 2015_A228). Additionally, AR, FB, and MR received funding by the Deutsche Forschungsgemeinschaft (CRC/TRR 205/1 “The Adrenal Gland”). Furthermore, funds for this project were provided by the Verein zur Förderung von Wissenschaft und Forschung an der Medizinischen Fakultät der Ludwig‐Maximilians‐Universität München eV to LB. The data are stored on the following repository: https://figshare.com/ and will be made accessible after publication of the article. Authors’ roles: LB served as the principal investigator in this work and was responsible for the study conception and design, the analysis and interpretation of the data, and the drafting of the manuscript. JF, SZ, AO, AR, GR and SB contributed to the collection and analysis of the data. MS, FB, MD, MB substantially contributed to the interpretation of the data and the drafting of the manuscript. RS contributed to the conceptual design of the study, the interpretation of data and the revision of the paper. MR contributed to the conceptual design of the study, the collection, analysis and interpretation of data, and the drafting and revision of the paper. All authors contributed to the critical revision of the manuscript and approved the final version for publication. From https://asbmr.onlinelibrary.wiley.com/doi/full/10.1002/jbmr.4033
    1 point
  34. A retrospective cohort study was performed to compare mortality risk and causes of death in adrenal insufficiency with an individually-matched reference population. Researchers examined 6,821 patients with adrenal insufficiency (primary, 2052; secondary, 3948) and 6,7564 individually-matched controls (primary, 20366; secondary, 39134). It was shown that in adrenal insufficiency, mortality was elevated, particularly primary, even with individual matching, and was found early in the disease course. The data demonstrated that cardiovascular disease was the major cause but mortality from infection was also high. The adrenal crisis was a common contributor. The outcomes suggested that early education for prompt treatment of infections and avoidance of adrenal crisis hold the potential to decrease mortality. The Journal of Clinical Endocrinology & Metabolism, dgab096, https://doi.org/10.1210/clinem/dgab096 Abstract Context Mortality data in patients with adrenal insufficiency are inconsistent, possibly due to temporal and geographical differences between patients and their reference populations. Objective To compare mortality risk and causes of death in adrenal insufficiency with an individually-matched reference population. Design Retrospective cohort study. Setting UK general practitioner database (CPRD). Participants 6821 patients with adrenal insufficiency (primary, 2052; secondary, 3948) and 67564 individually-matched controls (primary, 20366; secondary, 39134). Main outcome measures All-cause and cause-specific mortality; hospital admission from adrenal crisis. Results With follow-up of 40799 and 406899 person-years for patients and controls respectively, the hazard ratio (HR; [95%CI]) for all-cause mortality was 1.68 [1.58 - 1.77]. HRs were greater in primary (1.83 [1.66 - 2.02]) than in secondary (1.52 [1.40 - 1.64]) disease; (HR; primary versus secondary disease, 1.16 [1.03 - 1.30]). The leading cause of death was cardiovascular disease (HR 1.54 [1.32-1.80]), along with malignant neoplasms and respiratory disease. Deaths from infection were also relatively high (HR 4.00 [2.15 - 7.46]). Adrenal crisis contributed to 10% of all deaths. In the first two years following diagnosis, the patients’ mortality rate and hospitalisation from adrenal crisis were higher than in later years. Conclusion Mortality was increased in adrenal insufficiency, especially primary, even with individual matching and was observed early in the disease course. Cardiovascular disease was the major cause but mortality from infection was also high. Adrenal crisis was a common contributor. Early education for prompt treatment of infections and avoidance of adrenal crisis hold potential to reduce mortality. PDF available at https://academic.oup.com/jcem/advance-article-abstract/doi/10.1210/clinem/dgab096/6141434?redirectedFrom=fulltext
    1 point
  35. Biomarkers in a majority of Cushing’s syndrome patients with surgically induced disease remission showed a high rate of bone turnover and greater bone mineral density one and two years later, a study reports. Before treatment, these patients were found to have greater bone degradation and poorer bone formation, as can be common to disease-related bone disorders. Researchers believe their work is the first study of its kind, “and the data obtained will be instrumental for clinicians who care for patients with Cushing’s syndrome.” The study, “The Effect of Biochemical Remission on Bone Metabolism in Cushing’s Syndrome: A 2‐Year Follow‐Up Study,” was published in the Journal of Bone and Mineral Research. Two common co-conditions of Cushing’s syndrome are osteopenia, a loss of bone mass, and osteoporosis, in which the body makes too little bone, loses too much bone, or both. Studies suggest up to 80% of people with Cushing’s have evidence of reduced bone mineral density affecting the entire skeleton. However, few risk factors to