Jump to content

MaryO

~Chief Cushie~
  • Posts

    7,613
  • Joined

  • Last visited

  • Days Won

    321

Everything posted by MaryO

  1. Presented by Ahmad Sedaghat, MD, PhD - Associate Professor and Director of the Division of Rhinology, Allergy and Anterior Skull Base Surgery in the Department of Otolaryngology - Head and Neck Surgery at the University of Cincinnati College of Medicine and UC Health. Norberto Andaluz, MD, MBA, FACS - Professor of Neurosurgery and Otolaryngology/Head and Neck Surgery - Director, Division of Skull Base Surgery University of Cincinnati College of Medicine and University of Cincinnati Gardner Neuroscience Institute - UC Health Click here to attend Date: Wednesday, Sept 23, 2020 Time: 3:00 PM Eastern Daylight Time Learning objectives: 1. To understand the surgical steps of endoscopic pituitary surgery 2. To understand how the surgical steps of endoscopic pituitary surgery translate to post-operative outcomes 3. To understand surgical factors that can modify post-operative outcomes after endoscopic pituitary surgery 4. To understand post-operative care that can modify post-operative outcomes after endoscopic pituitary surgery
  2. Presented by Ahmad Sedaghat, MD, PhD - Associate Professor and Director of the Division of Rhinology, Allergy and Anterior Skull Base Surgery in the Department of Otolaryngology - Head and Neck Surgery at the University of Cincinnati College of Medicine and UC Health. Norberto Andaluz, MD, MBA, FACS - Professor of Neurosurgery and Otolaryngology/Head and Neck Surgery - Director, Division of Skull Base Surgery University of Cincinnati College of Medicine and University of Cincinnati Gardner Neuroscience Institute - UC Health Click here to attend Date: Wednesday, Sept 23, 2020 Time: 3:00 PM Eastern Daylight Time Learning objectives: 1. To understand the surgical steps of endoscopic pituitary surgery 2. To understand how the surgical steps of endoscopic pituitary surgery translate to post-operative outcomes 3. To understand surgical factors that can modify post-operative outcomes after endoscopic pituitary surgery 4. To understand post-operative care that can modify post-operative outcomes after endoscopic pituitary surgery
  3. Adults with adrenal insufficiency who are adequately treated and trained display the same incidence of COVID-19-suggestive symptoms and disease severity as controls, according to a presenter. “Adrenal insufficiency is supposed to be associated with an increased risk for infections and complications,” Giulia Carosi, a doctoral student in the department of experimental medicine at Sapienza University of Rome, said during a presentation at the virtual European Congress of Endocrinology Annual Meeting. “Our aim was to evaluate the incidence of COVID symptoms and related complications in this group.” In a retrospective, case-control study, Carosi and colleagues evaluated the incidence of COVID-19 symptoms and complications among 279 adults with primary or secondary adrenal insufficiency (mean age, 57 years; 49.8% women) and 112 adults with benign pituitary nonfunctioning lesions without hormonal alterations, who served as controls (mean age, 58 years; 52.7% women). All participants lived in the Lombardy region of northern Italy. Participants completed a standardized questionnaire by phone on COVID-19-suggestive symptoms, such as fever, cough, myalgia, fatigue, dyspnea, gastrointestinal symptoms, conjunctivitis, loss of smell, loss of taste, upper respiratory tract symptoms, thoracic pain, headaches and ear pain. Patients with primary or secondary adrenal insufficiency were previously trained to modify their glucocorticoid replacement therapy when appropriate. From February through April, the prevalence of participants reporting at least one symptom of viral infection was similar between the adrenal insufficiency group and controls (24% vs. 22.3%; P = .788). Researchers observed “highly suggestive” symptoms among 12.5% of participants in both groups. No participant required hospitalization and no adrenal crisis was reported. Replacement therapy was correctly increased for about 30% of symptomatic participants with adrenal insufficiency. Carosi noted that few nasopharyngeal swabs were performed (n = 12), limiting conclusions on the exact infection rate (positive result in 0.7% among participants with adrenal insufficiency and 0% of controls; P = .515). “We can conclude that hypoadrenal patients who have regular follow-up and trained about risks for infection and sick day rules seem to present the same incidence of COVID-19 symptoms and the same disease severity as controls,” Carosi said. As Healio previously reported, there is no evidence that COVID-19 has a more severe course among individuals with primary and secondary adrenal insufficiency; however, those with adrenal insufficiency are at increased risk for respiratory and viral infections, and patients experiencing major inflammation and fever are at risk for life-threatening adrenal crisis. In a position statement issued by the American Association of Clinical Endocrinologists in March, researchers wrote that people with adrenal insufficiency or uncontrolled Cushing’s syndrome should continue to take their medications as prescribed and ensure they have appropriate supplies for oral and injectable steroids at home, with a 90-day preparation recommended. In the event of acute illness, those with adrenal insufficiency are instructed to increase their hydrocortisone dose per instructions and call their health care provider for more details. Standard “sick day” rules for increasing oral glucocorticoids or injectables would also apply, according to the statement. From https://www.healio.com/news/endocrinology/20200910/no-increased-covid19-risk-with-adequately-treated-adrenal-insufficiency
  4. Patients with endogenous Cushing’s syndrome who stopped using Recorlev (levoketoconazole) and moved to a placebo in a study started having their urine cortisol levels rise in response to lack of treatment, compared with those who remained on Recorlev, according to top-line data from the Phase 3 LOGICS trial. Based on these findings and data from a previous Phase 3 trial of Recorlev called SONICS (NCT01838551), the therapy’s developer, Strongbridge Biopharma, is planning to submit a new drug application requesting its approval to the U.S. Food and Drug Administration (FDA) early next year. If approved, Recorlev could be available to patients in the U.S. in 2022. “We are delighted to announce the positive and statistically significant top-line results of the LOGICS study, which add to the growing body of evidence supporting the potential of Recorlev (levoketoconazole) as an effective and well tolerated cortisol synthesis inhibitor to treat Cushing’s syndrome,” Fredric Cohen, MD, chief medical officer of Strongbridge Biopharma, said in a press release. Recorlev, also known as COR-003, is an investigational oral treatment for endogenous Cushing’s syndrome that inhibits the production of cortisol, the glucocorticoid hormone that is overly produced in patients with the disorder. The safety, tolerability, effectiveness, and pharmacological properties of Recorlev in people with endogenous Cushing’s syndrome