Jump to content

MaryO

~Chief Cushie~
  • Posts

    8,072
  • Joined

  • Last visited

  • Days Won

    549

Everything posted by MaryO

  1. Highlights EAS should be considered in patients presenting with rapid progression of ACTH-dependent hypercortisolism causing severe clinical and metabolic abnormalities. Ectopic ACTH secretion by a pheochromocytoma should be suspected in cases of ACTH-dependent Cushing syndrome in the presence of an adrenal mass. If required, medical management with steroidogenesis inhibitors can be initiated at the time of EAS diagnosis to control clinical and metabolic derangements associated with severe hypercortisolemia In patients with ACTH-dependent Cushing syndrome from an ectopic source, inhibiting steroidogenesis should be reserved for cases where the initial diagnosis is unclear or patients who are not suitable candidates for surgery. Unilateral adrenalectomy is indicated in the management of ACTH/CRH-secreting pheochromocytomas and is typically curative. Catecholamine blockade should be started prior to surgical removal of catecholamines-secreting pheochromocytomas. A multidisciplinary approach is required to diagnose and manage this condition. Abstract Background/Objective Ectopic co-secretion of corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) in silent (i.e., noncatecholamine-secreting) pheochromocytoma is a rare cause of Cushing Syndrome (CS). Case Report A 57-year-old woman rapidly developed hypercortisolism, clinically manifesting as fatigue, muscle weakness, weight gain, and worsening hypertension, and biochemically characterized by hypokalemia and marked elevation of serum cortisol and plasma ACTH. This acute presentation suggested a diagnosis of ectopic ACTH syndrome (EAS). Imaging studies revealed a right adrenal mass that enhanced after administration of the radioisotope 68Ga-DOTATATE. Plasma metanephrines were normal in two separate measurements. The possibility of a silent pheochromocytoma was considered. After controlling her hypercortisolism with metyrapone and surgical preparation with alpha blockade, the patient underwent elective right adrenalectomy. Pathology revealed a pheochromocytoma that stained focally for ACTH and CRH. Postoperatively, cortisol levels normalized, the hypothalamic–pituitary–adrenal (HPA) axis was not suppressed, and clinical symptoms from hypercortisolism abated. Discussion Patients who exhibit a rapid progression of ACTH-dependent hypercortisolism should be screened for ectopic ACTH syndrome (EAS). The use of functional imaging radioisotopes (such as gallium DOTA-peptides), improves the detection of ACTH-secreting tumors. Preoperative treatment with steroidogenesis inhibitors helps control clinical and metabolic derangements associated with severe hypercortisolemia, while alpha blockade prevents the onset of an adrenergic crisis. Conclusion We present a rare case of EAS due to a silent pheochromocytoma that co-secreted ACTH and CRH. Pheochromocytoma should be considered in patients with EAS who have an adrenal mass even in the absence of excessive catecholamine secretion. Key words ectopic ACTH syndrome Cushing Syndrome non-catecholamine-secreting pheochromocytoma Abbreviations EAS ectopic ACTH syndrome CS Cushing Syndrome CRH corticotropin-releasing hormone ACTH adrenocorticotropic hormone DHEA-S dehydroepiandrosterone sulfate UFC urine free cortisol PRA plasma renin activity Introduction Cushing Syndrome (CS) is rare, with an estimated incidence of 0.2-5.0 per million people per year, and prevalence of 39-79 per million (1). Ectopic ACTH Syndrome (EAS), a type of CS originating from extra-pituitary ACTH-secreting tumors, is uncommon. The prevalence of CS due to ACTH-secreting adrenal medullary lesions is not well established. However, EAS is observed in approximately 1.3% of all identified cases of pheochromocytoma (2). Recognizing EAS can be challenging due to its rarity, leading to delayed diagnosis. Neuroendocrine neoplasms can produce CRH, which can lead to the secretion of ACTH by the pituitary. In certain cases, co-secretion of ACTH and CRH by an adrenal neoplasm has been observed. Only two published cases have provided definitive biochemical and immunohistochemical evidence of exclusive CRH secretion (3). Case Report A 57-year-old woman with a history of well-controlled hypertension sought care due to a two-month history of 60 lb weight gain, facial rounding, easy bruising, muscle weakness, lower extremity edema and acne. Her blood pressure control had worsened, and laboratory tests showed a markedly low serum potassium level of 1.8 mmol/L while taking hydrochlorothiazide. To manage her blood pressure, she was prescribed a calcium channel blocker, an angiotensin receptor blocker, and potassium supplements. However, her symptoms worsened, and she was referred to our emergency department. Blood pressure at presentation to our hospital was 176/86 mmHg. She had characteristic features of CS, including face rounding, supraclavicular fullness, dorsocervical fat accumulation, pedal edema, oral candidiasis, multiple forearm ecchymoses, and acneiform skin eruptions. No visible abdominal striae were present. She had no family history of pheochromocytoma, or multiple endocrine neoplasia type 2. Serum cortisol level was 128 mcg/dL (normal range: 4.6-23.4) at 5 PM, with an ACTH level of 1055 pg/mL (normal range: 6-50); serum DHEA-S level was elevated at 445 mcg/dL (normal range: 8-188). Her 24-hour urine cortisol was at 12,566 mcg (normal range: 4.0-50.0). Plasma metanephrines were normal at <25 pg/mL (normal range: <57), and plasma normetanephrine was 44 (normal range: <148). A second plasma metanephrine measurement showed similar results. Serum aldosterone level and plasma renin activity were low at 2 ng/dL (normal range: 3-16) and 0.11 ng/mL/h (normal range: 0.25-5.82), respectively. Dopamine and methoxytyramine levels were not measured. An abdominal CT revealed a 4.8 x 4.5 x 5 cm right heterogeneously enhancing adrenal mass with a mean Hounsfield Unit of 68 in the non-contrast phase, and an absolute percentage washout of 30% (Fig 1A). The left adrenal gland appeared hyperplastic (Fig 1B). An Octreoscan, which was the in-hospital available nuclear medicine imaging modality, confirmed a 5.1 cm adrenal mass that was mild to moderately avid, with diffuse bilateral thickening of the adrenal glands and no other focal radiotracer avidity. A pituitary MRI did not show an adenoma, and EAS was suspected. Further evaluation with 68Ga-DOTATATE PET/CT (Fig 2) performed after her admission demonstrated an avid right adrenal mass consistent with a somatostatin receptor-positive lesion. No other suspicious tracer uptake was detected. These findings were consistent with a neuroendocrine tumor, such as pheochromocytoma. Download : Download high-res image (261KB) Download : Download full-size image Fig. 1. Preoperative abdominal computed tomography scan showing a 4.8 x 4.5 x 5 cm right heterogeneously enhancing adrenal mass with irregular borders (A) and a hyperplastic left adrenal gland (B). Download : Download high-res image (219KB) Download : Download full-size image Fig 2. 68Ga-DOTATATE PET/CT showing an avid right adrenal mass. To control her symptoms while undergoing workup, the patient received oral metyrapone 500 mg thrice daily and oral ketoconazole 200 mg twice daily. Ketoconazole was stopped due to an increase in transaminases. The dosage of metyrapone was increased to 500 mg four times daily and later decreased to alternating doses of 250 mg and 500 mg four times daily. Within 3 weeks of starting medical therapy, serum cortisol level normalized at 20 mcg/dL. The 24-hour UFC improved to 246.3 mcg/24h. She experienced gradual improvement in facial fullness, acne, and blood pressure control. The possibility of a silent pheochromocytoma was considered, and a-adrenergic blockade with doxazosin 1 mg daily was started 1 month prior surgery. She underwent surgery after two months of metyrapone therapy. With an unclear diagnosis and a large, heterogeneous adrenal mass, the surgical team elected to perform open adrenalectomy for en bloc resection due to concerns for an adrenal malignancy. The tumor was well-demarcated and did not invade surrounding structures (Figure 3A). H&E-stained sections showed classic morphologic features of a pheochromocytoma (Figure 3B), with immunohistochemistry demonstrating strong immunoreactivity for synaptophysin and chromogranin, and negative SF- I and inhibin stains excluding an adrenal cortical lesion. The sections analyzed by QuPath (4) revealed that approximately 4% of ce11s were ACTH cells, often found in isolation, and had a clear, high signal-to-noise staining (Figure 3C). CRH cells were less prevalent, comprising about 2.4% of the total analyzed cells, and tended to cluster together (Figure 3D). These cells had more background staining, resulting in a lower signal- to-noise ratio. Download : Download high-res image (663KB) Download : Download full-size image Figure 3. Gross and Histopathological analysis of the patient’s pheochromocytoma. (A) Image of the gross excised specimen. (B) H&E staining (200x final magnification) demonstrates prominent vascularity and cells with finely granular, eosinophilic cytoplasm and salt-and-pepper chromatin. (C) ACTH staining (200x final magnification) shows clear and isolated positive cells, representing about 4.0% of the section analyzed by QuPath. (D) CRH staining (200x final magnification) reveals tight clusters of positive cells, accounting for 2.4% of the total cells. Positive (human placenta and hypothalamus) and negative (thyroid gland) control tissues performed as expected (data not shown). The patient's postoperative recovery was uneventful, with a short course of hydrocortisone which was stopped 1 week after surgery after HPA axis evaluation showed normal results. After one month, hypercortisolism had resolved, as shown by a normal 24-hour UFC at 28 mcg. Administration of dexamethasone at 11 PM resulted in suppression of morning cortisol to 0.8 and 0.6 mcg/dL 1 and 7 months after surgery, respectively. Her liver function tests normalized, and blood pressure was well-controlled with amlodipine 10 mg daily and losartan 100 mg daily. Genetic testing for pheochromocytoma predisposition syndromes is currently planned. Discussion EAS accounts for 10-20% of cases of ACTH-dependent CS (5). This condition can be caused by several neuroendocrine neoplasms that produce bioactive ACTH (6) In the literature, we have found 99 documented cases of EAS caused by a pheochromocytoma. Of these, 93% showed ACTH expression. Only two cases have been reported with dual staining of ACTH and CRH (7). Exclusive CRH production has only been reported in two cases (8:9). However, the true prevalence of CRH-producing pheochromocytomas might be underestimated, as most cases testing for CRH expression was not performed. Although the clinical presentation of EAS may be highly variable, there is often a rapid onset of hypercortisolism accompanied by severe catabolic symptoms. The diagnostic process should focus on identifying the location of a potential neuroendocrine neoplasm responsible for the ACTH secretion. Sometimes the peripheral origin of ACTH must be confirmed by inferior petrosal sinus sampling (IPSS). In this case, given the clinical presentation consistent with EAS, negative pituitary MRI, and the presence of an adrenal mass that needed to be removed independently, IPSS was not performed. Neuroendocrine neoplasms express somatostatin receptors on their surface, which allow functional imaging using [11 lln]-pentetreotide (Octreoscan). However, Octreoscan has a low sensitivity in detecting occult EAS. In cases where the tumor is in the abdomen and pelvis, Octreoscan has limited utility in locating the source of ACTH (10). This increased risk of false negatives is caused by physiological tracer uptake by the liver, spleen, urinary tract, bowel, and gallbladder. The use of Gallium-68 labeled somatostatin receptor ligands (PET/CT 68Ga-DOTATATE) is more effective in detecting somatostatin receptors (SSTR2) than [11lln]-pentetreotide due to its higher spatial resolution and affinity (11)_ This test was performed after discharge form the hospital to rule out the presence of a second, smaller neuroendocrine tumor that the Octreoscan might have missed. A new molecular imaging technique targeting CRH receptors (68Ga CRH PET/CT) has shown potential in identifying tumors expressing CRH, but its availability remains limited (12). In our patient's case, both the Octreoscan and 68Ga- DOTATATE successfully identified the adrenal tumor as a potential ACTH/CRH secretion source. According to relevant guidelines, presurgical adrenergic blockade is recommended for patients with biochemical evidence of catecholamine excess (13, 14). Conversely, silent pheochromocytomas can generally be operated without alpha blockade (15). Despite this, we opted to administer pre-operative alpha blockade as a precautionary measure for this patient. Pathology examination confirmed the diagnosis of pheochromocytoma. ACTH and CRH staining demonstrated that clear and significant populations of two separate ACTH and CRH positive cells were present in the excised pheochromocytoma. ACTH/CRH cells were dispersed throughout various regions of the pheochromocytoma rather than being well-defined, separate histological entities. As a result, there is no indication that this resulted from collision tumors, but rather random mutation and expansion of tumor cells into ACTH or CRH secreting cells. These results have limitations, including variation in ACTH and CRH expressing regions due to tumor heterogeneity, nonspecific binding of polyclonal antibodies, and normal low-rate false negative/positive detection using QuPath. Post-surgical normal HPA activity was likely due to the de-suppression of the HPA axis by medical therapy, but it may also be explained by chronic stimulation of corticotroph cells induced by ectopic CRH secretion. The standard approach to managing EAS involves surgical intervention. However, surgery may not be a viable option in cases where the source of ACTH production is unknown. Medical therapy to reduce or block excess cortisol can be used in such circumstances. Conclusions In conclusion, a pheochromocytoma causing EAS should be considered even in the absence of elevated plasma metanephrines. These tumors may simultaneously express ACTH and CRH.CRH. References 1 C. Steffensen, A.M. Bak, K. Zøylner Rubeck, J.O.L. Jørgensen Epidemiology of Cushing’s syndrome Neuroendocrinology, 92 (2010), pp. 1-5 View PDF This article is free to access. CrossRefView in ScopusGoogle Scholar 2 H. Falhammar, J. Calissendorff, C. Höybye Frequency of Cushing’s syndrome due to ACTH-secreting adrenal medullary lesions: a retrospective study over 10 years from a single center Endocrine, 55 (2020), pp. 296-302 Google Scholar 3 K.B. Lois, A. Santhakumar, S. Vaikkakara, S. Mathew, A. Long, S.J. Johnson, et al. Phaeochromocytoma and ACTH-dependent Cushing’s syndrome: Tumour CRF secretion can mimic pituitary Cushing’s disease Clin Endocrinol (Oxf), 84 (2016), pp. 177-184 View article CrossRefView in ScopusGoogle Scholar 4 P. Bankhead, M. Loughrey, J. Fernandez, Y. Dombrowski, D. Mcart, P. Dunne, et al. QuPath: Open source software for digital pathology image analysis Sci. Rep, 7 (2017), pp. 1-7 Google Scholar 5 M. Savas, S. Mehta, N. Agrawal, E.F.C. van Rossum, R.A. Feelders Approach to the Patient: Diagnosis of Cushing Syndrome J Clin Endocrinol Metab, 107 (2022), pp. 3162-3174 View article CrossRefView in ScopusGoogle Scholar 6 A.M. Isidori, G.A. Kaltsas, C. Pozza, V. Frajese, J. Newell-Price, R.H. Reznek, et al. Extensive clinical experience - The ectopic adrenocorticotropin syndrome: Clinical features, diagnosis, management, and long-term follow-up J Clin Endocrinol Metab, 91 (2006), pp. 371-377 View article CrossRefView in ScopusGoogle Scholar 7 P.F. Elliott, T. Berhane, O. Ragnarsson, H. Falhammar Ectopic ACTH- and/or CRH-Producing Pheochromocytomas J. Clin. Endocr, 106 (2021), pp. 598-608 View article CrossRefView in ScopusGoogle Scholar 8 D.S. Jessop, D. Cunnah, J.G.B. Millar, E. Neville, P. Coates, I. Doniach, et al. A phaeochromocytoma presenting with Cushing’s syndrome associated with increased concentrations of circulating corticotrophin-releasing factor J. Endocrinol, 113 (1987), p. 133 View article CrossRefView in ScopusGoogle Scholar 9 T. O’Brien, W.F. Young, D.G. Davilla, B.W. Scheithauer, K. Kovacs, E. Horvath, et al. Cushing’s syndrome associated with ectopic production of corticotrophin-releasing hormone, corticotrophin and vasopressin by a phaeochromocytoma Clin Endocrinol (Oxf), 37 (1992), pp. 460-467 View article CrossRefView in ScopusGoogle Scholar 10 J. Young, M. Haissaguerre, O. Viera-Pinto, O. Chabre, E. Baudin, A. Tabarin Management of endocrine disease: Cushing’s syndrome due to ectopic ACTH secretion: an expert operational opinion Eur. J. Endocrinol, 182 (2020), pp. 29-58 View article CrossRefGoogle Scholar 11 A.M. Isidori, E. Sbardella, M.C. Zatelli, M. Boschetti, G. Vitale, A. Colao, et al. Conventional and Nuclear Medicine Imaging in Ectopic Cushing’s Syndrome: A Systematic Review J Clin Endocrinol Metab, 100 (2015), pp. 3231-3244 View article CrossRefView in ScopusGoogle Scholar 12 R. Walia, R. Gupta, A. Bhansali, R. Pivonello, R. Kumar, H. Singh, et al. Molecular Imaging Targeting Corticotropin-releasing Hormone Receptor for Corticotropinoma: A Changing Paradigm J. Clin. Endocr, 106 (2021), pp. 1816-1826 View article CrossRefGoogle Scholar 13 J.W.M. Lenders, M.N. Kerstens, L. Amar, et al. Genetics, diagnosis, management and future directions of research of phaeochromocytoma and paraganglioma: a position statement and consensus of the Working Group on Endocrine Hypertension of the European Society of Hypertension J Hypertens, 38 (2020), pp. 1443-1456 View article CrossRefView in ScopusGoogle Scholar 14 D. Taïeb, G.B. Wanna, M. Ahmad, C. Lussey-Lepoutre, N.D. Perrier, S. Nölting, et al. Clinical consensus guideline on the management of phaeochromocytoma and paraganglioma in patients harbouring germline SDHD pathogenic variants Lancet Diabetes Endocrinol, 11 (2023), pp. 345-361 View PDFView articleView in ScopusGoogle Scholar 15 K. Pacak Preoperative management of the pheochromocytoma patient J Clin Endocrinol Metab, 92 (2007), pp. 4069-4079 View article CrossRefView in ScopusGoogle Scholar Cited by (0) Sources of support: None Permission in the form of written consent from patient for use of actual test results was obtained. Cushing in silent pheochromocytoma Clinical Relevance This case highlights the importance of considering ectopic ACTH secretion by a pheochromocytoma in patients presenting with rapid progression and considerable clinical hypercortisolism concomitant with an adrenal mass and elevated plasma ACTH. This represents an unusual manifestation of a specific subtype of ACTH/CRH-secreting pheochromocytoma that did not exhibit catecholamine secretion The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper ∗ These 2 authors contributed equally to this work From https://www.sciencedirect.com/science/article/pii/S2376060524000075
  2. Abstract Acromegaly is very uncommon, as is non-iatrogenic Cushing syndrome; we discuss a patient who was found to have both a pituitary adenoma causing acromegaly and a cortisol-producing adrenal adenoma causing Cushing syndrome within 1 year. She was a healthy, 44-year-old woman who presented with visual changes and was found to have bitemporal hemianopsia and a 3.3-cm pituitary mass along with central hypogonadism, central hypothyroidism, and suppressed adrenocorticotropin and discrepant cortisol. After transsphenoidal resection she had declining, but persistently elevated, insulin-like growth factor 1 (IGF-1), raising concern for persistent acromegaly. She also was experiencing several cushingoid symptoms and was found to have elevated salivary and urinary cortisol. An abdominal computed tomography scan showed a 3.1-cm adrenal adenoma, and she subsequently underwent adrenalectomy. Following adrenalectomy, her cortisol levels normalized, and her IGF-1, growth hormone, and oral glucose tolerance test showed substantial improvement consistent with previous reports linking hypercortisolism and elevated IGF-1 levels. Combinations of pituitary and adrenal disease are seen in a handful of genetic syndromes; however, her clinical presentation and genetics do not fit with known syndromes. This case describes two rare endocrine tumors in one patient and associated limitations of routine laboratory testing. acromegaly, adrenal Cushing syndrome, IGF monitoring Issue Section: Case Report Introduction Acromegaly resulting from a pituitary adenoma is a very uncommon occurrence, with roughly 30 to 70 individuals affected per million people [1]. Cushing syndrome from an adrenal adenoma is even rarer, with approximately 0.6 individuals affected per million people [2]. Based on these statistics, the chances of both co-occurring in an individual patient would be astronomically low; however, several genetic syndromes can link these 2 diseases, including multiple endocrine neoplasia type 1 (MEN1), multiple endocrine neoplasia type 4, Carney complex, and McCune-Albright syndrome. In addition to the challenge of diagnosing both conditions simultaneously, the presence of both causes a laboratory dilemma. Biochemical control following treatment of a somatotroph adenoma is characterized by growth hormone (GH) suppression during an oral glucose tolerance test (OGTT) and normalization of age-adjusted insulin-like growth factor 1 (IGF-1) levels [3]. There is limited information on how hypercortisolism affects these tests, but there are some study data that suggest patients with Cushing syndrome have elevated IGF-1 compared to controls [4, 5]. Patients with multiorgan endocrine involvement need to be monitored for confounders in laboratory testing. Case Presentation A 44-year-old woman presented to her optometrist for progressive blurring of vision and was found to have bitemporal hemianopsia. Her medical history consisted of only mild hypertension for which she was not taking any medications. She reported no contributory family history. A pituitary magnetic resonance imaging scan was obtained showing a 2.1 × 2.5 × 3.3-cm macroadenoma with invasion into the right cavernous sinus, and with upward displacement and flattening of the optic chiasm (Fig. 1). Figure 1. Open in new tabDownload slide Initial magnetic resonance imaging scan of the pituitary showing a large 2.1 × 2.5 × 3.3-cm macroadenoma with invasion into the right cavernous sinus and with upward displacement and flattening of the optic chiasm. A, Sagittal view. B, Coronal view. She had significant elevation of IGF-1 to 610 ng/mL (79.7 nmol/L) (49-240 ng/mL; 12.3-31.4 nmol/L), with an elevated GH level of 23 ng/mL (23 μg/L) (0.01-3.61 ng/mL; 0.01-3.61 μg/L) consistent with acromegaly. She also had coexisting pituitary deficiencies including hypogonadotropic hypogonadism and central hypothyroidism (Table 1, column 2). Morning adrenocorticotropin (ACTH) was low at less than 5.0 pg/mL (<1.1 pmol/L) (7.2-63 pg/mL; 1.6-13.9 pmol/L) on multiple occasions with morning cortisol within normal limits at 18 μg/dL (497 nmol/L) (4-23 μg/dL; 111-1630 nmol/L). When the patient was seen by endocrinology she confirmed several symptoms and signs consistent with acromegaly including amenorrhea, arthralgias, skin tags, coarsening facial features, increased teeth spacing, hair thinning, increased ring and shoe size, hair loss, and new prediabetes. She also reported a 30-pound weight gain, but lost most of this weight by following an intensive weight-loss program consisting of a restrictive diet. Her menstrual periods ceased only 2 months prior to presentation. She associated most of her symptoms to changes in her routine and stressors during the COVID-19 pandemic and did not seek medical evaluation early for these symptoms. Due to uncertainty regarding her low ACTH level in conjunction with normal cortisol levels, she was started on perioperative glucocorticoids as well as thyroid replacement. She underwent a transsphenoidal resection of her pituitary macroadenoma, and the surgical pathology revealed a sparsely granulated somatotroph adenoma that was PIT1 positive, GH weakly positive, keratin cAM 5.2 positive, Ki67 index 1.2%, and was negative for prolactin, ACTH, and TPIT. She had repeat laboratory tests after a hydrocortisone taper was completed (see Table 1, column 3). Table 1. Pituitary laboratory values before intervention, 6 weeks after pituitary resection, and 4 weeks after adrenalectomy (6 months after pituitary resection) Parameter Initial labs 6 weeks post pituitary resection 4 weeks post adrenalectomy* Reference range (non-pregnant premenopausal females) ACTH < 5.0 pg/mL (1.1 pmol/L) < 5.0 pg/mL (1.1 pmol/L) < 5.0 pg/mL (1.1 pmol/L) 7.2-63 pg/mL (1.6-13.9 pmol/L) Serum AM Cortisol 18 μg/dL (497 nmol/L) 16 μg/dL (443 nmol/L) <1 μg/dL (27.6 nmol/L) 4-23 μg/dL (111-1630 nmol/L) LH <0.3 mIU/mL (0.3 IU/L) <0.3 mIU/mL (0.3 IU/L) 6.3 mIU/mL (6.3 IU/L) 0.5-76.3 mIU/mL (0.5-76.3 IU/L) FSH <0.3 mIU/mL (0.3 IU/L) <0.3 mIU/mL (0.3 IU/L) 1.8 mIU/mL (1.8 IU/L) 1.5-33.4 mIU/mL (1.5-33.4 IU/L) Estradiol <12 pg/mL (44 pmol/L) <12 pg/mL (44 pmol/L) 40 pg/mL (146.8 pmol/L) 17-200 pg/mL (62.4-734 pmol/L) GH 23 ng/mL (23 μg/L) 1.81 ng/mL (1.81 μg/L) 0.88 ng/mL (0.88 μg/L) 0.01-3.61 ng/mL (0.01-3.61 μg/L) OGTT GH 0.49 ng/mL (0.49 μg/L) 0.2 ng/mL (0.2 μg/L) 0.01-0.4 ng/mL ** (0.01-0.4 μg/L) IGF 1 610 ng/mL (79.7 nmol/L) 385 ng/mL (50.3 nmol/L) 290 ng/mL (37.9 nmol/L) 49-240 ng/mL (12.3-31.4 nmol/L) Prolactin 9.1 ng/mL (9.1 μg/L) 3.9 ng/mL (3.9 μg/L) 2.8-29.2 ng/mL (2.8-29.2 μg/L) TSH 1.69 mIU/L (1.69 μIU/mL) 0.29 mIU/L (0.29 μIU/mL) 0.05 mIU/L (0.05 μIU/mL) 0.47-4.68 mIU/L (0.47-4.68 μIU/mL) T4, free 0.7 ng/dL (9.0 pmol/L) 0.8 ng/dL (10.3 pmol/L) 1.5 ng/dL (19.4 pmol/L) 0.8-2.2 ng/dL (10.3-28.4 pmol/L) Abnormal values are shown in bold font. Values in parenthesis are International System of Units (SI). Abbreviations: ACTH, Adrenocorticotropic hormone; LH, luteinizing hormone; FSH, follicular stimulating hormone; GH, growth hormone; IGF, insulin like growth factor; TSH, thyroid stimulating hormone; T4, thyroxine. *6 months post pituitary resection. **2 hours following glucose load. Open in new tab Her IGF-1 had improved to 385 ng/mL (50.3 nmol/L) (49-240 ng/mL; 12.3-31.4 nmol/L) but it was still elevated, her gonadotropins were still undetectable, and her ACTH was still suppressed with normal morning cortisol levels. She also had a robust response on an ACTH stimulation test. A 3-month postoperative pituitary magnetic resonance imaging scan showed a lobular, hypoenhancing soft tissue in the dorsal aspect of the sella concerning for possible residual tumor. By this time, her most recent IGF-1 was still elevated at 427 ng/mL (55.8 nmol/L). Her 2-hour OGTT using ultrasensitive GH suppressed partially from 1.01 ng/mL (1.01 μg/L) to 0.49 ng/mL (0.49 μg/L) (0.01-0.4 ng/mL; 0.01-0.4 μg/L 2 hours following glucose load) (Table 2). She continued to complain of symptoms such as weight gain, poor sleep, and facial and ankle swelling. Testing for hypercortisolism was finally undertaken and was consistent with Cushing syndrome with midnight salivary cortisol elevated more than 4 times the upper limit of normal on 3 successive tests: 730 ng/dL, 502 ng/dL, 404 ng/dL (2012 nmol/L, 1384 nmol/L, 1114 nmol/L] (<100 ng/dL; < 276 nmol/L). She was also found to have elevated 24-hour urinary free cortisol of 817 μg/24 hours (2254 nmol/day) (3.5-45 μg/24 hours; 9.7-124.2 nmol/day) (Table 3). Dehydroepiandrosterone sulfate was low at less than 5 μg/dL (0.13 μmol/L) (75-410 μg/dL; 1.95-10.66 μmol/L). Table 2. Oral glucose tolerance tests performed 3 months post transsphenoidal surgery and 6 weeks post adrenalectomy (6 months post transsphenoidal surgery) Post pituitary resection (3 mo) Post adrenalectomy (6 weeks)* Glucose GH Glucose GH Initial 107 mg/dL (5.93 mmol/L) 1.01 ng/mL (1.01 μg/L) 79 mg/dL (4.38 mmol/L) 0.88 ng/mL (0.88 μg/L) 30 min 129 mg/dL (7.16 mmol/L) 0.34 ng/mL (0.34 μg/L) 60 min 164 mg/dL (9.16 mmol/L) 0.29 ng/mL (0.29 μg/L) 90 min 165 mg/dL (9.16 mmol/L) 0.21 ng/mL (0.2 μg/L) 120 min 149 mg/dL (8.27 mmol/L) 0.49 ng/mL (0.49 μg/L) 142 mg/dL (7.88 mmol/L) 0.20 ng/mL (0.20 μg/L) Reference GH 2 hours after glucose load 0.01 -0.4 ng/mL (0.01 -0.4 μg/L). Abnormal values are shown in bold font. Values in parenthesis are International System of Units (SI). Abbreviations: GH, Growth Hormone. *6 months post pituitary resection. Open in new tab Table 3. Initial testing for hypercortisolism Parameter Value Reference range Midnight salivary cortisol 730 ng/dL (2012 nmol/L) 502 ng/dL (1384 nmol/L) 404 ng/dL (1114 nmol/L) <100 ng/dL (276 nmol/L) 24-h urine free cortisol 817 mcg/24 h (2254 nmol/day) 3.5-45 mcg/24 h (9.7-124.2 nmol/day) DHEA sulfate <5 μg/dL (0.13 μmol/L) 75-410 μg/dL (1.95-10.66 μmol/L) Abnormal values are shown in bold font. Values in parenthesis are International System of Units (SI). Abbreviations: DHEA, Dehydroepiandrosterone. Open in new tab A computerized tomography scan of the abdomen was obtained showing a 3.1-cm, lipid-rich left adrenal adenoma (5 Hounsfield units), which confirmed the likely source of her coexisting adrenal Cushing syndrome (Fig. 2). Figure 2. Open in new tabDownload slide Computed tomography of the abdomen showing a 3.1-cm, lipid-rich adrenal adenoma (5 Hounsfield units). A, Axial view. B, Coronal view. Treatment The patient underwent laparoscopic left adrenalectomy with pathology consistent with adrenal adenoma. Outcome and Follow-up In the following weeks after surgery, the patient reported considerable symptomatic improvement including better sleep, improved ankle swelling, and weight loss. To our astonishment, follow-up laboratory tests in the following months showed recovery of the hypothalamic-pituitary-gonadal axis (see Table 1, column 4), with return of menses, and improvement in the IGF-1 level to normal levels, and successful suppression of GH level on a 2-hour OGTT: 0.88 ng/mL to 0.20 ng/mL (0.88 μg/L to 0.20 μg/L). This was consistent with biochemical remission of acromegaly (see Table 2). Despite hydrocortisone wean attempts, the patient's hypothalamic-pituitary-adrenal axis has not recovered fully to date. However, there is promising early detection of the ACTH level, which is no longer suppressed. The patient did undergo genetic testing and is heterozygous for a variant of unknown significance detected in the PTCH1 gene, which has no established connection to the development of acromegaly or adrenal Cushing syndrome. Discussion The definition of biochemical control of acromegaly after resection has been redefined over time [6]. Broadly, it is defined as GH suppression during an OGTT and normalization of age-adjusted IGF-1 level 3 to 6 months postoperatively [6, 7]. However, it has been estimated that up to 30% of patients could have discrepant results between IGF-1 and GH levels. Suppression was traditionally defined as GH nadir of less than 1.0 ng/mL (<1.0 μg/L) after OGTT, but now with ultrasensitive assays, the consensus for suppression is a GH level of less than 0.4 ng/mL (<0.04 μg/L) [6]. There was also a retrospective study of postsurgical patients with a mean follow-up of 39 months that suggests a 3-month IGF-1 level less than 1.25 times the upper limit of normal is associated with long-term remission [3]. There are also other factors that can affect GH and IGF-1 levels, such as pregnancy, diabetes, oral estrogen (not transdermal estrogen), and critical illness [7]. There is limited literature on the effects of hypercortisolism on IGF-1 levels, but higher IGF-1 levels were identified in patients with Cushing syndrome as early as 1993 [4]. There was also a retrospective case-control study, published in 2019, measuring preoperative and postoperative IGF-1 levels in Cushing disease patients to matched controls that found a significantly higher proportion of Cushing patients with elevated serum IGF-1 above the reference range compared to controls [5]. In addition, among the patients who achieved remission of their Cushing, IGF-1 levels decreased significantly postoperatively. Though this study did not involve acromegaly patients and included patients with pituitary Cushing disease rather than adrenal Cushing syndrome, we observed in our case a similar phenomenon by which the IGF-1 normalized after cure of the overt hypercortisolism. This is a rare case, but similar cases have been reported, the most similar of which was published in 2011 and detailed the presentation of a patient with acromegaly who was found to have hypercortisolism from an adrenal adenoma 6 years after the resection of her pituitary adenoma. The authors reported that, post adrenalectomy, the patient needed significantly less pegvisomant for biochemical control of her acromegaly [8]. Our case is different in that our patient had overt Cushing syndrome, whereas this patient had mild autonomous cortisol secretion. Because of suppressed ACTH and the focus on GH excess in association with a macroadenoma, we did not initially look for cortisol excess as a cause of our patient’s symptoms. Also, because most visits were conducted by televideo during this time, and there were still COVID restrictions and more limited access in the health care setting, not all clinical features were immediately evident, and in addition, the overlap of symptoms for these 2 different conditions made the diagnosis challenging. During our patient’s workup, genetic testing was completed to identify a unifying genetic syndrome explaining the co-occurrence of 2 different endocrine tumors. Here genes were analyzed using next-generation sequencing and Sanger sequencing. During analysis, the coding domains and a portion of flanking regions were searched; notably, the promotor genes and a portion of the untranslated regions were not reported. The only remarkable finding in her genes was PTCH1, a variant of unknown significance that has no reported relationships to acromegaly or Cushing syndrome. The known syndrome that overlaps the most with her disease would be MEN1 syndrome. Most defects in the MEN1 gene would have been caught with this approach to analysis; however, a portion of the promoter and untranslated genes was not reported. Genes in these regions may be responsible for 5% to 25% of MEN1 gene dysfunction [9]. However, she had no evidence of primary hyperparathyroidism, which has a high penetrance in MEN1 and is most often the first presentation in MEN1 (>93% penetrance and first manifestation in >67%) [10]. Carney complex is another disease process that could be considered, but our patient did not have primary pigmented nodular adrenocortical disease. McCune-Albright syndrome is unlikely given that she had no fibrous dysplasia of bone or café au lait skin macules on examination. This case raises the question of whether we should be actively searching for additional endocrine abnormalities in patients diagnosed with one endocrine problem. We believe that actively searching for other endocrine abnormalities should be evaluated on a case-by-case basis. While identifying other abnormalities early could be lifesaving in a subset of cases, it comes at a cost. Endocrine testing in patients with dysfunction of another endocrine organ may be difficult to interpret, and false positives could result in unnecessary invasive testing. Given the questionable net benefit, each patient should be evaluated on a case-by-case basis. As genetic testing continues to improve, we suspect there may be additional subsets of patients who warrant further evaluation. Overall, this case serves as a reminder that we should keep a high index of suspicion for concomitant endocrine abnormalities and in those cases our gold-standard testing may be insufficient. Learning Points In patients with rare endocrine tumors, consider a genetic endocrine syndrome, as other endocrine tumors are more common in these patients than in the general population. Gold-standard testing can be undermined by metabolic or physiologic abnormalities. While televideo visits are a tremendous asset to medicine, at times the lack of a comprehensive physical exam can limit appropriate evaluation. Contributors All authors made individual contributions to authorship. S.S.W., N.C., and K.B. were involved in the diagnosis and management of this case and text editing. J.G. and S.S.W. were involved in manuscript preparation and submission. J.G. was involved in table and figure preparation. All authors reviewed and approved the final draft. Funding No public or commercial funding. Disclosures The authors do not have any conflicts of interest. Informed Patient Consent for Publication Signed informed consent obtained directly from the patient. Data Availability Statement Original data generated and analyzed for this case report are included in this published article. The laboratory that performed the genetic testing described (Ambry Genetics) deposits variant-level data to ClinVar (http://www.clinvar.com/), a public repository that aggregates information about human genomic variation. Abbreviations ACTH adrenocorticotropin GH growth hormone IGF-1 insulin-like growth factor 1 MEN1 multiple endocrine neoplasia type 1 OGTT oral glucose tolerance test Author notes Jacob Gabbay and Samantha Steinmetz-Wood contributed equally to this work. © The Author(s) 2023. Published by Oxford University Press on behalf of the Endocrine Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. From https://academic.oup.com/jcemcr/article/2/1/luad145/7479271?login=false