predict bone health have been identified so far, and guidelines for osteoporosis management due to Cushing’s are lacking. Uncertainty as to the natural course of osteoporosis once a diagnosis of Cushing’s syndrome has been made is also still evident. Investigators at the University of Munich, reportedly for a first time, analyzed the natural course of bone mineral density and bone turnover (recycling) in a group of people with endogenous Cushing’s syndrome — which refers to the disease caused by excess cortisol in the bloodstream, often due to a tumor in the adrenal or pituitary glands. They examined medical records of 89 Cushing syndrome patients with a mean age of 44, of which 74% were women. Of these, 65% had pituitary Cushing’s (Cushing’s disease), 28% had adrenal, and 7% had ectopic Cushing’s, which is caused by tumors outside the adrenal or pituitary glands. A group of 71 age- and sex-matched healthy participants were included as controls. In all patients, blood samples were collected at the time of diagnosis (baseline) and one and two years after removing one or both adrenal glands or moving tumors affecting the pituitary gland. Blood samples were analyzed for biomarkers related to bone formation and degradation (resorption). At the study’s beginning, the mean levels of two bone formation markers, osteocalcin and intact PINP, were significantly decreased in patients compared with controls, whereas the bone formation marker alkaline phosphatase was increased. Both markers for bone degradation — called CTX and TrAcP — were also high, which demonstrated “increased bone resorption and decreased bone formation in [Cushing’s syndrome],” the team wrote. While bone markers were similar in participants with a reduced bone mass relative to those with a normal bone mass, bone mineral density was lower overall. Bone mineral density was significantly lower in the neck and spine compared with the femur (thigh bone). Normal bone mineral density was reported in 28 (32%) patients, while 46 (52%) had osteopenia, and the remaining 15 (17%) lived with osteoporosis. A history of low-trauma bone fractures due to osteoporosis occurred in 17 (19%) patients, taking place shortly before diagnosis in more than half of these (58%) people, and more than two years before a Cushing’s diagnosis in the remaining group (42%). Compared to patients without fractures, those with fractures had a significantly lower T‐score, a bone density measure that represents how close a person is to average peak bone density. While Cushing’s subtype, age, or body mass index (BMI, body fat based on height) did not differ between groups, men had a significantly higher risk of fractures than women (35% of men vs. 14% of women). Both disease severity and duration did not contribute to fractures rates, but urinary free cortisol (a circulating cortisol measure) was significantly higher in patients with a low T‐score. At the one year after tumor removal, which led to Cushing’s remission based on blood tests, a significant increase in bone formation markers was reported. These biomarkers decreased slightly at two years post-surgery, but remained elevated. At the beginning of the study, bone resorption markers were mildly increased, which rose further one year after surgery before returning almost to normal levels by two years. In parallel, bone density measures conducted in 40 patients showed a matching increase in T-score, particularly in the spine. After two years, bone mineral density improved in 78% of patients, and T-scores improved in 45% of them. No fractures occurred after Cushing’s treatment, and there was no significant correlation between bone turnover markers and better bone mineral density. “This study analyzes for the first time in a comprehensive way bone turnover markers during the course of [Cushing’s syndrome],” the researchers wrote. “Our data suggest that the phase immediately after remission from [Cushing’s syndrome] is characterized by a high rate of bone turnover, resulting in a spontaneous net increase in bone mineral density in the majority of patients.” These results “will influence future therapeutic strategies in patients” with Cushing’s syndrome, they added. Steve Bryson PhD Steve holds a PhD in Biochemistry from the Faculty of Medicine at the University of Toronto, Canada. He worked as a medical scientist for 18 years, within both industry and academia, where his research focused on the discovery of new medicines to treat inflammatory disorders and infectious diseases. Steve recently stepped away from the lab and into science communications, where he’s helping make medical science information more accessible for everyone. From https://cushingsdiseasenews.com/2021/02/19/successful-cushings-surgery-leads-to-better-bone-density-study-finds/
    1 point
  36. It's because desmopressin stimulates ACTH release in corticotrophs (normal cells) and in corticotrophinomas, i.e., tumor cells in the case of Cushing's disease. This effect has been shown to be higher in CD than in non-CD patients. However, I think the ability of the DDAVP test to discriminate between CD and non-CD is questionable, although I'm not too familiar with that area of the literature. What does your MRI say?