are currently being assessed in the LOGICS trial (NCT03277690). LOGICS enrolled patients who had never been treated with Recorlev, as well as those given the medication in SONICS. The study included an initial withdrawal phase, in which patients were assigned randomly to either Recorlev (up to a dose of 1,200 mg), or to a placebo for about 8 weeks. This was followed by a restoration phase, lasting approximately the same time, in which all patients received Recorlev in combination with a placebo. With this design, patients initially assigned to Recorlev continued treatment in the study’s second phase, while those originally assigned to a placebo switched to Recorlev. Before enrolling in the study’s initial randomized-withdrawal phase, patients completed an open-label titration and maintenance phase lasting 14 to 19 weeks, which determined the best dose of Recorlev they should receive later. Of the 79 patients who entered the open-label titration and maintenance phase, 44 enrolled in the randomized-withdrawal phase, and 43 completed this initial portion of the trial. Top-line data now announced by the company showed the proportion of patients having their urine cortisol levels rise by the end of the randomized-withdrawal phase was 54.5% higher among those on a placebo than among those treated with Recorlev (95.5% vs. 40.9%). All 21 patients who lost their initial treatment response in the open-label portion of the study, and saw their cortisol levels rise after moving to a placebo (withdrawal phase) were given early rescue treatment. Their cortisol levels started to drop after a median of 22 days. The percentage of patients whose urine cortisol levels were within normal range by the end of the withdrawal phase was 45.5% higher among those treated with Recorlev, compared with those given a placebo (50.0% vs. 4.5%). In addition to losing benefits related to cortisol control, patients receiving a withdrawal-phase placebo also lost the therapy’s positive cholesterol-lowering effects. “The Phase 3 LOGICS results complement the long-term efficacy and safety data supplied by the Phase 3 SONICS study, which was published in The Lancet Diabetes & Endocrinology, by confirming that the effects of Recorlev (levoketoconazole) were responsible for the therapeutic response when treatment was continued compared to withdrawing patients to placebo,” said Maria Fleseriu, MD, FACE, professor of Medicine and Neurological Surgery and director of the Oregon Health Sciences University Pituitary Center, and principal investigator of the study. “The LOGICS findings — which build upon the long-term benefit shown during open-label treatment in SONICS — provide robust evidence to support the use of RECORLEV as an important treatment option for this life-threatening rare endocrine disease,” Fleseriu added. Recorlev was found to be safe and well-tolerated in LOGICS. Of the 79 patients who entered in the study’s open-label titration and maintenance phase, 19% discontinued due to side effects in this phase, and none of the 44 who proceeded to the withdrawal phase stopped treatment for these reasons. The most common side effects observed during the first two parts of LOGICS included nausea (29%), low blood potassium levels (28%), headache (21%), high blood pressure (19%), and diarrhea (15%). Some patients saw the levels of their liver enzymes rise above normal levels — a sign of liver inflammation and damage — during the study. However, this and other side effects of special interest, including those associated with adrenal insufficiency, resolved by either lowering the dose or stopping treatment with Recorlev. The proportion of patients experiencing these side effects was similar to that seen in SONICS. These findings are part of a subset of data from a planned interim analysis of LOGICS. Final study data requires analyses of additional datasets. Adapted from https://www.globenewswire.com/news-release/2020/09/08/2089872/0/en/Strongbridge-Biopharma-plc-Announces-Positive-and-Statistically-Significant-Top-Line-Results-from-the-Pivotal-Phase-3-LOGICS-Study-of-RECORLEV-levoketoconazole-for-the-Treatment-of.html
  5. The first ever prospective study to test the safety and efficacy of metyrapone in patients with Cushing’s Syndrome in a real-life setting has shown successful results. HRA Pharma Rare Diseases SAS, of Paris, has presented data from PROMPT, the first ever prospective study designed to confirm metyrapone efficacy and good tolerance in patients with endogenous Cushing’s Syndrome, with results confirming that metyrapone controlled 80% of the patients at week 12 with either normalisation or at least 50% decrease of urinary free cortisol. These initial results are being published to coincide with HRA Pharma Rare Diseases’ participation in the e-ECE conference 2020. Cushing’s Syndrome is a rare condition where patients have too much cortisol in their blood. Endogenous Cushing’s Syndrome is most often caused by hormone-releasing tumours of the adrenal or the pituitary glands. To manage this condition, controlling high cortisol levels in patients is important. Successful results with metyrapone Metyrapone is an inhibitor of the 11-beta-hydroxylase enzyme, which majorly contributes to cortisol synthesis and is approved in Europe for the treatment of endogenous Cushing’s Syndrome based on observational retrospective studies published over more than 50 years. As this prospective study took place over five years from April 2015 to April 2020, the longitudinal format reduced potential sources of bias and helped determine the risk factors of metyrapone when compared to the previous retrospective studies. The first results of this study showed that at the end of the 12 weeks, metyrapone therapy is a rapid-onset, effective and safe medical treatment in patients living with the syndrome. Evelina Paberze, COO of HRA Pharma Rare Diseases, said: “At HRA Pharma Rare Diseases, we are dedicated to building comprehensive evidence of our products. The first results of this prospective study clearly demonstrate the effectiveness of metyrapone in treating Cushing’s Syndrome.” The next set of data on the six-month optional extension is awaiting confirmation and the full study with the final results will be published next year. Frederique Welgryn, Managing Director of HRA Pharma Rare Diseases, added: “Cushing’s Syndrome is a chronic disease that can lead to deterioration in patients’ conditions if not treated appropriately. We are thrilled to announce that this first prospective study verifies that metyrapone is both an effective and safe way to treat endogenous Cushing’s Syndrome. This is a big step given the high unmet medical need for patients with endogenous Cushing’s Syndrome.” From https://www.healtheuropa.eu/study-shows-metyrapone-effective-for-treating-rare-cushings-syndrome/102584/
  6. Abnormally high levels of cortisol in the urine — one of the hallmarks of Cushing’s syndrome — seem to be associated with alterations in blood sugar metabolism in obese patients, a study found. The study, “Hypercortisolism and altered glucose homeostasis in obese patients in the pre-bariatric surgery assessment,” was published in the journal Diabetes/Metabolism Research and Reviews.