  3. Abstract Ectopic adrenocorticotropin (ACTH)-secreting tumors are among the causes of ACTH-dependent Cushing syndrome. When surgical resection of the primary lesion is not feasible, medications such as metyrapone, mitotane, and ketoconazole have been used to control hypercortisolism. This report presents a case treated with the novel drug osilodrostat, wherein the patient's adrenal glands exhibited shrinkage following the initiation of this drug. The case involves a 68-year-old man diagnosed with small cell lung cancer and ectopic ACTH-producing Cushing syndrome. Initially, metyrapone was administered to manage hypercortisolism, but its effect proved insufficient. Subsequently, osilodrostat was initiated while gradually decreasing metyrapone, leading to full suppression of blood cortisol levels. With continued osilodrostat treatment, the adrenal glands reduced in size, suggesting the potential to reduce the osilodrostat dosage. ectopic ACTH-producing tumor, Cushing syndrome, osilodrostat, adrenal shrinkage Issue Section: Case Report Introduction Ectopic adrenocorticotropin (ACTH)-secreting tumors represent a rare cause of Cushing syndrome, with an estimated annual incidence of 2 or 3 cases per 1 000 000 (1). Cushing syndrome is categorized into ACTH-independent and ACTH-dependent forms. Ectopic ACTH-dependent Cushing syndrome arises from autonomous ACTH secretion by tumors located outside the pituitary gland, comprising approximately 15% of Cushing syndrome cases (1). Notably, small cell carcinomas of the lung are the most common cause of biochemical hypercortisolism (1). Treatment of ectopic ACTH-secreting tumors typically necessitates primary tumor removal, chemotherapy, radiation therapy, and somatostatin analogues (1). Alongside surgical intervention, medications such as metyrapone, mitotane, and ketoconazole have been employed to reduce blood cortisol levels. However, metyrapone's limitations in terms of its potency and dosing frequency have prompted the search for a more effective drug. Osilodrostat has emerged as a promising option for managing Cushing syndrome. It inhibits the enzyme 11β-hydroxylase, which converts 11-deoxycorticosterone (DOC) to corticosterone and 11-deoxycortisol (11-DOF) to cortisol (2). Osilodrostat has a longer biological half-life than metyrapone, allowing for once-daily or twice-daily dosing. Evidently, osilodrostat possesses superior potency against 11β-hydroxylase (2). Case reports suggest that osilodrostat rapidly controls blood cortisol levels in patients with ectopic ACTH-producing tumors. The dosage of osilodrostat typically commences at 2 mg and is gradually adjusted based on cortisol levels and patient response. Although some cases have seen an increase to more than 10 mg initially, the dosages are eventually reduced to 1 to 5 mg. This case presents a unique scenario in which the patient's adrenal glands shrank during osilodrostat treatment, enabling dosage reduction. Case Presentation A 68-year-old man presented to our hospital with complaints of enlarged right hilar lymph nodes, fever, back pain, dizziness, and diarrhea. His height was 171.0 cm, and his weight was 63.1 kg. His vital signs were as follows: heart rate of 102 beats/min and blood pressure of 181/86 mm Hg. He did not have any cushingoid features. A comprehensive evaluation, including blood tests and a computed tomography (CT) scan of the chest and abdomen, was conducted. His blood tests showed hypokalemia and hyperglycemia. CT revealed the presence of a tumor in the right hilar region, along with swelling of the mediastinal and right supraclavicular lymph nodes and enlargement of the bilateral adrenal glands (Fig. 1A-1C). Tumor markers such as neuron specific enolase and pro–gastrin-releasing peptide were markedly elevated; thus, small cell lung cancer was suspected (details are shown in Table 1). Figure 1. Open in new tabDownload slide Progress of lung tumor and adrenal grand in computed tomography. Upper row (A, D, G): progression of small cell lung cancer. There were no changes in the progress. The density in HU of the lung cancer was 31 on day 1, 40 on day 58, and 34 on day 128. Middle row (B, E, H): progression of the size of the adrenal grand. The adrenal grand progressively shrank. Lower row (C, F, I): Each volume of the right adrenal gland was 11.7 mL on day 1, 7.5 mL on day 58, and 4.4 mL on day 128. Each volume of the left adrenal gland was 14.2 mL on day 1, 8.8 mL on day 58, and 4.9 mL on day 128. The density of the right adrenal gland was 30 HU on day 1, 13 HU on day 58, and 30 HU on day 128. The density of the left adrenal gland was 31 HU on day 1, 18 HU on day 58, and 19 HU on day 128. Table 1. Laboratory data on administration Blood tests Results Reference ranges Red blood cell 4.0 10^12/L 4.35-5.55 10^12/L 400 10^4/mcL 435-555 10^4/mcL White blood cell 8.7 10^12/L 3.3-8.6 10^12/L 87 10^4/mcL 33-86 10^4/mcL Differential count  Neutrophils 91.1%  Lymphocytes 6.0%  Eosinophils 0.0% BUN 6.8 mmol/L 2.9-7.1 mmol/L 19 mg/dL 8.0-20 mg/dL Creatinine 72.5 mcmol/L 57.5-94.6 mcmol/L 0.82 mg/dL 0.65-1.07 mg/dL eGFRCre 72 mL/min/1.73 m2 >90 mL/min/1.73 m2 Sodium 152 mmol/L 138-145 mmol/L 152 mEq/L 138-145 mEq/L Chloride 97 mmol/L 101-108 mmol/L 97 mEq/L 101-108 mEq/L Potassium 1.6 mmol/L 3.6-4.8 mmol/L 1.6 mEq/L 3.6-4.8 mEq/L Calcium 2.00 mmol/L 2.20-2.52 mmol/L 8.0 mg/dL 8.8-10.1 mg/dL Blood glucose 15.1 mmol/L 3.9-6.9 mmol/L 272 mg/dL 70-125 mg/dL HbA1c 52 mmol/mol 27-44 mmol/mol 6.9% 4.6%-6.2% ACTH 170 pmol/L 1.6-14.0 pmol/L 770 pg/mL 7.2-63.3 pg/mL Cortisol 2436 nmol/L 196-541 nmol/L 88.3 mcg/dL 7.1-19.6 mcg/dL DHEA-S 10.43 mcmol/L 0.35-7.15 mcmol/L 385 mcg/dL 13-264 mcg/dL SCC 1.7 mcg/L <2.3 mcg/L 1.7 ng/mL <2.3 ng/mL CYFRA 4.2 mcg/L <3.5 mcg/L 4.2 ng/mL <3.5 ng/mL Pro GRP 147 204 ng/L <81 ng/L 147 204 pg/mL <81 pg/mL NSE 205 mcg/L <12 mcg/L 205 ng/mL <12 ng/mL Abnormal values are shown in bold font. Values in the upper row are International System of Units (SI). Abbreviations: ACTH, adrenocorticotropin; BUN, blood urea nitrogen; CYFRA, cytokeratin 19 fragment; DHEA-S, dehydroepiandrosterone sulfate; eGFRCre, estimated glomerular filtration rate from creatinine; HbA1c, glycated hemoglobin A1c; NSE, neuron specific enolase; Pro GRP, pro–gastrin-releasing peptide; SCC, squamous cell carcinoma antigen. Open in new tab Diagnostic Assessment Although his physical findings did not include cushingoid features, the patient's severe hypokalemia, hypertension, and hyperglycemia and the existence of small cell lung cancer indicated that he had ectopic Cushing syndrome due to small cell lung cancer. Next, we examined his plasma ACTH and serum cortisol levels. Both were markedly elevated. Based on the CT scan and blood test data, there was a strong suspicion of ectopic ACTH-producing small cell lung cancer. Pituitary magnetic resonance imaging could not detect obvious tumors in the seller turcica within the visible range. Diagnostic tests for Cushing disease, such as the corticotropin-releasing hormone (CRH) challenge test and arginine vasopressin challenge test, are needed to definitively diagnose ectopic Cushing syndrome. However, we determined that the hypercortisolism should be corrected as soon as possible. A needle biopsy confirmed the lung tumor as small cell carcinoma on day 10. Immunohistochemical analysis revealed the tumor's negativity for chromogranin A, ACTH, and CRH but positivity for proopiomelanocortin (POMC), indicating its potential to produce pro-big ACTH and result in ectopic Cushing syndrome (Fig. 2). Figure 2. Open in new tabDownload slide Immunostaining of the small cell lung cancer. Figures show each immunostaining analysis: A, chromogranin A; B, adrenocorticotropin (ACTH); C, corticotropin-releasing hormone (CRH); D, proopiomelanocortin (POMC). Chromogranin A, ACTH, and CRH are negative in small cell lung cancer, but POMC is positive. This means that small cell lung cancer produces big-ACTH and can result in ACTH-dependent Cushing syndrome. Treatment Without confirming the diagnosis, we initiated the administration of metyrapone at a dose of 500 mg per day since we were familiar with metyrapone rather than osilodrostat. The dose of metyrapone was gradually increased, reaching 2000 mg per day by day 7. An overview of the clinical course is depicted in Fig. 3. Initially, the cortisol level was extremely high, so we did not consider the replacement of any steroids. Subsequently, we used hydrocortisone with metyrapone osilodrostat from day 10. Chemotherapy with etoposide and carboplatin was also started on day 10. Figure 3. Open in new tabDownload slide Changes of adrenocorticotropin (ACTH) and cortisol during metyrapone and osilodrostat, and chemotherapy. Cortisol was suppressed following an increase in the metyrapone and osilodrostat dosage. ACTH was not suppressed after chemotherapy for small cell lung cancer. As 2000 mg of metyrapone failed to sufficiently lower the patient’s serum cortisol level and metyrapone needed to be taken 6 times a day, we introduced osilodrostat at a daily dose of 1 mg starting from day 25. With close monitoring of the patient's serum cortisol and plasma ACTH levels, we gradually increased the osilodrostat dose to 20 mg per day while concurrently decreasing the metyrapone dose. This approach resulted in full suppression of the serum cortisol levels, enabling the discontinuation of metyrapone 20 days after the initiation of osilodrostat. Outcome and Follow-up Subsequently, we gradually decreased the dose of osilodrostat while following the patient's serum cortisol levels (see Fig. 3). Sixty-six days after the initiation of osilodrostat treatment, the patient was successfully maintained on a reduced daily dose of 1 mg without any increase in serum cortisol levels. A plain CT scan conducted after 33 days of osilodrostat treatment demonstrated that the primary lung tumor had somewhat decreased in size, but the density of lung cancer ranged from 30 to 40 HU, which indicated that there was no necrotic change in his lung cancer (Fig. 1D). The scan also revealed a slight reduction in the volume of the bilateral adrenal glands compared to that on day 1 (Fig. 1E and 1F). The patient was readmitted on day 91 for chemotherapy due to small cell lung cancer. Osilodrostat administration was discontinued after day 128. However, the patient's serum cortisol level remained below 4.0 mcg/dL (110 nmol/L). A plain CT scan on day 128 showed a marked reduction in the volume of the bilateral adrenal glands (Fig. 1H and 1I). The patient died of small cell lung cancer on day 143. We analyzed the adrenal steroid profile using residual serum samples on day 48 by liquid chromatography–mass spectrometry. Serum DOC and 11-DOF levels were elevated above the normal range (Table 2). This means that bioactive ACTH was definitely present in excess in the patient's serum, and his adrenal glands were stimulated. We also measured the plasma ACTH using test kits provided by Roche and Tosoh Corporation using residual plasma samples on day 132. The Tosoh test kit has a higher detection sensitivity for pro-ACTH than that of Roche. The ACTH levels were 924 pg/mL (203 pmol/L) and 1257 pg/mL (277 pmol/L), respectively. These results indicate that while some pro-ACTH was present in the patient's plasma, mature ACTH was also present to some extent. Table 2. Hormone levels on day 48 Hormone tested Results Reference ranges ACTH 142 pmol/L 1.6-14.0 pmol/L 646 pg/mL 7.2-63.3 pg/mL Cortisol 41.4 nmol/L 196-541 nmol/L 1.5 mcg/dL 7.1-19.6 mcg/dL DOC 2.18 nmol/L 0.24-0.85 nmol/L 0.72 ng/mL 0.08-0.28 ng/mL 11-DOF 4.34 nmol/L 0.12-3.35 nmol/L 1.50 ng/mL 0.04-1.16 ng/mL Abnormal values are shown in bold font. Values in the upper row are International System of Units (SI). Abbreviations: 11-DOF, 11-deoxycortisol; ACTH, adrenocorticotropin; DOC, 11-deoxycorticosterone. Open in new tab Discussion In our case, we observed 2 significant aspects. First, the patient's adrenal glands exhibited shrinkage despite the plasma ACTH levels not decreasing. Second, the osilodrostat dose was reduced while the adrenal glands shrank. Our search for publications on osilodrostat and ACTH-dependent Cushing syndrome yielded 57 relevant articles as of May 23, 2023, with 47 cases of ACTH-dependent Cushing syndrome, including 38 cases of ectopic ACTH-producing tumors and 9 cases of Cushing disease (3‐10). Thirty-seven out of 47 cases with ACTH-dependent Cushing syndrome were managed with osilodrostat monotherapy, while the remaining 10 patient cases received a combination of osilodrostat, ketoconazole, and cabergoline, among other drugs. In the 37 cases of osilodrostat monotherapy, 2 different strategies for initiating osilodrostat were observed: the titration strategy and the block and replacement with hydrocortisone strategy (see Fig. 4). Twenty-two of 37 cases received the titration strategy, starting with a low initial dose of 1 to 10 mg daily, with only 2 cases initially starting with a higher initial dose (20 mg daily). Twelve patients initially treated with the titration strategy transitioned to the block and replacement strategy during follow-up. On the other hand, 15 of 37 patient cases received the block and replacement strategy, with initial osilodrostat doses varying from 2 to 60 mg daily, supplemented with hydrocortisone from the outset. In our patient case, osilodrostat was initiated in combination with metyrapone but was subsequently switched to monotherapy, with the dose titrated up to 20 mg daily and then tapered to 1 mg. Figure 4. Open in new tabDownload slide Reported strategy of treatment with osilodrostat. Thirty-seven patients received osilodrostat monotherapy. Twenty-two cases had a titration strategy. Twelve of 22 patient cases with a titration strategy were switched during follow-up to a block and replacement strategy. Fifteen patient cases had a block and replacement strategy initially. Notably, none of the 47 cases of ACTH-dependent Cushing syndrome obtained from PubMed mentioned changes in adrenal gland size. Although metyrapone and osilodrostat both attenuate 11β-hydroxylase enzymatic activity, metyrapone-induced adrenal shrinkage has not been reported. Therefore, the inhibition of 11β-hydroxylase by osilodrostat is unlikely to be the cause of the adrenal gland size reduction. The mechanism by which osilodrostat reduces adrenal volume remains unknown, making it imperative to closely monitor adrenal size in patients undergoing osilodrostat treatment. As indicated in previous reports, most patients attempt dose reduction or discontinue osilodrostat successfully. Thus, if the adrenal glands shrink, reducing the osilodrostat dose may be feasible without compromising blood cortisol level control. Hence, tracking adrenal size through imaging studies, such as CT and magnetic resonance imaging, in osilodrostat-treated patients becomes essential, and assessing the adrenal pathology in these individuals is equally crucial. In addition to the former hypothesis, there is another hypothesis that the hormones produced by small cell lung cancer change from ACTH to big-ACTH, which has much less potency to increase plasma cortisol levels, due to chemotherapy or progression to undifferentiated carcinomas of small cell lung cancer. However, the CT scan after osilodrostat administration showed that the density of lung cancer did not change and ranged from 30 to 40 HU, which indicated there was no necrotic change in the patient's lung cancer. In addition, the difference in ACTH measurement results between the 2 kits suggested that bioactive ACTH was present in the plasma, and the elevation of serum DOC and 11-DOF indicated that the patient's adrenal glands were stimulated by ACTH. We experienced a case of ectopic ACTH-dependent Cushing syndrome treated with osilodrostat. In this case, a reduction in the osilodrostat dose was needed to maintain serum cortisol levels in the appropriate range, and a concomitant reduction in adrenal gland size was observed. It is important to follow-up not only ACTH and cortisol levels but also adrenal size on imaging studies in patients treated with osilodrostat. Evaluation of the adrenal pathology in these patients is also needed. Learning Points To treat ectopic ACTH-producing Cushing syndrome, osilodrostat is currently available. We found that osilodrostat was able to fully control the blood cortisol levels, and the dose of osilodrostat could be reduced after the patient's blood cortisol level was controlled. In our ectopic Cushing syndrome patient, the enlarged adrenal glands had shrunk in the course of treatment with osilodrostat. Through an unknown mechanism, osilodrostat decreases the size of adrenal glands; this effect enabled us to reduce the dosage of osilodrostat. Acknowledgments We thank Dr Yuki Sakai, Dr Chika Kyo, Dr Tatsuo Ogawa, Dr Masato Kotani, and Dr Tatsuhide Inoue for their extensive literature review and management of this patient. We also appreciate Dr Yuto Yamazaki and Dr Hironobu Sasano for conducting the pathological diagnosis. Contributors All authors made individual contributions to this study. F.S. was involved in the writing, submission, and preparation of tables and images. R.H. was involved in the diagnosis and management of this patient. R.K. was involved in the diagnosis and management of this patient and was responsible for overseeing the study. H.A. was responsible for the original idea and writing the first draft of the manuscript. All authors were involved in writing and reviewing the case report and approving the final draft. Funding No public or commercial funding was received. Disclosures The authors declare no conflicts of interest. Informed Patient Consent for Publication Signed informed consent obtained directly from the patient. Data Availability Statement Original data generated and analyzed during this study are included in this published article. Abbreviations 11-DOF 11-deoxycortisol ACTH adrenocorticotropin CRH corticotropin-releasing hormone CT computed tomography DOC 11-deoxycorticosterone POMC proopiomelanocortin © The Author(s) 2024. Published by Oxford University Press on behalf of the Endocrine Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com From https://academic.oup.com/jcemcr/article/2/2/luae008/7590573?login=false
  4. Abstract Pituitary surgery, a critical intervention for various pituitary disorders, has sparked ongoing debates regarding the preference between endoscopic and microscopic transsphenoidal approaches. This systematic review delves into the outcomes associated with these techniques, taking into account the recent advancements in neurosurgery. The minimally invasive nature of endoscopy, providing improved visualization and reduced morbidity, stands in contrast to the well-established track record of the conventional microscopic method. Examining outcomes for disorders such as Cushing's disease and acromegaly, the review synthesizes evidence from Denmark, Bulgaria, and China. Noteworthy advantages of endoscopy encompass higher resection rates, shorter surgery durations, and fewer complications, endorsing its effectiveness in pituitary surgery. While emphasizing the necessity for prospective trials, the review concludes that endoscopic approaches consistently showcase favorable outcomes, influencing the ongoing discourse on the optimal surgical strategies for pituitary disorders. Introduction & Background Pituitary surgery is a critical intervention for various pituitary disorders, and the choice between endoscopic and microscopic transsphenoidal approaches has been a subject of ongoing debate within the medical community. This systematic review aims to explore and analyze the outcomes associated with endoscopic and microscopic transsphenoidal pituitary surgery. As advancements in surgical techniques continue to shape the field of neurosurgery, understanding the comparative effectiveness of these two approaches becomes imperative. The endoscopic approach, characterized by its minimally invasive nature, has gained popularity for pituitary surgery in recent years [1]. Proponents argue that it provides enhanced visualization, improved maneuverability, and reduced patient morbidity. On the other hand, traditional microscopic transsphenoidal surgery has been the conventional method for decades, known for its familiarity among surgeons and established track record [2]. Several studies have investigated the outcomes of these approaches in treating pituitary disorders, including but not limited to Cushing's disease, pituitary adenomas, and other tumors. For instance, a systematic review and meta-analysis by Chen et al. compared endoscopic and microscopic transsphenoidal surgery specifically for Cushing's disease, shedding light on the effectiveness of these approaches in managing this specific condition [3]. Moreover, Møller et al. reported promising results for endoscopic pituitary surgery based on the experiences of experienced microscopic pituitary surgeons, indicating a potential shift towards the adoption of the endoscopic technique [1]. Guo et al. conducted a meta-analysis comparing the effectiveness of microscopic and endoscopic surgery for treating pituitary disorders, contributing valuable insights into the overall efficacy of these approaches [4]. This review aims to contribute to the ongoing discourse on pituitary surgery by providing a comprehensive analysis of the outcomes associated with endoscopic versus microscopic transsphenoidal approaches. By synthesizing the existing evidence, we strive to offer valuable insights that can guide both clinicians and researchers in making informed decisions regarding the optimal surgical approach for pituitary disorders. Review Materials and methods This systematic review strictly adheres to the established Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, employing a comprehensive approach to investigate the outcomes of endoscopic versus microscopic transsphenoidal pituitary surgery. The subsequent sections delineate the criteria for study inclusion, the search strategy utilized, and the methodology employed for data synthesis. Search Strategy We conducted a meticulous search across prominent electronic databases, including PubMed, Embase, and the Cochrane Library, to identify pertinent articles. Our search strategy comprised a combination of Medical Subject Headings (MeSH) terms and keywords related to pituitary surgery, encompassing both endoscopic and microscopic approaches. Boolean operators (AND, OR) were strategically employed to refine the search and identify studies meeting our predetermined inclusion criteria. The search string used for PubMed was ("Outcomes" OR "Treatment Outcome" OR "Surgical Outcome") AND ("Endoscopic Transsphenoidal Pituitary Surgery" OR "Endoscopic Pituitary Surgery" OR "Endoscopic Hypophysectomy") AND ("Microscopic Transsphenoidal Pituitary Surgery" OR "Microscopic Pituitary Surgery" OR "Microscopic Hypophysectomy" OR "Endoscopy"[Mesh] OR "Endoscopy, Surgical"[Mesh] OR "Transsphenoidal Hypophysectomy"[Mesh] OR "Microsurgery"[Mesh] OR "Microscopic Hypophysectomy"[Mesh]). Eligibility Criteria Stringent inclusion criteria were predefined to ensure the selection of high-quality and relevant studies. The included studies focused on investigating the outcomes of endoscopic versus microscopic transsphenoidal pituitary surgery. Only articles published in peer-reviewed journals within the timeframe from the inception of relevant databases until October 2023 were considered. Exclusion criteria encompassed studies on other interventions, those lacking sufficient data on surgical outcomes, and studies solely involving animal cells. Additionally, only studies in the English language with full-text availability were included, and gray literature was not considered eligible. Data Extraction and Synthesis Two independent reviewers meticulously screened titles and abstracts to identify potentially eligible studies. Subsequently, full-text articles were retrieved and evaluated for adherence to inclusion criteria. Discrepancies between reviewers were resolved through discussion and consultation with a third reviewer. Relevant data, including study design, patient characteristics, interventions, and surgical outcomes, were systematically extracted using a predefined data extraction form. Data Analysis A narrative synthesis approach was employed to summarize findings from included studies due to anticipated heterogeneity in study designs and outcome measures. Key themes and patterns related to the outcomes of endoscopic versus microscopic transsphenoidal pituitary surgery were identified and presented. Results Study Selection Process Following four database searches, 97 articles were initially identified. After eliminating eight duplicates, the titles and abstracts of the remaining 89 publications were evaluated. Subsequently, 17 potential studies underwent eligibility verification through a thorough examination of their full texts. Ultimately, three articles satisfied the inclusion criteria. No additional studies meeting the eligibility criteria were found during the examination of references in the selected articles. The entire process is visually depicted in the PRISMA flowchart (Figure 1). Figure 1: PRISMA flow diagram of the selection of studies for inclusion in the systematic review. PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses Characteristics of Selected Studies Overall, three papers met the inclusion criteria. Two studies were randomized controlled trials (RCTs), one each from Bulgaria and China. One study was an observational study from Denmark. The main findings and characteristics of the included studies are mentioned in the following tables (Table 1 and Table 2). Author Year Country Study type Sample size No. of participants in the endoscopic group No. of participants in the microscopic group Main findings Møller et al. [1] 2020 Denmark Observational study 240 45 195 The study comparing endoscopic and microscopic transsphenoidal pituitary surgery revealed that the endoscopic technique exhibited advantages, achieving a higher rate of gross total resection (39% vs. 22%) and shorter surgery duration (86 minutes vs. 106 minutes). Complications within 30 days were lower with the endoscope (17% vs. 27%), and grade II complications or higher were significantly reduced (4% vs. 20%) compared to the microscopic approach. Pituitary function outcomes favored the endoscope, with fewer new deficiencies in the HPA axis (3% vs. 34%) and TSH-dependent deficiencies (15% vs. 38%). The HPG axis also showed better normalization in the endoscopic group (32% vs. 19%). Visual field impairment and postoperative improvement did not significantly differ between the two techniques. Overall, the findings suggest that endoscopic transsphenoidal pituitary surgery may offer superior outcomes compared to the microscopic approach, particularly in terms of resection rates and complication profiles. Vassilyeva et al. [5] 2023 Bulgaria RCT 83 43 40 The study compared endoscopic and microscopic transsphenoidal pituitary surgery in acromegaly patients, revealing comparable demographic profiles between the groups. Endoscopic surgery demonstrated advantages with shorter anesthesia and surgery times, as well as a reduced postoperative hospital stay. Complete tumor removal was more frequent with endoscopic adenomectomy, while microscopic surgery showed a higher rate of sub-total removal. Both techniques led to a tendency for somatic improvement, with more pronounced visual function improvement in the endoscopic group. Complications, such as liquorrhea and endocrine disorders, were generally low, with endoscopic surgery showing mainly mild complications. Disease remission rates were similar between the groups at various follow-up intervals. In conclusion, while both techniques proved effective in achieving remission, endoscopic surgery exhibited favorable outcomes in terms of efficiency and some aspects of complication profiles. Zhang et al. [6] 2021 China RCT 46 23 23 Endoscopic transsphenoidal pituitary surgery for the treatment of Cushing's disease showed comparable efficacy to microscopic transseptal pituitary surgery but with the added benefits of shorter operative time, reduced estimated blood loss, shorter hospital stays, and fewer complications. Table 1: Summary of the studies included in this systematic review. RCT: randomized controlled trial; HPA: hypothalamic-pituitary-adrenal; TSH: thyroid-stimulating hormone; HPG: hypothalamic-pituitary-gonadal Technique Møller et al. [1] Vassilyeva et al. [5] Zhang et al. [6] Male-to-female ratio (endoscopic) 25:20 17:26 13:10 Male-to-female ratio (microscopic) 107:88 16:24 12:11 Mean age in years (endoscopic) 61 43.26 55.6 Mean age in years (microscopic) 58 44.12 53.2 Functional tumors (endoscopic) 15 All functional All functional Non-functional tumors (endoscopic) 29 - - Functional tumors (microscopic) 69 All functional All functional Non-functional tumors (microscopic) 115 - - Microadenoma size (mm) (endoscopic) - 4 19 Macroadenoma size (mm) (endoscopic) - 39 4 Microadenoma size (mm) (microscopic) - 3 18 Macroadenoma size (mm) (microscopic) - 37 5 Mean operative time (min) (endoscopic) 86 142 108 Mean operative time (min) (microscopic) 106 176 174 Mean hospital stay (days) (endoscopic) - 5 2.8 Mean hospital stay (days) (microscopic) - 7 5.1 Postoperative complications (endoscopic) 2 15 3 Postoperative complications (microscopic) 39 10 8 Table 2: Summary of demographics, tumor characteristics, and postoperative outcomes of the studies included in this systematic review. The quality assessment of the selected studies was done using the Newcastle-Ottawa Quality Assessment Scale. All three studies included in this study turned out to be of high quality with a rating of 9/9 stars (Table 3). Author Selection Comparability Outcome Total stars Møller et al. [1] ★★★★ ★★ ★★★ ★★★★★★★★★ Vassilyeva et al. [5] ★★★★ ★★ ★★★ ★★★★★★★★★ Zhang et al. [6] ★★★★ ★★ ★★★ ★★★★★★★★★ Table 3: Quality assessment of the included studies using the Newcastle-Ottawa Quality Assessment Scale. Discussion This systematic review thoroughly assesses the effectiveness and results of endoscopic transsphenoidal pituitary surgery in comparison to microscopic transsphenoidal surgery, with a specific focus on pituitary adenomas, including Cushing's disease and acromegaly. The results contribute significant insights into the evolving landscape of pituitary surgery, highlighting the benefits and limitations of both surgical techniques. The selected studies offer valuable insights into the comparative outcomes. Møller et al.'s observational study in Denmark suggests that endoscopic surgery exhibits superior outcomes with higher gross total resection rates, shorter surgery duration, and fewer complications [1]. Vassilyeva et al.'s RCT in Bulgaria, focusing on acromegaly patients, indicates endoscopic advantages such as shorter anesthesia and surgery times, reduced postoperative stay, and comparable remission rates [5]. Zhang et al.'s RCT in China, specifically for Cushing's disease, suggests comparable efficacy with added benefits favoring endoscopy [6]. The endoscopic approach has been advocated for its panoramic visualization and superior mobility, which are crucial in resecting tumors while preserving normal structures [7,8]. Studies have shown a higher remission rate in endoscopic procedures for endocrine-active tumors, like growth hormone or adrenocorticotropic hormone (ACTH)-secreting adenomas, compared to the microscopic approach [9,10]. Patient comfort and recovery play a significant role in evaluating surgical methods. The endoscopic technique, by avoiding submucosal excision of nasal tissues, typically results in less postoperative pain and rhinological dysfunction. Studies, including ours, have reported shorter operative times and hospital stays with endoscopic surgery, attributed to fewer intraoperative and postoperative complications and a reduced need for wound management [11-13]. Safety is paramount to any surgical intervention. The endoscopic method has shown a decrease in common complications such as cerebrospinal fluid (CSF) leak, pituitary hormone dysfunction, and diabetes insipidus. Additionally, the endoscopic procedure exhibited fewer complications, which could be attributed to the enhanced visualization allowing for more precise tumor excision and preservation of vital structures [14-16]. In the context of acromegaly patients, the endoscopic technique has demonstrated increased radicality in tumor removal. Our review aligns with these findings, showing a higher rate of total tumor resection in endoscopic patients compared to those undergoing microscopic surgery. This improved outcome is likely due to better illumination and a wider angle of vision provided by endoscopic operations [5,17]. The endoscopic technique has shown a statistically significant improvement in visual function post surgery compared to the microscopic method. However, the frequency of certain postoperative complications, such as intraoperative liquorrhea, was higher in microscopic surgery. These differences underline the importance of the surgical technique in influencing the outcomes and complications of pituitary surgery [5,18]. Despite these findings, it is important to recognize the limitations inherent in these studies. Factors such as tumor size, density, and localization significantly influence surgical outcomes and procedure times. Additionally, the retrospective nature of many studies introduces potential biases, underscoring the need for more prospective, randomized trials for a comprehensive understanding of the long-term outcomes of these techniques. Conclusions This systematic review comparing endoscopic and microscopic transsphenoidal pituitary surgery outcomes indicates consistent evidence favoring the endoscopic approach. Notable studies from Denmark, Bulgaria, and China reveal superior results with endoscopic surgery, demonstrating higher resection rates, shorter surgery duration, and fewer complications. Endoscopy's benefits extend to patient comfort, as evidenced by shorter operative times and hospital stays. Safety considerations also support endoscopy, showing a decrease in common complications such as CSF leaks and hormonal dysfunction. Despite these strengths, the review underscores the need for prospective, randomized trials to address limitations and provide a comprehensive understanding of long-term outcomes. References Møller MW, Andersen MS, Glintborg D, Pedersen CB, Halle B, Kristensen BW, Poulsen FR: Endoscopic vs. microscopic transsphenoidal pituitary surgery: a single centre study. Sci Rep. 2020, 10:21942. 10.1038/s41598-020-78823-z Gao Y, Zhong C, Wang Y, et al.: Endoscopic versus microscopic transsphenoidal pituitary adenoma surgery: a meta-analysis. World J Surg Oncol. 2014, 12:94. 10.1186/1477-7819-12-94 Chen J, Liu H, Man S, et al.: Endoscopic vs. microscopic transsphenoidal surgery for the treatment of pituitary adenoma: a meta-analysis. Front Surg. 2022, 8:806855. 10.3389/fsurg.2021.806855 Guo S, Wang Z, Kang X, Xin W, Li X: A meta-analysis of endoscopic vs. microscopic transsphenoidal surgery for non-functioning and functioning pituitary adenomas: comparisons of efficacy and safety. Front Neurol. 2021, 12:614382. 10.3389/fneur.2021.614382 Vassilyeva N, Mena N, Kirov K, Diatlova E: Comparative effectiveness of endoscopic and microscopic adenoma removal in acromegaly. Front Endocrinol (Lausanne). 2023, 14:1128345. 10.3389/fendo.2023.1128345 Zhang T, Zhang B, Yuan L, Song Y, Wang F: Superiority of endoscopic transsphenoidal pituitary surgery to microscopic transseptal pituitary surgery for treatment of Cushing's disease. Rev Assoc Med Bras (1992). 2021, 67:1687-91. 10.1590/1806-9282.20210732 Yadav Y, Sachdev S, Parihar V, Namdev H, Bhatele P: Endoscopic endonasal trans-sphenoid surgery of pituitary adenoma. J Neurosci Rural Pract. 2012, 3:328-37. 10.4103/0976-3147.102615 Louis RG, Eisenberg A, Barkhoudarian G, Griffiths C, Kelly DF: Evolution of minimally invasive approaches to the sella and parasellar region. Int Arch Otorhinolaryngol. 2014, 18:S136-48. 10.1055/s-0034-1395265 Broersen LH, Biermasz NR, van Furth WR, de Vries F, Verstegen MJ, Dekkers OM, Pereira AM: Endoscopic vs. microscopic transsphenoidal surgery for Cushing's disease: a systematic review and meta-analysis. Pituitary. 2018, 21:524-34. 10.1007/s11102-018-0893-3 Torales J, Halperin I, Hanzu F, et al.: Endoscopic endonasal surgery for pituitary tumors. Results in a series of 121 patients operated at the same center and by the same neurosurgeon. Endocrinol Nutr. 2014, 61:410-6. 10.1016/j.endoen.2014.07.002 Zubair A, M Das J: Transsphenoidal hypophysectomy. StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL); 2023. Pan X, Ma Y, Fang M, Jiang J, Shen J, Zhan R: Improvement in the quality of early postoperative course after endoscopic transsphenoidal pituitary surgery: description of surgical technique and outcome. Front Neurol. 2020, 11:527323. 10.3389/fneur.2020.527323 Aiyer RG, Upreti G: Endoscopic endo-nasal trans-sphenoidal approach for pituitary adenomas: a prospective study. Indian J Otolaryngol Head Neck Surg. 2020, 72:36-43. 10.1007/s12070-019-01725-8 Oertel J, Gaab MR, Linsler S: The endoscopic endonasal transsphenoidal approach to sellar lesions allows a high radicality: the benefit of angled optics. Clin Neurol Neurosurg. 2016, 146:29-34. 10.1016/j.clineuro.2016.04.016 Hanson M, Li H, Geer E, Karimi S, Tabar V, Cohen MA: Perioperative management of endoscopic transsphenoidal pituitary surgery. World J Otorhinolaryngol Head Neck Surg. 2020, 6:84-93. 10.1016/j.wjorl.2020.01.005 Qiao N: Endocrine outcomes of endoscopic versus transcranial resection of craniopharyngiomas: a system review and meta-analysis. Clin Neurol Neurosurg. 2018, 169:107-15. 10.1016/j.clineuro.2018.04.009 Nie D, Fang Q, Wong W, Gui S, Zhao P, Li C, Zhang Y: The effect of endoscopic transsphenoidal somatotroph tumors resection on pituitary hormones: systematic review and meta-analysis. World J Surg Oncol. 2023, 21:71. 10.1186/s12957-023-02958-2 Butenschoen VM, Schwendinger N, von Werder A, Bette S, Wienke M, Meyer B, Gempt J: Visual acuity and its postoperative outcome after transsphenoidal adenoma resection. Neurosurg Rev. 2021, 44:2245-51. 10.1007/s10143-020-01408-x From https://www.cureus.com/articles/213241-navigating-the-surgical-landscape-a-comprehensive-analysis-of-endoscopic-vs-microscopic-transsphenoidal-pituitary-surgery-outcomes#!/
  5. Abstract We present a patient with Cushing syndrome secondary to accidental intake of corticosteroid tablets—a 66-year-old woman with a history of well-controlled hypertension, who over the course of a few weeks developed full-blown Cushing syndrome with uncontrolled blood pressure, typical central fat accumulation, and easy bruising. The clinical features further worsened upon increase of the dosage of her antihypertensive medication because of rising blood pressure. Biochemical analyses showed low cortisol and ACTH concentrations. Inspection of the patient's medications revealed that she had accidentally been taking corticosteroids tablets, prescribed for her husband, instead of antihypertensives, ie, dexamethasone 4 mg and then 8 mg, instead of candesartan at the same dose. This case highlights the necessity of a thorough review of the medications taken by patients suspected to have exogenous Cushing syndrome, including inspection of the original packaging, and not just relying on information from the patient and electronic health records. This case also highlights the need of special labeling on the packaging for the easy identification of corticosteroid-containing medications given their widespread availability. Cushing syndrome, accidental intake, exogenous Cushing syndrome, differential diagnosis Issue Section: Case Report Introduction Cushing syndrome (CS) is a disorder caused by prolonged and excessive exposure to glucocorticoids. The most common cause of CS is exogenous or iatrogenic, ie, CS caused by administration of glucocorticoids due to inflammatory, autoimmune, or neoplastic diseases. Endogenous CS is a rare condition, caused by either hypersecretion of ACTH from the pituitary gland, ectopic ACTH production, or hypersecretion of cortisol from the adrenal glands. It is of great importance to exclude exogenous CS in all patients who present with signs and symptoms compatible with the syndrome. The following case highlights the need to rule out exogenous CS via a face-to-face review of the medications taken by a patient with CS, rather than only relying on the patient's history and electronic health record. Case Presentation A 66-year-old woman was referred to our department for investigation of suspected CS. She was diagnosed with essential hypertension a couple of years earlier and was prescribed tablet candesartan 4 mg daily. Apart from an otherwise well-controlled hypertension, the patient had a history of bilateral hip replacement, the first performed in 2020 and the second 2 years later. During the 6 weeks prior to our evaluation, the patient had noticed an increasing fat accumulation around her abdomen, upper back, neck, and over the collar bones, despite minimal increase of her body weight. Moreover, the patient had developed a rounded face and increased growth of facial hair, especially on the chin, as well as thin and fragile skin that bruised easily. About 1.5 weeks before she was referred to our clinic, the dose of candesartan was increased by her general practitioner from 4 to 8 mg daily because of rapidly worsening hypertension, confirmed by monitoring 24-hour ambulatory blood pressure. Diagnostic Assessment The physical examination of the patient revealed central obesity and multiple bruises that the patient could not recall. Increased growth of fine hairs on the chin and facial plethora was present. Blood pressure was 165/88 mmHg. The patient did not have any signs of abdominal stretch marks, nor did she have any obvious muscle wasting in the arms and legs (Fig. 1). When comparing to photographs taken about 6 months prior to the examination, the differences were obvious (Fig. 2). Figure 1. Open in new tabDownload slide The patient few weeks prior to admission for evaluation of Cushing syndrome. Figure 2. Open in new tabDownload slide The patient many months before the onset of Cushing syndrome. Biochemical evaluation revealed unmeasurable plasma cortisol at 12:00 PM, 4:00 PM, and 6:00 AM (<28 nmol/L, reference 102-535 nmol/L; <1.01 μg/dL, reference 3.69-19.39 μg/dL). Serum ACTH was also undetectable (<0.2 pmol/L, reference 1.6-13.9 pmol/L; <0.91 pg/mL, reference 2.27-63.18 pg/mL), which raised suspicion of exogenous CS. The patient firmly denied any intake of anything other than her candesartan tablets. She even stated that she avoided any analgesics after the hip replacement previously the same year, nor had she received any intra-articular cortisone injection. The patient gave a very trustworthy and consistent impression, which inevitably led us to proceed to further investigation of the adrenal glands and the pituitary gland to exclude rarer forms of CS, such as cyclic CS and/or pituitary apoplexy of an ACTH-producing pituitary adenoma. The magnetic resonance imaging of the pituitary and the computed tomography of the adrenal glands were normal. Except for the low cortisol and ACTH levels, endocrine workup was unremarkable (Table 1). Table 1. Biochemical evaluation of the patient with Cushing syndrome at baseline, ie, at admission Hormone tested Value Normal Range Plasma cortisol at 08:00 AM <1.01 mcg/dL (<28 nmol/L) 3.70-19.39 mcg/dL (102-535 nmol/L) ACTH <0.91 pg/mL (<0.2 pmol/L) 7.27-63.18 pg/mL (1.6-13.9 pmol/L) TSH 1.0 mIU/L (1.0 mIU/L) 0.4-3.7 mIU/L (0.4-3.7 mIU/L) Free T4 1.01 ng/dL (13 pmol/L) 0.76-1.32 ng/dL (9.8-17 pmol/L) IGF-1 142 ng/mL (18.60 nmol/L) 38-162 ng/mL (4.98-21.22 nmol/L) Prolactin 374 mIU/L (17.58 mcg/L) 63-561 mIU/L (2.96-26.37 mcg/L) FSH 90 mIU/mL (90 IU/L) 27-133 mIU/mL (post-menopausal) (27-133 IU/L) LH 16 mIU/mL (16 IU/L) 5.2-62 mIU/mL (post-menopausal) (5.2-62 IU/L) SHBG 6.07 mcg/mL (54 nmol/L) 2.25-17.42 mcg/mL (20-155 nmol/L) Testosterone 8.65 ng/dL (0.30 nmol/L) 11.53-34.58 ng/dL (0.4-1.2 nmol/L) Estradiol <19.07 pg/mL (<70 pmol/L) <28.06 pg/mL (<103 pmol/L) (post-menopausal with no hormone substitute) Aldosterone 9.05 ng/dL 0.251 pmol/L <23.61 ng/dL (recumbent position) <655 nmol/L Renin 8.25 mIU/L 2.8-40 mIU/L (recumbent position) DHEAS 14.81 mcg/dL (0.4 µmol/L) 29.63-181.48 mcg/dL (0.8-4.9 µmol/L) HbA1c 45 mmol/mol (6.3 %) 31-46 mmol/mol (5-6.4 %) Abnormal values are shown in bold font. Values in parenthesis are International System of Units (SI). Abbreviations: ACTH, adrenocorticotropic hormone; TSH, thyroid-stimulating hormone; T4, thyroxine; IGF-1, insulin-like growth factor 1; FSH, follicle-stimulating hormone; LH, luteinizing hormone; SHBG, sex hormone binding globulin; DHEAS, dehydroepiandrosterone sulfate; HbA1c, glycated hemoglobin. Open in new tab On day 3 after admission, we noted that plasma cortisol at 8:00 AM was measurable, though still low, at 134 nmol/L (4.86 μg/dL), which reinforced our first suspicion of exogenous CS and prompted a more thorough review of the patient's medication. At this time, we asked the patient to show us the tablets that she had been taking at home and that she still carried in her purse. To the patient's frank surprise, it turned out that she was indeed carrying tablets containing 4 mg dexamethasone in the belief that they were candesartan 4 mg tablets. The dexamethasone 4 mg tablet the patient had (generic) was white, scored with a diameter of 6 mm (Fig. 3A). The candesartan 4 mg tablet the patient had been dispensed (generic) was also white, scored and with a diameter of 7 mm (Fig. 3B). Figure 3. Open in new tabDownload slide A. Tablet Dexamethasone 4 mg. White, scored, diameter 6 × 6 mm. B. Tablet Candesartan 4 mg. White, scored, diameter 7 × 7 mm. Treatment The patient was discharged with the same antihypertensive medications as prior to the deterioration and referred to her general practitioner for follow-up of blood pressure. Upon clinical evaluation 5 months after discharge, she showed no signs or symptoms of CS (Fig. 4). Figure 4. Open in new tabDownload slide The patient 5 months after the resolution of Cushing syndrome. Outcome and Follow-up Thus, the patient had accidentally been taking her husband's medication, with which the patient had been aiding her husband, and developed a surreptitious iatrogenic CS. In hindsight, the severity of the clinical features had been worsening and resulted in rapid deterioration alongside the increase of the dosage of the antihypertensives from 4 to 8 mg because of the rising blood pressure. By day 5 after admission, the patient's plasma cortisol and ACTH concentrations had normalized, as had her blood pressure. Discussion Exogenous hypercortisolism is the most common cause of CS, though seldomly published in the literature, and is mainly iatrogenic because of prolonged use of high doses of synthetic glucocorticoids prescribed for the treatment of nonendocrine diseases (1). A recent study has shown that as many as every seventh resident in western Sweden received a glucocorticoid prescription between 2007 and 2014 (2). The rising use of generic medications during the past decade has resulted in corticosteroids being available in different forms, shapes, and packages that make them less easily recognizable. In many countries, corticosteroids are available over-the-counter in almost any form, whereas a variety of agents such as herbal preparations, tonics, and skin-bleaching creams may also contain corticosteroids to the unawareness of the people using them (3, 4). There are no large studies regarding how common the unintentional use of medicines or products that contain corticosteroids. However, studies on traditional Chinese medicine have shown that illegally impure herbs and medicines containing corticosteroids are widely used, suggesting that the accidental intake of corticosteroids is more frequent than we may think (3, 5). Many cases of factitious CS have been reported as a cause of exogenous CS, which makes the diagnosis even more challenging (6-8). The Endocrine Society Clinical Practice Guidelines for the diagnosis of CS recommend that exogenous CS be always excluded before starting the investigation of endogenous CS (9). However, a specific and definitive approach for diagnosing, respectively excluding, exogenous CS is currently lacking. In a recent review, the authors recommend that in addition to asking the patient which medicines they take, the physician should review the electronic health record and ask particularly for medications that are administered via nonoral routes, as well as over-the-counter agents as mentioned earlier (10). If not confirmed by history, the physician is advised to proceed to the measurement of ACTH and/or dehydroepiandrosterone sulfate as well as screening for synthetic glucocorticoids (10). The results usually show low ACTH, dehydroepiandrosterone sulfate, and cortisol levels even though the clinical picture suggests CS. The cross-reactivity of hydrocortisone or cortisone, which is similar to endogenous steroids, in immunoassay-based measurements of plasma and urinary cortisol may show variable levels of cortisol. These measurements combined with low ACTH can make the diagnostic workup much more complex (7). Screening for exogenous substances with the help of high-performance liquid chromatography is usually positive and constructive (7). It is increasingly clear that the risk of accidental ingestion of potent medicines can have deleterious effects on health. This leads us to conclude that thorough face-to-face review of the packaging of medications taken by the patient is mandatory and can spare both physicians and patients from a series of unnecessary investigations. Given the high availability, easy access, and catastrophic adverse effects of the unintentional use of corticosteroids, we therefore propose that all corticosteroid-including medications and agents be marked with a recognizable label. Learning Points Exogenous CS should be always excluded before starting investigation of endogenous CS. Concerning exogenous CS, practitioners should always think broadly and ask for use of herbal preparations, skin-bleaching creams, and any over-the-counter products. Unintentional use of corticosteroids can still be the case even after a thorough review of the electronic records; practitioners should always inspect the medicines the patient has taken. Contributors All authors (K.K., O.R., P.T.) made equal contributions to authorship. K.K., O.R., and P.T. were involved in the diagnosis and management of this patient, as well as in manuscript submission. K.K. and P.T. authored the manuscript draft. All authors (K.K., O.R., P.T.) reviewed and approved the final draft. Funding No public or commercial funding. Disclosures None declared. Informed Patient Consent for Publication Signed informed consent was obtained directly from the patient. © The Author(s) 2024. Published by Oxford University Press on behalf of the Endocrine Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. From https://academic.oup.com/jcemcr/article/2/1/luad160/7504969?login=false