    1 point
  37. Novel genetic associations could pave the way for early interventions and personalized treatment of an incurable condition. Scientists from the University of Bergen (Norway) and Karolinska Institutet (Sweden) have discovered the genes involved in autoimmune Addison's disease, a condition where the body's immune systems destroys the adrenal cortex leading to a life-threatening hormonal deficiency of cortisol and aldosterone. Groundbreaking study The rarity of Addison's disease has until now made scanning of the whole genome for clues to the disease's genetic origins difficult, as this method normally requires many thousands of study participants. However, by combining the world's two largest Addison's disease registries, Prof. Eystein Husebye and his team at the University of Bergen and collaborators at Karolinska Institutet in Sweden (prof. Kämpe) were able to identify strong genetic signals associated with the disease. Most of them are directly involved in the development and functioning of the human immune system including specific molecular types in the so-called HLA-region (this is what makes matching donors and recipients in organ transplants necessary) and two different types of a gene called AIRE (which stands for AutoImmune REgulator). AIRE is a key factor in shaping the immune system by removing self-reacting immune cells. Variants of AIRE, such as the ones identified in this study, could compromise this elimination of self-reacting cells, which could lead to an autoimmune attack later in life. Knowing what predisposes people to develop Addison's disease opens up the possibilities of determining the molecular repercussions of the predisposing genetic variation (currently ongoing in Prof. Husebye's lab). The fact that it is now feasible to map the genetic risk profile of an individual also means that personalised treatment aimed at stopping and even reversing the autoimmune adrenal destruction can become a feasible option in the future. ### Contact information: Professor at the University of Bergen, Eystein Husebye - Eystein.Husebye@uib.no - cell phone +47 99 40 47 88 Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system. From https://www.eurekalert.org/pub_releases/2021-02/tuob-nsi021221.php
    1 point
  38. Do you mean dexamethasone suppression test?
    1 point
  39. Central hypothyroidism is prevalent in about 1 in 2 adults with Cushing’s syndrome, and thyroid function can be restored after curative surgery for most patients, according to study findings. “Our study findings have confirmed and greatly extended previous smaller studies that suggested a link between hypercortisolism and thyroid dysfunction but were inconclusive due to smaller sample size and short follow-up,” Skand Shekhar, MD, an endocrinologist and clinical investigator in the reproductive physiology and pathophysiology group at the National Institute of Environmental Health Sciences, NIH, told Healio. “Due to our large sample and longer follow-up, we firmly established a significant negative correlation between hypercortisolemia measures — serum and urinary cortisol, serum adrenocorticotropic hormone — and thyroid hormones triiodothyronine, free thyroxine and thyrotropin.” Shekhar and colleagues conducted a retrospective review of two groups of adults aged 18 to 60 years with Cushing’s syndrome. The first group was evaluated at the NIH Clinical Center from 2005 to 2018 (n = 68; mean age, 43.8 years; 62% white), and the second group was evaluated from 1985 to 1994 (n = 55; mean age, 37.2 years; 89% white). The first cohort was followed for 6 to 12 months to observe the pattern of thyroid hormone changes after surgical cure of adrenocorticotropic hormone-dependent Cushing’s syndrome. The second group underwent diurnal thyroid-stimulating hormone evaluation before treatment and during remission for some cases. Urinary free cortisol and morning thyroid hormone levels were collected for all participants. In the second group, researchers evaluated diurnal patterns of TSH concentrations with hourly measurements from 3 to 7 p.m. and midnight to 4 p.m. In the first group, adrenocorticotropic hormone and serum cortisol were measured. In the first cohort, seven participants were receiving levothyroxine for previously diagnosed primary or central hypothyroidism. Of the remaining 61 adults, 32 had untreated central hypothyroidism. Thirteen participants had free T4 at the lower limit of normal, and 19 had subnormal levels. There were 29 adults with subnormal levels of T3 and seven with subnormal TSH. Before surgery, 36 participants in the first group had central hypothyroidism. Six months after surgery, central hypothyroidism remained for 10 participants. After 12 months, the