  7. Carma, I removed the links from your post. I suggest you try spamming elsewhere.
  8. Context Late-night salivary cortisol (LNSC) measured by enzyme immunoassay (EIA-F) is a first-line screening test for Cushing’s syndrome (CS) with a reported sensitivity and specificity of >90%. However, liquid chromatography-tandem mass spectrometry, validated to measure salivary cortisol (LCMS-F) and cortisone (LCMS-E), has been proposed to be superior diagnostically. Objective, Setting, and Main Outcome Measures Prospectively evaluate the diagnostic performance of EIA-F, LCMS-F, and LCMS-E in 1453 consecutive late-night saliva samples from 705 patients with suspected CS. Design Patients grouped by the presence or absence of at least one elevated salivary steroid result and then subdivided by diagnosis. Results We identified 283 patients with at least one elevated salivary result; 45 had an established diagnosis of neoplastic hypercortisolism (CS) for which EIA-F had a very high sensitivity (97.5%). LCMS-F and LCMS-E had lower sensitivity but higher specificity than EIA-F. EIA-F had poor sensitivity (31.3%) for ACTH-independent CS (5 patients with at least one and 11 without any elevated salivary result). In patients with Cushing’s disease (CD), most non-elevated LCMS-F results were in patients with persistent/recurrent CD; their EIA-F levels were lower than in patients with newly diagnosed CD. Conclusions Since the majority of patients with ≥1 elevated late-night salivary cortisol or cortisone result did not have CS, a single elevated level has poor specificity and positive predictive value. LNSC measured by EIA is a sensitive test for ACTH-dependent Cushing’s syndrome but not for ACTH-independent CS. We suggest that neither LCMS-F nor LCMS-E improves the sensitivity of late-night EIA-F for CS. Cushing’s disease, ectopic ACTH, adrenal Cushing’s syndrome, diagnosis, assay performance Issue Section: Clinical Research Article From https://academic.oup.com/jes/advance-article/doi/10.1210/jendso/bvaa107/5876040
  9. Dr. Friedman prescribes various thyroid hormone preparations to his patients with hypothyroidism. This includes natural desiccated thyroid (NDT) of which two preparations are WP Thyroid and Nature-Throid, both made by RLC Labs. On August 25, 2020, RLC Labs announced a voluntary, consumer-level recall of all lots of Nature-Throid and WP Thyroid tablets because some lots contain less than the required 90% of the active ingredient as determined by the FDA. The RLC spokesperson said to Dr. Friedman that one lot of WP Thyroid and 5 lots of Nature-Throid contained between 87% and 90% of the labeled amount of levothyroxine (T4) or liothyronine (T3). The recall did not disclose which of the lots were affected and all lots are recalled, not just the affected lots. According to the recall, if a patient receives a sub-potent tablet, hypothyroid symptoms may not be controlled. To date, there have been no reports of adverse events related to this recall. Patients who have had an adverse event should contact RLC Labs. RLC Labs advised that patients should talk to their healthcare professional before they stop taking their Nature-Throid and WP Thyroid medicine. Consumers with questions about the recall can email RLC at recall@rlclabs.com or RLC Customer Service (877) 797-7997. Patients may return unexpired Nature-Throid and WP Thyroid tablets to their pharmacy who are legally required to refund the cost of the tablets. Currently no lots of Nature-Throid and WP Thyroid tablets are commercially available, so a replacement with the same product is not an option. It is unknown how long it will be before Nature-Throid and WP Thyroid become commercially available. Dr. Friedman has several comments about this recall. This is the second recall of desiccated thyroid as some lots of NP thyroid were recalled in May 2020. Dr. Friedman sees this as unfortunate, but still believes desiccated thyroid is a good option for patients with hypothyroidism. Secondly, the “subpotent” Nature-Throid and WP Thyroid pills are only slightly less potent than stated in that only a few lots are between 87% and 90% of the T4 and T3 levels. For most patients, they will not have symptoms from these subpotent pills and if they are taking a lot that is subpotent, the dose can be adjusted based on laboratory levels at your next appointment with Dr. Friedman. According to Dr. Friedman, patients taking Nature-Throid and WP Thyroid have three options: 1) they can continue taking Nature-Throid and WP Thyroid knowing they may have a subpotent lot and knowing that they may not be able to get a refill at least temporarily. 2) patients can be switched to Armour thyroid, NP thyroid or have a compounding pharmacy compound the equivalent dose using USP grade porcine powder. Please let Dr. Friedman’s office know if you would like to go on a different desiccated thyroid product (and which one) and what pharmacy you would like to use, 3) Dr. Friedman has a small supply of desiccated thyroid that is available at his clinic for those in Los Angeles on the last Tuesday night of each month. He will not be able to mail desiccated thyroid. Please contact his office about this option. Patients do not need to contact Dr. Friedman, but if you have any questions or need to schedule an appointment with Dr. Friedman, please email us at mail@goodhormonehealth.com or schedule an appointment on his website at goodhormonehealth.com.