  6. Abstract Purpose This study was undertaken to assess the unmet needs within the endogenous Cushing’s syndrome (CS) care paradigm from the endocrinologist’s perspective, including data abstracted from patient charts. The study evaluated endocrinologists’ perceptions on burden of illness and treatment rationale along with the long-term clinical burden of CS, tolerability of CS treatments, and healthcare resource utilization for CS. Methods Retrospective medical chart data from treated patients with a confirmed diagnosis of CS was abstracted using a cross-sectional survey to collect data from qualified endocrinologists. The survey included a case report form to capture patient medical chart data and a web-enabled questionnaire to capture practitioner-level data pertaining to endocrinologists’ perceptions of disease burden, CS treatments, and treatment attributes. Results Sixty-nine endocrinologists abstracted data from 273 unique medical charts of patients with CS. Mean patient age was 46.5 ± 13.4 years, with a 60:40 (female:male) gender split. The mean duration of endogenous CS amongst patients was 4.1 years. Chart data indicated that patients experienced a high burden of comorbidities and symptoms, including fatigue, weight gain, and muscle weakness despite multi-modal treatment. When evaluating treatments for CS, endocrinologists rated improvement in health-related quality of life (HRQoL) as the most important treatment attribute (mean score = 7.8; on a scale of 1 = Not at all important to 9 = Extremely important). Surgical intervention was the modality endocrinologists were most satisfied with, but they agreed that there was a significant unmet treatment need for patients with CS. Conclusion Endocrinologists recognized that patients with CS suffered from a debilitating condition with a high symptomatic and HRQoL burden and reported that improvement in HRQoL was the key treatment attribute influencing their treatment choices. This study highlights unmet needs for patients with CS. Patients with CS have a high rate of morbidity and comorbidity, even after treatment. Introduction Endogenous Cushing’s syndrome (CS) is a rare, debilitating disorder caused by chronic overproduction of cortisol [1,2,3]. CS has an estimated incidence of 0.7 to 2.4 cases per million per year, with a majority of cases (~ 70%) occurring in women [1, 4, 5]. Active CS is characterized by a variety of signs and symptoms, including muscle weakness, obesity, depression, menstrual changes, facial redness, decreased libido, hirsutism, acne, ecchymoses, hypertension, diabetes, and neurocognitive deficits [6]. Because of the diverse constellation of associated symptoms, many of which are common in the general population, CS can be challenging to diagnose and patients often seek input from multiple specialists (i.e., orthopedists, rheumatologists, gynecologists, and endocrinologists) prior to receiving a correct diagnosis [6]. Current treatment options for CS include surgery as the first line of treatment, followed by pharmacotherapies as the second line option and radiation therapy, among other treatments, as a potential third line option. Pharmacotherapies include steroidogenesis inhibitors (e.g., ketoconazole, levoketoconazole, metyrapone, osilodrostat, mitotane), glucocorticoid receptor antagonists (e.g., mifepristone), and medications that inhibit tumoral ACTH secretion (e.g., pasireotide, cabergoline) [6,7,8,9,10]. These pharmacotherapies can be administered as monotherapy or in combination. The impact of CS on overall health-related quality of life (HRQoL) has been previously described [11]. However, studies reporting both the patient burden (via medical charts) and physician perceptions of burden are lacking, and studies examining healthcare resource utilization (HCRU) and the economic burden of CS are limited. The current study reviewed medical charts of patients with CS to characterize the overall burden of CS (including symptoms, treatments, and HCRU) as well as physician perceptions of available treatments for CS and the rationale behind associated treatment decisions. Methods Study design and recruitment This quantitative, cross-sectional study was conducted to collect disease burden data pertaining to patients with CS from qualified physician respondents. All study materials were reviewed and granted exemption by a central Institutional Review Board (IRB) prior to study execution (Advarra; Columbia, MD; https://www.advarra.com/). HCPs were recruited via a physician panel through an independent recruitment partner (Toluna) and received an appropriate honorarium for their time participating in the study. This study was fielded between May 26 and July 27, 2021, and involved the abstraction of retrospective medical chart data from patients with a confirmed diagnosis of CS by endocrinologists. The survey included a 45–60-min web-enabled questionnaire, including a case report form (CRF) component, to capture patient medical chart data and health care practitioner (HCP)-level data in order to assess perceptions of CS disease burden, treatments, and attributes associated with treatments. Considering the rarity of CS, each HCP was required to abstract information from a minimum of 2 patient charts, and a maximum of 8 patient charts. Selection of study population HCPs were able to participate in the study if they: 1. Were board-certified or board-eligible in endocrinology in the United States. 2. Had been in practice for more than 3 years and less than 35 years post residency. 3. Spent at least 25% of their professional time providing direct patient care. 4. Had treated or managed at least 40 unique patients (of any condition) in an average month. 5. Had managed (i.e., had an appointment with) at least 3 patients with CS in the past year. 6. Had access to confirmed CS patient chart(s) at the time of the study. Each HCP who qualified to participate provided information via chart abstraction from the medical records of 2–8 patients with CS. The selected medical charts were from patients ≥ 21 years of age who had received a physician confirmed diagnosis of CS at least 3 months before the time of the study, and had received at least one therapy (surgical, radiological, or pharmacological) to treat their CS within the past 12 months. Patients who were diagnosed with adrenal or pituitary carcinomas were excluded. Data analysis The data analysis was conducted in SAS 9.4 (SAS Institute Inc., Cary, NC, USA) and Q Research Software 5.6. (Q Research Software, New York, NY). After pilot interviews and throughout the fielding, quality control checks of all the case report forms were conducted to ensure that charts with logical inconsistencies were removed from the sample. Descriptive statistics (such as means, medians, and frequencies) were used to describe the study population across various patient and physician level metrics. Results Endocrinologists’ demographics and practice characteristics Endocrinologists’ demographic information and practice characteristics are presented in Table 1. A total of 69 endocrinologists were surveyed and they provided information on 273 unique patient charts. The majority of the 69 endocrinologists surveyed (53/69, 73%) were male. The mean (± SD) time in practice was 17.3 (± 7.6) years. The majority of endocrinologists (35/69, 51%) worked in urban practices and were in private practice settings (47/69, 68%) (Table 1). The sample was almost equally distributed between physicians from the northern (26%), southern (29%), eastern (25%) and western (22%) regions of the United States. The mean (± SD) estimated number of patients with endogenous CS seen in the last 6 months was 30 (± 34.4) patients. Table 1 Endocrinologist demographics and practice characteristics Full size table aEndocrinologist were allowed to select multiple practice settings, if applicable Patient demographics Patient demographics and clinical characteristics at the time of the survey are shown in Table 2. The majority of patients (165/273, 60%) were female with a mean (± SD) age at diagnosis of 40.2 (± 12.3) years and a mean (± SD) age at the most recent visit of 46.5 (± 13.4) years. Mean (± SD) BMI was 33.3 (± 8.3) kg/m2, with 50.5% of patients categorized as obese, 33.0% of patients categorized as overweight, 14.7% of patients categorized as normal or healthy weight, and 1.8% of patients categorized as underweight (Table 2). Most patients (167/273, 61%) had private or commercial health insurance. Patient demographics and clinical characteristics at disease diagnosis are shown in Table 2. A majority of patients (194/273, 79%) originally saw their primary care physician (PCP) prior to diagnosis and were diagnosed in a private practice setting (182/273, 67%). At the time of diagnosis, 46/273 patients (17%) had poor health, 107/273 patients (39%) had fair health, 68/273 patients (25%) had neutral health, 45/273 patients (16%) had good health, and 7/273 patients (3%) had excellent health, according to the responding physician. Table 2 Patient demographics, clinical characteristics and therapy experience at diagnosis and time of the study Full size table Treatment of endogenous Cushing’s syndrome The patient treatment experience at the time of the study is presented in Table 2. Of the 273 patients, 79 (28.9%) underwent surgery only, 11 patients (4.0%) underwent surgery and radiation therapy, 4 patients (1.4%) underwent radiation therapy and pharmacotherapy, 5 patients (1.8%) underwent surgery, radiation therapy, and pharmacotherapy, 85 patients (31.1%) underwent surgery and pharmacotherapy, 2 patients (< 1%) underwent radiation alone and 87 patients (31.9%) underwent pharmacotherapy alone. Symptomatic burden of endogenous Cushing’s syndrome At diagnosis, 34% of patients presented with 1–3 symptoms, 33% of patients presented with 4–6 symptoms, 20% of patients presented with 7–9 symptoms, 8% of patients presented with 10–12 symptoms, and 5% of patients presented with > 13 symptoms (Fig. 1). Symptoms of CS at the time of diagnosis are shown in Fig. 2. The top 10 most common symptoms of CS at the time of diagnosis (Fig. 3) included fatigue, weight gain (in the midsection and upper back), acne, muscle weakness, facial weight gain (i.e., facial roundness), decreased libido, headache, edema, emotional lability, and hirsutism. Although symptoms decreased post-treatment, a large proportion of subjects still exhibited these symptoms post-treatment (Fig. 3). The most commonly reported comorbidities observed in patients with CS at the time of CS diagnosis (i.e., those affecting ≥ 20% of patients) included obesity, hypertension, depression, diabetes, dyslipidemia, anxiety, and impaired glucose tolerance (Table 2). Fig. 1 Number of CS symptoms reported at diagnosis Full size image Fig. 2 Symptoms of CS at diagnosis (N = 273) Full size image Fig. 3 Top 10 symptoms of CS over time. Responses were restricted for Erectile Dysfunction and Irregular Menstrual Periods. Hirsutism was not restricted to females only. All denominators in the table reflect the entire patient cohort, while the metrics below are based on only the affected genders: Female Only Hirsutism: 19% of the cohort (= 52/273), 32% of the females (= 52/165), Erectile Dysfunction: 6% of the cohort (= 17/273), 16% of the males (= 17/108) and, Irregular Menstrual Period: 11% of the cohort (= 30/273), 18% of the females (= 30/165) Full size image Economic burden of Cushing’s syndrome Healthcare resource utilization was assessed (Table 3). Patients required a mean (± SD) of 1 (± 1.4) hospitalization annually with a mean (± SD) length of impatient stay of 4.3 (± 3.1) days. Patients required a mean (± SD) of 0.6 (± 1.3) annual emergency room (ER) visits, and 4.3 (± 6.3) outpatient visits. Table 3 Healthcare resource utilization Full size table Endocrinologists’ perceptions of disease burden Endocrinologists were asked if they agreed with a series of statements regarding their perception of CS burden and impact on a scale of 1–9, where 1 = Not at all agree and 9 = Completely agree (Fig. 4). The highest proportion of endocrinologists responded “Completely agree” with the statements “CS patients can have reduced ability to function at work or school due to their condition” (percent of endocrinologists who responded “Completely agree” = 35%), “patients with CS feel the impact of their condition every day” (30%), that “CS is a debilitating condition” (28%), “patients with CS often have impaired health-related quality of life” (28%), and “CS results in sleep disturbances that adversely impact patient’s HRQoL” (26%). Fig. 4 Physicians’ perceptions of CS burden and impact. On a scale of 1–9, where 1 = Not at all agree and 9 = Completely agree Full size image Endocrinologists’ treatment perceptions Endocrinologists were asked for their perceptions of the most important treatment attributes on a scale of 1 to 5, where 1 = the least important and 5 = the most important (Table 4). The two most important treatment attributes included treatments that were efficacious post-surgery (mean score = 4.0) and efficacious as a combination therapy (3.7). Endocrinologists were asked to rank satisfaction with currently available treatments for CS including surgical intervention, pharmacotherapy, and radiological or other interventions on a scale of 1–9, where 1 = Not at all satisfied and 9 = Extremely satisfied (Table 5). Overall, endocrinologists reported highest satisfaction with surgical intervention with regards to initial efficacy (mean score = 7.2), durability (6.9), safety (6.3), side effects (6.2), tolerability (6.4), and patient’s overall experience (6.9). Endocrinologists also ranked pharmacotherapy higher than radiation therapy for the treatment of CS for initial efficacy (5.9 versus 5.2), safety (5.9 versus 5.4), side effects (5.3 versus 5.2), tolerability (5.7 versus 5.5), and patient’s overall experience (5.9 versus 5.4). Table 4 Top 5 highest rated treatment attributes Full size table Table 5 Physicians’ satisfaction across therapeutic categories Full size table Endocrinologists’ attitudes toward treatments and interventions Key factors for evaluating and selecting a CS treatment were rated on a scale of 1–9, with 1 = Not at all important and 9 = Extremely important (Fig. 5). Improving HRQoL (mean score = 7.8) was rated as the most important attribute. Similarly, improving cardiovascular complications/events (e.g., myocardial infarction, stroke, embolism) (7.6), psychiatric symptoms (e.g., depression, anxiety, mood changes) (7.6), skeletal/muscular symptoms (e.g., muscular weakness, decrease in bone mineral density, bone fractures) (7.5), and neurologic symptoms (e.g., headaches, memory, and cognitive difficulties including brain fog) (7.5) were ranked as key factors when choosing CS treatment. While factors in the survey such as “causes high rate of adrenal insufficiency” and “label contains a warning against use in CS” were ranked as less important, none of the factors listed were considered unimportant by physician respondents for choosing CS treatment. Fig. 5 Key factors for evaluating CS treatments that influence medication selection. On a scale of 1–9, where 1 = Not at all important and 9 = Extremely important Full size image Endocrinologists were asked if they agreed with a series of statements regarding CS treatment and intervention attitudes on a scale of 1–9, where 1 = strongly disagree and 9 = strongly agree (Table 6). The three highest scoring statements were “there is a significant clinical unmet need for patients with endogenous CS” (mean score = 6.6), “better patient support services for CS medications often leads to better patient adherence” (6.5), and “patient out of pocket cost is a significant burden for CS patients on a pharmacological therapy” (6.5). The lowest scoring statement was “patient out of pocket cost is not a significant factor when prescribing pharmacological therapy for my CS patients” (4.6). Table 6 Physicians’ attitudes toward CS treatment and intervention Full size table Discussion This study provides valuable information on the physician’s perspective of unmet needs and treatment goals for patients with CS. Endocrinologists in our sample strongly agreed that patients with CS suffered from a debilitating daily condition with a high HRQoL burden. Endocrinologists also strongly agreed with the view that “there is a significant clinical unmet need for patients with endogenous CS” and ranked prescribing treatments to improve HRQoL, cardiovascular events, depression, and anxiety as key factors influencing treatment decisions. The importance providers place on the availability of post-surgery treatment options reflects the inability of many patients with CS to achieve complete post-surgical symptom resolution and suggests all symptoms in patients with CS are not currently addressed with available treatments. Multiple treatment modalities were utilized by endocrinologists in the care of patients with CS, including surgery, pharmacotherapy, and/or radiation therapy. Improvement in HRQoL was the key treatment attribute influencing CS treatment choices, followed by the goal of reducing cardiovascular complications, and decreasing psychiatric symptoms. However, the prevalence of comorbidities after CS treatment as well as endocrinologists’ perceptions and attitudes regarding an unmet need for CS treatments and ongoing disease burden showed that few therapies are able to improve patients’ ongoing disease burden. New CS treatments are needed that have long-term efficacy, fewer side effects, and effective reimbursement. Patients with CS have a high symptomatic disease burden at diagnosis. This study and others have demonstrated that many of these signs and symptoms (e.g., hypertension, obesity, and depression) persist even after receiving treatment aimed at normalizing cortisol levels [12,13,14,15]. Results from the present study show that many patients continue to experience fatigue, weight gain, muscle weakness, and emotional lability even after treatment, indicating an unmet need for CS treatments that can effectively manage these persistent symptoms. The persistence of symptoms after treatment for CS is likely multifactorial, and may, at least in part, be due to complications of prolonged hypercortisolism, given diagnostic and treatment delays; however, the ability to predict which patients will continue to experience persistent symptoms after treatment is challenging [14, 16, 17]. Additionally, the effects of inadequate cortisol control, symptoms due to glucocorticoid withdrawal, and side effects from medications taken to address comorbidities may contribute to persistent symptoms after treatment for CS. Although there are currently established reference values and treatment guidelines used to stratify patients, there are no current clear guidelines on management of ongoing symptoms after cortisol levels have been addressed [18]. Additionally, the present study indicated that only 32% of patients were diagnosed at the first presentation of their CS symptoms, underscoring the importance of increasing awareness of CS and its presentation among PCPs to expedite diagnosis and treatment. The economic burden of illness from CS includes both the direct impact on HCRU, and the indirect impact on the patient due to loss of work productivity. The present study determined that the mean (± SD) annual number of hospitalization among patients with CS was 1 (± 1.4) day with an average length of inpatient stay of 4.3 days, similar in duration to the mean length of stay for all hospitalizations in the US [19]. However, the average number of outpatient visits among patients with CS was 4.3 visits per year, slightly lower than described in a recent study of patients with CS [11], but almost twice the rate of the average American, indicating a substantial direct cost burden [20]. Patients’ reduced ability to function at work or at school could limit their full economic potential, not only for themselves, but for family members and caregivers, indicating an indirect economic cost. The degree of concordance between patients’ chart data and the perceptions of providers regarding disease symptoms is an important issue raised, but not directly addressed, by this study. Although endocrinologists agreed that there was a high HRQoL burden attributable to CS, this study did not analyze patients’ perceptions of HRQoL burden of CS. Discordance between patients’ perceptions and the perceptions of their healthcare providers, as well as the tendency of providers to perceive disease burden as less impactful or severe than is perceived by patients, has been reported in other medical conditions such as acromegaly, rheumatoid arthritis and chronic pain. The result of this is often worse medical outcomes for patients with rheumatoid arthritis or worse pain and functioning in patients with chronic pain [21,22,23,24]. Further study is necessary to analyze the concordance between the perceptions of physicians and patients with CS. A recent cross-sectional web-enabled survey burden of illness study and a recent systemic literature review [11, 25, 26], conducted by the authors of this study, elucidated both the burden of CS as well as unmet needs in the healthcare system for patients with CS. The results of the current study corroborate the findings of both of these studies, confirming that patients experience a substantial and complex burden of cumulative CS symptoms that impacts their HRQoL. Similar to prior studies, the current results also demonstrate that although symptoms improve with treatment, some symptoms such as weight gain, pain, and anxiety persist even after treatment interventions, including surgery, pharmacotherapy, and radiation therapy. Patients with CS have previously been shown to have worse HRQoL scores compared to healthy counterparts [26], underscoring the long-term effects of CS despite treatment. This study and others have demonstrated that current therapies do not completely mitigate this HRQoL burden and indicate an unmet need among many patients with CS for additional treatments to control symptoms after cortisol level normalization. Study limitations During the time in which this study was conducted, additional CS treatments could have been approved, potentially changing the treatment landscape, and thereby altering the proportion of patients that continued to have symptoms after treatment (Fig. 3) or the proportion of patients with a particular comorbidity after treatment. Physician response may have been subject to recall bias; although this may have been mitigated by the use of patient chart data the possibility that details were omitted at the time of patient visits exists. Additionally, when physicians were asked about working in a Center of Excellence, the term was not explicitly defined which may have led to varying interpretations by respondents. Due to the nature of the method used (i.e., a survey given to endocrinologists treating patients at the present time), we have limited historical chart data on the entire medical journey of each patient and all important medical events may not have been captured. For example, treatments administered to patients prior to this study (i.e., those administered by previous doctors or from a different hospital) may not be present in the patients’ charts and were not captured by our survey. Additionally, we did not capture biochemical data to make definitive statements on disease status based on patient cortisol levels. Updated guidelines on cortisol levels indicative of disease severity have recently been issued by the Pituitary Society [18], and a shift toward standardized clinical guidelines may help physicians provide timely and appropriate treatment for patients with CS. Future patient-centered research in CS should focus on identifying biomarkers associated with persistent symptoms after initial treatment, which could influence the development of guidelines for managing ongoing symptoms as current treatments are focused on cortisol management. The cohort of patients with CS included in our study is also not representative of the full spectrum of patients with CS as they were required to have received at least one pharmacological therapy to be eligible for the study. This requirement was added to our eligibility criteria as the aim of our study was to evaluate the burden of illness faced by patients with Cushing’s Syndrome, post-treatment, in the real world. Future studies evaluating concordance between patient chart data and physician perceptions of CS symptoms are also likely to be of interest. Finally, patient symptoms in this study could potentially have been masked due to the use of over-the-counter medications or other prescription treatments not fully captured in charts. Conclusion Patients with CS continue to experience symptoms such as fatigue, weight gain, muscle weakness, and emotional instability even after seeking and receiving treatment, indicating an unmet need for treatments that control symptoms. Future research is needed to develop a treatment paradigm that alleviates disease burden in patients with CS and that results in long-term disease control with a favorable side effect profile. Data availability The authors confirm that all pertinent data generated or analyzed during this study are included in this manuscript or Supplementary Materials. Consent to publish Study participants consented to the publication of their data anonymously on an aggregate basis. References Lacroix A et al (2015) Cushing’s syndrome. Lancet 386(9996):913–927 Article CAS PubMed Google Scholar Hopkins RL, Leinung MC (2005) Exogenous Cushing's syndrome and glucocorticoid withdrawal. Endocrinol Metab Clin North Am 34(2):371–384, ix NORD (2021) Cushing syndrome. NORD. https://rarediseases.org/rare-diseases/cushing-syndrome/ Wengander S et al (2019) The incidence of endogenous Cushing’s syndrome in the modern era. Clin Endocrinol (Oxf) 91(2):263–270 Article CAS PubMed Google Scholar Hakami OA, Ahmed S, Karavitaki N (2021) Epidemiology and mortality of Cushing’s syndrome. Best Pract Res Clin Endocrinol Metab 35(1):101521 Article CAS PubMed Google Scholar Nieman LK (2015) Cushing’s syndrome: update on signs, symptoms and biochemical screening. Eur J Endocrinol 173(4):M33–M38 Article CAS PubMed PubMed Central Google Scholar Castinetti F, Conte-Devolx B, Brue T (2010) Medical treatment of Cushing’s syndrome: glucocorticoid receptor antagonists and mifepristone. Neuroendocrinology 92(Suppl 1):125–130 Article CAS PubMed Google Scholar Castinetti F, Brue T, Conte-Devolx B (2012) The use of the glucocorticoid receptor antagonist mifepristone in Cushing’s syndrome. Curr Opin Endocrinol Diabetes Obes 19(4):295–299 Article CAS PubMed Google Scholar Sharma ST, Nieman LK, Feelders RA (2015) Cushing’s syndrome: epidemiology and developments in disease management. Clin Epidemiol 7:281–293 PubMed PubMed Central Google Scholar Hinojosa-Amaya JM, Cuevas-Ramos D, Fleseriu M (2019) Medical management of Cushing’s syndrome: current and emerging treatments. Drugs 79(9):935–956 Article CAS PubMed Google Scholar Page-Wilson G et al (2023) Evaluating the burden of endogenous Cushing’s syndrome using a web-based questionnaire and validated patient-reported outcome measures. Pituitary 26(4):1–11 Article Google Scholar Pivonello R et al (2016) Complications of Cushing’s syndrome: state of the art. Lancet Diabetes Endocrinol 4(7):611–629 Article CAS PubMed Google Scholar Pertichetti M et al (2020) Pituitary adenomas and neuropsychological status: a systematic literature review. Neurosurg Rev 43(4):1065–1078 Article PubMed Google Scholar Andela CD et al (2015) Mechanisms in endocrinology: Cushing’s syndrome causes irreversible effects on the human brain: a systematic review of structural and functional magnetic resonance imaging studies. Eur J Endocrinol 173(1):R1-14 Article CAS PubMed Google Scholar Papakokkinou E et al (2020) Excess morbidity persists in patients with Cushing’s disease during long-term remission: a Swedish nationwide study. J Clin Endocrinol Metab 105(8):dgaa291 Article PubMed Google Scholar Espinosa-de-Los-Monteros AL et al (2013) Persistence of Cushing’s disease symptoms and comorbidities after surgical cure: a long-term, integral evaluation. Endocr Pract 19(2):252–258 Article PubMed Google Scholar Bhattacharyya A et al (2005) Steroid withdrawal syndrome after successful treatment of Cushing’s syndrome: a reminder. Eur J Endocrinol 153(2):207–210 Article CAS PubMed Google Scholar Fleseriu M et al (2021) Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol 9(12):847–875 Article PubMed PubMed Central Google Scholar Freeman W, Weiss A, Heslin K (2018) Overview of U.S. hospital stays in 2016: variation by geographic region. Agency for Healthcare Research and Quality. https://www.hcup-us.ahrq.gov/reports/statbriefs/sb246-Geographic-Variation-Hospital-Stays.jsp Control, C.f.D. National Center for Health Statistics (2023) Ambulatory care use and physician office visits. https://www.cdc.gov/nchs/fastats/physician-visits.htm Michelsen B et al (2017) Discordance between tender and swollen joint count as well as patient’s and evaluator’s global assessment may reduce likelihood of remission in patients with rheumatoid arthritis and psoriatic arthritis: data from the prospective multicentre NOR-DMARD study. Ann Rheum Dis 76(4):708–711 Article PubMed Google Scholar Smolen JS et al (2016) Discordance between patient and physician assessments of global disease activity in rheumatoid arthritis and association with work productivity. Arthritis Res Ther 18(1):114 Article PubMed PubMed Central Google Scholar Geer EB et al (2020) Observed discordance between outcomes reported by acromegaly patients and their treating endocrinology medical provider. Pituitary 23(2):140–148 Article PubMed Google Scholar Panda M et al (2006) The influence of discordance in pain assessment on the functional status of patients with chronic nonmalignant pain. Am J Med Sci 332(1):18–23 Article PubMed Google Scholar Page-Wilson GO, Maguire A, O'Hara M, Moloney S, Eliza G (2022) Patient-reported burden of illness in endogenous Cushing’s syndrome Page-Wilson GO, Bhagyashree O, Silber A, Meyer J, O'Hara M, Geer E (2022) Physician perceptions on the treatment and health-related quality of life burden of endogenous Cushing’s syndrome Download references Acknowledgements Medical editorial assistance was provided by Amal Gulaid, MPH from Trinity Life Sciences. Medical writing assistance was provided by Iona Bartek, PhD. Funding for this study was provided by Strongbridge Biopharma plc, a wholly owned subsidiary of Xeris BioPharma Holdings, Inc. Target Journal Pituitary. Funding Funding for this study was provided by Strongbridge Biopharma plc, a wholly-owned subsidiary of Xeris Biopharma Holdings, Inc. Gabrielle Page-Wilson, MD and Eliza B. Geer, MD were contracted by Strongbridge Biopharma, a wholly owned subsidiary of Xeris Biopharma Holdings, Inc. to provide expert guidance for this study. Bhagyashree Oak, PhD, Abigail Silber, MPH, and Mathew O’Hara, MBA are employees of Trinity Life Sciences, which was commissioned by Strongbridge Biopharma, a wholly owned subsidiary of Xeris Biopharma Holdings, Inc. to conduct the current study. James Meyer, MBA, PharmD is an employee and shareholder of Xeris Pharmaceuticals, Inc. This research was funded in part through the NIH/NCI Cancer Center Support Grant P30 CA008748. Author information Authors and Affiliations Division of Endocrinology, Columbia University Irving Medical Center, New York, NY, USA Gabrielle Page-Wilson Trinity Life Sciences, Waltham, MA, USA Bhagyashree Oak, Abigail Silber & Matthew O’Hara Xeris Pharmaceuticals, Inc, Chicago, IL, USA James Meyer Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA Eliza B. Geer Contributions All authors contributed to the study conception and design. Study material preparation, data collection, analyses, and manuscript development were conducted by BO, AS, and MO. JM provided overall strategic guidance. GP-W and EBG provided expert reviews of the work. All authors read and approved the final published version. Corresponding author Correspondence to Eliza B. Geer. Ethics declarations Conflict of interest Funding for this study was provided by Strongbridge Biopharma plc, a wholly-owned subsidiary of Xeris Biopharma Holdings, Inc. Gabrielle Page-Wilson, MD and Eliza B. Geer, MD were contracted by Strongbridge Biopharma, a wholly owned subsidiary of Xeris Biopharma Holdings, Inc. to provide expert guidance for this study. Bhagyashree Oak, PhD, Abigail Silber, MPH, and Mathew O’Hara, MBA are employees of Trinity Life Sciences, which was commissioned by Strongbridge Biopharma, a wholly owned subsidiary of Xeris Biopharma Holdings, Inc. to conduct the current study. James Meyer, MBA, PharmD is an employee and shareholder of Xeris Pharmaceuticals, Inc. This research was funded in part through the NIH/NCI Cancer Center Support Grant P30 CA008748. Ethical approval This was an observational study conducted in accordance with the 1964 Declaration of Helsinki and its later amendments. As this was not a randomized clinical trial, the study was not registered as such. The ADVARRA Institutional Review Board (Columbia, MD; https://www.advarra.com/) has granted the study exemption from IRB oversight using the Department of Health and Human Services regulations found at 45 CFR 46.104(d)(2). The IRB also completed the necessary additional limited review considerations as set forth under the Revised Common Rule, 45 CFR 46.104(d). Informed consent Informed consent was obtained from all participants included in the study during the screening process and this was required to successfully enroll into the study. Participants were able to exit the study at any time or refuse to answer any questions. Additional information Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Rights and permissions Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Reprints and permissions From https://link.springer.com/article/10.1007/s11102-023-01371-y