number of adults with central hypothyroidism dropped to six. Preoperative T3 and TSH levels were negatively associated with morning and midnight cortisol, adrenocorticotropic hormone and urinary free cortisol. In post hoc analysis, a baseline urinary free cortisol of more than 1,000 g per day was adversely associated with baseline and 6-month T3 and free T4 levels. In the second group, there were 51 participants not on thyroid-modifying drugs who had a thyroid function test 6 or 12 months after surgery. Before surgery, free T4 levels were subnormal in 17 participants, T3 levels were subnormal in 22, and TSH levels were in the lower half of the reference range or below in all but one participant. After surgery, two participants had below normal free T4, one had subnormal T3, and TSH levels were in the lower half of the reference range or below in 23 of 48 participants. Before surgery, there was no difference in mean TSH between daytime and nighttime. A mean 8 months after surgery, the second group had a normal nocturnal TSH surge from 1.3 mIU/L during the day to 2.17 mIU/L at night (P = .01). The nocturnal TSH increase persisted as long as 3 years in participants who had follow-up evaluations. “We found a very high prevalence of thyroid hormone deficiency that appears to start at the level of the hypothalamus-pituitary gland and extend to the tissue level,” Shekhar said. “Some of these patients may experience thyroid hormone deficiency symptoms, such as fatigue, depression, cold intolerance, weight gain, etc, as a result of systematic and tissue-level thyroid hormone deficiency. We also noted a strong correlation between hypothyroidism and hypogonadism, which implies that hypothyroid patients are also likely to suffer adverse reproductive effects. Thus, it is imperative to perform thorough thyroid hormone assessment in patients with Cushing’s syndrome, and thyroid hormone supplementation should be considered for these patients unless cure of Cushing’s syndrome is imminent.” Researchers said providers should routinely screen for hypothyroidism in adults with Cushing’s syndrome. Even after thyroid function is restored, regular follow-up should also be conducted. Further research is needed to investigate thyroid dysfunction in iatrogenic Cushing’s syndrome and the impact of these findings on euthyroid sick syndrome, Shekhar said. For more information: Skand Shekhar, MD, can be reached at skand.shekhar@nih.gov. From https://www.healio.com/news/endocrinology/20210208/thyroid-dysfunction-highly-prevalent-in-cushings-syndrome
    1 point
  40. The cancer medicine bexarotene may hold promise for treating Cushing’s disease, a study suggests. The study, “Targeting the TR4 nuclear receptor with antagonist bexarotene can suppress the proopiomelanocortin signalling in AtT‐20 cells,” was published in the Journal of Cellular and Molecular Medicine. Cushing’s disease is caused by a tumor on the pituitary gland, leading this gland to produce too much adrenocorticotropic hormone (ACTH). Excess ACTH causes the adrenal glands to release too much of the stress hormone cortisol; abnormally high cortisol levels are primarily responsible for the symptoms of Cushing’s. Typically, first-line treatment is surgical removal of the pituitary tumor. But surgery, while effective in the majority of cases, does not help all. Additional treatment with medications or radiation therapy (radiotherapy) works for some, but not others, and these treatments often have substantial side effects. “Thus, the development of new drugs for CD [Cushing’s disease] treatment is extremely urgent especially for patients who have low tolerance for surgery and radiotherapy,” the researchers wrote. Recent research has shown that a protein called testicular receptor 4 (TR4) helps to drive ACTH production in pituitary cancers. Thus, blocking the activity of TR4 could be therapeutic in Cushing’s disease. Researchers conducted computer simulations to screen for compounds that could block TR4. This revealed bexarotene as a potential inhibitor. Further biochemical tests confirmed that bexarotene could bind to, and block the activity of, TR4. Bexarotene is a type of medication called a retinoid. It is approved to treat cutaneous T-cell lymphoma, a rare cancer that affects the skin, and available under the brand name Targretin. When pituitary cancer cells in dishes were treated with bexarotene, the cells’ growth was impaired, and apoptosis (a type of programmed cell death) was triggered. Bexarotene treatment also reduced the secretion of ACTH from these cells. In mice with ACTH-secreting pituitary tumors, bexarotene’s use significantly reduced tumor size, and lowered levels of ACTH and cortisol. Cushing’s-like symptoms also