  10. Thanks for being a member of Rare Patient Voice, LLC. We have an opportunity for you to take part in a Cushing Syndrome interview (NEON_4470) for Patients. Our project number for this study is NEON_4470. Project Details: Telephone interview Interview is 60-minutes long One Hundred Dollar Reward Looking for Patients diagnosed with Endogenous Cushing Syndrome Things to Note: Patient study only, Caregivers please pass the link along Unique links, please do not pass along for 2nd use Want to share this opportunity? Let us know and we can provide a new link Please use a laptop/computer ONLY. No smartphones or tablets - Preliminary questions are Mobile Friendly! Save this email to reference if you have any questions about the study! If you have any problems, email michael.taylor@rarepatientvoice.com and reference the project number. If you hit reply, you will get an auto do-not-reply email. If you are interested in this study, please click the link below to answer a few questions to see if you qualify. Study Link: Link OR if the Study Hyperlink is not clickable above, please copy/paste this URL below. https://panel.rarepatientvoice.com/newdesign/site/rarepatientvoice/surveystart.php?surveyID=9mth6d868qpc&panelMemberID=trfnbc7mvduh1gseff1h&invite=email Thanks as always for your participation! Please be aware that by entering this information you are not guaranteed that you will be selected to participate. As always, we do not share any of your contact information without your permission. Not Interested in this study? (Click link below so we do not send you any reminders for this study) Study Reminder Opt Out Link: Link We truly appreciate the time you set aside to interact with our company and don’t take it for granted. Receive a $5 gift card for referring others who may want to participate in this or future studies. Invite them to join Rare Patient Voice: https://www.rarepatientvoice.com/sign-up. They, too, receive a gift card. Our Privacy Policy Regards, Michael Taylor Project Manager Rare Patient Voice Helping Patients with Rare Diseases Voice Their Opinions Phone: + 1 609-462-5519 Email: michael.taylor@rarepatientvoice.com Websites: www.rarepatientvoice.com
  11. Osilodrostat treatment was found to be associated with a rapid and sustained reduction in mean concentration of urinary free cortisol (UFC) and improved clinical symptoms in patients with Cushing’s disease, according to the results of a prospective, multicenter, open-label, phase 3 study published in the Lancet Diabetes Endocrinology. Osilodrostat is an oral inhibitor of 11-β hydroxylase cytochrome P450. Adults aged 18 to 75 years of age with diagnosed persistent or recurrent Cushing’s disease were recruited between 2014 and 2017 at 66 hospitals in 19 countries. Cushing’s disease was defined by a mean UFC concentration over a 24-hour period >1.5 times greater than the upper limit of normal (ULN) and morning plasma adrenocorticotropic hormone level above normal limits. Participants (n=137) received 30 mg osilodrostat twice daily, dose which was adjusted every 2 weeks until week 12 on the basis of mean 24-hour UFC concentration. The determined maintenance dose was continued until week 24. At week 26, participants who had achieved 24-hour UFC concentration ≤ ULN and did not need titration after week 12 were randomly assigned in an equal ratio to maintain osilodrostat treatment or were switched to a placebo for 8 weeks. This 8-week period of the study was double-blinded. During weeks 35 to 48, all patients were returned to osilodrostat treatment. In this cohort, mean age was 40.0 years (range, 19.0-70.0 years), 77% of participants were women, the average time since diagnosis was 47.2 months (interquartile range [IQR], 19.0-88.3), 88% had previous pituitary surgery, 16% had pituitary radiation therapy, and 74% had medicinal therapy. At baseline, the mean 24-hour UFC concentration was 1006±1590 nmol/24 h. At week 24, 53% of participants achieved a mean 24-hour UFC concentration ≤ULN without increases in dose after week 12 and were eligible for randomization (osilodrostat, n=36; placebo, n=35). At week 34, more patients receiving osilodrostat vs placebo maintained a complete response (86% vs 29%, respectively; odds ratio [OR], 13.7; 95% CI, 3.7-53.4; P <.0001). Improvements in cardiovascular-related metabolic parameters associated with hypercortisolism and overall measures of well-being were observed. Levels of high-density lipoprotein decreased by week 48 (-0.3 mmol/L; 95% CI, .0.3 to -0.2), mean Cushing’s quality of life score increased by 52.4% (95% CI, 32.3-72.7), and Beck Depression Inventory score decreased by 31.8% (95% CI, -44.3 to -19.3). Adverse events were hypocortisolism (51%), adverse events related with adrenal hormone precursors (42%), nausea (42%), headache (34%), fatigue (28%), and adrenal insufficiency (28%). A total of 18% of participants dropped out of the study due to adverse events. The major limitation of this study was the short withdrawal period (8 weeks) which may not have permitted to observe symptoms of hypercortisolism. “Alongside careful dose adjustments and monitoring of known risks associated with osilodrostat, our findings indicate a positive benefit– risk consideration of treatment for most patients with Cushing’s disease,” concluded the study authors. Disclosure: Multiple authors declared affiliations with industry. Please refer to the original article for a full list of disclosures. Reference Pivonello R, Fleseriu M, Newell-Price J, et al. Efficacy and safety of osilodrostat in patients with Cushing’s disease (LINC 3): a multicentre phase III study with a doubleblind, randomised withdrawal phase. Lancet Diabetes Endocrinol. 2020;S2213-8587(20)30240-0. doi:10.1016/S2213-8587(29)30240-0 From https://www.endocrinologyadvisor.com/home/topics/general-endocrinology/osilodrostat-sustained-reduction-mean-ufc-concentration-cushings-disease/
  12. There will be a Message Board Upgrade Soon.

    The upgrade is ready to install but the new "skins" aren't ready yet so I'm holding off until they are.