  7. Summary Background Paediatric endogenous Cushing syndrome is a rare condition with variable signs and symptoms of presentation. We studied a large cohort of paediatric patients with endogenous Cushing syndrome with the aim of describing anthropometric, clinical, and biochemical characteristics as well as associated complications and outcomes to aid diagnosis, treatment, and management. Methods In this prospective, multisite cohort study, we studied children and adolescents (≤18 years at time of presentation) with a diagnosis of Cushing syndrome. Patients had either received their initial diagnosis and evaluation at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (Bethesda, MD, USA) or been referred from other centres in the USA or outside the USA. We collected participants’ clinical, biochemical, and imaging findings and recorded their post-operative course until their latest appointment. Findings Of 342 paediatric patients with a diagnosis of Cushing syndrome, 193 (56%) were female and 149 (44%) male. 261 (76%) patients had corticotroph pituitary neuroendocrine tumours (Cushing disease), 74 (22%) had adrenal-associated Cushing syndrome, and seven (2%) had ectopic Cushing syndrome. Patients were diagnosed at a median of 2 years (IQR 1·0–3·0) after the first concerning sign or symptom, and patients with adrenal-associated Cushing syndrome were the youngest at diagnosis (median 10·4 years [IQR 7·4–13·6] vs 13·0 years [10·5–15·3] for Cushing disease vs 13·4 years [11·0–13·7] for ectopic Cushing syndrome; p<0·0001). Body-mass index z-scores did not differ between the diagnostic groups (1·90 [1·19–2·34] for adrenal-associated Cushing syndrome vs 2·18 [1·60–2·56] for Cushing disease vs 2·22 [1·42–2·35] for ectopic Cushing syndrome; p=0·26). Baseline biochemical screening for cortisol and adrenocorticotropin at diagnosis showed overlapping results between subtypes, and especially between Cushing disease and ectopic Cushing syndrome. However, patients with ectopic Cushing syndrome had higher urinary free cortisol (fold change in median cortisol concentration from upper limit of normal: 15·5 [IQR 12·7–18·0]) than patients with adrenal-associated Cushing syndrome (1·5 [0·6–5·7]) or Cushing disease (3·9 [2·3–6·9]; p<0·0001). Common complications of endogenous Cushing syndrome were hypertension (147 [52%] of 281 patients), hyperglycaemia (78 [30%] of 260 patients), elevated alanine transaminase (145 [64%] of 227 patients), and dyslipidaemia (105 [48%] of 219 patients). Long-term recurrence was noted in at least 16 (8%) of 195 patients with Cushing disease. Interpretation This extensive description of a unique cohort of paediatric patients with Cushing syndrome has the potential to inform diagnostic workup, preventative actions, and follow-up of children with this rare endocrine condition. Funding Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health. Introduction Paediatric endogenous Cushing syndrome is a rare disorder accounting for 5–7% of all reported cases of endogenous Cushing syndrome.1, 2, 3 In children older than 5–7 years and adolescents, endogenous Cushing syndrome is most commonly caused by corticotroph pituitary neuroendocrine tumours (PitNETs) and is termed Cushing disease. By contrast, Cushing syndrome in children younger than 5 years is often associated with adrenal disorders and is termed adrenal-associated Cushing syndrome.4 Albeit rare, a third type termed ectopic Cushing syndrome is caused by neuroendocrine tumours outside the hypothalamic–pituitary axis that secrete adrenocorticotropin or corticotropin-releasing hormone.5, 6 Thus endogenous Cushing syndrome is caused by either adrenocorticotropin-dependent sources (pituitary or ectopic) or adrenocorticotropin-independent (adrenal) hypercortisolemia. Patients with adults-onset Cushing syndrome typically present with weight gain, skin manifestations (striae, hirsutism, acne, and easy bruising), and abnormal fat deposition.7, 8, 9 Paediatric Cushing syndrome differs from adult-onset Cushing syndrome in aspects including effects on growth (weight gain with concomitant height deceleration), atypical physical presentation (such as lack of centripetal obesity or typical striae), delayed or suppressed puberty, and variable mental health problems and neurocognitive function deficits.10 Diagnosis of paediatric Cushing syndrome is therefore challenging, and delayed evaluation is common. Research in context Evidence before this study Endogenous Cushing syndrome is a rare endocrine condition. Diagnosis can be challenging and delay treatment. We searched PubMed for articles published in English on paediatric Cushing syndrome using terms “Cushing” AND “children” from database inception to May 5, 2023. Although several case series of paediatric Cushing disease were identified, only a few studies of the various causes of paediatric endogenous Cushing syndrome were available. Added value of this study To our knowledge, this cohort of paediatric endogenous Cushing syndrome of various causes is one of the largest sources of cumulative clinical, anthropometric, and biochemical data on the presentation, diagnosis, and management. We confirm that baseline biochemical data cannot aid differential diagnosis of Cushing syndrome subtypes. However, evidence suggests that minimally invasive stimulation tests could be a safe alternative to interventional sampling procedures such as inferior petrosal sinus sampling. We provide the prevalence of complications related to Cushing syndrome. Long-term outcomes of paediatric patients with pituitary corticotroph tumours recurrence is possible up to 8 years after initial remission. Implications of all the available evidence Data from this large paediatric cohort inform the evaluation, diagnosis, and long-term care of patients with paediatric Cushing syndrome. We recommend an algorithm for the diagnosis of patients and screening of complications. Screening for recurrence in patients with Cushing disease is indicated for this age group, at least for the first decade after surgery. We have evaluated a large cohort of children and adolescents with endogenous Cushing syndrome of various causes. The aim of the study was to document anthropometric, clinical, and biochemical characteristics, complications, and outcomes of paediatric endogenous Cushing syndrome to aid clinicians in the diagnosis and management of these patients. Section snippets Study design and participants In this prospective, multisite cohort study, we screened participants who, from 1995 to 2023, had enrolled in studies under protocols 97-CH-0076 (clinicaltrials.gov, NCT00001595), 95-CH-0059 (NCT00001452), and 00-CH-0160 (NCT00005927) at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD, Bethesda, MD, USA). Paediatric patients (18 years or younger at time of presentation) with a diagnosis of Cushing syndrome were eligible for inclusion in the study. We Results 342 patients with paediatric Cushing syndrome were included in the study (table 1). 278 patients were referred from centres in the USA, and 64 patients were referred from centres outside of the USA. 261 (76%) patients were diagnosed with Cushing disease, 74 (22%) patients were diagnosed with adrenal-associated Cushing syndrome, and seven (2%) patients were diagnosed with ectopic Cushing syndrome. Patients with adrenal-associated Cushing syndrome were diagnosed at a younger age than patients Discussion We present extensive and unique data on presentation, diagnosis, and follow-up of paediatric patients with three diagnostic types of endogenous Cushing syndrome. Clinical and anthropometric characteristics were similar across subtypes of Cushing syndrome, but biochemical tests differed. We also present extensive information on complications; hypertension, insulin resistance, dyslipidaemia, and elevated ALT were common. Long-term follow-up of patients revealed excellent postoperative prognosis, Data sharing The data that support the findings of this study are available from the corresponding author upon reasonable request. Declaration of interests CAS holds patents on the function of the PRKAR1A, PDE11A, and GPR101 genes and related issues; his laboratory had received research funding on GPR101, and on abnormal growth hormone secretion and its treatment by Pfizer. CAS receives support from ELPEN and has been consulting for Lundbeck Pharmaceuticals and Sync. CT reports receiving research funding on treatment of abnormal growth hormone secretion by Pfizer. References (38) OA Hakami et al. Epidemiology and mortality of Cushing's syndrome Best Pract Res Clin Endocrinol Metab (2021) HL Storr et al. Paediatric Cushing's syndrome: epidemiology, investigation and therapeutic advances Trends Endocrinol Metab (2007) C Tatsi et al. Neonatal Cushing syndrome: a rare but potentially devastating disease Clin Perinatol (2018) CA Stratakis An update on Cushing syndrome in pediatrics Ann Endocrinol (Paris) (2018) JL Shaw et al. Validity of establishing pediatric reference intervals based on hospital patient data: a comparison of the modified Hoffmann approach to CALIPER reference intervals obtained in healthy children Clin Biochem (2014) MB Lodish et al. Effects of Cushing disease on bone mineral density in a pediatric population J Pediatr (2010) L Meloche-Dumas et al. Role of unilateral adrenalectomy in bilateral adrenal hyperplasias with Cushing's syndrome Best Pract Res Clin Endocrinol Metab (2021) M Fleseriu et al. Consensus on diagnosis and management of Cushing's disease: a guideline update Lancet Diabetes Endocrinol (2021) MS Broder et al. Incidence of Cushing's syndrome and Cushing's disease in commercially-insured patients <65 years old in the United States Pituitary (2015) O Ragnarsson et al. The incidence of Cushing's disease: a nationwide Swedish study Pituitary (2019) From https://www.sciencedirect.com/science/article/abs/pii/S235246422300264X
  8. Dr. Theodore Friedman will be giving a brief update on growth hormone replacement, then answer your questions about endocrine issues. He can not give specific medical advice and this does not replace making an appointment, but he can answer your questions on any endocrine topic including: Cushing's disease Adrenal insufficiency/Addison's Hypothyroidism/Hashimoto's Graves' Disease Menopause PCOS Growth hormone deficiency Hypopituitarism For both existing and potential patients. Sunday • January 21, 2024 • 6 PM PST Please join using the links below https://www.facebook.com/goodhormonehealth/ or Via Zoom Click to join the meeting meeting ID 420 968 7343, passcode 111116 Slides will be available on the day of the talk here. For more information, email us at mail@goodhormonehealth.com
  9. Dr. Theodore Friedman will be giving a brief update on growth hormone replacement, then answer your questions about endocrine issues. He can not give specific medical advice and this does not replace making an appointment, but he can answer your questions on any endocrine topic including: Cushing's disease Adrenal insufficiency/Addison's Hypothyroidism/Hashimoto's Graves' Disease Menopause PCOS Growth hormone deficiency Hypopituitarism For both existing and potential patients. Sunday • January 21, 2024 • 6 PM PST Please join using the links below https://www.facebook.com/goodhormonehealth/ or Via Zoom Click to join the meeting meeting ID 420 968 7343, passcode 111116 Slides will be available on the day of the talk here. For more information, email us at mail@goodhormonehealth.com
  10. Abstract We investigated the impact of metformin on ACTH secretion and tumorigenesis in pituitary corticotroph tumors. The mouse pituitary tumor AtT20 cell line was treated with varying concentrations of metformin. Cell viability was assessed using the CCK-8 assay, ACTH secretion was measured using an ELISA kit, changes in the cell cycle were analyzed using flow cytometry, and the expression of related proteins was evaluated using western blotting. RNA sequencing was performed on metformin-treated cells. Additionally, an in vivo BALB/c nude xenograft tumor model was established in nude mice, and immunohistochemical staining was conducted for further verification. Following metformin treatment, cell proliferation was inhibited, ACTH secretion decreased, and G1/S phase arrest occurred. Analysis of differentially expressed genes revealed cancer-related pathways, including the MAPK pathway. Western blotting confirmed a decrease in phosphorylated ERK1/2 and phosphorylated JNK. Combining metformin with the ERK1/2 inhibitor Ulixertinib resulted in a stronger inhibitory effect on cell proliferation and POMC (Precursors of ACTH) expression. In vivo studies confirmed that metformin inhibited tumor growth and reduced ACTH secretion. In conclusion, metformin inhibits tumor progression and ACTH secretion, potentially through suppression of the MAPK pathway in AtT20 cell lines. These findings suggest metformin as a potential drug for the treatment of Cushing's disease. Introduction Pituitary neuroendocrine tumors (PitNETs) are common intracranial tumors with an incidence of 1/1000, and pituitary corticotroph tumors (corticotroph PitNETs) account for approximately 15% of all PitNETs. Most corticotroph PitNETs are functional tumors with clinical manifestations of Cushing's disease characterized by central obesity, hypertension, diabetes mellitus, and psychosis (Cui et al., 2021). The increased cortisol due to the overproduction of adrenocorticotropic hormone (ACTH) significantly reduces the overall quality of survival and life expectancy of patients (Sharma et al., 2015; Barbot et al., 2018). Currently, treatment of corticotroph PitNETs mainly relies on surgery resection, pharmacologic therapy or radiotherapy may be considered for patients with residual tumors or those who are unable to undergo surgery. While several agents, such as cabergoline and pasireotide, are clinically approved, the effect is unsatisfactory, and potentially serious side effects exist. Therefore, there is an urgent need to develop novel therapeutic drugs for corticotroph PitNETs. Metformin is a biguanide hypoglycemic agent for the treatment of type 2 diabetes. In addition to its hypoglycemic effect, numerous studies identified the therapeutic role of metformin in the prevention and treatment of various tumors including small cell lung cancer, colorectal cancer, breast cancer, ovarian cancer, and neuroendocrine tumors (Lu et al., 2022; Kamarudin et al., 2019; Wang et al., 2019; Thakur et al., 2019), making metformin a promising adjuvant drug in the therapy of cancers. Besides, it has been reported that metformin improves metabolic and clinical outcomes in patients treated with glucocorticoids. However, to date, limited studies explore the potential anti-cancer effect of metformin in corticotroph PitNETs. Recent studies report the use of metformin for blood glucose and body weight control in patients with Cushing's disease (Ceccato et al., 2015), while the role of metformin on ACTH secretion and tumor growth in corticotroph PitNETs remains to be elucidated. In the current study, we investigated the effect of metformin in corticotroph PitNETs and performed RNA-sequencing to identify the potential mechanisms of metformin. We found that metformin inhibited cell proliferation and ACTH secretion of AtT20 cells in a dose-dependent manner. Besides, metformin induced cell cycle arrest via decreased ERK1/2 phosphorylation and increased P38 phosphorylation. Our results revealed that metformin is a potential drug for corticotroph PitNET therapy. Section snippets Cell culture The ACTH-secreting mouse pituitary tumor cell line AtT-20 was purchased from the American Type Culture Collection (ATCC; Manassas, VA, USA). Cells were cultured in F-12K medium (ATCC; Catalog No. 30-2004), supplemented with 15% fetal bovine serum (FBS; Gibco), and 2.5% horse serum (Gibco) as suggested. AtT20 cells were cultured in a humidified incubator at 37 °C in 5% CO2. Reagents and drugs Metformin and Ulixertinib were purchased from MedChemExpress (MCE), Metformin was dissolved in sterile H2O and prepared as a Results Metformin inhibits cell proliferation and ACTH secretion, and leads to cell cycle arrest in AtT20 cells. We used CCK-8 assay to detect the cell viability of AtT20 cells after treatment with different concentrations of metformin at 24 h, 48 h, and 72 h. The results showed that metformin significantly inhibited the proliferation of AtT20 cells in a dose-dependent manner (Fig. 1A). Similarly, prolonged (6 days) treatment of AtT20 cells with a lower concentration (400 μM) of metformin also inhibited Discussion Metformin, acting by binding to PEN2 and initiating the subsequent AMPK signaling pathway in lysosomes, is the most commonly used oral hypoglycemic agent (Hundal et al., 2000; Ma et al., 2022). Previous reports demonstrated metformin as a potential anti-tumor agent in cancer therapy (Evans et al., 2005). Metformin, either alone or in combination with other drugs, has been shown to reduce cancer risk in a variety of tumors including pituitary neuroendocrine tumors (PitNETs) (Thakur et al., 2019; Conclusion Our study demonstrated that metformin suppressed cell proliferation and decreased ACTH secretion in AtT20 cells via the MAPK pathway. Our results revealed that metformin is a potential anti-tumor drug for the therapy of corticotroph PitNETs, which deserves further study. Funding This study was supported by the National Natural Science Foundation of China (82072804, 82071559). CRediT authorship contribution statement Yingxuan Sun: Conceptualization, Formal analysis, Investigation, Writing – original draft, Writing – review & editing. Jianhua Cheng: Data curation, Formal analysis, Visualization, Writing – original draft, Writing – review & editing. Ding Nie: Formal analysis, Writing – review & editing. Qiuyue Fang: Data curation, Formal analysis, Writing – review & editing. Chuzhong Li: Conceptualization, Supervision, Writing – original draft, Writing – review & editing, Funding acquisition. Yazhuo Zhang: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Acknowledgement We thank Mr. Hua Gao (Cell Biology Laboratory, Beijing Neurosurgical Institute, China) for support with the techniques. References (30) K. Jin et al. Metformin suppresses growth and adrenocorticotrophic hormone secretion in mouse pituitary corticotroph tumor AtT20 cells Mol. Cell. Endocrinol. (2018) R. Krysiak et al. The effect of metformin on prolactin levels in patients with drug-induced hyperprolactinemia Eur. J. Intern. Med. (2016) X. Liu et al. Combination treatment with bromocriptine and metformin in patients with bromocriptine-resistant prolactinomas: pilot study World neurosurgery (2018) J. Sinnett-Smith et al. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: dependence on glucose concentration and role of AMPK Biochem. Biophys. Res. Commun. (2013) C.R. Triggle et al. Metformin: is it a drug for all reasons and diseases? Metab., Clin. Exp. (2022) J.C. Wang et al. Metformin inhibits metastatic breast cancer progression and improves chemosensitivity by inducing vessel normalization via PDGF-B downregulation J. Exp. Clin. Cancer Res. : CR (2019) J. An et al. Metformin inhibits proliferation and growth hormone secretion of GH3 pituitary adenoma cells Oncotarget (2017) M. Barbot et al. Diabetes mellitus secondary to Cushing's disease Front. Endocrinol. (2018) F. Ceccato et al. Clinical use of pasireotide for Cushing's disease in adults Therapeut. Clin. Risk Manag. (2015) M. Cejuela et al. Metformin and breast cancer: where are we now? Int. J. Mol. Sci. (2022) From https://www.sciencedirect.com/science/article/abs/pii/S0303720723002915
  11. an-ectopic-cushingrsquos-syndrome-with-severe-psychiatric-presentation-9744.pdf Abstract Ectopic ACTH Secreting (EAS) tumor is relatively rare entity that presents with severe manifestation due to high level of endogenous hypercortisolism and rapidity of its onset. We report a case of severe EAS in a young Tunisian man resulting from a well differentiated Neuroendocrine Tumor (NET) of the lung. Besides catabolic signs and profound hypokalemia orienting towards Cushing’s Syndrome (CS), psychiatric symptoms were particularly severe, dominant and atypical including persecutory delusions, depression and anxiety. After tumor localization, successful resection was performed and the majority of psychiatric symptoms resolved rapidly except for mild depression.
  12. Here, we report the first adult case of pancreatic yolk sac tumor with ectopic adrenocorticotropic hormone (ACTH) syndrome. The patient was a 27-year-old woman presenting with abdominal distension, Cushingoid features, and hyperpigmentation. Endogenous Cushing’s syndrome was biochemically confirmed. The ACTH level was in the normal range, which raised the suspicion of ACTH precursor-dependent disease. Elevated ACTH precursors were detected, supporting the diagnosis of ectopic ACTH syndrome. Functional imaging followed by tissue sampling revealed a pancreatic yolk sac tumor. The final diagnosis was Cushing’s syndrome due to a yolk sac tumor. The patient received a steroidogenesis inhibitor and subsequent bilateral adrenalectomy for control of hypercortisolism. Her yolk sac tumor was treated with chemotherapy and targeted therapy. Cushing’s syndrome secondary to a yolk sac tumor is extremely rare. This case illustrated the utility of ACTH precursor measurement in confirming an ACTH-related pathology and distinguishing an ectopic from a pituitary source for Cushing’s syndrome. Introduction Ectopic adrenocorticotrophic hormone (ACTH) syndrome, also termed paraneoplastic Cushing’s syndrome, can be caused by the secretion of ACTH and/or ACTH precursors from ectopic tumors. The tumors concerned secrete ACTH precursors, including unprocessed proopiomelanocortin (POMC) and POMC-derived peptides, owing to the altered post-translational processing of POMC (1). These tumors are associated with intense hypercortisolism and various complications, such as hypertension, hyperglycemia, osteoporosis, infection risks, and thrombotic tendencies (2). Distinguishing ectopic from pituitary-dependent Cushing’s syndrome is often challenging. The two conditions are classically distinguished by their variable responses to dynamic endocrine tests, including the high-dose dexamethasone suppression test, the corticotrophin-releasing-factor (CRF) test, and the desmopressin test (3). Pituitary imaging may sometimes provide a diagnosis if a pituitary macroadenoma is identified at this juncture. The gold standard for diagnosing pituitary Cushing’s is a positive inferior petrosal sinus sampling (IPSS) result. The measurement of ACTH precursors is reported to have diagnostic value in this scenario (4). The most common source of ectopic ACTH is intrathoracic tumors, including bronchial carcinoid and small cell lung cancers. Other possible sources include gut neuroendocrine tumors and medullary thyroid cancer. Recognizing the potential causes of ectopic ACTH syndrome is essential as this provides guidance in locating the causative tumor and allows tumor-directed therapies. A yolk sac tumor as a cause of ectopic ACTH syndrome has only been reported in a 2-year-old child but not in adults (5). Here, we present a case of a 27-year-old Chinese woman who had Cushing’s syndrome due to ectopic ACTH precursor production from a pancreatic yolk sac tumor. Case description A 27-year-old Chinese woman, who had unremarkable past health and family history, presented with right upper quadrant abdominal pain and nausea in early 2020. Abdominal ultrasonography was unrevealing. A few months later, she developed Cushingoid features and oligomenorrhea. At presentation, her blood pressure was 160/95 mmHg, body weight was 65.6 kg, and body mass index was 23.2 kg/m2. She had a moon face, hirsutism, proximal myopathy, bruising, thinning of the skin, and acne. She also had hyperpigmentation on the nails and knuckles of both hands (Figure 1). Figure 1 Figure 1. Cushingoid features at presentation include moon face, acne, thin skin, and easy bruising. Hyperpigmentation on the nails and knuckles was also noted. Diagnostic assessments Her 9 am and 9 pm cortisol were both >1,700 nmol/L. Her 24-h urine-free cortisol was beyond the upper measurable limit at >1,500 nmol/L. Her serum cortisol was 759 nmol/L after a 1 mg overnight-dexamethasone suppression test, confirming endogenous Cushing’s syndrome. The morning ACTH was 35 pg/mL (upper limit of normal is 46 pg/mL). After excluding a high dose-hook effect, her blood sample was concomitantly sent for ACTH measurement using two different platforms to eliminate possible interference, which might cause a falsely low ACTH reading. ACTH was 19 pg/mL (upper limit of normal is 46 pg/mL) using an IMMULITE 2000 XPI, Siemens Healthineers, Erlangen, Germany, and 17 pg/mL (reference range: 7–63 pg/mL) using a Cobas e-801, Roche Diagnostics, Indianapolis, IN, United States, therefore verifying the ACTH measurement. In view of this being ACTH-dependent Cushing’s syndrome, a high-dose-dexamethasone suppression test (HDDST) was performed, and her cortisol was not suppressed at 890 nmol/L, with ACTH 42 pg/mL. The serum cortisol day profile showed a mean cortisol level of >1,700 nmol/L (i.e., higher than the upper measurable limit of the assay) and an ACTH of 17 pg/mL. A CRF test using 100 μg of corticorelin showed less than a 50% rise in ACTH and no rise in cortisol levels (Supplementary Table S1). She suffered from multiple complications of hypercortisolism, including thoracic vertebral collapse with back pain, diabetes mellitus (HbA1c 6.7% and fasting glucose 7.6 mmol/L), and hypokalemic hypertension, with a lowest potassium level of 2.3 mmol/L. The rapid onset of intense hypercortisolism and refractory hypokalemia, as well as the responses in the HDDST and CRF tests raised the suspicion of ectopic ACTH syndrome. Tumor markers were measured. Alpha-fetoprotein (AFP) was markedly raised at 33,357 ng/mL (reference range: <9 ng/mL). Beta-human chorionic gonadotropin (beta-hCG) was not elevated. Carcinoembryonic antigen (CEA) was 4.0 ng/mL (reference range: <3 ng/mL) and CA 19–9 was 57 U/mL (reference range: <37 U/mL). The marked hyperpigmentation in the context of normal ACTH levels pointed to the presence of an underlying tumor producing circulating ACTH precursors. Hence, magnetic resonance imaging (MRI) of the pituitary gland was not performed at this juncture. ACTH precursors were measured using a specialized immunoenzymatic assay (IEMA) employing in-house monoclonal antibodies against the ACTH region and the gamma MSH region. Both monoclonal antibodies have to bind to these regions in POMC and pro-ACTH to create a signal. The patient had a level of 4,855 pmol/L (upper limit of normal is 40 pmol/L) (6). This supported Cushing’s syndrome from an ectopic source secondary to an excess in ACTH precursors. Localization studies were arranged to identify the source of ectopic ACTH precursors. Computed tomography (CT) of the thorax did not show any significant intrathoracic lesion but incidentally revealed a pancreatic mass. Dedicated CT of the abdomen confirmed the presence of a 7.9 × 5.6 cm lobulated mass in the pancreatic body; the adrenal glands were unremarkable. 18-FDG and 68Ga-DOTATATE dual-tracer positron-emission tomography-computed tomography (PET-CT) showed that the pancreatic mass was moderately FDG-avid and non-avid for DOTATATE (Supplementary Figure S1). Multiple FDG-avid nodal metastases were also present, including left supraclavicular fossa lymph nodes. Fine needle aspiration of the left supraclavicular fossa lymph node yielded tumor cells featuring occasional conspicuous nucleoli, granular coarse chromatin, irregular nuclei, and a high nuclear-to-cytoplasmic ratio. Mitotic figures were infrequent. On immunostaining, the tumor cells were positive for cytokeratin 7 and negative for cytokeratin 20. Focal expression of CDX-2, chromogranin, and synaptophysin was noted. They were negative for TTF-1, GCDPF, Gata 3, Pax-8, CD56, ACTH, inhibin, and S-100 protein. Further immunostaining was performed in view of highly elevated AFP. The tumor cells expressed AFP, Sall4, and MNF-116. They were negative for c-kit, calretinin, Melan A and SF-1. Placental ALP (PLAP) was weak and equivocal. The features were in keeping with a yolk sac tumor. Therapeutic intervention and outcome The patient had significant hypokalemic hypertension requiring losartan 100 mg daily, spironolactone 100 mg daily, and a potassium supplement of 129 mmol/day. Co-trimoxazole was given for prophylaxis against Pneumocystis jirovecii pneumonia. Metyrapone was started and up-titrated to 1 gram three times per day. However, in view of persistent hypercortisolism, with urinary free cortisol persistently above the upper measurable limit of the assay, bilateral adrenalectomy was performed. The tumor was mainly in the periadrenal soft tissue, with vascular invasion. The tumor formed cords, nests, and ill-defined lumen (Figure 2). The tumor cells were polygonal and contained pale to eosinophilic cytoplasm and pleomorphic nuclei, some with large nucleoli. Mitosis was present while tumor necrosis was not obvious. The stroma was composed of vascular fibrous tissue, with minimal inflammatory reaction. Immunohistochemical study showed that the tumor was positive for cytokeratin 7, MNF-116, AFP, and glypican-3, and also positive for Sall4 and HNF1β. The tumor cells were negative for cytokeratin 20, PLAP, CD30, negative for neuroendocrine markers including S100 protein, synaptophysin, chromogranin, and also negative for Melan-A, inhibin, and ACTH. Histochemical study for Periodic acid–Schiff–diastase (PAS/D) showed no cytoplasmic zymogen granules like those of acinar cell tumor. The features were compatible with yolk sac tumor. She was put on glucocorticoid and mineralocorticoid replacements post-operatively. Figure 2 Figure 2. Histology and immunohistochemical staining pattern of tumor specimen. (A) HE stain x 40 showing tumor cells in the soft tissue and peritoneum. (B) HE × 400 showing that the tumor forms cords, nests, and ill-formed lumen in the vascular stroma. The tumor cells are polygonal with pale cytoplasm and pleomorphic nuclei. (C) PAS/D stain showing no cytoplasmic zymogen granules. (D) Tumor is diffusely positive for cytokeratin 7. (E) Tumor is positive for AFP. (F) Tumor is positive for glypican-3. (G) Tumor is diffusely positive for HNF1β. (H) Tumor is diffusely positive for SALL4. Regarding her oncological management, she received multiple lines of chemotherapy, but the response was poor. Due to limited access to the ACTH precursor assay, serial measurement was unavailable. Treatment response was monitored by repeated imaging and monitoring of AFP. Figure 3 shows a timeline indicating the key events of the disease, showing the trends of the AFP and cortisol levels. Apart from (i) bleomycin, etoposide, and platinum, she was sequentially treated with (ii) etoposide, ifosfamide with cisplatin, and (iii) palliative gemcitabine with oxaliplatin. Next-generation sequencing showed a BRAF V600E mutation, for which (iv) dabrafenib and trametinib were given. Unfortunately, the disease progressed, and the patient succumbed approximately one year after the disease was diagnosed. Figure 3 Figure 3. Timeline with serial cortisol and alpha-fetoprotein levels from diagnosis to patient death. Discussion This case demonstrates the diagnostic value of ACTH precursor measurement in the diagnosis of ectopic Cushing’s syndrome. ACTH precursors are raised in all ectopic tumors responsible for Cushing’s syndrome and could be useful in distinguishing ectopic from pituitary Cushing’s syndrome (4). Moreover, Cushing’s syndrome due to a yolk sac tumor has been reported only once in a pediatric case, and this is the first adult case reported in the literature (5). POMC is sequentially cleaved in the anterior pituitary into pro-ACTH and then into ACTH, which is released into the circulation and binds to ACTH receptors in the adrenal cortex, leading to glucocorticoid synthesis (5, 7). Due to incomplete processing, ACTH precursors are found in normal subjects at a concentration of 5–40 pmol/L (6). Pituitary tumors are traditionally well-differentiated and can also relatively efficiently process ACTH precursors. However, this processing is less efficient in ectopic tumors that cause Cushing’s syndrome (8). Some less differentiated pituitary macroadenomas can secrete ACTH precursors into the circulation; however, these tumors are diagnosed by imaging and so do not, in general, cause problems with differential diagnosis (9). Measurement of ACTH precursors by immunoradiometric assay (IRMA) was first described by Crosby et al. (10). The assay utilized monoclonal antibodies specific for ACTH and the other binding gamma-MSH. The assay only detects peptides expressing both epitopes and therefore measures POMC and pro-ACTH. The assay does not cross-react with other POMC-derived peptides such as beta-lipotropin, ACTH, and N-POMC. Oliver et al. demonstrated that, compared to the pituitary adenomas in Cushing’s disease, all ectopic tumors responsible for Cushing’s syndrome in their study produce excessive POMC and pro-ACTH (4). The excessive production of ACTH precursors may reflect neoplasm-induced modification and amplification of POMC production. It is suggested that POMC binds to and activates the ACTH receptor because it contains the ACTH amino-acid sequence, or it is cleaved to ACTH in the adrenal glands to cause hypercortisolism (5) (Figure 4). Moreover, cleavage of POMC may produce peptides that exert mitogenic actions on adrenal cells and lead to adrenocortical growth. Outside the adrenal tissue, excessive ACTH precursors in Cushing’s syndrome caused by ectopic tumors can lead to marked hyperpigmentation. Both hypercortisolism and hyperpigmentation were observed in the reported case. Figure 4 Figure 4. Postulated pathological mechanism of ectopic ACTH precursors. In patients with ACTH-dependent Cushing’s syndrome, ectopic tumors should be distinguished from pituitary tumors. The HDDST, at a cut-off of 50% cortisol suppression, gives a sensitivity of 81% and a specificity of 67% for pituitary dependent Cushing’s syndrome (11). The CRF test provides 82% sensitivity and 75% specificity for pituitary disease (8). IPSS is the gold standard in distinguishing pituitary from ectopic tumors in Cushing’s syndrome. Utilization of CRF-stimulated IPSS provides 93% sensitivity and 100% specificity for pituitary disease. It also allows correct lateralization in 78% of patients with pituitary tumors. However, it is only available in specialized centers. In a retrospective cohort, the ACTH precursor level distinguished well between Cushing’s disease and ectopic ACTH syndrome (4). With a cut-off of 100 pmol/L, the test achieved 100% sensitivity and specificity for ectopic ACTH syndrome. More recently, this assay has been used to diagnose patients with occult ectopic ACTH syndrome, with ACTH precursors above 36 pmol/L (8). Unfortunately, the immunoassay for ACTH precursor measurement utilizes in-house monoclonal antibodies, which are not widely available. Cross-reactivity of POMC in commercially available ACTH assays ranges from 1.6% to 4.7% (12). In cases of ectopic tumors causing Cushing’s syndrome with markedly raised ACTH-precursors and intense hypercortisolism, the cross-reactivity would give significantly high ‘ACTH’ measurements to suggest an ACTH-related pathology. The degree of cross-reactivity, which is variable, should ideally be provided by the assay manufacturer as it affects result interpretation. Lower levels of ACTH precursor production might not be detected, especially by assays with low precursor cross-reactivity. Clinical vigilance is crucial in reaching the correct diagnosis. In patients with marked hypercortisolism and a normal ACTH concentration, like in this case, the measurement of ACTH precursors would allow the accurate diagnosis of Cushing’s syndrome caused by ACTH precursors. Ectopic tumors causing Cushing’s syndrome are associated with more intense hypercortisolism than Cushing’s disease (11). However, due to variable cross-reactivity, commercial ACTH assays might not accurately detect the excessive ACTH precursors responsible for the clinical syndrome. For this reason, ACTH measurements in these two conditions can significantly overlap and may not differentiate between ectopic and pituitary diseases (4). On the other hand, the more specific POMC assay described in 1996, which does not cross-react with pro-ACTH, has a low sensitivity of 80% for ectopic Cushing’s syndrome and is not now available (13). Hence, the ACTH precursor assay used in this reported case, which detects POMC and pro-ACTH, appears to provide the best diagnostic accuracy from the available literature. Serial measurement of ACTH precursors may play a role in monitoring the treatment response in an ACTH precursor secreting tumor. In the case of ectopic ACTH secretion, the corticotropic axis is slowed down and ACTH is almost exclusively of paraneoplastic origin. Immunotherapy is known to alter the functioning of the hypothalamic–pituitary corticotropic axis; however, its effect on ectopic secretions is not known. More data is required before the role of ACTH precursor measurement for disease monitoring in these scenarios can be ascertained. The incidence of endogenous Cushing’s syndrome is reported to be 2 to 4 per million people per year (14). Ectopic sources of Cushing’s syndrome are responsible for 9 to 18% of these cases. Typical sources of these ectopic tumors include bronchial carcinoid tumors, small-cell lung cancer, and gut neuroendocrine tumors. Notably, germ cell tumors, including teratomas, ovarian epithelial tumors, and ovarian endometrial tumors, are also possible ectopic sources of Cushing’s syndrome. The histological diagnosis of germ cell tumor in a non-genital site is challenging, especially for the poorly differentiated, or with somatic differentiation. Immunostaining, chromosomal, or genetic study are very important in confirming the diagnosis. AFP elevation in our case limited the differential diagnoses to germ cell tumors/yolk sac tumors, hepatocellular carcinoma, and rare pancreatic tumors. The specimen was biopsied from the retroperitoneum, and the morphology was a dominant trabecular pattern or a hepatoid pattern. It showed diffuse positive immunostaining for cytokeratin, AFP, and glypican-3. It was also diffusely and strongly positive for HNF1β and SALL4, supporting the diagnosis of yolk sac tumor. Both HNF1β and SALL4, being related with the expression of genes associated with stem cells or progenitor cells, are used as sensitive and specific markers for germ cell tumors/yolk sac tumors (15, 16). Staining related to pancreatic acinar cell carcinoma and neuroendocrine tumor were performed. PAS/D staining showed a lack of zymogen granules. A lack of nuclear β-catenin positivity was shown. Staining for neuroendocrine markers, including chromogranin and synaptophysin, was negative. Bcl-10 and trypsin were not available in the local setting. Cushing’s syndrome due to a yolk sac tumor was reported only once, in a 2-year-old child (5). The abdominal yolk sac tumor was resistant to cisplatin, with rapid disease progression, and the patient succumbed 1.5 years after initial presentation. Yolk sac tumor in the pancreas is also rare, with only 4 cases reported so far. The first case was reported in a 57-year-old woman with an incidentally detected abdominal mass (17). The tumor stained positive for AFP, PLAP, and CEA. The second case was a 70-year-old asymptomatic woman with histology showing a group of tumor cells with features of a yolk sac tumor, and another group showing features of pancreatic ductal adenocarcinoma with mucin production, suggesting a yolk sac tumor derived from pancreatic ductal adenocarcinoma (18). The tumor showed partial positivity for AFP, Sall4, glypican-3, and cytokeratin 7, as found in our case, while MNF-116 and PLAP staining results were not described. The third was in a 33-year-old man with a solitary pancreatic head mass with obstructive jaundice (19). The patient had undergone Whipple’s procedure followed by cisplatin-based chemotherapy, resulting in at least 5 years of disease remission. The latest reported case was in a 32-year-old man presenting with abdominal pain (20). Notably, initial imaging showed diffuse enlargement of the pancreas and increased FDG uptake without a distinct mass. Reassessment imaging 11 months later showed a 13 cm pancreatic mass. The initial imaging findings suggested initial intraductal growth of the tumor, as reported in some subtypes of pancreatic carcinoma. None of the reported cases of adult pancreatic yolk sac tumors were associated with abnormal hormone secretion. We reported the first adult case of pancreatic yolk sac tumor with ectopic ACTH syndrome. The case represents an overlap of two rarities. It demonstrates that pancreatic yolk sac tumor is a possible cause of ectopic ACTH syndrome. Conclusion ACTH precursor measurement helps to distinguish ectopic ACTH syndrome from Cushing’s disease. The test has superior diagnostic performance and is less invasive than IPSS. Nonetheless, the limited availability of the assay may restrict its broader use in patient management. We describe the first adult case of pancreatic yolk sac tumor with ACTH precursor secretion resulting in Cushing’s syndrome. This adds to the list of origins of ectopic ACTH syndrome in adults. Data availability statement The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding author. Ethics statement Written informed consent was obtained from the individual to publish any potentially identifiable images or data in this article. Author contributions JC wrote the manuscript. JC, CW, WC, AW, KW, and PT researched the data. WC, AL, EL, YW, KT, KL, and CL critically reviewed and edited the manuscript. DL initiated and conceptualized this case report and is the guarantor of this work. All authors contributed to the article and approved the submitted version. Funding The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article. Conflict of interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Publisher’s note All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher. Supplementary material The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmed.2023.1246796/full#supplementary-material References 1. Stewar, PM, Gibson, S, Crosby, SR, Pennt, R, Holder, R, Ferry, D, et al. ACTH precursors characterize the ectopic ACTH syndrome. Clin Endocrinol. (1994) 40:199–204. doi: 10.1111/j.1365-2265.1994.tb02468.x PubMed Abstract | CrossRef Full Text | Google Scholar 2. Young, J, Haissaguerre, M, Viera-Pinto, O, Chabre, O, Baudin, E, and Tabarin, A. MANAGEMENT OF ENDOCRINE DISEASE: Cushing's syndrome due to ectopic ACTH secretion: an expert operational opinion. Eur J Endocrinol. (2020) 182:R29–58. doi: 10.1530/EJE-19-0877 PubMed Abstract | CrossRef Full Text | Google Scholar 3. Fleseriu, M, Auchus, R, Bancos, I, Ben-Shlomo, A, Bertherat, J, Biermasz, NR, et al. Consensus on diagnosis and management of Cushing's disease: a guideline update. Lancet Diabetes Endocrinol. (2021) 9:847–75. doi: 10.1016/S2213-8587(21)00235-7 PubMed Abstract | CrossRef Full Text | Google Scholar 4. Oliver, RL, Davis, JR, and White, A. Characterisation of ACTH related peptides in ectopic Cushing's syndrome. Pituitary. (2003) 6:119–26. doi: 10.1023/B:PITU.0000011172.26649.df PubMed Abstract | CrossRef Full Text | Google Scholar 5. Gevers, EF, Meredith, S, Shah, P, Torpiano, J, Peters, C, Sebire, NJ, et al. Cushing syndrome in a child due to pro-opiomelanocortin (POMC) secretion from a yolk sac tumor. Eur J Endocrinol. (2017) 176:K1–7. doi: 10.1530/EJE-16-0776 PubMed Abstract | CrossRef Full Text | Google Scholar 6. Gibson, S, Crosby, SR, Stewart, MF, Jennings, AM, McCall, E, and White, A. Differential release of proopiomelanocortin-derived peptides from the human pituitary: evidence from a panel of two-site immunoradiometric assays. J Clin Endocrinol Metab. (1994) 78:835–41. PubMed Abstract | Google Scholar 7. Harno, E, Gali Ramamoorthy, T, Coll, AP, and White, A. POMC: the physiological power of hormone processing. Physiol Rev. (2018) 98:2381–430. doi: 10.1152/physrev.00024.2017 CrossRef Full Text | Google Scholar 8. Page-Wilson, G, Freda, PU, Jacobs, TP, Khandji, AG, Bruce, JN, Foo, ST, et al. Clinical utility of plasma POMC and AgRP measurements in the differential diagnosis of ACTH-dependent Cushing's syndrome. J Clin Endocrinol Metab. (2014) 99:E1838–45. doi: 10.1210/jc.2014-1448 PubMed Abstract | CrossRef Full Text | Google Scholar 9. Gibson, S, Ray, DW, Crosby, SR, Dornan, TL, Jennings, AM, Bevan, JS, et al. Impaired processing of proopiomelanocortin in corticotroph macroadenomas. J Clin Endocrinol Metab. (1996) 81:497–502. PubMed Abstract | Google Scholar 10. Crosby, SR, Stewart, MF, Ratcliffe, JG, and White, A. Direct measurement of the precursors of adrenocorticotropin in human plasma by two-site immunoradiometric assay. J Clin Endocrinol Metab. (1988) 67:1272–7. doi: 10.1210/jcem-67-6-1272 PubMed Abstract | CrossRef Full Text | Google Scholar 11. Aron, DC, Raff, H, and Findling, JW. Effectiveness versus efficacy: the limited value in clinical practice of high dose dexamethasone suppression testing in the differential diagnosis of adrenocorticotropin-dependent Cushing's syndrome. J Clin Endocrinol Metab. (1997) 82:1780–5. doi: 10.1210/jc.82.6.1780 PubMed Abstract | CrossRef Full Text | Google Scholar 12. Monaghan, PJ, Kyriacou, A, Sturgeon, C, Davies, A, Trainer, PJ, White, A, et al. Proopiomelanocortin interference in the measurement of adrenocorticotrophic hormone: a United Kingdom National External Quality Assessment Service study. Clin Endocrinol. (2016) 85:569–74. doi: 10.1111/cen.13118 CrossRef Full Text | Google Scholar 13. Raffin-Sanson, ML, Massias, JF, Dumont, C, Raux-Demay, MC, Proeschel, MF, Luton, JP, et al. High plasma proopiomelanocortin in aggressive adrenocorticotropin-secreting tumors. J Clin Endocrinol Metab. (1996) 81:4272–7. PubMed Abstract | Google Scholar 14. Beuschlein, F, and Hammer, GD. Ectopic pro-opiomelanocortin syndrome. Endocrinol Metab Clin N Am. (2002) 31:191–234. doi: 10.1016/S0889-8529(01)00025-1 CrossRef Full Text | Google Scholar 15. Yu, DD, Guo, SW, Jing, YY, Dong, YL, and Wei, LX. A review on hepatocyte nuclear factor-1beta and tumor. Cell Biosci. (2015) 5:58. doi: 10.1186/s13578-015-0049-3 PubMed Abstract | CrossRef Full Text | Google Scholar 16. Miettinen, M, Wang, Z, McCue, PA, Sarlomo-Rikala, M, Rys, J, Biernat, W, et al. SALL4 expression in germ cell and non-germ cell tumors: a systematic immunohistochemical study of 3215 cases. Am J Surg Pathol. (2014) 38:410–20. doi: 10.1097/PAS.0000000000000116 PubMed Abstract | CrossRef Full Text | Google Scholar 17. Zhang, B, Gao, S, Chen, Y, and Wu, Y. Primary yolk sac tumor arising in the pancreas with hepatic metastasis: a case report. Korean J Radiol. (2010) 11:472–5. doi: 10.3348/kjr.2010.11.4.472 PubMed Abstract | CrossRef Full Text | Google Scholar 18. Yonemaru, J, Takahashi, M, Nara, S, Ichikawa, H, Ishigamori, R, Imai, T, et al. A yolk sac tumor of the pancreas and derived xenograft model effectively responded to VIP chemotherapy. Pancreatology. (2020) 20:551–7. doi: 10.1016/j.pan.2019.12.021 PubMed Abstract | CrossRef Full Text | Google Scholar 19. Galanis, I, Floros, G, Simou, M, Kyriakopoulos, G, and Stylianidis, G. An extremely rare case of a primary pancreatic yolk sac tumor. Cureus. (2022) 14:e26007. doi: 10.7759/cureus.26007 PubMed Abstract | CrossRef Full Text | Google Scholar 20. Sui, H, Zhu, Z, Li, Z, and Luo, Y. Primary pancreatic yolk sac tumor presenting as diffusely enlarged pancreas in initial 18F-FDG PET/CT. Clin Nucl Med. (2020) 45:483–6. doi: 10.1097/RLU.0000000000003038 PubMed Abstract | CrossRef Full Text | Google Scholar Keywords: Cushing’s syndrome, ectopic ACTH syndrome, yolk sac tumor, pancreatic tumor, ACTH precursor Citation: Chang JYC, Woo CSL, Chow WS, White A, Wong KC, Tsui P, Lee ACH, Leung EKH, Woo YC, Tan KCB, Lam KSL, Lee CH and Lui DTW (2023) Cushing’s syndrome caused by ACTH precursors secreted from a pancreatic yolk sac tumor in an adult—a case report and literature review. Front. Med. 10:1246796. doi: 10.3389/fmed.2023.1246796 Received: 18 July 2023; Accepted: 20 November 2023; Published: 05 December 2023. Edited by: Alessandro Vanoli, University of Pavia, Italy Reviewed by: Petar Brlek, St. Catherine Specialty Hospital, Croatia Wafa Alaya, Hospital University Tahar Sfar, Tunisia Copyright © 2023 Chang, Woo, Chow, White, Wong, Tsui, Lee, Leung, Woo, Tan, Lam, Lee and Lui. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. *Correspondence: David Tak Wai Lui, dtwlui@hku.hk Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher. From https://www.frontiersin.org/articles/10.3389/fmed.2023.1246796/full