eased; for example, bexarotene treatment reduced the accumulation of fat around the abdomen in these mice. Additional cellular experiments suggested that bexarotene specifically works on TR4 by changing the location of the protein. Normally, TR4 is present in the nucleus — the cellular compartment that houses DNA — where it helps to control the production of ACTH. But with bexarotene treatment, TR4 tended to go outside of the nucleus, leading to lower ACTH production. The researchers noted that other mechanisms may also be involved in the observed effects of bexarotene. “In summary, our work demonstrates that bexarotene is a potential inhibitor for TR4. Importantly, bexarotene may represent a new drug candidate to treat CD,” the researchers concluded. From https://cushingsdiseasenews.com/2021/02/05/bexarotene-cancer-drug-t-cell-lymphoma-acth-production/?preview_id=39289
    1 point
  41. Thyroid cancer survival rates are 84 percent for 10 years or more if diagnosed early. Early diagnosis is crucial therefore and spotting the unusual signs could be a matter of life and death. A sign your thyroid cancer has advanced includes Cushing syndrome. What is it? What is Cushing syndrome? Cushing syndrome occurs when your body is exposed to high levels of the hormone cortisol for a long time, said the Mayo Clinic. The health site continued: “Cushing syndrome, sometimes called hypercortisolism, may be caused by the use of oral corticosteroid medication. “The condition can also occur when your body makes too much cortisol on its own. “Too much cortisol can produce some of the hallmark signs of Cushing syndrome — a fatty hump between your shoulders, a rounded face, and pink or purple stretch marks on your skin.” In a study published in the US National Library of Medicine National Institutes of Health, thyroid carcinoma and Cushing’s syndrome was further investigated. The study noted: “Two cases of thyroid carcinoma and Cushing's syndrome are reported. “Both of our own cases were medullary carcinomas of the thyroid, and on reviewing the histology of five of the other cases all proved to be medullary carcinoma with identifiable amyloid in the stroma. “A consideration of the temporal relationships of the development of the carcinoma and of Cushing's syndrome suggested that in the two cases with papillary carcinoma these conditions could have been unrelated, but that in eight of the nine cases with medullary carcinoma there was evidence that thyroid carcinoma was present at the time of diagnosis of Cushing's syndrome. “Medullary carcinoma of the thyroid is also probably related to this group of tumours. It is suggested that the great majority of the tumours associated with Cushing's syndrome are derived from cells of foregut origin which are endocrine in nature.” In rare cases, adrenal tumours can cause Cushing syndrome a condition arising when a tumour secretes hormones the thyroid wouldn’t normally create. Cushing syndrome associated with medullary thyroid cancer is uncommon. The syndrome is more commonly caused by the pituitary gland overproducing adrenocorticotropic hormone (ACTH), or by taking oral corticosteroid medication. See a GP if you have symptoms of thyroid cancer, warns the NHS. The national health body added: “The symptoms may be caused by less serious conditions, such as an enlarged thyroid, so it's important to get them checked. “A GP will examine your neck and can organise a blood test to check how well your thyroid is working. “If they think you could have cancer or they're not sure what's causing your symptoms, you'll be referred to a hospital specialist for more tests.” Adapted from https://www.express.co.uk/life-style/health/1351753/thyroid-cancer-signs-symptoms-cushing-syndrome
    1 point
  42. A young healthcare worker who contracted COVID-19 shortly after being diagnosed with Cushing’s disease was detailed in a case report from Japan. While the woman was successfully treated for both conditions, Cushing’s may worsen a COVID-19 infection. Prompt treatment and multidisciplinary care is required for Cushing’s patients who get COVID-19, its researchers said. The report, “Successful management of a patient with active Cushing’s disease complicated with coronavirus disease 2019 (COVID-19) pneumonia,” was published in Endocrine Journal. Cushing’s disease is caused by a tumor on the pituitary gland, which results in abnormally high levels of the stress hormone cortisol (hypercortisolism). Since COVID-19 is still a fairly new disease, and Cushing’s is rare, there is scant data on how COVID-19 tends to affect Cushing’s patients. In the report, researchers described the case of a 27-year-old Japanese female healthcare worker with active Cushing’s disease who