    I'll keep you posted.

     

  13. Susanne, this is not a blog. It is a message board about Cushing's Syndrome and Disease. I would suggest you do a google search for how to write blog posts.
  14. Study Authors: Tsung-Chieh Yao, Ya-Wen Huang, et al.; Beth I. Wallace, Akbar K. Waljee Target Audience and Goal Statement: Primary care physicians, rheumatologists, pulmonologists, dermatologists, gastroenterologists, cardiologists The goal of this study was to examine the associations between oral corticosteroid bursts and severe adverse events among adults in Taiwan. Question Addressed: What were the associations between steroid bursts and severe adverse events, specifically gastrointestinal (GI) bleeding, sepsis, and heart failure? Study Synopsis and Perspective: It has long been known that long-term use of corticosteroids can be both effective and toxic. Long-term use is associated with adverse effects such as infections, GI bleeding/ulcers, cardiovascular disease (CVD), Cushing syndrome, diabetes and metabolic syndromes, cataracts, glaucoma, and osteoporosis. Most clinical practice guidelines caution against long-term steroid use unless medically necessary. Action Points In a retrospective cohort study and self-controlled case series, prescriptions for oral steroid bursts were found to be associated with increased risks for gastrointestinal bleeding, sepsis, and heart failure within the first month after initiation, despite a median exposure of just 3 days. Note that the risks were highest 5 to 30 days after exposure, and attenuated during the subsequent 31 to 90 days. Instead, clinical practice guidelines recommend steroid bursts for inflammatory ailments such as asthma, inflammatory bowel disease, and rheumatoid arthritis. Waljee and colleagues noted in 2017 that they are most commonly used for upper respiratory infections, suggesting that many people are receiving steroids in the real world. In a retrospective cohort study and self-controlled case series, prescriptions for oral steroid bursts -- defined as short courses of oral corticosteroids for 14 or fewer days -- were found to be associated with increased risks for GI bleeding, sepsis, and heart failure within the first month after initiation, despite a median exposure of just 3 days, according to Tsung-Chieh Yao, MD, PhD, of Chang Gung Memorial Hospital in Taoyuan, and colleagues. The risks were highest 5 to 30 days after exposure, and attenuated during the subsequent 31 to 90 days, they reported in Annals of Internal Medicine. The self-controlled case series was based on national medical claims records. Included were adults, ages 20-64, covered by Taiwan's National Health Insurance in 2013-2015. Out of a population of more than 15.8 million, study authors identified 2,623,327 people who received a steroid burst during the study period. These individuals were age 38 on average, and 55.3% were women. About 85% had no baseline comorbid conditions. The most common indications for the steroid burst were skin disorders and respiratory tract infections. The incidence rates among patients prescribed steroid bursts were 27.1 per 1,000 person-years for GI bleeding (incidence rate ratio [IRR] 1.80, 95% CI 1.75-1.84), 1.5 per 1,000 person-years for sepsis (IRR 1.99, 95% CI 1.70-2.32), and 1.3 per 1,000 person-years for heart failure (IRR 2.37, 95% CI 2.13-2.63). Absolute risk elevations were similar in patients with and without comorbid conditions, meaning that the potential for harm was not limited to those at high risk for these adverse events. The study authors acknowledged that they could not adjust for disease severity and major lifestyle factors such as alcohol use, smoking, and body mass index; because these factors were static, the effect could be eliminated using the self-controlled case series design. Their reliance on prescription data also meant they could not tell if patients actually complied with oral corticosteroid therapy. Furthermore, the exclusion of the elderly and younger populations also left room for underestimation of the risks of steroid bursts, they said. Source References: Annals of Internal Medicine 2020; DOI: 10.7326/M20-0432 Editorial: Annals of Internal Medicine 2020; DOI: 10.7326/M20-4234 Study Highlights and Explanation of Findings: Over the 3-year study period, steroid bursts were commonly prescribed to adults. Such prescriptions were written for common conditions, including skin disorders and upper respiratory tract infections. The highest risks for GI bleeding, sepsis, and heart failure occurred within the first month after receipt of the steroid burst, and this risk was attenuated during the subsequent 31 to 90 days. "Our findings are important for physicians and guideline developers because short-term use of oral corticosteroids is common and the real-world safety of this approach remains unclear," the researchers wrote. Notably, one corticosteroid that fits the bill is dexamethasone -- a medication that holds promise for the treatment of critically ill COVID-19 patients, although it is not generally prescribed orally for these patients. Based on preliminary results, the NIH's COVID-19 treatment guidelines panel recommended the use of "dexamethasone (at a dose of 6 mg per day for up to 10 days) in patients with COVID-19 who are mechanically ventilated and in patients with COVID-19 who require supplemental oxygen but who are not mechanically ventilated." In addition, they recommend "against using dexamethasone in patients with COVID-19 who do not require supplemental oxygen." "We are now learning that bursts as short as 3 days may increase risk for serious AEs [adverse events], even in young and healthy people. As providers, we must reflect on how and why we prescribe corticosteroids to develop strategies that prevent avoidable harms," wrote Beth Wallace, MD, and Akbar Waljee, MD, both of the VA Ann Arbor Healthcare System and Michigan Medicine. On the basis of the reported risk differences in the study, Wallace and Waljee calculated that one million patients exposed to corticosteroid bursts experienced 41,200 GI bleeding events, 400 cases of sepsis, and 4,000 cases of new heart failure per year that were directly attributed to this brief treatment. "Although many providers already avoid corticosteroids in elderly patients and those with comorbid conditions, prescribing short bursts to 'low-risk' patients has generally been viewed as innocuous, even in cases where the benefit is unclear. However, Yao and colleagues provide evidence that this practice may risk serious harm, making it