  13. Lydia, a 28-year-old Florida resident, wife, and mother of two, first noticed a drastic increase in her weight around Easter of 2022 in a family photo. She was shocked by how different she looked despite not making any drastic changes to her diet. “While those I loved would say ‘you look beautiful’, to me I looked like a completely different person,” recalled Lydia. When Lydia asked her mother, Jeanne, if she had noticed her weight gain, her mother observed that some days Lydia’s face looked swollen. They both recognized that this was not normal, and decided, like many pituitary patients, to make an appointment with a primary care provider. “I remember her saying to me ‘something is wrong with me’ and ‘something is not right’”, recalled Jeanne. Lydia’s weight gain was most noticeable in her face and around her abdomen. “She was exercising all the time and trying to watch what she ate and cut down on sugars,” said Jeanne. “But she kept putting on more weight. We knew something was not right.” Lydia scheduled the first of what would be many doctor appointments hoping for answers. Her primary care provider recognized that her rapid weight gain was abnormal and ordered standard blood work. When that blood work came back normal, her doctor referred her to an endocrinologist and to her OBGYN. In addition to her weight gain, Lydia had begun developing other symptoms including excessive sweating day and night, severe acne, hair loss, hair gain on her face, insomnia, thin skin, and brittle nails. “The worst symptom was the constant feeling of fight or flight,” recalled Lydia. “I always felt on edge and was letting things bother me.” Lydia would later learn that this feeling was caused by the drastic increase of cortisol in her body. When Lydia first met with her OBGYN to address her weight gain and the overall feeling that something was wrong with her body, her concerns were quickly dismissed. “He told me ‘You’re almost 30 and you’ve had two kids, no wonder you feel the way that you do,’” said Lydia. “He blew me off and told me that I needed more diet and exercise. He didn’t order other tests.” Figure illustrates the drastic physical changes and symptoms caused by a pituitary tumor and Cushing’s disease. (Medical illustration by Mark Schornak, MS, CMI) A couple of months later, Lydia went to see an endocrinologist. Despite watching her calories and exercising almost every day of the week, she had gained more weight and felt more miserable. When her labs came back, Lydia’s cortisol levels were so high that the endocrinologist thought there had been a lab error. A 24-hour urine test confirmed that Lydia’s cortisol levels were off the charts. “I was in full panic mode at this point,” said Lydia. Lydia could not get back in to see her endocrinologist in a timely manner, so she ended up back at her primary care provider’s office. Her primary care provider suggested that it could be a tumor on her adrenal glands and that it was probably not in her brain since she was not experiencing headaches. A CT scan of the adrenal glands came back clean. “I remember telling my primary care doctor ‘I just don’t feel normal’”, recalls Lydia. “His response was ‘everyone’s normal is different’ and I told him ‘I’m not normal for me.’” At this point, Lydia was desperate for answers. “All these doctors were telling me it could be in my head or because I was almost 30,” said Lydia. “I kept getting shut down. I told friends and family that there was something seriously wrong with me and no one was believing me.” Finally, a friend sent Lydia information on another endocrinologist in Florida. “He was the first doctor to care about me,” said Lydia. “He said, ‘I’m so sorry you’ve been treated like this. Everyone you have seen before me is an idiot.’” More specific bloodwork and an MRI confirmed that Lydia had a macroadenoma, a benign tumor in the pituitary gland, and Cushing’s disease. After the diagnosis, Lydia was told that she would need to have the tumor removed. “He told me, ‘Find where you want to go and I’ll refer you,’” said Lydia. Lydia and her mother Jeanne began searching online for the right pituitary tumor surgeon. “Once I realized how serious it was, we started researching different doctors,” recalled Jeanne. Both Lydia and Jeanne spent time researching different doctors, but could not find a doctor that had experience treating Cushing’s disease. “We researched all kinds of surgeons to find the best one,” said Jeanne. “Then we found Dr. Oyesiku. He understood Cushing’s disease. That was important to me.” Jeanne is the one who found world-renowned pituitary tumor surgeon, Dr. Nelson Oyesiku. “I called him and said, ‘I have a 28-year-old daughter with a pituitary tumor and Cushing’s disease and I need you to operate on her,’” said Jeanne. Dr. Oyesiku has performed over 4,000 pituitary tumor operations and is currently the Chair of the Department of Neurosurgery at UNC Health. “Cushing’s is a rare disease so not many surgeons have a lot of experience with the various technical nuances required to achieve a high likelihood of cure and reduce the incidence of re-operations and complications,” said Dr. Oyesiku. Since Lydia lives in Florida, her initial consultation with Dr. Oyesiku was over Zoom. “I Zoomed with another local neurosurgeon and I was going back and forth,” said Lydia. “Dr. Oyesiku told me that he looks at the whole picture and what the tumor is doing to you. He said that he wanted to get the tumor out and then cure the Cushing’s disease.” Jeanne was also with her daughter during the initial Zoom appointment with Dr. Oyesiku. “I couldn’t find anyone else that had that background knowledge for Cushing’s disease,” said Jeanne. Dr. Oyesiku ordered more labs. “He told me ‘I want to measure twice and cut once,’” recalled Lydia. “That phrase is something my dad always said growing up and that felt like fate. So that made my decision for me and made me want to see him.” After her initial consultation with Dr. Oyesiku, both Lydia and her mother felt confident that they had found the right surgeon. Lydia met with Dr.Oyesiku in December of 2022, then had her surgery on January 23, 2023. “I called UNC and made sure that I could go in with her and stay while she was recovering,” said Jeanne. “We had contacted a different hospital early on, and I would have had to drop her off and not see her until after her surgery and only during visiting hours.” Patient coordinator David Baker, who also played an important role in Lydia’s care, helped Lydia and Jeanne find a local hotel for them to stay in before surgery at a discounted rate. After surgery, UNC Health endocrinologist Dr. Atil Kargi spoke with Lydia and her mom to help them understand the severity of Cushing’s disease and the importance of monitoring Lydia closely. “Dr. Kargi and David Baker really helped us to truly understand Cushing’s disease,” said Jeanne. Jeanne was impressed with the level of patient care that Lydia experienced during her surgery at UNC Health. “Lydia had her own nurse that would text me or call me to let me know how things were progressing.” Jeanne said. Jeanne explained that the same nurse was with her daughter going into the surgery and when she woke up after the surgery. She was also able to stay with Lydia in the hospital while she recovered from the surgery. “UNC was such an uplifting place. All these residents, they all love what they’re doing,” said Jeanne. Lydia stayed in the hospital for six days so Dr. Oyesiku and the endocrine team could monitor her levels. “I was in the normal range, and then I started to tank,” said Lydia. “I had read that a lot of patients are sent home right after surgery. If they would have sent me, I would have been adrenally insufficient.” Lydia also expressed gratitude for ENT surgeon, Dr. Brian Thorp. “During my surgery, Dr. Thorp also repaired my deviated septum,” said Lydia. “Even after surgery when I was home miles away in Florida, he was always available to me. I appreciate Dr. Oyesiku and everyone at UNC,” said Lydia. “I can’t imagine going anywhere else for this. Dr. Oyesiku truly saved my life.” After her discharge, Jeanne drove Lydia back to Florida. “Dr. Oyesiku followed-up after surgery with the Cushing’s disease treatment,” said Jeanne. “Our local endocrinologist could not believe how fast she recovered.” Jeanne also noted that she was always able to get ahold of Dr. Oyesiku, Dr. Thorp, or David Baker to answer her questions. “You feel like you’re their only patient,” said Jeanne. “We are 8-9 hours away, and it didn’t feel like it.” After Lydia weaned off of her medication, she started to lose weight, her face changed, and her body started to feel “normal” again. “My biggest symptom that I am thankful went away was my literally going crazy feeling,” said Lydia. “I am very thankful that I was able to catch it early enough so that this awful disease didn’t leave me with any lifelong complications.” Lydia, like many pituitary tumor patients, still has lingering feelings of anxiety and frustration with the long road from initial symptoms to diagnosis. It takes the average pituitary tumor patient 5-8 years to be properly diagnosed. Lydia and her mother were extremely proactive and still spent 18 months looking for answers. Lydia went to her primary care provider, her OB, a second OB, and two endocrinologists before she had a proper diagnosis. “Cushing’s disease can mimic many other vastly common medical disorders and is often misdiagnosed or mistaken for something else such as diabetes, hypertension, obesity, infertility, depression, or autoimmune disorders,” said Dr. Oyesiku. “Making the diagnosis requires expert clinical acumen supported by sophisticated medical tests, and many of these tests have to be repeated to confirm the diagnosis.” Because Cushing’s disease is so rare, many of the providers that initially saw Lydia dismissed it. After her surgery, Lydia returned to her OB office in Florida for her annual exam and was seen by the OB that told her that her symptoms were “all in her head”. “I told him, ‘Remember that you blew me off? I had a brain tumor that caused Cushing’s disease,’” said Lydia. “He told me that in all his years practicing, he had never had a patient with an endocrine disorder caused by a pituitary tumor.” Lydia’s story and other pituitary tumor patient stories serve as a reminder that while Cushing’s disease is rare, it is worth ruling out when a patient complains of these symptoms. “Part of the problem is that people just do not have access to good doctors,” said Jeanne. “If we had not had that endocrinologist, I don’t know how much longer it would have taken. It makes me sad that other women and even men can have it for so long because they cannot figure out what is going on.” Both Jeanne and Lydia are thankful that the surgery was a success, but the symptoms and long road to a diagnosis left Lydia with a few emotional scars. “I’m fine and healthy on paper, but still battling the mental aspects and the toll it took on me,” said Lydia. “Sometimes I feel resentful because it took away a year and a half of my life. I feel very blessed to be on the other side of this disease, but I’m ready to not be a patient anymore.” From https://www.med.unc.edu/neurosurgery/i-dont-feel-normal-the-diagnosis-of-a-pituitary-tumor-cushings-disease/?fbclid=IwAR1I12ND084Ato5lloDalTEcIFycV5HpLiR7S1brNxr7Lux1BZ6g_vySHOA
  14. Key takeaways: Crinecerfont was granted FDA breakthrough therapy designation for the treatment of congenital adrenal hyperplasia. The medication met primary and secondary endpoints in a pair of phase 3 trials. The FDA granted breakthrough therapy designation for an oral non-glucocorticoid medication for the treatment of congenital adrenal hyperplasia, according to an industry press release. Crinecerfont (Neurocrine Biosciences) is a selective corticotropin-releasing factor type 1 receptor antagonist under development to lower excess adrenal androgens for people with congenital adrenal hyperplasia due to 21-hyroxylase deficiency. The medication met its primary and secondary endpoints in two phase 3 CAHtalyst trials, one assessing use of crinecerfont by children and the other by adults. In the pediatric trial, children and adolescents receiving crinecerfont had a decrease in serum androstenedione from baseline to 4 weeks. Participants receiving the medication also had a greater reduction in daily glucocorticoid at 28 weeks than placebo. As Healio previously reported, in the adult trial, crinecerfont was associated with a greater reduction in daily glucocorticoid while maintaining androgen control compared with placebo. The most common adverse events in the pediatric study were headache, fever, vomiting, upper respiratory tract infection and nasopharyngitis. Among adults, the most common adverse events were fatigue, headache and COVID-19 infection. No serious adverse events related to crinecerfont were reported. Breakthrough therapy is the latest designation granted to crinecerfont by the FDA. The medication was previously granted fast track and rare pediatric disease designations. "We are very pleased that the FDA granted breakthrough therapy designation for crinecerfont, thus recognizing both the seriousness of congenital adrenal hyperplasia and the significant unmet need currently faced by patients and families living with this condition,” Eiry W. Roberts, MD, Chief Medical Officer for Neurocrine Biosciences, said in a press release. "The outstanding safety and efficacy results from the phase 3 CAHtalyst studies in pediatric and adult patients suggest that crinecerfont has the potential to represent a substantial improvement over current standard of care in congenital adrenal hyperplasia by controlling androgen levels and allowing for reduced steroid doses. We remain on track to submit the new drug application in 2024." From https://www.healio.com/news/endocrinology/20231206/fda-grants-breakthrough-therapy-designation-for-oral-congenital-adrenal-hyperplasia-drug?utm_source=selligent&utm_medium=email&utm_campaign=news&fbclid=IwAR2WXDd3ajhKG0s2h0XD9ZQAstUkSotJYl1KLicH3gmxEPF6hvg6sZu2dCU
  15. In this study, we will investigate the possible side effects of psoriasis patients using long-term topical corticosteroids (TCS) such as adrenal insufficiency, Cushing’s Syndrome (CS) and osteoporosis and determine how these side effects develop. Forty-nine patients were included in the study. The patients were divided into two groups based on the potency of the topical steroid they took and the patients’ ACTH, cortisol and bone densitometer values were evaluated. There was no significant difference between the two groups regarding the development of surrenal insufficiency, CS and osteoporosis. One patient in group 1 and 4 patients in group 2 were evaluated as iatrogenic CS. ACTH stimulation tests of these patients in group 2 showed consistent results with adrenal insufficiency, while no adrenal insufficiency was detected in the patient in Group 1. Patients who used more than 50g of superpotent topical steroids per week compared to patients who used 50g of superpotent topical steroids per week. It was identified that patients who used more than 50g of superpotent topical steroids had significantly lower cortisol levels, with a negatively significant correlation between cortisol level and the amount of topical steroid use ( < .01).Osteoporosis was detected in 3 patients in group 1 and 8 patients in Group 2. Because of the low number of patients between two groups, statistical analysis could not be performed to determine the risk factors. Our study is the first study that we know of that investigated these three side effects. We have shown that the development of CS, adrenal insufficiency and osteoporosis in patients who use topical steroids for a long time depends on the weekly TCS dosage and the risk increases when it exceeds the threshold of 50 grams per week. therefore, our recommendation would be to avoid long-term use of superpotent steroids and to choose from the medium-potent group if it is to be used. ABOUT THE CONTRIBUTORS Betul Erdem Department of Dermatology, Van Training and Research Hospital, Van, Turkey. Muzeyyen Gonul Department of Dermatology, Ministry of Health, Ankara Etlik City Hospital, Ankara, Turkey. Ilknur Ozturk Unsal Department of Endocrine and Metabolic Disease, Ministry of Health, Ankara Etlik City Hospital, Ankara, Turkey. Seyda Ozdemir Sahingoz Department of Biochemistry, Ministry of Health, Ankara Etlik City Hospital, Ankara, Turkey. From https://www.physiciansweekly.com/evaluation-of-psoriasis-patients-with-long-term-topical-corticosteroids-for-their-risk-of-developing-adrenal-insufficiency-cushings-syndrome-and-osteoporosis/
  16. Answered by Dr. Howard E. Lewine M.D. Chief Medical Editor, Harvard Health Publishing · 40 years of experience · USA Cushing’s syndrome refers to an excess amount of cortisol in the body. This happens most commonly when a person needs to take a high dose of a corticosteroid like prednisone for an extended period of time. Much less commonly, a hormonal problem arising from either the pituitary gland in the brain or the adrenal gland in the abdomen leads to excess cortisol production. Because these situations can be corrected, life expectancy will likely not be directly related to the Cushing’s syndrome itself. Answered by Dr. Shobha S Reddy MBBS, Masters in Diabetology, General Practitioner & Diabetologist · 15 years of experience · India Cushing's syndrome is a disorder in which cortisol hormone (the stress hormone that helps the body in stress) levels in the blood are excess (maybe due to endogenous or exogenous causes). This hormone helps in maintaining blood pressure, blood sugar, reduce inflammation. This hormone is secreted by the adrenal glands in our body. Complications of Cushing's syndrome include Hypertension, DM, infection, Bone fracture, mood swings, memory loss. If left untreated then life expectancy would be around 5 years. Answered by Dr. Sharath Chandra MBBS Spl in ENT, Head Neck Surgery from AIIM · 8 years of experience · India Cushing's syndrome is the condition where the adrenal glands in our body produce excessive cortisol hormones. Symptoms like 1) weight loss. 2)purple striae. 3)Acne, fatigue. Life expectancy in various studies indicates the mean survival would not be more than 4. 5 years in untreated Cushing's syndrome. Answered by Dr. Mohan P. Abraham M.D., FAAFP (Family Physician) · 40 years of experience · USA The life expectancy is very normal when treated, but uncontrolled it may be 4 - 5 years. Disclaimer: This is for information purpose only, and should not be considered as a substitute for medical expertise. These are opinions from an external panel of individual doctors, and not to be considered as opinion of Microsoft. Please seek professional help regarding any health conditions or concerns. From https://www.msn.com/en-au/health/medical/advice-from-harvard-health-publishing-and-3-more-doctors-what-is-the-life-expectancy-of-someone-with-cushing-s-syndrome/ar-AA1m2Fdw
  17. Abstract Background There is an increasing number of cases of aldosterone- and cortisol-producing adenomas (A/CPAs) reported in the context of primary aldosteronism (PA). Most of these patients have PA complicated with subclinical Cushing's syndrome; cases of apparent Cushing's syndrome (CS) complicated with aldosteronism are less reported. However, Co-secretory tumors were present in the right adrenal gland, a cortisol-secreting adenoma and an aldosterone-producing nodule (APN) were present in the left adrenal gland, and aldosterone-producing micronodules (APMs) were present in both adrenal glands, which has not been reported. Here, we report such a case, offering profound insight into the diversity of clinical and pathological features of this disease. Case presentation The case was a 45-year-old female from the adrenal disease diagnosis and treatment centre in West China Hospital of Sichuan University. The patient presented with hypertension, moon-shaped face, central obesity, fat accumulation on the back of the neck, disappearance of cortisol circadian rhythm, ACTH < 5 ng/L, failed elevated cortisol inhibition by dexamethasone, orthostatic aldosterone/renin activity > 30 (ng/dL)/(ng/mL/h), and plasma aldosterone concentration > 10 ng/dL after saline infusion testing. Based on the above, she was diagnosed with non-ACTH-dependent CS complicated with PA. Adrenal vein sampling showed no lateralization for cortisol and aldosterone secretion in the bilateral adrenal glands. The left adrenocortical adenoma was removed by robot-assisted laparoscopic resection. However, hypertension, fatigue and weight gain were not alleviated after surgery; additionally, purple striae appeared in the lower abdomen, groin area and inner thigh, accompanied by systemic joint pain. One month later, the right adrenocortical adenoma was also removed. CYP11B1 were expressed in the bilateral adrenocortical adenomas, and CYP11B2 was also expressed in the right adrenocortical adenomas. APN existed in the left adrenal gland and APMs in the adrenal cortex adjacent to bilateral adrenocortical adenomas. After another surgery, her serum cortisol and plasma aldosterone returned to normal ranges, except for slightly higher ACTH. Conclusions This case suggests that it is necessary to assess the presence of PA, even in CS with apparent symptoms. As patients with CS and PA may have more complicated adrenal lesions, more data are required for diagnosis. Peer Review reports Background Because both adrenal Cushing's syndrome and primary aldosteronism (PA) can manifest as adrenocortical adenomas, it is difficult to distinguish between them on the sole basis of adrenal computed tomography (CT). There may also be multiple adenomas with different functions in the same adrenal gland [1], which also leads to the difficulty in the interpretation of adrenal vein blood collection results. With the increased reports on cases of PA complicated with subclinical Cushing's syndrome in clinical practice, increasing attention is being given to the screening of PA complicated with subclinical Cushing's syndrome. However, PA screening may be ignored in the diagnosis and treatment of adrenal Cushing's syndrome. Although it has been reported that PA with a diameter > 2 cm may be complicated with aldosterone- and cortisol-producing adenomas (A/CPAs) [2], cases of apparent Cushing's syndrome complicated with PA are less well known. Recently, Y. Fushimi et al. [3] reported a case of apparent Cushing's syndrome complicated with PA. The cortisol-producing enzyme cytochrome P450 (CYP) 11B1 was diffusely expressed in the adenoma, but based on staining, the aldosterone synthase CYP11B2 was significantly expressed in the adjacent adrenal cortex. This finding indicated that aldosterone-producing micronodules (APMs) in the adjacent adrenal cortex may be the pathological basis of PA. Here, a case of bilateral co-secretory lesions presenting with coexisting Cushing syndrome and primary aldosteronism detected by AVS and confirmed by immunohistochemical analysis after surgical resection is reported. Moreover, APMs were found in the adrenal cortex adjacent to bilateral adrenocortical adenomas; an aldosterone-producing nodule was detected adjacent to the unilateral adenoma. Case presentation A 45-year-old female patient was admitted to the adrenal disease diagnosis and treatment centre in West China Hospital of Sichuan University due to "increased blood pressure, weight gain for one year and facial oedema for half a year". After nifedipine controlled-release tablets 30 mg daily and terazosin 2 mg daily were applied, the blood pressure of this patient was still as high as 179/113 mmHg. She had no family history of endocrine disease or malignant tumour. Her body mass index (BMI) was 25.6 kg/m2 at admission, with a moon-shaped face, fat accumulation on the back of the neck and thin skin. Hormonal, glucose, renal function, lipid, and blood electrolyte tests were completed, and the physiological rhythm of cortisol had disappeared. Aldosterone-renin-angiotensin system (RAAS) results showed a significant decrease in renin activity and a significantly higher aldosterone/renin ratio (ARR) (as provided in Table 1). Dynamic testing for hormones was conducted, and the results were as follows: (i) in terms of the saline infusion test (SIT) in supine position, the before and after aldosterone level was 17.03 ng/dL and 15.45 ng/dL, respectively; (ii) in terms of the captopril challenge test (CCT), the before and after aldosterone level was 18.49 ng/dl and 15.25 ng/mL, respectively, with an inhibition rate of 17.52%; (iii) in terms of the standard low-dose dexamethasone suppression test, the before and after serum cortisol level was 467.9 nmol/L and 786.3 nmol/L, respectively; the before and after 24-h urine free cortisol (24-h UFC) level was 332.3 µg/24 and 480.4 µg/24, respectively. An enhanced CT scan revealed adenoma lesions in both adrenal glands (Fig. 1a and b). Bone mineral density measurement with dual-energy X-ray absorptiometry indicated osteoporosis. Chest CT showed old fractures of the 9th rib on the left side and the 2nd rib on the right side. Table 1 Peripheral blood laboratory data for this case Full size table Fig. 1 Adrenal CT of the patient: A nodule with a size of approximately 1.6 × 1.5 cm was found in the left adrenal gland, and a nodule with a size of approximately 2.2 × 1.8 cm was found in the right adrenal gland. Irregular mild to moderate enhancement was on enhanced CT, and the surrounding fat gap was clear Full size image Based on the above clinical features, the patient was diagnosed with "non-ACTH-dependent Cushing's syndrome complicated with PA". To assess lateralization, adrenal vein sampling (AVS) stimulated by ACTH was performed after obtaining informed consent. The results showed no lateralization of cortisol and aldosterone secretion (Table 2). Table 2 Results of AVS Full size table After communicating with the patient, the left adrenocortical adenoma was first removed by robot-assisted laparoscopic resection; the thickened adrenal cortex near the left adrenocortical adenoma was also resected during the surgery. The pathological report revealed adrenocortical adenoma, the Weiss score was 1, and immunohistochemistry showed weak CYP11B1 expression in the adenoma and positive CYP11B2 expression in an adjacent nodule. Hypertension was not alleviated after surgery. One month later, purple lines appeared on both sides of the lower abdomen, groin area and inner thigh, accompanied by weight gain, apparent systemic joint pain and fatigue in both lower limbs. The patient was readmitted to the hospital, and examination revealed orthostatic ALD at 11.99 ng/dL, PRA at 0.08 ng/mL/h, angiotensin II at 39.38 ng/L (reference range: 55.3–115.3 ng/L) and ARR at 149.88 (ng/dL)/(ng/mL/h). In addition, ACTH was 2.37 ng/L, serum cortisol was 352.30–353.50–283.90 nmol/L at 8 h-16 h-24 h, 24-h UFC was 112.8 µg, and serum cortisol was 342.10 nmol/L in the morning after the 1 mg dexamethasone suppression test. Enhanced CT of the kidneys and adrenal glands showed no solid nodules or masses in the left adrenal gland, though a nodule with a size of approximately 2.2*1.8 cm was detected in the right adrenal gland. Enhanced CT showed irregular mild to moderate enhancement. Therefore, the diagnosis was still "non-ACTH-dependent Cushing's syndrome complicated with PA". Subsequently, the right adrenocortical adenoma and the thickened adrenal cortex near the right adrenocortical adenoma were removed by robot-assisted laparoscopic resection. The pathological report indicated adrenocortical adenoma, and immunohistochemistry showed diffuse homogeneous expression of CYP11B1 and CYP11B2. Antibodies against CYP11B1 (MABS502) and CYP11B1 (MABS1251) were purchased from the Millipore Corporation. There were APMs in the adrenal cortex adjacent to the bilateral cortical adenomas. The fluorescence staining image of the left cortical adenoma is shown in Fig. 2. The immunohistochemistry image of the left adrenal gland is given in Fig. 3 and that of the right adrenal gland in Fig. 4. The immunofluorescence method used in this study was indirect immunofluorescence double staining procedure. Paraffin-embedded human adrenal tissues were prepared using heat-induced epitope retrieval after deparaffinization. Tissue sections were blocked with 5% goat serum in PBS, pH 7.4, containing 0.5% SDS, for 1 h. The slides were incubated with individual primary antibodies at 4℃ overnight, followed by incubation with Alexa Fluor 488-, and Alexa Fluor 647-conjugated secondary antibodies specific to the species of the primary antibodies with DAPI for immunofluorescence staining. Antibodies used included anti-CYP11B1 (Millipore, Cat. No. MABS502, 1:100), anti-CYP11B2(Millipore, Cat. No. MABS1251, 1:100), Alexa Fluor 488-conjugated anti-rat IgG secondary antibody (CYP11B1; Green) and Alexa Fluor 647-conjugated anti-mouse IgG secondary antibody (CYP11B2; Red). Nuclei were stained with DAPI. Fig. 2 Routine hematoxylin and eosin (H&E) staining and immunofluorescence of the left adrenocortical adenoma (green represents expression of CYP11B1 and red that of CYP11B2). This adrenocortical adenoma and the surrounding cortex was cut into three parts. A and C show the overall appearance of the resected portion, with a nodule adjacent to the adenoma. B shows a neoplastic lesion formed by clear cells (aldosterone-producing cell) within nodules, lacking a fibrous envelope. C clearly shows the weak and diffuse expression of CYP11B1 in adrenocortical adenoma and CYP11B2 expression in a nodule in the cortex adjacent to the adenoma. D shows local enlargement of the aldosterone-producing nodule and three aldosterone-producing micronodules adjacent to it Full size image Fig. 3 Resected adrenocortical adenoma and part of the adrenal cortex on the left side. A shows expression of Aldosterone-producing micronodule CYP11B2 in the cortex adjacent to the adenoma. B shows an aldosterone-producing nodule with a diameter of approximately 2 mm. C shows weak positive expression of CYP11B1 in the adenoma and D negative expression of CYP11B1 in the aldosterone-producing nodule Full size image Fig. 4 Resected adrenocortical adenoma and part of the adrenal cortex on the right side. A and B show several Aldosterone-producing micronodules (positive expression of CYP11B2) in the cortex adjacent to the adenoma. C shows diffuse expression of CYP11B1 in the adenoma. D shows diffuse expression of CYP11B2 in the adenoma Full size image The Cushing's syndrome in this patient disappeared after surgery, and glucocorticoids were discontinued after 15 months according to medical advice. Follow-up was conducted for half a year after drug discontinuance, and the patient had no fatigue or dizziness; she was satisfied with the outcomes. Her systolic and diastolic blood pressure remained at 100–120 mmHg and 70–80 mmHg, respectively. During the most recent re-examination, the following results were obtained: (1) orthostatic ALD of 19.1 ng/dL and orthostatic renin concentration of 12.59 µIU/mL, with an aldosterone/renin ratio (ARR) of 1.52; (2) PTC at 8 AM of 247 nmol/L, ACTH of 93.55 ng/L and 24-h UFC of 26.8 µg; (3) parathyroid hormone of 3.86 pmol/L; (4) 25-OH-VitD of 119.5 nmol/L; (5) serum creatinine of 60 µmol/L; (6) serum sodium of 140.4 nmol/L, serum potassium of 3.87 mmol/L and serum calcium of 2.27 mmol/L. Discussion and conclusions Adrenal Cushing's syndrome is caused by excessive autonomic secretion of cortisol induced by adrenal cortical tumours or adrenal cortical hyperplasia; primary aldosteronism (PA) is caused by excessive autonomic secretion of aldosterone induced by adrenal cortical tumours or adrenal cortical hyperplasia. More adverse symptoms occur if aldosterone and cortisol-producing adenomas are present. Specifically, (1) it is more difficult to control hypertension; (2) the incidence of major adverse cardiovascular and cerebrovascular events would increase [4]; (3) glucose intolerance and other metabolic complications would be aggravated [5, 6]; (4) patients would be prone towards osteoporosis [7, 8]; (5) adrenal vein sampling results may be misinterpreted [9]; and (6) adrenal insufficiency may occur after surgery. Therefore, it is of great clinical significance to avoid missed diagnosis of A/CPAs. Despite many reports on A/CPAs, the majority of these patients may have subclinical Cushing's syndrome (SCS), and cases of apparent Cushing's syndrome complicated with PA are rarely reported. In the present case, the clinical manifestation of Cushing's syndrome were more apparent, and it would be appropriate to call it cortisol-aldosterone cosecretoma. Naoyoshi Onoda et al. [10] reported a case of Cushing's syndrome caused by a left adrenocortical adenoma (30 mm in diameter) and PA caused by a right adrenocortical adenoma (20 mm in diameter), and Fushimi et al. [3] reported a case of right A/CPA (25 mm*22 mm in size). Interestingly, in the present report, the patient had bilateral A/CPAs, and the clinical manifestations of Cushing's syndrome became more apparent after unilateral resection was performed. Similar to the above two cases, APMs were found in the adrenal cortex adjacent to the A/CPAs, but aldosterone-producing nodules were found near the cortisol-producing adenoma on the left side. The biochemical phenotype of APM-inducing autonomic aldosterone secretion has not been clarified. APMs can also be found in the adrenal tissue of 30% of individuals with normal blood pressure [11] and surrounding areas of APA [12, 13]. APMs do not express CYP11B1 or CYP17A1, which are necessary for the generation of cortisol [12, 14]. In our patient, the aldosterone-producing nodule in the left adrenal gland may have developed from APM. More than one-third of APMs carry known mutations in CACNA1D and ATP1A1, promoting the generation of aldosterone [14, 15]. Unfortunately, we did not perform whole-exome sequencing on the DNA of the peripheral blood and adenoma tissues of this patient. Due to the existence of APMs adjacent to the adenoma, it remains unclear whether there is a risk of the relapse of PA in these cases after resection of adrenal the adenoma. Therefore, it was necessary to conduct medical follow-up for this patient. Remi Goupil et al. performed AVS on 8 patients with cortisol-producing adenoma (CPA), and the results showed that cortisol on the CPA side was higher than that on the contralateral side (median, 6.7 times [range: 2.4–27.2]); P = 0.012]) [16]. There was no significant difference in bilateral cortisol and aldosterone concentrations after AVS in this patient, which is consistent with bilateral A/CPA. Although immunohistochemical results revealed weak expression of CYP11B1 for the first time, expression of cortisol in bilateral adrenal venous blood samples increased significantly after ACTH stimulation. Hence, cortisol was over-synthesized on both sides, and bilateral A/CPAs was definitively diagnosed. In summary, this case highlights the need for A/CPA screening. The complicated pathological features of these cases impose challenges to our understanding of this disease. Due to the presence of APMs in the adrenal cortex near bilateral adrenocortical adenomas, more clinical data are required to identify whether the disease might relapse after simple resection of the adenoma in these patients. Therefore, further medical follow-up of these patient is needed. Availability of data and materials Not applicable. Abbreviations CS: Cushing's syndrome PA: Primary aldosteronism ACTH: Adrenocorticotropic hormone UFC: Urinary free cortisol AVS: Adrenal vein sampling A/CPA: Aldosterone-and cortisol producing adenoma APN: Aldosterone-producing nodules APM: Aldosterone-producing micronodule CYP: Cytochrome P450 CT: Computed tomography PAC: Plasma aldosterone concentration PRA: Plasma renin activity ARR: Aldosterone /renin ratio References Stenman A, Shabo I, Ramström A, Zedenius J, Juhlin CC: Synchronous aldosterone- and cortisol-producing adrenocortical adenomas diagnosed using CYP11B immunohistochemistry. SAGE open medical case reports. 