contracted COVID-19. The patient had a six-year-long history of amenorrhea (missed periods) and dyslipidemia (abnormal fat levels in the body). She had also experienced weight gain, a rounding face, and acne. After transferring to a new workplace, the woman visited a new gynecologist, who checked her hormonal status. Abnormal findings prompted a visit to the endocrinology department. Clinical examination revealed features indicative of Cushing’s syndrome, such as a round face with acne, central obesity, and buffalo hump. Laboratory testing confirmed hypercortisolism, and MRI revealed a tumor in the patient’s pituitary gland. She was scheduled for surgery to remove the tumor, and treated with metyrapone, a medication that can decrease cortisol production in the body. Shortly thereafter, she had close contact with a patient she was helping to care for, who was infected with COVID-19 but not yet diagnosed. A few days later, the woman experienced a fever, nausea, and headache. These persisted for a few days, and then she started having difficulty breathing. Imaging of her lungs revealed a fluid buildup (pneumonia), and a test for SARS-CoV-2 — the virus that causes COVID-19 — came back positive. A week after symptoms developed, the patient required supplemental oxygen. Her condition worsened 10 days later, and laboratory tests were indicative of increased inflammation. To control the patient’s Cushing’s disease, she was treated with increasing doses of metyrapone and similar medications to decrease cortisol production; she was also administered cortisol — this “block and replace” approach aims to maintain cortisol levels within the normal range. The patient experienced metyrapone side effects that included stomach upset, nausea, dizziness, swelling, increased acne, and hypokalemia (low potassium levels). She was given antiviral therapies (e.g., favipiravir) to help manage the COVID-19. Additional medications to prevent opportunistic fungal infections were also administered. From the next day onward, her symptoms eased, and the woman was eventually discharged from the hospital. A month after being discharged, she tested negative for SARS-CoV-2. Surgery for the pituitary tumor was then again possible. Appropriate safeguards were put in place to protect the medical team caring for her from infection, during and after the surgery. The patient didn’t have any noteworthy complications from the surgery, and her cortisol levels soon dropped to within normal limits. She was considered to be in remission. Although broad conclusions cannot be reliably drawn from a single case, the researchers suggested that the patient’s underlying Cushing’s disease may have made her more susceptible to severe pneumonia due to COVID-19. “Since hypercortisolism due to active Cushing’s disease may enhance the severity of COVID-19 infection, it is necessary to provide appropriate, multidisciplinary and prompt treatment,” the researchers wrote. From https://cushingsdiseasenews.com/2021/01/15/covid-19-may-be-severe-cushings-patients-case-report-suggests/?cn-reloaded=1
    1 point
  43. Update November 22, 2020 I have not updated my patients on the COVID-19 pandemic since March. Since the last update and as of today’s date, 12.2 million Americans have been infected with COVID-19 and 256,000 Americans have died. Several of Dr. Friedman’s patients have been infected with COVID-19. Many businesses have closed and there have been major economic loses. The response to the pandemic has unfortunately been politicized and I say unfortunately because the virus doesn’t distinguish based on victim’s political party. Please see Dr. Friedman’s Letter in the Los Angeles Jewish Journal https://jewishjournal.com/letters_to_the_editor/316110/letters-lockdown-vs-no-lockdown/. Dr. Friedman completely supports efforts to limit the spread of the virus, including wearing masks, social distancing, handwashing and staying at home. Listening to government officials including the CDC is crucial. Dr. Friedman agrees with data showing gatherings are much safer outside and encourages his patients to err on the side of safety and caution. Dr. Friedman is spearheading efforts at Charles R. Drew University to be a site for a vaccine study and after some delays, it looks like his University will be a site for the Sanofi vaccine in December 2020. Dr. Friedman is very excited about the promising results from the Moderna and Pfizer trials and thinks vaccines along with mask-wearing and social distancing will curtail the pandemic, hopefully in the latter half of 2021. He does think that COVID-19 will be with us for a long time. Dr. Friedman anticipates that changes due to COVID-19, including telemedicine and working from home will remain