difficult to justify in cases where corticosteroid use lacks evidence of meaningful benefit," they wrote in an accompanying editorial. "Medication-related risks for AEs can, of course, be outweighed by major treatment benefit. However, this study and prior work show that corticosteroid bursts are frequently prescribed for self-limited conditions, where evidence of benefit is lacking," Wallace and Waljee noted. "As we reflect on how to respond to these findings, it is useful to note the many parallels between use of corticosteroid bursts and that of other short-term medications, such as antibiotics and opiates. All of these treatments have well-defined indications but can cause net harm when used -- as they frequently are -- when evidence of benefit is low," they emphasized. Last Updated August 07, 2020 Reviewed by Dori F. Zaleznik, MD Associate Clinical Professor of Medicine (Retired), Harvard Medical School, Boston Primary Source Annals of Internal Medicine Source Reference: Yao TC, et al "Association between oral corticosteroid bursts and severe adverse events: a nationwide population-based cohort study" Ann Intern Med 2020; DOI: 10.7326/M20-0432. Secondary Source Annals of Internal Medicine Source Reference: Wallace BI, Waljee AK "Burst case scenario: why shorter may not be any better when it comes to corticosteroids" Ann Intern Med 2020; DOI: 10.7326/M20-4234. Additional Source MedPage Today Source Reference: Lou N "Sobering Data on Risks of Short-Term Oral Corticosteroids" 2020. From https://www.medpagetoday.org/primarycare/generalprimarycare/87959?xid=nl_mpt_DHE_2020-08-08&eun=g1406328d0r&utm_term=NL_Daily_DHE_dual-gmail-definition&vpass=1
  15. I hope your phone appointment went well and- you got some answers! Please keep us posted!
  16. Hypercortisolism Quickly Reversed With Oral Tx Oral osilodrostat (Isturisa) normalized cortisol levels in Cushing's disease patients who were ineligible for or not cured with pituitary surgery, according to the phase III LINC 3 trial. After 24 weeks of open-label treatment with twice-daily osilodrostat, 53% of patients (72 of 137; 95% CI 43.9-61.1) were able to maintain a complete response -- marked by mean 24-hour urinary free cortisol concentration of the upper limit of normal or below -- without any uptitration in dosage after the initial 12-week buildup phase, reported Rosario Pivonello, MD, of the Università Federico II di Napoli in Italy, and colleagues. As they explained in their study online in The Lancet Diabetes & Endocrinology, following the 24-week open-label period these complete responders to treatment were then randomized 1:1 to either remain on osilodrostat or be switched to placebo. During this 10-week randomization phase, 86% of patients maintained their complete cortisol response if they remained on osilodrostat versus only 29% of those who were switched to placebo (odds ratio 13.7, 95% CI 3.7-53.4, P<0.0001) -- meeting the trial's primary endpoint. As for adverse events, more than half of patients experienced hypocortisolism, and the most common adverse events included nausea (42%), headache (34%), fatigue (28%), and adrenal insufficiency (28%). "Alongside careful dose adjustments and monitoring of known risks associated with osilodrostat, our findings indicate a positive benefit-risk consideration of treatment for most patients with Cushing's disease," the researchers concluded. This oral inhibitor of 11β-­hydroxylase -- the enzyme involved in the last step of cortisol synthesis -- was FDA approved in March 2020 based on these findings, and is currently available in 1 mg, 5 mg, and 10 mg film-coated tablets. The prospective trial, consisting of four periods, included individuals between the ages of 18 and 75 with confirmed persistent or recurrent Cushing's disease -- marked by a mean 24-h urinary free cortisol concentration over 1.5 times the upper limit of normal (50 μg/24 hours), along with morning plasma adrenocorticotropic hormone above the lower limit of normal (9 pg/mL). All individuals had either undergone prior pituitary surgery or irradiation, were not deemed to be candidates for surgery, or had refused to have surgery. During the first open-label study period, all participants took 2 mg of oral osilodrostat twice daily, spaced 12 hours apart. This dose was then titrated up if the average of three 24-h urinary free cortisol concentration samples exceeded the upper limit of normal. During the second study period, which spanned weeks 12 through 24, all participants remained on their osilodrostat therapeutic dose. By week 24, about 62% of the participants were taking a therapeutic dose of 5 mg or less twice daily; only about 6% of patients needed a dose higher than 10 mg twice daily. In the third study period, which spanned weeks 26 through 34, "complete responders" who achieved normal cortisol levels were then randomized to continue treatment or be switched to placebo, while those who did not fully respond to treatment continued on osilodrostat. For the fourth study period, from weeks 24 through 48, all participants were switched back to active treatment with osilodrostat. Overall, 96% of participants were able to achieve a complete response at some point while on osilodrostat treatment, with two-thirds of these responders maintaining this normalized cortisol level for at least 6 months. The median time to first complete response was 41 days. Metabolic profiles also improved along with this reduction in cortisol levels. These included improvements in body weight, body mass index, fasting plasma glucose, both systolic and diastolic blood pressures, and total cholesterol levels. "Given the known clinical burden of cardiovascular risk associated with Cushing's disease, the improvement in clinical features shown here indicates important benefits of osilodrostat," the researchers said. "By improving multiple cardiovascular risk factors, our findings are likely to be clinically relevant." Along with metabolic improvements, patients also had "clinically meaningful improvements" in quality of life, as well as reductions in depressive symptoms measured by the Beck Depression Inventory score, the investigators reported. One limitation to the trial, they noted, was an inability to control for concomitant medications, since nearly all participants were taking other medications, particularly antihypertensive and antidiabetic therapies. "Further examination of the effects of osilodrostat on the clinical signs of Cushing's disease, and the reasons for changes in concomitant medications and the association between such medications and clinical outcomes would be valuable," Pivonello's group said. From https://www.medpagetoday.com/endocrinology/generalendocrinology/87827