2019, 7:2050313x19883770. Hiraishi K, Yoshimoto T, Tsuchiya K, Minami I, Doi M, Izumiyama H, Sasano H, Hirata YJ. Clinicopathological features of primary aldosteronism associated with subclinical Cushing’s syndrome. Endocr J. 2011;58(7):543–51. Article CAS PubMed Google Scholar Fushimi Y, Tatsumi F, Sanada J, Shimoda M, Kamei S, Nakanishi S, Kaku K, Mune T, Kaneto H. Concurrence of overt Cushing’s syndrome and primary aldosteronism accompanied by aldosterone-producing cell cluster in adjacent adrenal cortex: case report. BMC Endocr Disord. 2021;21(1):163. Article PubMed PubMed Central Google Scholar Araujo-Castro M, BengoaRojano N, FernándezArgüeso M, Pascual-Corrales E, Jiménez Mendiguchía L. García Cano AMCardiometabolic risk in patients with primary aldosteronism and autonomous cortisol secretion. Case-control study. Med Clin (Barc). 2021;157(10):473–9. Article CAS PubMed Google Scholar Petramala L, Olmati F, Concistrè A, Russo R, Mezzadri M, Soldini M, De Vincentis G, Iannucci G, De Toma G, Letizia C. Cardiovascular and metabolic risk factors in patients with subclinical Cushing. Endocrine. 2020;70(1):150–63. Article CAS PubMed Google Scholar Akehi Y, Yanase T, Motonaga R, Umakoshi H, Tsuiki M, Takeda Y, Yoneda T, Kurihara I, Itoh H, Katabami T, et al. High Prevalence of Diabetes in Patients With Primary Aldosteronism (PA) Associated With Subclinical Hypercortisolism and Prediabetes More Prevalent in Bilateral Than Unilateral PA: A Large Multicenter Cohort Study in Japan. Diabetes Care. 2019;42(5):938–45. Article CAS PubMed Google Scholar Shi S, Lu C, Tian H, Ren Y, Chen T. Primary Aldosteronism and Bone Metabolism: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne). 2020;11:574151. Article PubMed Google Scholar Petramala L, Zinnamosca L, Settevendemmie A, Marinelli C, Nardi M, Concistrè A, Corpaci F, Tonnarini G, De Toma G, Letizia C. Bone and mineral metabolism in patients with primary aldosteronism. Int J Endocrinol. 2014;2014:836529. Article PubMed PubMed Central Google Scholar Späth M, Korovkin S, Antke C, Anlauf M, Willenberg HS. Aldosterone- and cortisol-co-secreting adrenal tumors: the lost subtype of primary aldosteronism. Eur J Endocrinol. 2011;164(4):447–55. Article PubMed Google Scholar Onoda N, Ishikawa T, Nishio K, Tahara H, Inaba M, Wakasa K, Sumi T, Yamazaki T, Shigematsu K, Hirakawa K. Cushing’s syndrome by left adrenocortical adenoma synchronously associated with primary aldosteronism by right adrenocortical adenoma: report of a case. Endocr J. 2009;56(3):495–502. Article CAS PubMed Google Scholar Williams T, Gomez-Sanchez C, Rainey W, Giordano T, Lam A, Marker A, Mete O, Yamazaki Y, Zerbini M, Beuschlein F, et al. International Histopathology Consensus for Unilateral Primary Aldosteronism. J Clin Endocrinol Metab. 2021;106(1):42–54. Article PubMed Google Scholar Nishimoto K, Tomlins SA, Kuick R, Cani AK, Giordano TJ, Hovelson DH, Liu CJ, Sanjanwala AR, Edwards MA, Gomez-Sanchez CE, et al. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proc Natl Acad Sci U S A. 2015;112(33):E4591-4599. Article CAS PubMed PubMed Central Google Scholar Omata K, Anand SK, Hovelson DH, Liu CJ, Yamazaki Y, Nakamura Y, Ito S, Satoh F, Sasano H, Rainey WE, et al. Aldosterone-producing cell clusters frequently harbor somatic mutations and accumulate with age in normal adrenals. J Endocr Soc. 2017;1(7):787–99. Article CAS PubMed PubMed Central Google Scholar Omata K, Tomlins SA, Rainey WE. Aldosterone-producing cell clusters in normal and pathological States. Horm Metab Res. 2017;49(12):951–6. Article CAS PubMed PubMed Central Google Scholar Lalli E, Barhanin J, Zennaro MC, Warth R. Local Control of Aldosterone Production and Primary Aldosteronism. Trends Endocrinol Metab. 2016;27(3):123–31. Article CAS PubMed Google Scholar Goupil R, Wolley M, Ahmed AH, Gordon RD, Stowasser M. Does concomitant autonomous adrenal cortisol overproduction have the potential to confound the interpretation of adrenal venous sampling in primary aldosteronism? Clin Endocrinol (Oxf). 2015;83(4):456–61. Article CAS PubMed Google Scholar Download references Acknowledgements Not applicable Funding This study was supported by the Discipline Excellence Development 1.3.5 Project of West China Hospital, Sichuan University (No. ZYGD18022). Author information Authors and Affiliations Department of Endocrinology and Metabolism, Adrenal Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China Hongjiao Gao, Yan Ren, Tao Chen & Haoming Tian Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China Hongjiao Gao Institute of Clinical Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China Li Li & Fei Chen Contributions HG, TC researched data and/or wrote the manuscript. LL, FC contributed to immumohistochemical staining. HT, TC, YR contributed to discussion. All authors have read and approved the manuscript. Corresponding authors Correspondence to Tao Chen or Haoming Tian. Ethics declarations Ethics approval and consent to participate Not applicable. Consent for publication Written informed consent was obtained from the patient for publication of this Case report and any accompanying images. A copy of the written consent is available for review by the Editor of this journal. Competing interests We do not have any potential conflicts of interest relevant to this article. Additional information Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Rights and permissions Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Reprints and Permissions Cite this article Gao, H., Li, L., Chen, F. et al. Bilateral co-secretory lesions presenting with coexisting Cushing syndrome and primary aldosteronism: a case report. BMC Endocr Disord 23, 263 (2023). https://doi.org/10.1186/s12902-023-01454-8 Download citation Received08 April 2022 Accepted24 August 2023 Published29 November 2023 DOIhttps://doi.org/10.1186/s12902-023-01454-8 Share this article Anyone you share the following link with will be able to read this content: Get shareable link Provided by the Springer Nature SharedIt content-sharing initiative Keywords Cushing’s syndrome Primary aldosteronism Adrenal vein sampling Immunohistochemistry Aldosterone-producing cell cluster Download PDF Sections Figures References Abstract Background Case presentation Discussion and conclusions Availability of data and materials Abbreviations References Acknowledgements Funding Author information Ethics declarations Additional information Rights and permissions About this article From https://bmcendocrdisord.biomedcentral.com/articles/10.1186/s12902-023-01454-8
  18. ABSTRACT Objective To determine whether accurate inferior petrosal sinus sampling (IPSS) tumor lateralization is associated with improved clinical outcomes following the surgical treatment of Cushing’s disease. Methods The presented study was performed in accordance with PRISMA guidelines. Data regarding patient demographics, IPSS tumor lateralization, and postoperative endocrinologic outcomes were abstracted and pooled with random effects meta-analysis models. Additional meta-regression models were used to examine the association between the accuracy of IPSS tumor lateralization and postoperative outcomes (recurrence/persistence or remission/cure). Statistical analyses were performed using the Comprehensive Meta-Analysis software (significance of P<0.05). Results Seventeen eligible articles were identified, yielding data on 461 patients. Within average follow-up duration (∼59 months), the rate of correct IPSS tumor lateralization was 69% [95% Confidence Interval: 61%, 76%], and the rate of postoperative remission/cure was 78% [67%, 86%]. Preoperative IPSS tumor lateralization was concordant with MRI lateralization for 53% of patients [40%, 66%]. There was no significant association between the rate of correct IPSS tumor lateralization and postoperative remission/cure among study-level data (P=0.735). Additionally, there was no association among subgroup analyses for studies using stimulatory agents during IPSS (corticotropin-releasing hormone or desmopressin, P=0.635), nor among subgroup analyses for adult (P=0.363) and pediatric (P=0.931) patients. Conclusions Limited data suggest that the rate of correct IPSS tumor lateralization may not be positively associated with postoperative remission or cure in patients with Cushing’s disease. These findings bring into question the utility of IPSS tumor lateralization in the context of preoperative planning and surgical approach rather than confirming a pituitary source. From https://www.sciencedirect.com/science/article/abs/pii/S187887502301745X
  19. BACKGROUND Double pituitary adenomas are rare presentations of two distinct adenohypophyseal lesions seen in <1% of surgical cases. Increased rates of recurrence or persistence are reported in the resection of Cushing microadenomas and are attributed to the small tumor size and localization difficulties. The authors report a case of surgical treatment failure of Cushing disease because of the presence of a secondary pituitary adenoma. OBSERVATIONS A 32-year-old woman with a history of prolactin excess and pituitary lesion presented with oligomenorrhea, weight gain, facial fullness, and hirsutism. Urinary and nighttime salivary cortisol elevation were elevated. Magnetic resonance imaging confirmed a 4-mm3 pituitary lesion. Inferior petrosal sinus sampling was diagnostic for Cushing disease. Primary endoscopic endonasal transsphenoidal resection was performed to remove what was determined to be a lactotroph-secreting tumor on immunohistochemistry with persistent hypercortisolism. Repeat resection yielded a corticotroph-secreting tumor and postoperative hypoadrenalism followed by long-term normalization of the hypothalamic-pituitary-adrenal axis. LESSONS This case demonstrates the importance of multidisciplinary management and postoperative hormonal follow-up in patients with Cushing disease. Improved strategies for localization of the active tumor in double pituitary adenomas are essential for primary surgical success and resolution of endocrinopathies. Keywords: pituitary neuroendocrine tumor; PitNET; pituitary adenoma; Cushing disease; prolactinoma; transsphenoidal ABBREVIATIONS ACTH = adrenocorticotrophic hormone; BMI = body mass index; DHEA-S = dehydroepiandrosterone sulfate; FSH = follicle-stimulating hormone; GH = growth hormone; IHC = immunohistochemical; IPSS = inferior petrosal sinus sampling; LH = luteinizing hormone; MRI = magnetic resonance imaging; POD = postoperative day; T4 = thyroxine; TF = transcription factor; TSH = thyroid-stimulating hormone; UFC = urinary free cortisol Pituitary adenomas are adenohypophyseal tumors that can cause endocrinopathies, such as pituitary hormone hypersecretion or anterior hypopituitarism. Cell lineages are used to classify these tumors on the basis of immunohistochemical (IHC) staining of transcription factors, hormones, and other biomarkers.1 Pituitary adenomas differentiate from pluripotent stem cells along one of three lineage pathways, depending on the following active transcription factors (TFs): pituitary transcription factor 1 (PIT-1), T-box transcription factor (TPIT), or steroidogenic factor-1 (SF-1). Rarely, two or more discrete pituitary adenomas from different lineages are identified in patients; however, the etiology remains unclear.2 The incidence of multiple pituitary adenomas has been reported to be 1%–2% of all resected pituitary adenomas but is likely underestimated based on data from large autopsy series.1–4 Pluri-hormonal adenomas are also rare entities in which a single tumor contains multiple TF lineages with one or more hormonal excesses.1–3 Preoperative recognition of multiple or pluri-hormonal pituitary adenomas is rare, and most tumors are discovered incidentally upon autopsy, intraoperatively, or on histological analysis.2,3,5 In cases of multiple synchronous pituitary adenomas, only one hormone excess syndrome is most frequently evident on clinical presentation and endocrine workup. Silent pituitary tumors positive for prolactin on immunohistochemistry are the most prevalent additional, incidentally found tumor in cases of multiple pituitary adenomas.5 This is particularly true in Cushing disease.6,7 It is important to recognize the presence of multiple pituitary adenomas especially in the setting of hormonally active pituitary adenomas to provide optimal management for this subset of patients. Complete resection is curative for Cushing disease with the standard of care achieved through a transsphenoidal approach. Localization of the tumor presents a challenge because of suboptimal sensitivity of magnetic resonance imaging (MRI) in demonstrating microadenomas, the inconsistency of lateralization with inferior petrosal sinus sampling (IPSS), and delays in pathological analysis.1,8,9 Additionally, the presence of an additional pituitary adenoma can obscure the microtumor through its large size and mass effect and can act as a “decoy lesion” during MRI, IPSS, and resection.6 Consideration of multiple pituitary tumors is necessary for successful resection. In a patient with a biochemical picture of Cushing disease, the demonstration of an adenoma with negative adrenocorticotrophic hormone (ACTH) immunostaining and the absence of postoperative hypoadrenalism may indicate the existence of a double adenoma. Few cases have described a lack of remission of an endocrinopathy after transsphenoidal resection due to the presence of an additional adenoma,2,6,10 and even less so in the instance of the persistence of Cushing disease.6 We present a rare case of double pituitary adenomas in a patient presenting with Cushing disease who underwent two endoscopic endonasal transsphenoidal resections and immunostaining for prolactin and ACTH, respectively, with long-term normalization of her hypothalamic-pituitary-adrenal (HPA) axis. Illustrative Case History and Presentation A 32-year-old female, gravida 0 para 0, with a history of a pituitary lesion and hyperprolactinemia presented to our institution for the evaluation for Cushing disease. Ten years earlier, the patient had presented to a gynecologist with hirsutism, galactorrhea, and oligomenorrhea. Her endocrine workup was remarkable for an elevated prolactin at 33.8 ng/mL (2.3–23.3 ng/mL), while follicle-stimulating hormone (FSH), luteinizing hormone (LH), and thyroid-stimulating hormone (TSH) levels were normal. No ACTH or cortisol levels were available. MRI demonstrated a 5 × 6 × 5–mm T1-weighted isointense pituitary lesion protruding into the suprasellar cistern due to a small sella size. She was treated with bromocriptine 2.5 mg daily for 5 years, with normalization of her prolactin level. Subsequent MRI demonstrated a stable lesion size and T1 and T2 hyperintensity in the region of the known pituitary lesion, considered to be posttreatment cystic change with proteinaceous contents and blood. After the normalization of her prolactin levels, she continued to have oligomenorrhea and abnormal hair growth. Polycystic ovaries were not visualized on ultrasound. She was started on oral contraceptives and then switched to the etonorgestrel implant. A decade after initial presentation, she presented to endocrinology at our institution with 3 years of weight gain, hirsutism, and potential oligomenorrhea. Vital signs were stable (blood pressure: 122/86; heart rate: 72 beats/min), and facial fullness and striae on her bilateral breasts were appreciated on physical examination. She was taking isoniazid and pyridoxine for a recent diagnosis of latent tuberculosis and had discontinued bromocriptine 5 years earlier. Her weight was 66.3 kg and body mass index (BMI) was 23.9 kg/m2. She reported that her maternal uncle had a pituitary tumor. Laboratory analysis was positive for elevated urinary free cortisol (UFC) of 109 µg per 24 hours (2.5–45 µg/24 h; Table 1) and nighttime salivary cortisol of 142 ng/mL (<100 ng/dL) with high-normal prolactin of 22.8 ng/mL (2.3–23.3 ng/dL) and normal FSH, LH, TSH, and thyroxine (T4). Dehydroepiandrosterone sulfate (DHEA-S) was 128 µg/dL (98.8–340.0 µg/dL). Imaging demonstrated a 4 × 4 × 4–mm pituitary lesion with decreased T1-weighted and increased central T2-weighted signal intensity in the left lateral pituitary (Fig. 1A–C). Desmopressin (Ferring Pharmaceuticals DDAVP) stimulation increased a basal ACTH of 49.9 pg/mL to ACTH of 91.2 pg/mL, and cortisol increased from 13.7 µg/dL to 21.2 µg/dL, consistent with neoplastic hypercortisolism. IPSS was performed, which showed a right-sided, central-to-peripheral ACTH gradient (Table 2). The patient elected to undergo endoscopic endonasal resection with the initial target as the left-lateral pituitary mass to achieve a cure for Cushing disease. TABLE 1 Urinary free cortisol at baseline and 3, 5, and 7 months after the primary resection Variable Baseline 3 Mos 5 Mos 7 Mos on Osilodrostat Urinary free cortisol (4–50 µg/24 hrs) 109 134.2 125.4 40.3 Urinary creatinine (0.5–2.5 g/24 hrs) 0.995 1.17 1.42 1.11 Urinary vol (mL) 1950 2300 2100 2125 FIG. 1 Preoperative coronal precontrast (A) and postcontrast (B) T1-weighted magnetic resonance imaging (MRI) and T2-weighted MRI (C) demonstrated a 4-mm3 lesion (arrows) with decreased T1 and increased central T2 signal intensity in the left lateral pituitary. Two days after surgery, coronal precontrast (D) and postcontrast T1-weighted (E) and T2-weighted (F) MRI demonstrated the unchanged adenoma. TABLE 2 Preoperative inferior petrosal sinus sampling with corticorelin ovine triflutate 68 µg Time (mins) ACTH (pg/mL) Prolactin (ng/mL) Peripheral Petrosal Sinus ACTH Ratio Peripheral Petrosal Sinus Prolactin Ratio Rt Lt Rt Lt Rt Lt Rt Lt −5 50.6 225 1586 4.45 31.34 21 124 295 5.90 14.05 0 48.8 389 1376 7.97 28.20 22.2 185 198 8.33 8.92 3 69.8 4680 1333 67.05 19.1 22.1 396 32.5 17.92 1.47 5 80.9 4590 1623 56.74 20.06 22.1 436 32.2 19.73 1.46 10 112 4160 1660 37.14 14.82 20.2 367 42 17.90 2.05 ACTH or prolactin ratio = inferior petrosal sinus ACTH or prolactin/peripheral blood ACTH or prolactin. Primary Resection and Outcomes During the primary resection, abnormal tissue was immediately visible after a linear incision along the bottom of the dura, with an excellent plane of dissection. The inferomedial adenoma was distinct from the known left lateral lesion, and the resection was considered complete by the primary neurosurgeon. Subsequently, the left-sided adenoma was not pursued because of the historical prolactinoma diagnosis and an assumption that the newly discovered adenoma was the cause of ACTH hypersecretion. However, pathology of the inferomedial tumor was strongly and diffusely positive for prolactin (Fig. 2B), synaptophysin, and cytokeratin, with an Mindbomb Homolog-1 (MIB-1) proliferative index of 2.4%. ACTH, growth hormone (GH), FSH, LH, and TSH immunostaining were negative. TF immunohistochemistry was not available. On postoperative day (POD) 1, pituitary MRI was performed and demonstrated the unchanged 4-mm3 T1-weighted hypointense lesion with small central T2-weighted hyperintensity in the left lateral gland (Fig. 1D–F). Cortisol levels ranged from 9.7 to 76.2 µg/dL (4.8–19.5 µg/dL), and ACTH was 19.5 pg/mL (7.2–63.3 pg/mL) on POD 1. FIG. 2 Histological examination of surgical specimens from the inferomedial (A–C) and left lateral (D–F) lesions. The initial resection (hematoxylin and eosin [H&E], A) was strongly and diffusely positive for prolactin (B) with normal reticulin levels (C) indicating a lactotrophic pituitary adenoma. The second operation (H&E, D) was diagnostic for a corticotropic pituitary adenoma with diffusely positive adrenocorticotrophic hormone (ACTH) (E) and decreased reticulin (F). Original magnification ×100. Early reoperation was discussed with the patient based on the pathology and persistent hypercortisolism; however, she elected to pursue conservative management with close follow-up. Postoperative cortisol nadir was 4.8 µg/dL (4.8–19.5 µg/dL) on POD 2 during her 4-day hospital stay. DHEA-S was significantly decreased from baseline at 22.3 µg/dL (98.8–340.0 µg/dL) and a prolactin level of 3.4 ng/mL (2.3–23.3 ng/dL) was low-normal. No glucocorticoids were administered during her hospital course. There was no clinical evidence of vasopressin deficiency while she was an inpatient. Three months postoperatively, the patient reported insomnia, poor hair quality, fatigue, nocturnal sweating, and continued increasing weight gain with fat accumulation in the supraclavicular and dorsal cervical area. She had one spontaneous menstrual period despite the use of etonogestrel implant. UFC was increased at 134.2 µg/24 hours (4–50 µg/24 h; Table 1). The 8:00 am serum cortisol was 10.2 µg/dL (5.0–25.0 µg/dL). She was started on osilodrostat 2 mg twice daily for her persistent hypercortisolism, and she reported some clinical improvement; however, she had continued elevation in her late-night salivary cortisol levels up to 7.0 nmol/L. Other endocrine lab work was normal, with a prolactin of 13.5 ng/mL (2.8–23.3 ng/mL) and TSH of 3.67 µIU/mL (0.4–4.0 µIU/mL). Her weight had increased by 4.9 kg to 71.2 kg with a BMI of 25.3 kg/m2. Approximately 6 months postoperatively, she was amenable to a secondary resection targeting the remaining left lateral pituitary adenoma. Secondary Resection and Outcomes After obtaining adequate exposure for the secondary resection, the lesion in the left lateral aspect of the pituitary was targeted. The tumor was clearly identified and completely resected without intraoperative complication. IHC staining was diffusely positive for ACTH (Fig. 2E), synaptophysin, and cytokeratin with decreased reticulin and an MIB-1 index of 3.3%. Prolactin, GH, TSH, LH, and FSH immunostaining were negative. Postoperative cortisol monitoring demonstrated decreased levels, with a nadir of 2.0 µg/dL on POD 0. Levels of ACTH and DHEA-S were decreased at 4.4 pg/mL (7.2–63.3 pg/mL) and 13.3 µg/dL (98.8–340 µg/dL), respectively, on POD 1. Prolactin remained within the normal range at 8.2 ng/mL (2.8–23.3 ng/mL). The patient was started on intravenous hydrocortisone 50 mg every 8 hours for adrenal insufficiency. Postoperative symptoms of nausea, headache, and muscle weakness resolved with hydrocortisone administration. She was discharged on hydrocortisone 60 mg daily in divided doses for adrenal insufficiency and had no signs of vasopressin deficiency during her 2-day hospital course. By 3 months, the patient reported decreased fatigue, myalgia, and insomnia and improved overall well-being and physical appearance. She was weaned down to a total daily dose of 20 mg of hydrocortisone and had lost 5.2 kg. Her menstruation returned while having an etonogestrel implant. Rapid ACTH stimulation was abnormal, with decreased cortisol at 30 minutes of 4.1 µg/dL (7.2–63.3 pg/mL) demonstrating continued adrenal insufficiency. Follow-up MRI demonstrated miniscule remaining left pituitary adenoma (Fig. 3). Seven months after her second surgery, she was started on 50 µg levothyroxine for primary hypothyroidism in the setting of slightly elevated TSH of 4.1 µIU/mL (0.4–4.0 µIU/mL) and a low-normal T4 of 0.8 ng/dL (0.7–1.5 ng/dL). FIG. 3 Postoperative imaging 3 months after the second operation demonstrates near gross-total resection (yellow arrows: surgical cavity) of the left lateral pituitary adenoma on coronal precontrast (A) and postcontrast T1-weighted (B) and T2-weighted (C) MRI. Two years after the second resection, the patient lost 10.1 kg (weight, 61.1 kg; BMI, 21.76 kg/m2). Her ACTH stimulation test became normal, and hydrocortisone therapy was discontinued. At the 2-year time point, the patient and her husband successfully conceived a child. Patient Informed Consent The necessary patient informed consent was obtained in this study. Discussion Double or multiple pituitary adenomas are discovered in 0.37%–2.6% of resected pituitary lesions.3,4,6,11,12 A majority of multiple pituitary adenomas are not suspected before surgery with an inconclusive clinical presentation or endocrine laboratory workup.6 The presentation of multiple synchronous neoplasms is thought to be more common than having a single neoplasm with multiple lineages.1 Studies have shown that additional pituitary adenomas are seen at a rate of 1.6%–3.3% in Cushing disease in studies including both contiguous and noncontiguous double pituitary adenomas.6 Additional pituitary adenomas that are hormonally active make up 40% of resected double pituitary adenomas, with most staining for gonadotroph adenoma.13 Overall, the most common incidental pituitary adenoma is prolactinoma,6 which occurs most frequently with GH or ACTH adenomas.5 In very rare instances, Cushing cases can present with hyperprolactinemia and Cushing synchronously.6 Hormonal secretion and clinical presentation are variable, with the pathology most often attributed to only one component of double pituitary adenoma.3,14 The multiple-hit theory is the most common hypothesis for double pituitary adenoma etiology with coincidental monoclonal expansion of two or more lineages, which present with separate pseudo-capsules for each lesion.15 Observations On presenting with Cushing disease, the differential diagnosis before the initial operation considered that the known left lateral pituitary adenoma could be a mixed tumor with both prolactin and ACTH lineages. Therefore, it was the initial target of the resection until discovering the second adenoma intraoperatively. With two distinct adenomas, the inferomedial adenoma was presumed to be the source of the ACTH hypersecretion and was subsequently resected. The left lesion was thought to be a prolactinoma and hormonally inactive after historical dopaminergic therapy and thus was not pursued during the initial surgery. However, pathology confirmed that the opposite was true. Few cases have also involved incidental pituitary tumors that look like the hormonally active adenoma and encourage resection of it, leaving the primary pituitary adenoma behind.6,7 It has been reported that these “decoy lesions” can cause surgical failure and require secondary operations.6,7,10,16 Intraoperative localization and confirmation of the adenoma classification may have also been helpful during the case, including tissue-based ACTH antibody assay,9 plasma ACTH measurements with a immunochemiluminometric method,17 or intraoperative ultrasound.5,6 The inferomedial second tumor was not appreciated or reported throughout her serial MRI studies from 2010 to 2020. Interestingly, imaging did demonstrate the left pituitary adenoma that was medically treated as a prolactinoma, although it was later diagnosed as an ACTH-secreting lesion on IHC staining. Preoperative visualization of a pituitary adenoma in Cushing disease is reported to be limited, with a reported 50% incidence with negative MRI with standard 1.5 T.1,18,19 MRI technical refinements in magnet strength, slice thickness, or enhanced spin sequences have increased sensitivity, but one-third of patients with Cushing disease still have negative scans.20 Small prolactinomas, especially those near the cavernous sinus, are also notoriously difficult to visualize on MRI, although recent advances using co-registration of 11C-methionine positron emission tomography–computed tomography with MRI (Met-PET/MRICR) may prove useful.21 Difficulty with preoperative visualization complicates a diagnosis of multiple adenomas, with or without multiple endocrinopathies, and negatively affects surgical planning. In a single-institution retrospective review of MRI in all cases of double pituitary tumors, only one of eight patients (12.5%) over 16 years of age had a positive MRI for double pituitary tumors and was diagnosed preoperatively.2 The patient’s preoperative IPSS demonstrated a right central-to-peripheral gradient. This was incongruent with the MRI demonstrating the single left-sided tumor. While IPSS is useful in confirming Cushing disease, its sensitivity for lateralization has been reported at only 59%–71%.9 With this in mind and a known left-sided adenoma on MRI, exploration of the right side of the pituitary was not originally planned. Ultimately, the left-sided adenoma was the source of ACTH hypersecretion, which remains incongruent with preoperative IPSS. It has been suggested that multiple pituitary adenomas in Cushing disease could further decrease its accuracy.1,6 The patient’s initial historical prolactin levels (33.8 ng/dL) were lower than reported levels of 100–250 ng/dL for microadenoma and >250 ng/dL in cases of macroadenoma. Normally, in active single prolactinoma, prolactin secretion is correlated to size. We do not suspect that the presence of more than one pituitary adenoma would affect the level of prolactin hypersecretion.6 Slight elevations in prolactin can be attributed to causes such as pituitary stalk effect, medications, and physiological stimulation. During the 5 years of bromocriptine therapy, the effect on the inferomedial prolactinoma was unknown, as it was not appreciated on MRI. There are reports of prolactinomas being less responsive to dopaminergic agonist therapy in cases of double adenomas.14,22 Upon resection of the inferomedial prolactinoma during the initial operation, there was no further change in the patient’s prolactin levels, which could most likely be attributed to prior dopaminergic therapy. Unfortunately, the initial endocrine laboratory workup did not include levels of ACTH or cortisol. In addition to hyperprolactinemia, Cushing disease can also present with changes in menstruation. After the secondary resection and removal of the ACTH-secreting pituitary adenoma, the patient’s oligomenorrhea resolved and she achieved pregnancy. Retrospectively, it remains unclear if the prolactinoma was once truly active hormonally. Lessons The rare presence of two pituitary adenomas can complicate the diagnosis, medical and surgical management, and long-term outcomes for patients. A complete endocrine workup is essential when a pituitary adenoma is suspected and can help screen for pluri-hormonal and multiple pituitary adenomas. In our patient, it is unknown when the onset of hypercortisolism was with the limited initial hormonal workup. Currently, localizing and resecting the hormonally active adenoma in double or multiple pituitary adenomas remain a challenge, with limitations in preoperative imaging and intraoperative measures. After encountering the additional inferomedial lesion during surgery, resection of both adenomas during the initial surgery may have been prudent to ensure the resolution of Cushing disease. Although exploration for additional pituitary adenomas is not usually recommended, it could be considered in cases of multiple pituitary adenomas and uncertainty of the culprit of Cushing disease. The current characterization of pituitary tumors by the World Health Organization includes immunohistochemistry for both transcription factors and pituitary hormones, with clinical usefulness to be determined by future studies. Multiple lineages can occur mixed in a single pituitary adenoma or across different noncontiguous adenomas and can only be determined by TF immunostaining. The left ACTH-staining lesion in our patient had some shrinkage and MRI changes, which may have been a response to dopaminergic therapy. Full characterization of the tumor cell lineages in this case remains undetermined without staining for TFs. In conclusion, we report a rare case of Cushing disease concurrent with a prolactinoma leading to the need for repeat resection. This is one of the few reported cases of a double pituitary adenoma leading to a lack of biochemical remission of hypercortisolism after the initial surgery. Strategies for localization of the active tumor in double pituitary adenomas are essential for primary surgical success and the resolution of endocrinopathies. Author Contributions Conception and design: Zwagerman, Tavakoli, Shah, Findling. Acquisition of data: Zwagerman, Armstrong, Tavakoli, Shah, Ioachimescu, Findling. Analysis and interpretation of data: Zwagerman, Armstrong, Tavakoli, Shah, Coss, Ioachimescu, Findling. Drafting of the article: Zwagerman, Armstrong, Shah. Critically revising the article: Zwagerman, Armstrong, Tavakoli, Shah, Ioachimescu, Findling. Reviewed submitted version of the manuscript: Zwagerman, Armstrong, Tavakoli, Shah, Laing, Ioachimescu, Findling. Approved the final version of the manuscript on behalf of all authors: Zwagerman. Statistical analysis: Armstrong, Shah. Administrative/technical/material support: Zwagerman, Armstrong, Shah. Study supervision: Zwagerman, Tavakoli, Shah, Laing. References 1↑ Asa SL, Mete O, Perry A, Osamura RY. Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr Pathol. 2022;33(1😞6–26. PubMed Search Google Scholar Export Citation 2↑ Roberts S, Borges MT, Lillehei KO, Kleinschmidt-DeMasters BK. Double separate versus contiguous pituitary adenomas: MRI features and endocrinological follow up. Pituitary. 2016;19(5😞472–481. PubMed Search Google Scholar Export Citation 3↑ Mete O, Alshaikh OM, Cintosun A, Ezzat S, Asa SL. Synchronous multiple pituitary neuroendocrine tumors of different cell lineages. Endocr Pathol. 2018;29(4😞332–338. PubMed Search Google Scholar Export Citation 4↑ Kontogeorgos G, Kovacs K, Horvath E, Scheithauer BW. Multiple adenomas of the human pituitary. A retrospective autopsy study with clinical implications. J Neurosurg. 1991;74(2😞243–247. PubMed Search Google Scholar Export Citation 5↑ Budan RM, Georgescu CE. Multiple pituitary adenomas: a systematic review. Front Endocrinol (Lausanne). 2016;7:1. PubMed Search Google Scholar Export Citation 6↑ Ratliff JK, Oldfield EH. Multiple pituitary adenomas in Cushing’s disease. J Neurosurg. 2000;93(5😞753–761. PubMed Search Google Scholar Export Citation 7↑ Booth GL, Redelmeier DA, Grosman H, Kovacs K, Smyth HS, Ezzat S. Improved diagnostic accuracy of inferior petrosal sinus sampling over imaging for localizing pituitary pathology in patients with Cushing’s disease. J Clin Endocrinol Metab. 1998;83(7😞2291–2295. PubMed Search Google Scholar Export Citation 8↑ Stroud A, Dhaliwal P, Alvarado R, et al. Outcomes of pituitary surgery for Cushing’s disease: a systematic review and meta-analysis. Pituitary. 2020;23(5😞595–609. PubMed Search Google Scholar Export Citation 9↑ Erfe JM, Perry A, McClaskey J, et al. Long-term outcomes of tissue-based ACTH-antibody assay-guided transsphenoidal resection of pituitary adenomas in Cushing disease. J Neurosurg. 2018;129(3😞629–641. PubMed Search Google Scholar Export Citation 10↑ Tolis G, Bertrand G, Carpenter S, McKenzie JM. Acromegaly and galactorrhea-amenorrhea with two pituitary adenomas secreting growth hormone or prolactin. A case report. Ann Intern Med. 1978;89(3😞345–348. PubMed Search Google Scholar Export Citation 11↑ Magri F, Villa C, Locatelli D, et al. Prevalence of double pituitary adenomas in a surgical series: clinical, histological and genetic features. J Endocrinol Invest. 2010;33(5😞325–331. PubMed Search Google Scholar Export Citation 12↑ Kim K, Yamada S, Usui M, Sano T. Preoperative identification of clearly separated double pituitary adenomas. Clin Endocrinol (Oxf). 2004;61(1😞26–30. PubMed Search Google Scholar Export Citation 13↑ Mete O, Cintosun A, Pressman I, Asa SL. Epidemiology and biomarker profile of pituitary adenohypophysial tumors. Mod Pathol. 2018;31(6😞900–909. PubMed Search Google Scholar Export Citation 14↑ Asa SL, Mete O, Riddle ND, Perry A. Multilineage pituitary neuroendocrine tumors (PitNETs) expressing PIT1 and SF1. Endocr Pathol. 2023;34(3😞273–278. PubMed Search Google Scholar Export Citation 15↑ Zieliński G, Sajjad EA, Maksymowicz M, Pękul M, Koziarski A. Double pituitary adenomas in a large surgical series. Pituitary. 2019;22(6😞620–632. PubMed Search Google Scholar Export Citation 16↑ Gonzalez A, Saindane AM, Neill SG, Oyesiku NM, Ioachimescu AG. The intriguing case of a double pituitary adenoma. World Neurosurg. 2019;126:331–335. PubMed Search Google Scholar Export Citation 17↑ Raff H, Shaker JL, Nelson DK, Findling JW. Rapid measurement of corticotropin (ACTH) with a modified immunochemiluminescent assay. Clin Chem. 1994;40(7 Pt 1😞1344. PubMed Search Google Scholar Export Citation 18↑ Buchfelder M, Nistor R, Fahlbusch R, Huk WJ. The accuracy of CT and MR evaluation of the sella turcica for detection of adrenocorticotropic hormone-secreting adenomas in Cushing disease. AJNR Am J Neuroradiol. 1993;14(5😞1183–1190. PubMed Search Google Scholar Export Citation 19↑ Escourolle H, Abecassis JP, Bertagna X, et al. Comparison of computerized tomography and magnetic resonance imaging for the examination of the pituitary gland in patients with Cushing’s disease. Clin Endocrinol (Oxf). 1993;39(3😞307–313. PubMed Search Google Scholar Export Citation 20↑ Grober Y, Grober H, Wintermark M, Jane JA, Oldfield EH. Comparison of MRI techniques for detecting microadenomas in Cushing’s disease. J Neurosurg. 2018;128(4😞1051–1057. PubMed Search Google Scholar Export Citation 21↑ Bakker LEH, Verstegen MJT, Ghariq E, et al. Implementation of functional imaging using 11C-methionine PET-CT co-registered with MRI for advanced surgical planning and decision making in prolactinoma surgery. Pituitary. 2022;25(4😞587–601. PubMed Search Google Scholar Export Citation 22↑ Coiré CI, Smyth HS, Rosso D, Horvath E, Kovacs K. A double pituitary adenoma presenting as a prolactin-secreting tumor with partial response to medical therapy. Case report. Endocr Pathol. 2010;21(2😞135–138. PubMed Search Google Scholar Export Citation From https://thejns.org/caselessons/view/journals/j-neurosurg-case-lessons/6/22/article-CASE23485.xml