with us after the pandemic subsides. As mentioned in the March update, patients with endocrine problems such as Cushing’s syndrome, Addison’s Disease, hypopituitarism and diabetes have slightly impaired immune systems, making them potentially susceptible for a more severe infection by COVID-19. He would recommend those patients to be especially vigilant about mask-wearing/social distancing and to get a vaccine when it comes out. He advices his patients the following: Wear masks, social distancing, handwashing and staying at home as much as possible Use delivery services for groceries, food and medications. Wash hands frequently for 20 seconds and/or use hand sanitizer several times a day Avoid air travel, public gatherings and other public places as guided by local officials Quarantine if sick or exposed. Labcorp and Quest both introduced testing for COVID-19 using nasal swabs. Several other laboratories are also performing tests. Dr. Friedman recommends PCR testing and not rapid antigen testing. For those with symptoms of Coronavirus, he recommends seeing your primary care doctor for testing. Dr. Friedman is unable to provide requisitions or swabs for this testing that should be done by their primary doctor. While Dr. Friedman was initially enthusiastic about antibody testing, he is concerned about the quality of the tests and no longer recommends it. Labcorp and Quest are both still open and Quest has a new Peace of Mind program for lab services not related to COVID-19 and for patients who are 60 years of age or older, or have other conditions that put them at greater risk for COVID-19, in which patients can come to their nearby Quest location during the first hour of each day for VIP care. Dr. Friedman encourages people to get their hormone testing done and make their followup appointments. Many patients have requested extra supply of their medications. However, most insurances do not allow this and carefully monitor medication use. Dr. Friedman recommends patients to use a mail-order pharmacy and sign up for auto-refills so that they get a consistent supply of their medications. Except for patients sick with COVID-19, patients should not up-dose hydrocortisone Dr. Friedman has restarting in person visits on the last Tuesday of each month and continues to see patients via telemedicine on the other Tuesday nights. Please visit goodhormonehealth.com for more information or to schedule an appointment. Dr. Friedman’s staff will still be doing in person growth hormone stimulation tests on Tuesday night in an isolated and sanitized clinic setting. Dr. Friedman especially encourages patients to eat healthy and exercise (especially being outside) including walking, hiking, biking, aerobic videos yoga or pilates at home, during this stressful period. Dr. Friedman encourages patients to get their flu vaccine and the COVID-19 vaccine when available. Everyone should pray that the pandemic ends soon. Dr. Friedman wishes everyone to stay healthy
    1 point
  44. From message board member @sharm - Sharmyn McGraw: Hi All, I hope you can join us on Zoom this Saturday, Nov. 14, 2020 starting at 9:00 a.m. (PST). For those that can't make it, I will record the meeting and post it later on our Facebook page. I look forward to seeing you! Contact @sharm if you have questions or email her here: pituitarybuddy@hotmail.com
    1 point
  45. We have an opportunity for you to take part in a Cushing's Disease study(IPS_4636) for Patients. Our project number for this study is IPS_4636. Project Details: Web- Camera Interview There is a homework component Interview is 75-minutes long 125 Reward + 100 homework Things to Note: Patient study only, Caregivers please pass the link along Unique links, please do not pass along for 2nd use One Participant per household Want to share this opportunity? Let us know and we can provide a new link Preliminary questions are Mobile Friendly! Save this email to reference if you have any questions about the study! If you have any problems, email pm3@rarepatientvoice.com and reference the project number. If you hit reply, you will get an auto do-not-reply email. If you are interested in this study, please click the link below to answer a few questions to see if you qualify. Study Link: Link OR if the Study Hyperlink is not clickable above, please copy/paste this URL below. https://panel.rarepatientvoice.com/newdesign/site/rarepatientvoice/surveystart.php?surveyID=hld5jbejublj&panelMemberID=trfnbc7mvduh1gseff1h&invite=email Thanks as always for your participation! Please be aware that by entering this information you are not guaranteed that you will be selected to participate. As always, we do not share any of your contact information without your permission.