  17. Dr. Theodore Friedman (The Wiz) will host a webinar on Growth Hormone Deficiency, PCOS or Cushing’s: How do You Tell Them Apart? Dr. Friedman will discuss topics including: Signs and Symptoms of Cushing’s Syndrome Testing for Cushing’s Signs and Symptoms of Growth Hormone Deficiency Testing for Growth Hormone Deficiency Signs and Symptoms of PCOS Testing for PCOS How do you tell them apart? Sunday • August 2 • 6 PM PDT Click here on start your meeting or https://axisconciergemeetings.webex.com/axisconciergemeetings/j.php?MTID=m4eda0c468071bd2daf33e6189aca3489 OR Join by phone: (855) 797-9485 Meeting Number (Access Code): 133 727 0164 Your phone/computer will be muted on entry. Slides will be available on the day of the talk here There will be plenty of time for questions using the chat button. Meeting Password: pcos For more information, email us at mail@goodhormonehealth.com
  18. Dr. Theodore Friedman (The Wiz) will host a webinar on Growth Hormone Deficiency, PCOS or Cushing’s: How do You Tell Them Apart? Dr. Friedman will discuss topics including: Signs and Symptoms of Cushing’s Syndrome Testing for Cushing’s Signs and Symptoms of Growth Hormone Deficiency Testing for Growth Hormone Deficiency Signs and Symptoms of PCOS Testing for PCOS How do you tell them apart? Sunday • August 2 • 6 PM PDT Click here on start your meeting or https://axisconciergemeetings.webex.com/axisconciergemeetings/j.php?MTID=m4eda0c468071bd2daf33e6189aca3489 OR Join by phone: (855) 797-9485 Meeting Number (Access Code): 133 727 0164 Your phone/computer will be muted on entry. Slides will be available on the day of the talk here There will be plenty of time for questions using the chat button. Meeting Password: pcos For more information, email us at mail@goodhormonehealth.com
  19. This event has been postponed to Dec. 5, 2020 You are Cordially Invited! The PNA is pleased to announce our participation in this event! Saturday, December 5, 2020 8:30am – 4:30pm Zuckerman Research Center 417 E. 68th St. New York, NY Memorial Sloan Kettering Cancer Center Target Audience This course is intended for endocrinologists, neurosurgeons, otolaryngologists, radiation oncologists, neurologists, ophthalmologists, neuro-oncologists, family medicine and internal medicine physicians, physicians in training and other allied health professionals who treat and manage patients with pituitary diseases. We also invite patients with pituitary disease and their caregivers to attend this educational activity and participate in our interactive afternoon breakout sessions. Overall this course aims to improve patient care and outcomes through evidence-based discussion of clinical practice guidelines and emerging therapies. Our goal is to assess and update current practices to promote earlier diagnosis and treatment of pituitary diseases. The multidisciplinary nature of the course will allow for the dissemination of knowledge across the variety of practitioners caring for pituitary patients, and for the patients themselves. Pituitary patients will be able to review treatment options, learn about ongoing clinical trials, and discuss their comprehensive care with providers and other patients. The educational objective of this patient session is to provide a forum for pituitary patients to discuss treatment options and new therapies with providers and other patients. Patients with pituitary disease and their caregivers are invited to attend this educational activity FREE of charge. If you are a patient or caregiver interested in attending, please email cme@mskcc.org to register (registration is required in order to attend). Medical Professionals who wish to attend must register online: mskcc.org/PituitaryCourse View Course Flyer
  20. The Barrow Pituitary Center is dedicated to educating patients, caregivers, and loved ones by providing information which is current and non-biased. Experts at this conference will address management of the emotional and physical elements of living with pituitary disorders. We hope attendees will leave empowered to make better-informed decisions about their healthcare and achieve their goals for a long and fruitful life. In Person and Online Registration Options This conference will be offered in person and through live online format with Zoom. We reserve the right to transition to a solely live online format as a result of health concerns as we move into the fall. Participants will be notified if this change develops. Register here
  21. Abstract Despite various approaches to immunoassay and chromatography for monitoring cortisol concentrations, conventional methods require bulky external equipment, which limits their use as mobile health care systems. Here, we describe a human pilot trial of a soft, smart contact lens for real-time detection of the cortisol concentration in tears using a smartphone. A cortisol sensor formed using a graphene field-effect transistor can measure cortisol concentration with a detection limit of 10 pg/ml, which is low enough to detect the cortisol concentration in human tears. In addition, this soft contact lens only requires the integration of this cortisol sensor with transparent antennas and wireless communication circuits to make a smartphone the only device needed to operate the lens remotely without obstructing the wearer’s view. Furthermore, in vivo tests using live rabbits and the human pilot experiment confirmed the good biocompatibility and reliability of this lens as a noninvasive, mobile health care solution. INTRODUCTION The steroid hormone, cortisol, which is known as a stress hormone, is secreted by the adrenal gland when people are stressed psychologically or physically (1). This secretion occurs when the adrenal gland is stimulated by adrenocorticotropic hormone, which is secreted by the pituitary gland when it is stimulated by the corticotropin-releasing hormone secreted by the hypothalamus. This serial cortisol secretion system is referred to as a hypothalamus–pituitary gland–adrenal gland axis, which is affected by chronic stress, resulting in abnormal secretion of cortisol (2, 3). The accumulation of cortisol caused by the abnormal secretion of cortisol increases the concentrations of fat and amino acid, which can result in diverse severe diseases (e.g., Cushing’s disease, autoimmune disease, cardiovascular complications, and type 2 diabetes) and neurological disorders (such as depression and anxiety