  20. Abstract The occurrence of a second neoplasm possibly constitutes an adverse and uncommon complication after radiotherapy. The incidence of a second pituitary tumor in patients irradiated for adrenocorticotropic hormone secreting pituitary adenoma is rare. We report a case of a 40-year-old female with Cushing disease who underwent surgical management followed by radiotherapy. After 5 years of initial treatment, an increase in tumor size was evident at the same location, with a significant interval growth of the parasellar component of the lesion. Histology revealed an undifferentiated highly malignant sarcoma. In the span of next 2 years, the patient was followed with 2 repeat decompression surgeries and radiotherapy because of significant recurrent compressive symptoms by locally invasive malignant tumor. Despite the best efforts, the patient remained unresponsive to multiple treatment strategies (eg, surgical resections and radiotherapy) and succumbed to death. radiotherapy, second malignancy, Cushing disease Issue Section: Case Report Introduction Radiation therapy is a commonly used modality for primary or adjuvant treatment of pituitary adenoma. It is also used as an adjuvant therapy for Cushing disease with persistent or aggressive tumor growth or recurrent disease after surgery. The immediate sequelae of radiotherapy for pituitary tumors include nausea, fatigue, diminished taste and olfaction, and hair loss [1]. One frequent long-term side effect is hypopituitarism. The incidence rate of new-onset hypopituitarism after conventional radiotherapy is approximately 30% to 100% after a follow-up of 10 years, whereas after stereotactic radiosurgery or fractionated radiotherapy, the incidence is approximately 10% to 40% at 5 years [2]. The occurrence of a second neoplasm after cranial radiotherapy constitutes possibly one of the most adverse complications. Tumors such as meningioma, glioma, and sarcoma are the most frequently reported secondary neoplasms after pituitary irradiation [3]. The cumulative probability of a second brain tumor in patients irradiated for pituitary adenoma and craniopharyngioma is approximately 4% [4]. We report 1 such case with detailed clinical, histopathological, and radiological characteristics because of its rarity and associated high mortality of radiation-induced sarcoma. Case Presentation The patient first presented at 40 years of age with complaints of weight gain, new-onset diabetes mellitus, hypertension, and cushingoid features in 2014. She was diagnosed with Cushing disease (24-hour urinary cortisol 1384 mcg/24 hours [3819 nmol/24 hours; reference >2 upper limit of normal], low-dose dexamethasone suppression test serum cortisol 16.6 mcg/dL [457.9 nmol/L], ACTH 85 pg/mL [18.7 pmol/L; reference range, <46 pg/mL, <10 pmol/L]) caused by invasive adrenocorticotropic hormone-secreting giant adenoma. The initial imaging revealed a homogenously enhanced pituitary macroadenoma with a size of 42 × 37 × 35 mm with suprasellar extension and encasing both the internal carotid arteries with mass effect on optic chiasma and sellar erosion. The patient underwent tumor excision by endoscopic transsphenoidal transnasal approach. Partial excision of the tumor was achieved because of cavernous sinus invasion. Histopathology and immunohistochemical stains demonstrated a corticotrophin-secreting (ACTH-staining positive) pituitary adenoma with MIB labeling index of 1% to 2%. Because biochemical remission was not achieved (urinary cortisol 794 mcg/24 hours [2191 nmol/24 hours]; ACTH 66 pg/mL [14.5 pmol/L; reference range, <46 pg/mL, <10 pmol/L]), the patient was started on ketoconazole and was received fractionated radiotherapy with a dose of 5040 cGy in 28 fractions. Diagnostic Assessment For the next 5 years, at yearly follow-up, 400 mg ketoconazole was continued in view of insufficient control of ACTH secretion. During follow-up, the size of the tumor was stable at approximately 23 × 16 × 33 mm after radiotherapy with no significant clinical and biochemical changes. Five years after surgery and radiotherapy, the patient developed cerebrospinal fluid rhinorrhea; imaging revealed a cystic transformation of the suprasellar component and increase in the size of the tumor to 39 × 22 × 26 mm, which included visualization of a parasellar component of size 29 × 19 × 15 mm. The patient continued on ketoconazole. The patient was also advised to undergo hypofractionated radiotherapy but did not return for follow-up. Treatment In 2021, 1.5 years after the last visit, the patient developed severe headache, altered sensorium, ptosis, focal seizures, and left-sided hemiparesis. During this episode, the patient had an ACTH of 66 pg/mL (14.53 pmol/L; reference range, <46 pg/mL [<10 pmol/L]) and baseline cortisol of 25 mcg/dL (689 nmol/L; reference range, 4-18 mcg/dL [110-496 nmol/L]). Repeat imaging revealed a significant decrease in the suprasellar cystic component but an increase in the size of the parasellar component to 38 × 21 × 25 mm from 29 × 19 × 15 mm, which was isointense on T1 and T2 with heterogeneous enhancement. Significant brain stem compression and perilesional edema was also visible. The patient underwent urgent frontotemporal craniotomy and decompression of the tumor. On pathological examination, the tumor tissue was composed of small pleomorphic round cells arranged in sheets and cords separated by delicate fibrocollagenous stroma. Cells had a round to oval hyperchromatic nucleus with scanty cytoplasm. Areas of hemorrhage, necrosis, and a few apoptotic bodies were seen. The tumor tissue had very high mitotic activity of >10/10 hpf and MIB labeling index of 70%. Immunohistochemistry demonstrated positivity for vimentin, CD99, and TLE-1. Dot-like positivity was present for HMB 45, synaptophysin. INI-1 loss was present in some cells. Ten percent patchy positivity was present for p53. The tumor cells, however, consistently failed to express smooth muscle actin, CD34, Myf-4, epithelial membrane antigen, desmin, LCA, SADD4, CD138, and S-100 protein. ACTH and staining for other hormones was negative. Based on the immunological and histochemical patterns, a diagnosis of high-grade poorly differentiated malignant tumor with a probability of undifferentiated sarcoma was made. Because of the invasion of surrounding structures and surgical inaccessibility, repeat fractionated radiotherapy was given with a dose of 4500 cGy over 25 fractions at 1.8 Gy daily to the planned target volume via image-guided fractionated radiotherapy. During the next 1.5 years, patient improved clinically with no significant increase in the size of tumor (Fig. 1). The patient was gradually tapered from ketoconazole and developed hypopituitarism requiring levothyroxine and glucocorticoid replacement. There was a significant improvement in the power of the left side and ptosis. Figure 1. Open in new tabDownload slide Contrast-enhanced T1 magnetic resonance imaging dynamic pituitary scan (A, sagittal; B, axial; C, coronal sections) reveals postoperative changes with residual enhancing tumor in the right lateral sella cavity with extension into the right cavernous sinus and parasellar region encasing the cavernous and inferiorly extends through the foramen ovale below the skull base up to approximately 1.5 cm. Anteriorly, it extends up to the right orbital apex and posteriorly extends along the right dorsal surface of clivus. Outcome and Follow-up After 1.5 years of reradiation in 2022, the patient again developed palsies of the abducens, trigeminal, oculomotor, and trochlear cranial nerve on the right side and left-sided hemiparesis. A significant increase in tumor size to 50 × 54 × 45 mm with anterior, parasellar, and infratentorial extension was seen (Fig. 2). Again, repeat decompression surgery was done. Two months after surgery, there was no improvement in clinical features and repeat imaging suggested an increased size of the tumor by 30%, to approximately 86 × 68 × 75 mm. Nine years after initial presentation, the patient had an episode of aspiration pneumonia and died. Figure 2. Open in new tabDownload slide Contrast-enhanced T1 magnetic resonance imaging dynamic pituitary images (A, sagittal; B, axial; C, coronal sections) after 1.5 years of a second session of radiotherapy reveal a significant interval increase in size of heterogeneously enhancing irregular soft tissue in sellar cavity with extension into the right cavernous sinus and parasellar region when compared with previous imaging. Superiorly, it extends in the suprasellar region, causing mass effect on the optic chiasma with encasement of the right prechiasmatic optic nerve and right-sided optic chiasma. Inferiorly, the lesion extends into the sphenoid sinus. Posteriorly, there is interval increase in the lesion involving the clivus and extending into the prepontine and interpeduncular cistern. Anteriorly, mass has reached up to the right orbital apex optic nerve canal, which shows mild interval increase. Discussion Radiation-induced tumors were initially described by Cahan et al in 1948. They also described the prerequisites for a tumor to be classified as a radiation-induced sarcoma [5]. The modified Cahan criteria state that (1) the presence of nonmalignancy or malignancy of a different histological type before irradiation, (2) development of sarcoma within or adjacent to the area of the radiation beam, (3) a latent period of at least 3 years between irradiation and diagnosis of secondary tumor, and (4) histological diagnosis of sarcoma, can be classified as radiation-induced sarcoma [5]. Our patient fulfilled the criteria for a radiation-induced sarcoma with a highly malignant tumor on histopathology. Radiation-induced sarcomas after functional pituitary tumors, especially Cushing disease, are rarely reported. One of the case reports revealed a high-grade osteoblastic osteosarcoma 30 years after treatment for Cushing disease with transsphenoidal resection and external beam radiotherapy [6]. In our case, there was a lag period of approximately 5 years before the appearance of a second highly undifferentiated, malignant, histologically distinct tumor. The cellular origin of this relatively undifferentiated tumor cannot be determined with certainty. However, the interlacing sarcomatous and adenomatous components resulting from distinct positive immunohistochemistry may indicate that the sarcomatous component may be derived from the preexisting pituitary adenoma. A hormonally functional pituitary tumor is not itself expected to be associated with an increased risk of secondary malignancy, except in the case of GH-secreting tumors and those with a hereditary cancer syndrome. Although not proven, immunosuppression from hypercortisolism in Cushing disease has been proposed as a contributor to secondary tumor development [7]. Other mechanisms causing increased risk of secondary malignancy can be double-stranded DNA damage and genomic instability caused by ionizing radiation and germline mutations in tumor suppressor genes such as TP53 and Rb [7]. Radiation-induced intracranial tumors were studied in a multicenter, retrospective cohort of 4292 patients with pituitary adenoma or craniopharyngioma. Radiotherapy exposure was associated with an increased risk of a second brain tumor with a rate ratio of 2.18 (95% CI, 1.31-3.62, P < .0001). The cumulative probability of a second brain tumor was 4% for the irradiated patients and 2.1% for the controls at 20 years [7]. In another study including 426 patients irradiated for pituitary adenoma between 1962 and 1994, the cumulative risk of second brain tumors was 2.0% (CI, 0.9-4.4) at 10 years and 2.4% (95% CI, 1.2-5.0) at 20 years. The relative risk of a second brain tumor compared with the incidence in the normal population is 10.5 (95% CI, 4.3-16.7) [8]. The incidence of radiation-induced sarcomas has been estimated at 0.03% to 0.3% of patients who have undergone radiation therapy. The risk of radiation-induced sarcomas increases with field size and dose. In a systemic review and analysis of 180 cases of radiation-induced intracranial sarcomas, the average dose of radiation delivered was 51.4 ± 18.6 Gy and latent period of sarcoma onset was 12.4 ± 8.6 years. A total of 49 cases were developed after radiation treatment of pituitary adenomas (27.2%). The median overall survival time for all patients with sarcoma was 11 months, with a 5-year survival rate of 14.3% [9]. Our patient received approximately 50 Gy twice through fractionated radiotherapy, resulting in larger field size and significantly higher dose than one would expect with a modern stereotactic treatment. Such a high dose of radiation is indeed a risk factor for secondary malignancy. In our patient, in a period of 2 months, there was already >30% tumor growth after recent repeat decompression surgery. The risk of secondary malignancy is thought to be much lower with stereotactic radiosurgery than conventional external beam radiation therapy, with an estimated cumulative incidence of 0.045% over 10 years (95% CI, 0.00-0.34) [10]. However, long-term follow-up data for patients receiving stereotactic radiation therapy are shorter and thus definitive conclusions cannot be made at this stage. Our case highlights a rare but devastating long-term complication of pituitary tumor irradiation after Cushing disease. The limited response to various available treatment options defines the aggressive nature of radiation-induced malignancy. Learning Points The occurrence of a second neoplasm constitutes possibly one of the most adverse and rare complication after radiotherapy. The incidence of radiation-induced sarcomas has been estimated at 0.03% to 0.3% of patients, but cases after Cushing disease are rarely reported. Patients often present with advanced disease unresponsive to various treatment modalities because of aggressive clinical course. New modalities with stereotactic radiosurgery and proton beam therapy are to be reviewed closely for risk assessment of secondary tumor. Acknowledgments The authors acknowledge Dr. Ishani Mohapatra for her support with histopathology and interpretation. Contributors All authors made individual contributions to authorship. G.B., S.K.M., and V.A.R. were involved in diagnosis and management of the patient. G.B. was involved in the writing of this manuscript and submission. V.P.S. was responsible for patient surgeries. All authors reviewed and approved the final draft. Funding The authors received no financial support for the research, authorship, and/or publication of this article. Disclosures The authors have nothing to disclose. Informed Patient Consent for Publication Signed informed consent could not be obtained from the patient or a proxy but was approved by the treating institute. Data Availability Statement Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study. © The Author(s) 2023. Published by Oxford University Press on behalf of the Endocrine Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. From https://academic.oup.com/jcemcr/article/1/6/luad119/7343968?login=false
  21. Abstract Introduction: Chronic exposure to excessive endogenous cortisol leads to brain changes in Cushing’s disease (CD). However, it remains unclear how CD affects large-scale functional networks (FNs) and whether these effects are reversible after treatment. This study aimed to investigate functional network changes of CD patients and their reversibility in a longitudinal cohort. Methods: Active CD patients (N = 37) were treated by transsphenoidal pituitary surgery and reexamined 3 months later. FNs were computed from resting-state fMRI data of the CD patients and matched normal controls (NCs, N = 37). A pattern classifier was built on the FNs to distinguish active CD patients from controls and applied to FNs of the CD patients at the 3-month follow-up. Two subgroups of endocrine-remitted CD patients were identified according to their classification scores, referred to as image-based phenotypically (IBP) recovered and unrecovered CD patients, respectively. The informative FNs identified by the classification model were compared between NCs, active CD patients, and endocrine-remitted patients as well as between IBP recovered and unrecovered CD patients to explore their functional network reversibility. Results: All 37 CD patients reached endocrine remission after treatment. The classification model identified three informative FNs, including cerebellar network (CerebN), fronto-parietal network (FPN), and default mode network. Among them, CerebN and FPN partially recovered toward normal at 3 months after treatment. Moreover, the informative FNs were correlated with 24-h urinary-free cortisol and emotion scales in CD patients. Conclusion: These findings suggest that CD patients have aberrant FNs that are partially reversible toward normal after treatment. Journal Section: Research Article Keywords: Cushing’s disease, Reversibility, Functional networks, Cortisol, Emotion Introduction Cushing’s disease (CD) is characterized by chronic exposure to excessive endogenous glucocorticoid most commonly caused by an adrenocorticotropic hormone (ACTH) pituitary adenoma [1, 2]. The CD is accompanied by multiple physical manifestations such as hypertension and osteoporosis, as well as various neuropsychiatric symptoms including memory lapses, attention deficits, executive function decline, emotional dysfunction, visual-spatial disability, and language defects [3‒14]. These neuropsychiatric symptoms are indicative of the effects of CD on the brain anatomy and function. Therefore, CD provides a unique and naturalistic model for investigating both the effects of hypercortisolism on the human brain and the reversibility of these effects after resolution of hypercortisolism. Recent studies have documented brain structural and metabolic abnormalities in CD patients with a variety of neuroimaging techniques, including structural magnetic resonance imaging (sMRI) [11, 12, 15‒24], diffusion tensor imaging [10, 25‒27], proton magnetic resonance spectroscopy [21, 28‒30], positron emission topography [21, 31], and arterial spin labeling [32]. These studies have shown that brain structural and metabolic abnormalities in CD patients can be partially restored after resolution of hypercortisolism [16, 18, 20‒22, 24, 32‒34], typically after transsphenoidal pituitary surgery (TSS), a safe and effective first-line treatment with a high endocrine remission rate [35, 36]. Several functional magnetic resonance imaging (fMRI) studies have also documented brain functional abnormalities in CD patients [37‒42]. Particularly, aberrant functional connectivity between the anterior cingulate cortex and the limbic network, as well as the lateral occipital cortex and the default mode network (DMN) was observed in endocrine-remitted CD patients after TSS treatment in a cross-sectional resting-state fMRI (rs-fMRI) study [40]. However, the causal effects of hypercortisolism on brain functional connectivity cannot be well investigated in CD patients only through the cross-sectional study. Additionally, the large-scale functional networks (FNs) of CD patients were not well investigated through univariate analyses in previous studies, which only examined one or few FNs in CD patients independently [37‒42]. The present study aims to jointly investigate a number of whole-brain large-scale intrinsic FNs and their reversibility due to hypercortisolism in CD patients based on rs-fMRI with a longitudinal design through multivariate analysis. Particularly, intrinsic FNs altered by CD were identified using a multivariate pattern classification model optimized by selecting intrinsic FNs informative for distinguishing CD patients from matched normal controls (NCs). The changes in these informative FNs of endocrine-remitted CD patients after TSS treatment were quantified at the 3-month follow-up with the established pattern classification model. Furthermore, changes in clinical measures, including serum cortisol, 24-h urinary-free cortisol (24hUFC), ACTH, self-rating depression scale (SDS), and self-rating anxiety scale (SAS), were detected between active and endocrine-remitted CD patients using pseudo paired t tests. Finally, the association between aberrant FNs and clinical measures was investigated in CD patients. Materials and Methods Participants In this study, 50 CD patients undergoing TSS, and 38 NCs with no history of glucocorticoid treatment were recruited at the Department of Neurosurgery, Peking Union Medical College Hospital. All these participants were assessed for depression and anxiety measured by the SDS and SAS, respectively [43]. The inclusion criteria for NCs were no past or present heart history of disease, atherosclerosis, hyperlipidemia, diabetes, neurological/psychiatric disorders, and claustrophobia. The exclusion criteria for both CD patients and NCs were past or present brain trauma, other neurological disorders, history of radiotherapy, or contraindications to MRI. Besides the inclusion and exclusion criteria, the quality of the imaging data was controlled as follows. No participant had head motion exceeding 2.0 mm translation in any of the three directions or exceeding 2.0o maximum rotation around any of the axes during rs-fMRI scanning [44]. Additionally, no participant had root-mean-square value of maximum frame-wise displacement greater than 0.3 mm [45]. After quality control of the imaging data, 37 CD patients and 37 sex-, age-, and education level-matched NCs were included in the study. The diagnosis of active CD was confirmed by experienced endocrinologists along with dynamic enhanced pituitary MRI, low- and high-dose dexamethasone suppression tests, and/or inferior petrosal sinus sampling in accordance with the latest clinical practice guidelines [46]. The 37 active CD patients were treated with TSS rather than radiotherapy. All of the 37 CD patients reached endocrine remission after treatment, which was confirmed by their normal serum cortisol (<5 µg/dL within 7 days of surgery) [46]. These patients were asked to revisit the hospital for reexamination 3 months after surgery, and all of them had no recurrence at the 3-month follow-up. Serum cortisol, 24hUFC, and ACTH were measured by direct chemiluminescence immunoassays in CD patients before surgery and at the 3-month follow-up (Siemens Healthcare Diagnostics Inc., USA). This study was approved by the Medical Ethics Committee of Peking Union Medical College Hospital, and written informed consent was obtained from all participants after explaining to them the nature of the study. Imaging Data Acquisition The MRI data were scanned by using an 8-channel phase-array head coil with a 3.0-Tesla MR scanner (Discovery MR750, General Electric) for all participants, including NCs, active CD patients, and endocrine-remitted CD patients without recurrence at the 3-month follow-up. The rs-fMRI data were acquired axially by using a gradient echo-planar imaging sequence, and the scanning parameters were 200 whole-brain volumes, 36 transverse slices with a thickness of 4 mm, in-plane resolution = 3.75 × 3.75 mm2, field of view = 240 × 240 mm2, flip angle = 90°, repetition time = 2,000 ms, and echo time = 30 ms. The extra high-resolution sagittal 3D T1-weighted data were acquired by using a brain volume sequence, and the scanning parameters were 172 slices with a thickness of 1.0 mm, in-place matrix = 512 × 512, field of view = 256 × 256 mm2, voxel size = 0.5 × 0.5 × 1.0 mm3, flip angle = 12°, repetition time = 7.2 ms, echo time = 3.2 ms, and inversion time = 400 ms. Imaging Data Preprocessing The rs-fMRI data were preprocessed as follows: (1) discarding the first four volumes of the fMRI data; (2) correction for slice timing; (3) 3D rigid-body correction for head motion to the middle frame of the data; (4) global 4D intensity scaling of the fMRI data to yield a mean value of 10,000; (5) nonlinear registration of the fMRI data to the MNI template with the deformation field obtained from its co-registered T1-weighted data using DARTEL within statistical parametric mapping (SPM12) software, with a resampled resolution of 3×3×3 mm3; (6) spatial smoothing with a 6-mm full-width at half maximum Gaussian kernel; (7) motion artifacts removal from fMRI data with ICA-AROMA; (8) regressing out averaged signals of white matter, cerebrospinal fluid, and whole brain; (9) temporal band-pass filtering (0.009–0.08 Hz). The preprocessing procedures were performed by using SPM12 software (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Identification of Informative FNs in Active CD Patients The flowchart for identifying informative FNs in active CD patients is shown in Figure 1. First, group information-guided independent component analysis was applied to rs-fMRI data of each participant from NCs, active CD patients, and endocrine-remitted CD patients at 3 months after treatment to extract subject-specific independent components (ICs), referred to as intrinsic FNs [47] (Fig. 1a). Specifically, group-level ICs were computed based on all participants from NC, active CD, and endocrine-remitted CD groups, by using the multivariate exploratory linear optimized decomposition into independent components (MELODIC) toolbox in FSL software (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/melodic). These group-level ICs were used as guidance information to compute subject-specific ICs of all individuals [47]. The number of ICs was empirically set to be 25, and therefore each individual was characterized by 25 FNs. Particularly, these FNs were restricted to gray matter in order to minimize the partial volume effects of cerebrospinal fluid and confounding effects on the estimated components, and to improve the sensitivity to the changes of blood-oxygen-level-dependent signals. Fig. 1. VIEW LARGEDOWNLOAD SLIDE Flowchart of the multivariate pattern classification method for distinguishing active CD patients from NCs, including data preparation (a), classification modeling (b), as well as identifying CD-associated ICs (c). CD, Cushing’s disease; active CD patients, CD patients before treatment; NCs, normal controls; rs-fMRI, resting-state functional magnetic resonance imaging; ICs, independent components; GIG-ICA, group information-guided ICA; SVM, support vector machine; LOOCV, leave-one-out cross-validation. Subsequently, a multivariate pattern classification method based on support vector machine (SVM) was applied to identify cross-sectional informative FNs, which were most discriminative in distinguishing active patients from NCs [48] (Fig. 1b). Specifically, sigmoid kernel SVM classifiers were built upon a subset of 25 FNs obtained via a forward selection technique to optimize the classification performance for differentiating active patients from NCs. The similarity between subjects in SVM classification was defined as the Riemannian distance of the subset of FNs on the Grassmann manifold [48, 49]. Initially, the forward component selection procedure built a classifier on each individual FN, and the performance of the classifier was estimated using leave-one-out cross-validation (LOOCV) so that each FN could be evaluated for its classification performance. The accuracy rate was chosen as the main metric for evaluating the classification performance. The FN with the best performance was selected to be included in the subsequent classification. Through combining the first selected FN and any one of the remaining FNs, classifiers were built upon all paired FNs which were evaluated based on the training data during the current outer round using an inner LOOCV procedure. The paired FNs with the best performance were selected to be included in the classification. The procedure was repeated to add more FNs in the classification one by one until a single classifier was built upon all available FNs. Accordingly, a subset of FNs with the best performance was deemed to be the final selected components in the classification, hereafter referred to as informative FNs. To avoid potential classification biases, a nested LOOCV procedure was applied to optimize the parameters of the sigmoid kernel SVM classifiers to improve the classification performance during the forward component selection procedure [48, 49]. Since different FNs might be selected in each training runs or each testing run during the nested LOOCV procedure, the informative FNs were selected as the best performing ones with higher frequency (selection frequency>0.5). Based on these informative FNs of 74 subjects (including 37 NCs and 37 active CD patients), the LOOCV classification model yielded 74 aggregated SVM classifiers with the nested LOOCV classifiers, respectively. Each aggregated classifier generated a classification score from its corresponding nested classifiers with a positive value indicating CD state and a negative value indicating healthy state. Finally, the classification performance was evaluated with metrics including classification accuracy, specificity, sensitivity, and the area under the receiver operating characteristic curve (AUROC) (Fig. 1c). Non-parametric permutation tests were adopted to examine the statistical significance of the classification performance. The classification rate for the null distribution was estimated by building sigmoid kernel SVM models upon cross-sectional informative FNs of all active CD patients and NCs with subject labels randomly permuted by using the LOOCV strategy. This procedure was repeated for 10,000 times. Finally, the null distribution of the classification rate based on permuted samples was obtained. Longitudinal Analyses of Informative FNs and Emotion Scales from Active to Endocrine-Remitted CD Patients To investigate the longitudinal functional connectivity changes, pseudo paired t tests between active and endocrine-remitted CD patients (10,000 permutations) were applied voxel-wisely to each of the informative FNs using statistical non-parametric mapping (SnPM) software (http://warwick.ac.uk/snpm). Brain regions with statistical significance within each informative FN were identified at a voxel-wise threshold of p < 0.01 and an extent threshold of 40 adjacent voxels (AlphaSim-corrected p < 0.01). Additionally, statistical analyses were performed to compare the IC’s z scores of FNs as well as emotion scales between any pair of NC, active CD, and endocrine-remitted CD groups to further examine the longitudinal brain functional connectivity changes. Particularly, a pseudo paired t test was applied to all IC’s z scores within each informative FN as well as SDS scores and SAS scores between active and endocrine-remitted CD patients (10,000 permutations). While a pseudo two-sample t test with age, sex, and years of school education as covariates was applied to all IC’s z scores within each informative FN as well as SDS scores and SAS scores between NCs and active CD patients and endocrine-remitted CD patients. Significant differences were determined at a false discovery rate (FDR) threshold of p < 0.05 after adjusting for multiple comparisons. Statistical Analyses of Informative FNs in Endocrine-Remitted CD Patients The established pattern classification model was applied to the FNs of the follow-up endocrine-remitted CD patients. Thus, each endocrine-remitted CD patient had a classification score that reflected the likelihood of the endocrine-remitted CD patient to be active CD or healthy state (a positive value indicating active CD state and a negative value indicating healthy state). Based on the follow-up classification scores, endocrine-remitted CD patients who were correctly classified as active CD patients before treatment were further stratified into two subgroups: subjects with negative classification scores, referred to as image-based phenotypically (IBP) recovered CD patients, and those with positive classification scores, referred to as IBP unrecovered CD patients. Additionally, statistical differences in the IC’s z scores within each of the informative FNs between the IBP recovered and unrecovered CD patients, were assessed to elucidate these endocrine-remitted CD patients’ brain recoveries in these informative FNs at 3 months after treatment. Specifically, a pseudo two-sample t test with age, sex, years of school education, and years of disease duration as covariates was applied to all IC’s z scores of each FN between IBP recovered and unrecovered CD patients, and significant differences were determined at an FDR threshold of p < 0.05 (10,000 permutations) after adjusting for multiple comparisons. Correlation Analyses between Informative FNs and Clinical Measures Correlation analyses were performed to investigate the relationship between informative FNs and clinical measures in all 37 CD patients. The clinical measures of interest were serum cortisol, 24hUFC, ACTH, SDS, and SAS. Specifically, the correlation between each clinical measure and the averaged IC’s z score of each informative FN of CD patients before treatment was computed using a general linear model with age, sex, years of school education, and years of disease duration as covariates. Significant correlations were determined at a threshold of p < 0.05 using FDR corrected for multiple comparisons. Additionally, the correlation between the changes of each clinical measure and the averaged IC’s z score of each informative FN for endocrine-remitted CD patients before and after treatment was computed by using a general linear model with age, sex, years of school education, years of disease duration, and this clinical measure before treatment as covariates. The change of the averaged IC’s z score of each informative FN for each CD patient was calculated as the value after treatment minus the value before treatment divided by the value before treatment, and the change of each clinical measure for each CD patient was calculated similarly. Significant correlations were identified at a threshold of p < 0.05 using FDR corrected for multiple comparisons. Results Demographics and Clinical Characteristics The demographic and clinical data, including age, sex, years of school education, hormones, and emotion scales, are summarized in Table 1. There were no significant differences in age, sex, and years of school education between NCs and CD patients before treatment or at the 3-month follow-up (p > 0.05). The hormone levels, including ACTH, 24hUFC, and serum cortisol, were significantly restored (lower to be precise) in endocrine-remitted CD patients at the 3-month follow-up compared to their pre-treatment levels (FDR-corrected p < 0.05). These CD patients reached endocrine remission confirmed by their normal serum cortisol (<5 µg/dL) within 7 days of surgery. The emotion scales, including SDS scores and SAS scores, were significantly improved (smaller to be precise) in endocrine-remitted CD patients at 3 months after treatment compared to their rating scales in active phase (FDR-corrected p < 0.05), and the SDS scores and SAS scores for these endocrine-remitted CD patients were comparable to those of NCs. There was also significant difference in SDS scores between endocrine-remitted CD patients and NCs (FDR-corrected p < 0.05), while no significant difference was found in SAS scores between endocrine-remitted CD patients and NCs (p = 0.70). These psychometric comparison results suggest that depressive symptoms were partially recovered in endocrine-remitted CD patients, while their anxiety symptoms were also not completely recovered. Table 1. Demographic and clinical data of the participants Characteristics NCs (N = 37) Active CDs (N = 37) Endocrine-remitted CDs (N = 37) p value Age, years 38.46±11.85 33.92±8.57 33.92±8.57 0.062a Sex (M/F) 10/27 8/29 8/29 0.83a Years of school education 12.84±3.53 13.27±3.11 13.27±3.11 0.55a ACTH, pg/mL - 75.70 (45.55, 103.25) 23 (10.33, 30.70) <0.01**b 24hUFC, μg/day - 582.34 (351.30, 991.56) 47.77 (14.41, 186.54) <0.01**b Serum cortisol, μg/dL - 26.58 (20.98, 31.84) 5.49 (1.75, 13.69) <0.01**b Depression (SDS) 38.72±7.45 53.99±9.20 45.54±10.24 <0.01**c <0.01**d Anxiety (SAS) 33.34±5.46 45.27±11.92 34.46±9.78 <0.01**c 0.70d Values for characteristics are presented as mean ± SD or median (25th percentiles, 75th percentiles) unless otherwise indicated. Group differences in age, years of school education, SDS, and SAS between NCs and CD patients before or at the 3-month follow-up were examined using pseudo two-sample t tests. Group differences in sex between NCs and the CD patients before treatment or at the 3-month follow-up were examined using a χ2 test. Group differences in ACTH, 24hUFC, serum cortisol, SDS, and SAS between CD patients before treatment and at the 3-month follow-up were examined using pseudo paired t tests. NCs, normal controls; CDs, patients with Cushing’s disease; ACTH, adrenocorticotropic hormone; 24hUFC, 24-h urinary-free cortisol; SDS, self-rating depression scale; SAS, self-rating anxiety scale; M, male; F, female; SD, standard deviations. **p < 0.01. aNCs versus active or endocrine-remitted CDs. bActive CDs versus endocrine-remitted CDs. cActive CDs versus NCs or endocrine-remitted CDs. dNCs versus endocrine-remitted CDs. Informative FNs in Active CD Patients Active CD patients were mostly different from the NCs in 3 out of 25 FNs (selection frequency>0.5), including cerebellar network (CerebN), fronto-parietal network (FPN), and DMN, as shown in Figure 2a and b. The classification models built upon these three informative FNs yielded an accuracy of 72% (sensitivity: 68%, specificity: 76%, AUROC: 0.81), as shown in Figure 2c. Non-parametric permutation tests demonstrated that the classification accuracy was promising and significant (p < 1.0e−04), as suggested by the histogram of permuted classification rates shown in Figure 2d. Particularly, 25 out of 37 (67%) CD patients were correctly classified as active CD patients before treatment. Fig. 2. VIEW LARGEDOWNLOAD SLIDE Three informative functional brain networks identified by the multivariate pattern classification method and the classification performance. a Three highly selected functional brain networks, including CerebN, FPN, and DMN, for differentiating active CD patients from NCs. b The frequency of the functional brain networks selected in the nested LOOCV experiments. c The receiver operating characteristic (ROC) curve (area under the ROC curve [AUROC] = 0.81) of the classification model built upon the selected most discriminative FNs. d The histogram of the classification rates of the permutation tests and the real classification rate. In panel (a), brain regions with significant functional connectivity were obtained by applying voxel-wise one-sample t tests to the IC’s z scores for each of the FNs across all active CD patients and NCs (p < 0.05, FWE corrected for multiple comparisons, and cluster size >400 voxels). CerebN, cerebellar network; FPN, fronto-parietal network; DMN, default mode network; CD, Cushing’s disease; Pres, CD patients before treatment (i.e., active CD patients); NCs, normal controls; FNs, functional networks; ICs, independent components; FWE, family-wise error; L, left; R, right. Changes in Informative FNs from Active to Endocrine-Remitted CD Patients Two out of the three informative FNs, i.e., CerebN and FPN other than DMN, exhibited significant functional connectivity changes in CD patients between active and endocrine-remitted states (Fig. 3a). Compared with their active state, the endocrine-remitted CD patients had significantly improved (increased to be precise) functional connectivity measured by IC’s z scores in both CerebN and FPN circuits at 3 months after treatment. These results indicate that the FNs of the endocrine-remitted CD patients partially recovered toward the NCs at 3 months after treatment (Fig. 3b). Fig. 3. VIEW LARGEDOWNLOAD SLIDE Two informative functional brain networks as well as emotion scales with significant longitudinal changes in CD patients before treatment and at the 3-month follow-up. a Brain regions with significant longitudinal changes in functional connectivity within circuits of CerebN and FPN for CD patients, identified using non-parametric permutation tests (AlphaSim-corrected p < 0.01). b, c Significantly different functional connectivity measured by IC’s z scores across voxels within circuits of CerebN and FPN as well as emotion scales measured by the self-rating depression scale (SDS) and self-rating anxiety scale (SAS) between any two of NCs, CD patients before the treatment (i.e., active CD patients), and endocrine-remitted CD patients at 3-month follow-up (FDR-corrected p < 0.05). A pseudo paired t test with age, sex, and years of school education as covariates was conducted to compare all IC’s z scores within each functional network as well as the SDS scores and SAS scores between CD patients before treatment and at the 3-month follow-up. While a pseudo two-sample t test with age, sex, and years of school education as covariates was conducted to compare IC’s z scores within each functional network as well as SDS scores and SAS scores between NCs and CD patients before treatment, and endocrine-remitted CD patients at 3-month follow-up. CerebN, cerebellar network; FPN, fronto-parietal network; CD, Cushing’s disease; Pres, CD patients before treatment; Posts, endocrine-remitted CD patients at 3-month follow-up; NCs, normal controls; ICs, independent components; FDR, false discovery rate. Changes in Informative FNs of Endocrine-Remitted CD Patients Among the endocrine-remitted CD patients who were correctly classified as active CD patient before treatment, 14 participants were classified as IBP-recovered patients, while 11 participants were classified as IBP-unrecovered patients. The IBP-recovered and -unrecovered CD patients were determined by using the established pattern classification model according to the opposite signs in their classification scores based on their follow-up rs-fMRI data at 3 months after treatment (Fig. 4b). The IBP recovered patients had better recovery of the impaired functional connectivity within the circuits of CerebN and FPN than the IBP-unrecovered patients, as shown in Figure 4a. Fig. 4. VIEW LARGEDOWNLOAD SLIDE Differences in functional connectivity measured by IC’s z scores across voxels within circuits of CerebN and FPN as well as classification scores between image-based phenotypically (IBP)-recovered and -unrecovered CD patients after treatment. In panel (a), statistical comparisons were performed using pseudo two-sample t tests with age, sex, years of school education, and years of disease duration as covariates (FDR-corrected p < 0.05). In panel (b), violin plots showed opposite signs in classification scores between IBP-recovered and -unrecovered CD patients. CerebN, cerebellar network; FPN, fronto-parietal network; CD, Cushing’s disease; CDs, patients with Cushing’s disease; ICs, independent components; FDR, false discovery rate. Relationship between Informative FNs and Clinical Measures Changes of 24hUFC for endocrine-remitted CD patients before and after treatment were negatively correlated with their changes of averaged IC’s z scores within the FPN circuits with statistical significance (r = −0.37, p = 0.020), as shown in Figure 5a. The emotion scales, including SDS and SAS, were significantly negatively correlated with the averaged IC’s z scores within the CerebN circuits in the active CD patients (r = −0.31, p < 0.042), as shown in Figure 5c and d. There was no significant correlation for other clinical measures. Fig. 5. VIEW LARGEDOWNLOAD SLIDE Correlations between clinical measures and averaged IC’s z scores of informative FNs in CD patients (FDR-corrected p < 0.05). a Scatter plot for the significantly negative correlation between changes in the averaged IC’s z scores of the FPN circuits and 24hUFC of these 37 endocrine-remitted CD patients. b Multi-slice view of the FPN circuits whose changes in the averaged z scores were significantly correlated with changes in 24hUFC for all 37 endocrine-remitted CD patients before and after treatment. c, d Scatter plots for the significantly negative correlations between the averaged IC’s z scores of the CerebN circuits, and the SDS scores and SAS scores in these 37 endocrine-remitted CD patients before treatment. In panel (a), the changes in the averaged IC’s z scores of the FPN circuits were adjusted by regressing out covariates including age, sex, years of school education, years of disease duration, and the pre-treatment 24hUFC. In panels (c) and (d), the averaged IC’s z scores of the CerebN circuits were adjusted by regressing out covariates including age, sex, years of school education, and years of disease duration. 