    1 point
  46. The treatment of adrenal insufficiency with hydrocortisone granules in children with congenital adrenal hyperplasia (CAH) was associated with an absence of adrenal crises and normal growth patterns over a 2-year period, according to study findings published in The Journal of Clinical Endocrinology and Metabolism. The study included a total of 17 children with CAH and 1 child with hypopituitarism. All included participants were <6 years old who were receiving current adrenocortical replacement therapy, including hydrocortisone with or without fludrocortisone. Hydrocortisone medications used in this population were converted from pharmacy compounded capsules to hydrocortisone granules without changing the dose. These study participants were followed by study investigators for 2 years. Glucocorticoid replacement therapy was given three times a day for a median treatment duration of 795 days. Treatment was adjusted by 3 monthly 17-hydroxyprogesterone (17-OHP) profiles in children with CAH. There were a 150 follow-up visits throughout the study. At each visit, participants underwent assessments that measured hydrocortisone dose, height, weight, pubertal status, adverse events, and incidence of adrenal crisis. A total of 40 follow-up visits had changes in hydrocortisone doses based on salivary measurements (n=32) and serum 17-OHP levels (n=8). At time of study entry, the median daily doses of hydrocortisone were 11.9 mg/m2 for children between the ages of 2 to 8 years, 9.9 mg/m2 for children between 1 month and 2 years, and 12.0 mg/m2 for children <28 days of age. At the end of the study, the respective doses for the 3 age groups were 10.2, 9.8, and 8.6. The investigators observed no trends in either accelerated growth or reduced growth; however, 1 patient with congenital renal hypoplasia and CAH did show reduced growth. While 193 treatment-emergent adverse events, including pyrexia, gastroenteritis, and viral upper respiratory tract infection, were reported in 14 patients, there were no observed adrenal crises. Limitations of this study included the small sample size as well as the relatively high drop-out rate of the initial sample. The researchers concluded that “hydrocortisone granules are an effective treatment for childhood adrenal insufficiency providing the ability to accurately prescribe pediatric appropriate doses.” Disclosure: Several study authors declared affiliations with the pharmaceutical industry. Please see the original reference for a full list of authors’ disclosures. Reference Neumann U, Braune K, Whitaker MJ, et al. A prospective study of children 0-7 years with CAH and adrenal insufficiency treated with hydrocortisone granules. Published online September 4, 2020. J Clin Endocrinol Metab. doi:10.1210/clinem/dgaa626
    1 point
  47. Generally overweight people have weight everywhere and don't get a buffalo hump. Please don't give up! I know it's hard to get a diagnosis but definitely worthwhile.
    1 point
  48. This is a remarkable paper and has big implications for testing and the diagnostic algorithm, especially given who the authors are. The blunt takeaway is do not use salivary cortisol for adrenal Cushing's because it doesn't work. They recommend dex test instead but we know that test has problems too--yes, even in adrenal cases. It's not clear to me if this is generalizable to all mild Cushing's, nor does it appear like cyclical or episodic Cushing's was considered. The other thing is that the technically "better" assay (LCMS) has worse sensitivity than the older, cheaper one (EIA). This is the same thing we saw with the UFC where the older RIAs cross-reacted with cortisol metabolites, so we traded it for the tandem mass spec that produces fewer false positives and more false negatives. I've made all of these points before with my local endo who cited one of the authors of this paper to refute me!
    1 point
  49. Context Late-night salivary cortisol (LNSC) measured by enzyme immunoassay (EIA-F) is a first-line screening test for Cushing’s syndrome (CS) with a reported sensitivity and specificity of >90%. However, liquid chromatography-tandem mass spectrometry, validated to measure salivary cortisol (LCMS-F) and cortisone (LCMS-E), has been proposed to be superior diagnostically. Objective, Setting, and Main Outcome Measures Prospectively evaluate the diagnostic performance of EIA-F, LCMS-F, and LCMS-E in 1453 consecutive late-night saliva samples from 705 patients with suspected CS. Design Patients grouped by the presence or absence of at least one elevated salivary steroid result and then subdivided by diagnosis. Results We identified 283 patients with at least one elevated salivary result; 45 had an established diagnosis of neoplastic hypercortisolism (CS) for which EIA-F had a very high sensitivity (97.5%). LCMS-F and LCMS-E had lower sensitivity but higher specificity than EIA-F. EIA-F had poor sensitivity (31.3%) for ACTH-independent CS (5 patients with at least one and 11 without any elevated salivary result). In patients with Cushing’s disease (CD), most non-elevated LCMS-F results were in patients with persistent/recurrent CD; their EIA-F levels were lower than in patients with newly diagnosed CD. Conclusions Since the majority of patients with ≥1 elevated late-night salivary cortisol or cortisone result did not have CS, a single elevated level has poor specificity and positive predictive value. LNSC measured by EIA is a sensitive test for ACTH-dependent Cushing’s syndrome but not for ACTH-independent CS. We suggest that neither LCMS-F nor LCMS-E improves the sensitivity of late-night EIA-F for CS. Cushing’s disease, ectopic ACTH, adrenal Cushing’s syndrome, diagnosis, assay performance Issue Section: Clinical Research Article From https://academic.oup.com/jes/advance-article/doi/10.1210/jendso/bvaa107/5876040
    1 point
×
×
  • Create New...