24hUFC, 24-h urinary-free cortisol; SDS, self-rating depression scale; SAS, self-rating anxiety scale; FPN, fronto-parietal network; CerebN, cerebellar network; CD, Cushing’s disease; Pres, CD patients before treatment; Posts, endocrine-remitted CD patients at 3-month follow-up; ICs, independent components; FDR, false discovery rate. Discussion The present study investigated the large-scale FNs of CD patients before and after treatment based on longitudinal rs-fMRI data. To the best of our knowledge, this is the first study to characterize longitudinal large-scale functional brain network changes due to hypercortisolism in CD patients using multivariate analysis. Particularly, the active CD patients had aberrant functional connectivity within circuits of CerebN, FPN, and DMN, respectively. More importantly, the impaired functional connectivity within the circuits of the CerebN and FPN was partially recovered in the endocrine-remitted CD patients, respectively. The changes in 24hUFC of CD patients before and after treatment were correlated with their changes in the functional connectivity of the FPN circuits. In addition, the emotion scales, including SDS and SAS, were also correlated with the functional connectivity of the CerebN circuits in CD patients before treatment. Aberrant FNs in Active CD Patients The informative FNs identified by the multivariate method were able to distinguish active CD patients from NCs with an accuracy of 72% (sensitivity: 68%, specificity: 76%, AUROC: 0.81). The non-parametric permutation tests also suggested that the multivariate method performed well in differentiating active CD patients from NCs. The most frequently selected FNs (Fig. 2b), i.e., informative FNs, were CerebN, FPN, and DMN. The cross-sectional multivariate analyses have revealed that the active CD patients were mostly different from the NCs in the functional connectivity within 3 FNs out of 25 FNs, as shown in Figure 2a. The aforementioned cross-sectional results provided new insights into large-scale functional brain network abnormalities due to hypercortisolism in CD patients. Particularly, our study revealed that active CD patients had significantly disrupted functional connectivity within the cerebellum (Fig. 2a, 3b), and their emotional dysfunctions observed by the SDS and SAS were associated with the impaired functional connectivity within the cerebellum (Fig. 5c, d). Therefore, it was reasonable to speculate that the cognitive or emotional dysfunctions for active CD patients, documented in this study as well as numerous previous studies [3‒5, 7‒9, 11‒14, 50], might be closely related to the observed functional connectivity abnormalities in the cerebellum. Additionally, our study found that the functional connectivity within the FPN circuits was significantly reduced in active CD patients (Fig. 2a, 3b). It was postulated that cognitive impairments in active CD patients, reported in several early studies [6, 14, 51], might be associated with the observed functional connectivity abnormalities in the FPN circuits. While several recent studies reported that active CD patients had structural or metabolic abnormalities in two brain regions of the FPN, namely, the middle frontal gyrus and inferior parietal lobule [17, 21, 32] These local morphological or metabolic abnormalities might exacerbate the observed functional network (FPN) alterations in active CD patients. Moreover, our study found that the functional connectivity within the DMN circuits was vulnerable to the detrimental effects of hypercortisolism in active CD patients. Besides our finding, recent studies reported that active CD patients showed structural, metabolic, or spontaneous activity abnormalities in several brain regions of DMN, including the posterior cingulate cortex, precuneus, parahippocampal gyrus, ventral medial prefrontal cortex, superior frontal gyrus, inferior temporal gyrus, and lateral parietal cortex [21, 27, 30‒32, 38, 52] These local morphological, metabolic or activity abnormalities might exacerbate the newly discovered DMN impairments in active CD patients. Essentially, the functional, morphological, and metabolic abnormalities in regions of the DMN might be directly related to the adverse expressions of glucocorticoid receptor genes within these brain regions caused by excessive exposure to endogenous cortisol [53]. Reversible Impaired FNs in Endocrine-Remitted CD Patients after Treatment The longitudinal statistical analysis has revealed that the endocrine-remitted CD patients’ hormones, including ACTH, 24hUFC, and serum cortisol, maintained near-normal levels at 3 months after treatment, suggesting that these patients did not relapse according to the endocrine hormone levels (Table 1). Meanwhile, their functional connectivity within circuits of the FPN and CerebN was partially restored at the 3-month follow-up after resolution of hypercortisolism (Fig. 3b). Particularly, our combined longitudinal and cross-sectional study found that the functional connectivity within the FPN circuits in endocrine-remitted CD patients was partially restored after treatment. While a cross-sectional sMRI study reported that endocrine-remitted CD patients still had structural abnormalities in the FPN-related region, namely, the middle frontal gyrus [17]. Our study also found that the functional connectivity of the cerebellum in endocrine-remitted CD patients was partially restored after treatment (Fig. 3b). Besides this finding, two other cross-sectional sMRI studies reported that the structural abnormalities of the cerebellum in endocrine-remitted patients were present as well [16, 20]. Taken together, it was postulated that the reversibility of the observed functional connectivity impairments within circuits of the FPN and CerebN might be directly influenced by their local morphological abnormalities in endocrine-remitted CD patients. Moreover, our study uncovered that the IBP-recovered patients exhibited better recovery of the functional connectivity within circuits of the FPN and CerebN than the IBP-unrecovered ones, as shown in Figure 4a. This result demonstrated that different endocrine-remitted CD patients had different recovery levels for the impaired functional connectivity within circuits of these brain FNs. More importantly, our study further found that the recovered 24hUFC was associated with the improved functional connectivity within FPN circuits in endocrine-remitted CD patients at the 3-month follow-up after treatment (Fig. 5a). This finding indicated that chronic endogenous hypercortisolism in CD patients might be directly related to their FPN impairments. Strengths of This Study The combined longitudinal and cross-sectional analyses have confirmed that the brain functional network abnormalities in CD patients were partially reversible at 3 months after resolution of the hypercortisolism. Since the brain structural abnormalities in endocrine-remitted CD patients were not completely recovered [16], it merits further investigation how the brain structural and functional network recoveries couple with each other in a longitudinal design. The present study provided complementary information to existing neuroimaging studies of CD patients. The existing neuroimaging studies have reported that CD patients had brain volume loss in cortical and cerebellar regions, hippocampus, and amygdala, as well as enlarged ventricles. These structural abnormalities were partially recovered for endocrine-remitted CD patients after treatment [11, 15, 16, 18‒22, 24] or after resolution of the hypercortisolism [12, 18, 24]. CD patients also had reduced cortical thickness in many brain regions including superior frontal cortex, caudal middle frontal cortex, precentral gyrus, insula, precuneus, cuneus, caudal/rostral anterior cingulate gyrus, and posterior cingulate gyrus [17, 54]. In addition, disrupted white matter integrity was observed in CD patients throughout the brain including frontal lobe, temporal lobe, hippocampus, parahippocampal gyrus, cingulate cingulum, corpus callosum, uncinate fasciculus, and cerebellum [10, 25‒27]. Furthermore, metabolic abnormalities in CD patients have been reported in widely distributed brain regions [21, 28‒32], which could be almost completely restored after resolution of hypercortisolism. Besides aforementioned structural and metabolic abnormalities, functional abnormalities have also been reported in CD patients using fMRI [37‒42]. Particularly, abnormal functional activations in CD patients have been observed in the prefrontal cortex, superior/middle/inferior frontal gyrus, superior parietal lobule, superior/middle temporal gyrus, inferior occipital gyrus, rostral/dorsal anterior cingulate gyrus, anterior/middle/posterior hippocampus, amygdala, precuneus, cuneus, lingual gyrus, caudate body, pulvinar/lateral posterior nuclei of the thalamus, and substantia nigra using task fMRI [37‒39, 41]. Abnormal spontaneous functional activities measured by both the amplitude of low-frequency fluctuation and regional homogeneity for CD patients have been observed in the prefrontal cortex, occipital lobe, postcentral gyrus, posterior cingulate gyrus, precuneus, thalamus, and cerebellum [20]. The dysregulation of functional connectivity density of CD patients has been found primarily in the prefrontal cortex, lateral parietal cortex, anterior/posterior cingulate gyrus, and parahippocampal gyrus [55]. The abnormal functional connectivity for CD patients has also been observed between the prefrontal cortex and medial temporal lobe, ventromedial prefrontal cortex and posterior cingulate cortex, anterior cingulate gyrus and limbic network, and lateral occipital cortex and DMN using task fMRI or rs-fMRI [39, 40]. Limitations and Future Work This study has several limitations. First, the longitudinal sample size is not large enough due to the rarity of CD, which might lead to relatively low statistical power and potential biases. Second, our study mainly investigated the brain functional network reversibility of the CD. Studies of the CD’s structural reversibility may provide complementary information to the current study. Third, our study investigated the short-term (3 months) effects of hypercortisolism on large-scale functional brain networks in CD patients. Nevertheless, the long-term effects of hypercortisolism on large-scale functional brain networks remain unclear and merit further investigation. In future work, long-term follow-up data of the CD patients recruited in the current study will be collected to investigate the long-term dynamic changes of their impaired large-scale functional brain networks. Conclusion This is the first study to investigate large-scale functional brain networks and their reversibility in a longitudinal CD cohort by using multivariate analysis. The large-scale functional brain networks, including the CerebN, FPN, and DMN, were impaired due to elevated cortisol levels in active CD patients. More importantly, the impaired functional brain networks of these CD patients were partially restored when their hormone levels returned to normal at 3 months after treatment. The changes of the functional connectivity within the impaired FPN were correlated with changes of the 24hUFC in endocrine-remitted CD patients, while the functional connectivity within the impaired CerebN was closely associated with emotion dysfunctions in active CD patients. These findings suggest that pattern recognition techniques could help identify informative functional brain networks in CD patients, which may help open up novel avenues for their postoperative interventions and assessments after endocrine remission. Statement of Ethics This study confirmed to the Declaration of Helsinki and was approved by the Medical Ethics Committee of Peking Union Medical College Hospital (approval number S-424). Written informed consent was obtained from all participants. Conflict of Interest Statement All authors reported no financial interests or potential conflicts of interest. Funding Sources This study was supported in part by the China Postdoctoral Science Foundation (2020T130070, 2019M650567), and the Clinical Application Research of Capital Characteristic Fund from the Beijing Municipal Science and Technology Commission (Z151100004015099). Author Contributions Bing Xing, Feng Feng, and Yong Fan were involved in study conception and design. Bo Hou, Xiaopeng Guo, Yong Yao, and Ming Feng collected clinical and imaging data. Hewei Cheng, Lu Gao, and Rixing Jing performed data preparation and statistical analysis. Hewei Cheng, Lu Gao, Rixing Jing, Bing Xing, Feng Feng, and Yong Fan were involved in data interpretation. Hewei Cheng, Lu Gao, and Rixing Jing wrote the first draft of the manuscript. Hewei Cheng, Lu Gao, Rixing Jing, Bo Hou, Xiaopeng Guo, Zihao Wang, Ming Feng, Bing Xing, Feng Feng, and Yong Fan provided critical editing and revision of the manuscript for important intellectual content. All authors approved the final version of the manuscript. Additional Information Hewei Cheng and Lu Gao contributed equally to this work. Data Availability Statement All data generated or analyzed during this study are included in this article. Further inquiries can be directed to the corresponding author. References 1. Newell-Price J, Bertagna X, Grossman AB, Nieman LK. Cushing’s syndrome. Lancet. 2006;367(9522):1605–17. 2. Pivonello R, De Martino MC, De Leo M, Simeoli C, Colao A. Cushing’s disease: the burden of illness. Endocrine. 2017;56(1):10–8. 3. Whelan TB, Schteingart DE, Starkman MN, Smith A. Neuropsychological deficits in Cushing’s syndrome. J Nerv Ment Dis. 1980;168(12):753–7. 4. Forget H, Lacroix A, Somma M, Cohen H. Cognitive decline in patients with Cushing’s syndrome. J Int Neuropsychol Soc. 2000;6(1):20–9. 5. Starkman MN, Giordani B, Berent S, Schork MA, Schteingart DE. Elevated cortisol levels in Cushing’s disease are associated with cognitive decrements. Psychosom Med. 2001;63(6):985–93. 6. Tiemensma J, Kokshoorn NE, Biermasz NR, Keijser B-JSA, Wassenaar MJE, Middelkoop HAM, et al. Subtle cognitive impairments in patients with long-term cure of Cushing’s disease. J Clin Endocrinol Metab. 2010;95(6):2699–714. 7. Pivonello R, Simeoli C, De Martino MC, Cozzolino A, De Leo M, Iacuaniello D, et al. Neuropsychiatric disorders in Cushing’s syndrome. Front Neurosci. 2015;9:129. 8. Pires P, Santos A, Vives-Gilabert Y, Webb SM, Sainz-Ruiz A, Resmini E, et al. White matter involvement on DTI-MRI in Cushing’s syndrome relates to mood disturbances and processing speed: a case-control study. Pituitary. 2017;20(3):340–8. 9. Santos A, Resmini E, Pascual JC, Crespo I, Webb SM. Psychiatric symptoms in patients with Cushing’s syndrome: prevalence, diagnosis and management. Drugs. 2017;77(8):829–42. 10. Valassi E, Crespo I, Keevil BG, Aulinas A, Urgell E, Santos A, et al. Affective alterations in patients with Cushing’s syndrome in remission are associated with decreased BDNF and cortisone levels. Eur J Endocrinol. 2017;176(2):221–31. 11. Frimodt-Møller KE, Møllegaard Jepsen JR, Feldt-Rasmussen U, Krogh J. Hippocampal volume, cognitive functions, depression, anxiety, and quality of life in patients with Cushing syndrome. J Clin Endocrinol Metab. 2019;104(10):4563–77. 12. Kumar N, Jarial KDS, Bhansali A, Nehra R, Vyas S, Walia R. Neurocognitive functions and brain volume in patients with endogenous cushing’s syndrome before and after curative surgery. Indian J Endocrinol Metab. 2020;24(5):396–401. 13. Lin TY, Hanna J, Ishak WW. Psychiatric symptoms in Cushing’s syndrome: a systematic review. Innov Clin Neurosci. 2020;17(1–3):30–5. 14. Na S, Fernandes MA, Ioachimescu AG, Penna S. Neuropsychological and emotional functioning in patients with Cushing’s syndrome. Behav Neurol. 2020;2020:1–10. 15. Starkman MN, Giordani B, Gebarski SS, Berent S, Schork MA, Schteingart DE. Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing’s disease. Biol Psychiatry. 1999;46(12):1595–602. 16. Andela CD, van der Werff SJ, Pannekoek JN, van den Berg SM, Meijer OC, van Buchem MA, et al. Smaller grey matter volumes in the anterior cingulate cortex and greater cerebellar volumes in patients with long-term remission of Cushing’s disease: a case–control study. Eur J Endocrinol. 2013;169(6):811–9. 17. Crespo I, Esther G-M, Santos A, Valassi E, Yolanda V-G, De Juan-Delago M, et al. Impaired decision-making and selective cortical frontal thinning in Cushing’s syndrome. Clin Endocrinol. 2014;81(6):826–33. 18. Andela CD, van Haalen FM, Ragnarsson O, Papakokkinou E, Johannsson G, Santos A, et al. Mechanisms in endocrinology: cushing’s syndrome causes irreversible effects on the human brain: a systematic review of structural and functional magnetic resonance imaging studies. Eur J Endocrinol. 2015;173(1):R1–4. 19. Burkhardt T, Lüdecke D, Spies L, Wittmann L, Westphal M, Flitsch J. Hippocampal and cerebellar atrophy in patients with Cushing’s disease. Neurosurg Focus. 2015;39(5):E5–7. 20. Jiang H, Ren J, He NY, Liu C, Sun YH, Jian FF, et al. Volumetric magnetic resonance imaging analysis in patients with short-term remission of Cushing’s disease. Clin Endocrinol. 2017;87(4):367–74. 21. Bauduin SEEC, van der Wee NJA, van der Werff SJA. Structural brain abnormalities in Cushing’s syndrome. Curr Opin Endocrinol Diabetes Obes. 2018;25(4):285–9. 22. Jiang H, Liu C, Pan S-J, Ren J, He N-Y, Sun Y-H, et al. Reversible and the irreversible structural alterations on brain after resolution of hypercortisolism in Cushing’s disease. Steroids. 2019;151:108457. 23. Bauduin SEEC, Pal Z, Pereira AM, Meijer OC, Giltay EJ, Wee NJA, et al. Cortical thickness abnormalities in long-term remitted Cushing’s disease. Transl Psychiatry. 2020;10(1):239. 24. Hou B, Gao L, Shi L, Luo Y, Guo X, Young GS, et al. Reversibility of impaired brain structures after transsphenoidal surgery in Cushing’s disease: a longitudinal study based on an artificial intelligence-assisted tool. J Neurosurg. 2020;134(2):1–10. 25. van der Werff SJ, Andela CD, Nienke Pannekoek J, Meijer OC, van Buchem MA, Rombouts SA, et al. Widespread reductions of white matter integrity in patients with long-term remission of Cushing’s disease. Neuroimage Clin. 2014;4:659–67. 26. Pires P, Santos A, Vives-Gilabert Y, Webb S, Sainz-Ruiz A, Resmini E, et al. White matter alterations in the brains of patients with active, remitted, and cured Cushing syndrome: a DTI study. Am J Neuroradiol. 2015;36(6):1043–8. 27. Jiang H, He N-Y, Sun Y-H, Jian F-F, Bian L-G, Shen J-K, et al. Altered gray and white matter microstructure in Cushing’s disease: a diffusional kurtosis imaging study. Brain Res. 2017;1665:80–7. 28. Khiat A, Bard C, Lacroix A, Boulanger Y. Recovery of the brain choline level in treated Cushing’s patients as monitored by proton magnetic resonance spectroscopy. Brain Res. 2000;862(1–2):301–7. 29. Resmini E, Santos A, Gómez-Anson B, López-Mourelo O, Pires P, Vives-Gilabert Y, et al. Hippocampal dysfunction in cured Cushing’s syndrome patients, detected by 1H‐MR‐spectroscopy. Clin Endocrinol. 2013;79(5):700–7. 30. Crespo I, Santos A, Gómez-Ansón B, López-Mourelo O, Pires P, Vives-Gilabert Y, et al. Brain metabolite abnormalities in ventromedial prefrontal cortex are related to duration of hypercortisolism and anxiety in patients with Cushing’s syndrome. Endocrine. 2016;53(3):848–56. 31. Liu S, Wang Y, Xu K, Ping F, Li F, Wang R, et al. Voxel-based comparison of brain glucose metabolism between patients with Cushing’s disease and healthy subjects. Neuroimage Clin. 2018;17:354–8. 32. Cheng H, Gao L, Hou B, Feng F, Guo X, Wang Z, et al. Reversibility of cerebral blood flow in patients with Cushing’s disease after surgery treatment. Metabolism. 2020;104:154050. 33. Gao L, Liu L, Shi L, Luo Y, Wang Z, Guo X, et al. Dynamic changes of views on the brain changes of Cushing’s syndrome using different computer-assisted tool. Rev Endocr Metab Disord. 2020;21(1):185–200. 34. Piasecka M, Papakokkinou E, Valassi E, Santos A, Webb SM, de Vries F, et al. Psychiatric and neurocognitive consequences of endogenous hypercortisolism. J Intern Med. 2020;288(2):168–82. 35. Kelly DF. Transsphenoidal surgery for Cushing’s disease: a review of success rates, remission predictors, management of failed surgery, and Nelson’s Syndrome. Neurosurg Focus. 2007;23(3):E5. 36. Theodoropoulou M, Reincke M. Tumor-directed therapeutic targets in Cushing disease. J Clin Endocrinol Metab. 2019;104(3):925–33. 37. Maheu FS, Mazzone L, Merke DP, Keil MF, Stratakis CA, Pine DS, et al. Altered amygdala and hippocampus function in adolescents with hypercortisolemia: a functional magnetic resonance imaging study of Cushing syndrome. Dev Psychopathol. 2008;20(4):1177–89. 38. Langenecker SA, Weisenbach SL, Giordani B, Briceño EM, Guidotti Breting LM, Schallmo MP, et al. Impact of chronic hypercortisolemia on affective processing. Neuropharmacology. 2012;62(1):217–25. 39. Bas-Hoogendam JM, Andela CD, van der Werff SJA, Pannekoek JN, van Steenbergen H, Meijer OC, et al. Altered neural processing of emotional faces in remitted Cushing's disease. Psychoneuroendocrinology. 2015;59:134–46. 40. Van Der Werff SJ, Pannekoek JN, Andela CD, Meijer OC, Van Buchem MA, Rombouts SA, et al. Resting-state functional connectivity in patients with long-term remission of Cushing’s disease. Neuropsychopharmacology. 2015;40(8):1888–98. 41. Ragnarsson O, Stomby A, Dahlqvist P, Evang JA, Ryberg M, Olsson T, et al. Decreased prefrontal functional brain response during memory testing in women with Cushing’s syndrome in remission. Psychoneuroendocrinology. 2017;82:117–25. 42. Stomby A, Salami A, Dahlqvist P, Evang JA, Ryberg M, Bollerslev J, et al. Elevated resting-state connectivity in the medial temporal lobe and the prefrontal cortex among patients with Cushing’s syndrome in remission. Eur J Endocrinol. 2019;180(5):329–38. 43. Zung WW. A rating instrument for anxiety disorders. Psychosomatics. 1971;12(6):371–9. 44. Kim J-H, Lee J-M, Jo HJ, Kim SH, Lee JH, Kim ST, et al. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method. NeuroImage. 2010;49(3):2375–86. 45. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59(3):2142–54. 46. Nieman LK, Biller BM, Findling JW, Murad MH, Newell-Price J, Savage MO, et al. Treatment of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(8):2807–31. 47. Du Y, Fan Y. Group information guided ICA for fMRI data analysis. NeuroImage. 2013;69:157–97. 48. Fan Y, Liu Y, Wu H, Hao Y, Liu H, Liu Z, et al. Discriminant analysis of functional connectivity patterns on Grassmann manifold. NeuroImage. 2011;56(4):2058–67. 49. Li P, Jing RX, Zhao RJ, Ding ZB, Shi L, Sun HQ, et al. Electroconvulsive therapy-induced brain functional connectivity predicts therapeutic efficacy in patients with schizophrenia: a multivariate pattern recognition study. NPJ Schizophr. 2017;3(1):21–9. 50. Forget H, Lacroix A, Bourdeau I, Cohen H. Long-term cognitive effects of glucocorticoid excess in Cushing’s syndrome. Psychoneuroendocrinology. 2016;65:26–33. 51. Mauri M, Sinforiani E, Bono G, Vignati F, Berselli M, Attanasio R, et al. Memory impairment in Cushing’s disease. Acta Neurol Scand. 1993;87(1):52–5. 52. Jiang H, He NY, Sun YH, Jian FF, Bian LG, Shen JK, et al. Altered spontaneous brain activity in Cushing’s disease: a resting-state functional MRI study. Clin Endocrinol. 2017;86(3):367–76. 53. Amaya JM, Viho EM, Sips HC, Lalai RA, Sahut-Barnola I, Dumontet T, et al. Gene expression changes in the brain of a Cushing’s syndrome mouse model. J Neuroendocrinol. 2022;34(4):e13125. 54. Bauduin SEEC, van der Pal Z, Pereira AM, Meijer OC, Giltay EJ, van der Wee NJA, et al. Cortical thickness abnormalities in long-term remitted Cushing’s disease. Transl Psychiatry. 2020;10(1):293. 55. Wang X, Zhou T, Wang P, Zhang L, Feng S, Meng X, et al. Dysregulation of resting-state functional connectivity in patients with Cushing’s disease. Neuroradiology. 2019;61(8):911–20. © 2023 The Author(s). Published by S. Karger AG, Basel Open Access License / Drug Dosage / Disclaimer This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC). Usage and distribution for commercial purposes requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License . From https://karger.com/nen/article/doi/10.1159/000534789/869375/Reversibility-of-Impaired-Large-Scale-Functional
  22. The following is a summary of “Diurnal Range and Intra-patient Variability of ACTH Is Restored With Remission in Cushing’s Disease,” published in the November 2023 issue of Endocrinology by Alvarez, et al. Distinguishing Cushing’s disease (CD) remission from other conditions using single adrenocorticotropic hormone (ACTH) measurements poses challenges. For a study, researchers sought to analyze changes in ACTH levels before and after transsphenoidal surgery (TSS) to identify trends confirming remission and establish ACTH cutoffs for targeted clinical trials. A retrospective analysis involved 253 CD patients undergoing TSS at a referral center from 2005 to 2019. Remission outcomes were assessed based on postoperative ACTH levels. Among 253 patients, 223 achieved remission post-TSS. The remission group exhibited higher ACTH variability at morning (AM) (P = .02) and evening (PM) (P < .001) time points compared to the nonremission group. Nonremission cases had a significantly narrower diurnal ACTH range (P < .0001). A ≥50% decrease in plasma ACTH from mean preoperative levels, especially in PM values, predicted remission. Absolute plasma ACTH concentration and the ratio of preoperative to postoperative values were associated with nonremission (adj P < .001 and .001, respectively). ACTH variability suppression was observed in CD, with remission linked to restored variability. A ≥50% decrease in plasma ACTH may predict CD remission post-TSS. The insights can guide clinicians in developing rational outcome measures for interventions targeting CD adenomas. Source: academic.oup.com/jcem/article-abstract/108/11/2812/7187942?redirectedFrom=fulltext
  23. Dr. Theodore Friedman (the Wiz) will be giving a webinar on Optimal replacement for Hypopituitarism and Sheehan’s: Oxytocin, testosterone, growth hormone, stimulants and beyond Learn what most Endocrinologists don’t know about but will improve your quality of life Topics to be discussed include: • Oxytocin-the love hormone • Testosterone, not just for men • Stimulants to treat pituitary apathy • Growth hormone, not just for kids • Thyroid optimization • Cortisol, the right and wrong way to give • Learn about the common medicine you should never take if on growth hormone Wednesday • December 6th• 6 PM PST Via Zoom Click here to join the meeting or https://us02web.zoom.us/j/4209687343?pwd=amw4UzJLRDhBRXk1cS9ITU02V1pEQT09&omn=84521530646 OR +16699006833,,4209687343#,,,,*111116# Slides will be available before the webinar and recording after the meeting at slides or on Dr. Friedman’s YouTube channel OR Join on Facebook Live https://www.facebook.com/goodhormonehealth at 6 PM PST Meeting ID: 420 968 7343 Passcode: 111116 Your phone/computer will be muted on entry. There will be plenty of time for questions using the chat button. For more information, email us at mail@goodhormonehealth.com
  24. Dr. Theodore Friedman (the Wiz) will be giving a webinar on Optimal replacement for Hypopituitarism and Sheehan’s: Oxytocin, testosterone, growth hormone, stimulants and beyond Learn what most Endocrinologists don’t know about but will improve your quality of life Topics to be discussed include: • Oxytocin-the love hormone • Testosterone, not just for men • Stimulants to treat pituitary apathy • Growth hormone, not just for kids • Thyroid optimization • Cortisol, the right and wrong way to give • Learn about the common medicine you should never take if on growth hormone Wednesday • December 6th• 6 PM PST Via Zoom Click here to join the meeting or https://us02web.zoom.us/j/4209687343?pwd=amw4UzJLRDhBRXk1cS9ITU02V1pEQT09&omn=84521530646 OR +16699006833,,4209687343#,,,,*111116# Slides will be available before the webinar and recording after the meeting at slides or on Dr. Friedman’s YouTube channel OR Join on Facebook Live https://www.facebook.com/goodhormonehealth at 6 PM PST Meeting ID: 420 968 7343 Passcode: 111116 Your phone/computer will be muted on entry. There will be plenty of time for questions using the chat button. For more information, email us at mail@goodhormonehealth.com
  25. Abstract Paraneoplastic syndromes are rare and diverse conditions caused by either an abnormal chemical signaling molecule produced by tumor cells or a body’s immune response against the tumor itself. These syndromes can manifest in a variable, multisystemic and often nonspecific manner posing a diagnostic challenge. We report the case of an 81-year-old woman who exhibited severe hypokalemia, metabolic alkalosis, and worsening hyperglycemia. The investigation was consistent with adrenocorticotropin (ACTH)-dependent Cushing’s syndrome and, eventually, the patient was diagnosed with stage IV primary small-cell lung cancer (SCLC). SCLC is known to be associated with paraneoplastic syndromes, including Cushing’s syndrome caused by ectopic adrenocorticotropin (ACTH) secretion. Despite being associated with very poor outcomes, managing these syndromes can be challenging and may hold prognostic significance. Introduction Adrenocorticotropin (ACTH)-dependent Cushing’s syndrome (CS) is caused by excessive ACTH production by corticotroph (Cushing’s disease (CD)) or nonpituitary (ectopic) tumors, leading to excessive cortisol production. Ectopic ACTH syndrome (EAS) is a rare condition, accounting for 10 to 20% of all cases of ACTH-dependent CS and 5 to 10% of all types of CS [1]. The normal glucocorticoid-induced suppression of ACTH is reduced in ACTH-dependent CS, especially with ectopic ACTH production. Studies show that a wide variety of neoplasms, usually carcinomas rather than sarcomas or lymphomas, have been associated with EAS. Most cases are caused by neuroendocrine tumors of the lung, pancreas, or thymus, in which the hypercortisolism state is not apparent clinically, resulting, all too often, in delayed diagnosis [2,3]. Current diagnostic tests for EAS aim to confirm high cortisol levels, the absence of a cortisol circadian rhythm, as well as the reduced response to negative feedback from glucocorticoid administration, and imaging to identify the site of ACTH production. Prompt diagnosis and management are crucial in EAS, highlighting the importance of physician awareness and early recognition of this syndrome. Treatment options depend on the underlying tumor. Surgical removal is often the primary approach, followed by radiation therapy or chemotherapy. Additionally, medications to control cortisol levels may be necessary to manage the various comorbid conditions associated with CS, such as cardiovascular disease, diabetes, electrolyte imbalances, infections and thrombotic risk [4,5]. Case Presentation We report the case of an 81-year-old woman with a fully active performance status (ECOG 0) and a medical history of diabetes, hypertension, dyslipidemia, and depressive disorder. She was admitted to an internal medicine ward due to an acute hydroelectrolytic disorder, including metabolic alkalosis, severe hypokalemia (2 mmol/L), hypochloremia (85 mmol/L), hypocalcemia (0.95 mmol/L), hypophosphatemia (1.4 mg/dL), hypomagnesemia (0.9 mg/dL), and hyperlactatemia (5.8 mmol/L), after she reportedly self-medicated herself with higher doses of metformin (four to five pills a day) due to high blood glucose levels. The patient presented with asthenia, nausea, vomiting, and diarrhea for three days and reported uncontrolled blood glucose levels for the last eight days. The physical examination was unremarkable, without any altered mental status or signs of infection. Arterial blood gas samples showed metabolic alkalemia (pH 7.59) and hyperlactatemia, associated with severe hypokalemia, normal bicarbonate (27 mmol/L), and mildly elevated glycemia and ketonemia (232 mg/dL and 1.7 mmol/L, respectively). Lab tests confirmed the serum potassium levels as well as the other aforementioned electrolyte disturbances. Kidney function and hepatic enzymes were normal. Considering the possible relationship between the electrolyte disorder and the gastrointestinal presentation, the patient was given intravenous (IV) fluids and received potassium and magnesium replacement therapy. Despite receiving 200 milliequivalents (mEq) of IV potassium chloride and 4 grams of magnesium sulfate, in the first 48 hours, the ion deficits persisted. Given the persistent electrolyte derangement, the patient was admitted to the Internal Medicine ward for etiological investigation and monitoring of ionic correction. The initial period was remarkable for refractory hypokalemia and uncontrolled diabetes under respective therapeutic measures, including 80 to 130 mEq of IV potassium chloride and progressive titration of spironolactone to 200 mg a day. Laboratory investigation revealed high parathormone levels (PTHi 167 pg/mL; reference range: 10-65 pg/mL), vitamin D deficiency (3.3 ng/mL; reference range >20 ng/mL) and apparent ACTH-dependent hypercortisolism (serum cortisol 80.20 ug/dL; ACTH 445 pg/mL), as well as high urinary potassium and glucose concentrations (190 mEq/24 h and 21161 mg/24 h). A dexamethasone suppression test was performed twice (standard low and high dose) without any changes in cortisol levels, leading to the suspicion of a CS caused by abnormally high ACTH production. Cranioencephalic computed tomography (CT) and magnetic resonance imaging (MRI) were performed, excluding the presence of pituitary anomalies. A follow-up whole-body CT scan was performed, revealing a suspicious pulmonary mass in the left lower lobe, associated with ipsilateral hilar lymphadenopathy and hepatic and adrenal gland lesions suggestive of secondary involvement. An endobronchial ultrasound bronchoscopy and biopsy were performed, documenting anatomopathological findings of small-cell lung carcinoma with a Ki67 expression of 100% (Figures 1-3). Figure 1: Pulmonary mass (SCLC) in the left lower lobe with ipsilateral hilar lymphadenopathy and pleural effusion. SCLC: small-cell lung cancer. Figure 2: Secondary involvement of the liver with hypodense multilobar hepatic lesions (arterial phase). Figure 3: Bilateral suprarenal lesions suggestive of secondary involvement. The patient was referred to oncology, and chemotherapy was deferred, considering the infectious risk associated with hypercortisolism. The patient started metyrapone 500 mg every eight hours, resulting in a reduction in cortisol levels and control of hypokalemia. Later on, a fluorodeoxyglucose-positron emission tomography (FDG-PET) scan was performed, confirming disseminated disease with additional bone involvement. Unfortunately, despite endocrinological stabilization, the patient's condition worsened, and she ended up dying one month after the diagnosis. Discussion When this patient was admitted, it was assumed that the metabolic alkalosis and various electrolyte disturbances were related to the gastrointestinal presentation and hyperlactatemia secondary to metformin overdose. However, the unusual persistence and refractory hypokalaemia raised some concerns that an alternative etiology might be involved and incited subsequent testing. The high cortisol levels were unexpected given the subclinical presentation, which seems to be more frequent in cases of EAS. In fact, because of this, the true incidence of EAS is unknown and probably underdiagnosed since patients often have subclinical presentations and do not exhibit catabolic features. Since the patient wasn’t on any steroid medication, the association between the high cortisol and ACTH levels, non-responsive to the dexamethasone suppression test, along with the absence of a pituitary lesion, raised suspicion of a probable EAS, which was later confirmed by the body CT scan and endobronchial ultrasound (EBUS). EAS is a rare disease with a poor prognosis. It reportedly occurs in 3.2 to 6% of neuroendocrine neoplasms, and the tumor often originates in the lung, thyroid, stomach, and pancreas. Locoregional and/or distant metastasis can be seen at the time of diagnosis in 15% of typical carcinoids and about half of atypical carcinoids with visible primaries [6,7]. The presence of a typical CS presentation, with or without electrolyte abnormalities, should raise suspicion and serum levels of both ACTH and cortisol should be assessed to determine if they are elevated and to distinguish between an ACTH-dependent (pituitary or nonpituitary ACTH-secreting tumor) and an independent mechanism (e.g., from an adrenal source). The diagnosis of CS is established when at least two different first-line tests are unequivocally abnormal and cannot be explained by any other conditions that cause physiologic hypercortisolism. Additional evaluation is performed to rule out a pituitary origin (with brain MRI) and to assess for a possible ectopic ACTH-secreting tumor. In the aforementioned case, the production of ACTH was caused by primary neuroendocrine SCLC. The recommended approach to EAS involves the initial normalization of serum cortisol levels and the treatment of related comorbidities before performing a complete diagnostic evaluation and addressing the underlying cause [5-7]. This approach seems to improve survival and prevent complications such as sepsis following a combined steroid-induced immunosuppression and chemotherapy-induced agranulocytosis [6,7]. Direct therapies vary according to the tumor, but surgery is usually the first line of treatment (transsphenoidal surgery in cases of CD or tumor resection in cases of non-metastatic EAS). However, our patient presented with stage IV SCLC with EAS, in which chemotherapy remains the first-line treatment. SCLC patients with EAS have a poorer prognosis than those without EAS, with a life expectancy of only three to six months. This makes early diagnosis more important [2,7], as controlling the high cortisol levels and then administering systemic chemotherapy may achieve longer survival [8]. Apart from systemic chemotherapy, ketoconazole (widely accepted but highly toxic), metyrapone, mitotane (adrenocortical suppressant drug with significant side effects), and mifepristone (glucocorticoid antagonist, mainly used for the treatment of hyperglycemia in CS) can be used to reduce circulating glucocorticoids. Moreover, thromboprophylaxis and Pneumocystis jirovecii pneumonia prophylaxis should be started. Because ketoconazole may increase the risk of chemotherapy toxicity by inhibiting cytochrome P450 3A4, metyrapone has been reported to be a better choice [5,7]. Nonetheless, administration of chemotherapy in the setting of a hypercortisolism-induced immunosuppressive state, cancerous background and metabolic disorders featuring electrolyte disturbance and hyperglycemia, aggravate the condition and can be life-threatening. Thus, a palliative approach can sometimes be reasonable. Conclusions The diagnosis of CS is a three-step process that includes its suspicion based on the patient's laboratory and semiologic findings, the documentation of hypercortisolism, and the identification of its cause, which can be either ACTH-dependent or independent. The ectopic secretion of ACTH (EAS) by nonpituitary tumors is a relatively rare cause of CS and often presents as paraneoplastic syndromes, adding therapeutic and prognostic concerns. This case, in particular, highlights the importance of seeking alternative explanations for common electrolyte disturbances, particularly when they don't resolve promptly. Clinicians should be aware of EAS and its frequent subclinical presentation in order to initiate the diagnostic workup as soon as suspicion arises. References Hayes AR, Grossman AB: The ectopic adrenocorticotropic hormone syndrome: rarely easy, always challenging. Endocrinol Metab Clin North Am. 2018, 47:409-25. 10.1016/j.ecl.2018.01.005 Ilias I, Torpy DJ, Pacak K, Mullen N, Wesley RA, Nieman LK: Cushing's syndrome due to ectopic corticotropin secretion: twenty years' experience at the National Institutes of Health. J Clin Endocrinol Metab. 2005, 90:4955-62. 10.1210/jc.2004-2527 Lacroix A, Feelders RA, Stratakis CA, Nieman LK: Cushing’s syndrome. Lancet. 2015, 29:913-27. 10.1016/S0140-6736(14)61375-1 Nieman LK: Molecular derangements and the diagnosis of ACTH-dependent Cushing's syndrome. Endocr Rev. 2022, 43:852-77. 10.1210/endrev/bnab046 Nieman LK, Biller BM, Findling JW, Murad MH, Newell-Price J, Savage MO, Tabarin A: Treatment of Cushing's syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2015, 100:2807-31. 10.1210/jc.2015-1818 Bostan H, Duger H, Akhanli P, et al.: Cushing's syndrome due to adrenocorticotropic hormone-secreting metastatic neuroendocrine tumor of unknown primary origin: a case report and literature review. Hormones (Athens). 2022, 21:147-54. 10.1007/s42000-021-00316-z Richa CG, Saad KJ, Halabi GH, Gharios EM, Nasr FL, Merheb MT: Case-series of paraneoplastic Cushing syndrome in small-cell lung cancer. Endocrinol Diabetes Metab Case Rep. 2018, 2018:4. 10.1530/EDM-18-0004 Zhang HY, Zhao J: Ectopic Cushing syndrome in small cell lung cancer: a case report and literature review. Thorac Cancer. 2017, 8:114-7. 10.1111/1759-7714.12403 From https://www.cureus.com/articles/198133-adrenocorticotropin-dependent-ectopic-cushings-syndrome-a-case-report#!/
×
×
  • Create New...