disorders) (2–7). In contrast, abnormally low cortisol levels can lead to Addison’s disease, which results in hypercholesterolemia, weight loss, and chronic fatigue (8). In addition, it was recently reported that plasma cortisol can be correlated to the prognosis of traumatic brain injury (9). Furthermore, the extent of cortisol secretion varies from person to person, and it changes continuously (10, 11). Thus, developing health care systems for real-time monitoring of the cortisol level has been explored extensively over the past decade as the key to the quantitative analysis of stress levels. Although various efforts have led to the development of cortisol sensors that can measure the concentration of cortisol in blood, saliva, sweat, hair, urine, and interstitial fluid (12–17), the accurate measurement of cortisol concentrations has been limited because of the difficulties associated with the transportation and storage of cortisol as well as the instability of the biologically active cortisol in these body fluids at room temperature. In addition, these conventional sensing methods require bulky equipment for the extraction and analysis of these body fluids, which is not suitable for mobile health care systems (12, 18). Therefore, the development of noninvasive and wearable sensors that can monitor cortisol concentration accurately is highly desirable for a smart health care solution. For example, the immunoassay method, which uses an antigen-antibody binding reaction, has been used extensively for electrochemical cortisol immunosensors using saliva and interstitial fluid, except tears (12, 14, 19). However, these immunosensors still require the use of bulky impedance analyzers for the analysis of the Nyquist plot from electrochemical impedance spectroscopy. Although the cyclic voltammetry (CV) technique can be used as an alternative approach for sensing cortisol, additional bulky electrochemical instruments still are necessary for analyzing the CV curves (13, 14, 19). Recently, wearable forms of cortisol sensors that use sweat were developed (15), but they still required bulky measurement equipment (15, 16). Therefore, portable and smart sensors that can monitor the accurate concentration of cortisol in real time are highly desirable for use in mobile health care. Among the various body fluids, tears, in particular, contain important biomarkers, including cortisol (20, 21). Thus, the integration of biosensors with contact lenses is a potentially attractive candidate for the noninvasive and real-time monitoring of these biomarkers from tears (22–25). However, an approach for fabricating a smart contact lens for sensing the cortisol in tears has not been demonstrated previously. Thus, here, we present an extraordinary approach for the formation of a smart, soft contact lens that enables remote, real-time monitoring of the cortisol level in the wearer’s tears using mobile phones. This smart, soft contact lens is composed of a cortisol sensor, a wireless antenna, capacitors, resistors, and integrated circuit chips that use stretchable interconnects without obstructing the wearer’s view. The components of this device (except the antenna) were protected from mechanical deformations by locating each of the components on discrete, rigid islands and by embedding these islands inside an elastic layer. A graphene field-effect transistor (FET; with the binding of monoclonal antibody) was used as this cortisol immunosensor, which exhibited a sufficiently low detection limit, i.e., 10 pg/ml, for its sensing of cortisol in human tears in which the cortisol concentration ranges from 1 to 40 ng/ml (26). This sensor was integrated with a near-field communication (NFC) chip and antenna inside the soft contact lens for the real-time wireless transmission of the data to the user’s mobile device (e.g., a smart phone or a smart watch). The antenna occupies a relatively large area of this soft lens, so it requires its high stretchability, good transparency, and low resistance for operating a standard NFC chip at 13.56 MHz. In our approach, the hybrid random networks of ultralong silver nanofibers (AgNFs) and fine silver nanowires (AgNWs) enabled high transparency and good stretchability of this antenna and its low sheet resistance for reliable standard NFCs (at 13.56 MHz) inside this smart contact lens. Thus, the fully integrated system of this smart contact lens provided wireless and battery-free operation for the simultaneous detection and transmission of the cortisol concentration from tears to a mobile phone using standard NFC. In addition, a human pilot trial and in vivo tests conducted using live rabbits demonstrated the biocompatibility of this lens, and its safety against inflammation and thermal/electromagnetic field radiation suggests its substantial usability as a noninvasive, mobile health care solution. RESULTS Cortisol immunosensor A graphene FET sensor was fabricated by binding the cortisol monoclonal antibody (C-Mab) to the surface of graphene for the immunosensing of cortisol. Here, graphene acts as a transducer that converts the interaction between cortisol and C-Mab into electrical signals. Figure 1A shows the immobilization process of C-Mab to graphene. Immobilization proceeds through amide bonding of the C-Mab onto the carboxyl group of the graphene surface via the EDC [1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride]/NHS (N-hydroxysulfosuccinimide) coupling reaction. A chemical vapor deposition–synthesized graphene layer was transferred onto a desired substrate and exposed to ultraviolet ozone (UVO) to activate the surface of the graphene with the carboxylate group. Figure S1 shows the contact angle between this surface of the graphene and a droplet of deionized (DI) water. Longer exposure time to UVO can decrease the hydrophobicity of graphene with decreasing the contact angle. Table S1 shows the increase in the electrical resistance of graphene that resulted from this UVO treatment. In our experiment, 2 min of exposure time to UVO decreased the contact angle from 70° to 38° without increasing the resistance of the graphene notably. UVO exposure times longer than this threshold time degraded the resistance of the graphene excessively, so the time of exposure of our samples to UVO was limited to 2 min. Figure S2A illustrates the process of immobilizing C-Mab through the EDC/NHS coupling reaction. This two-step coupling reaction of EDC and NHS can mediate the amide bonding between the carboxylate group of the UVO-exposed graphene and the amine group of the protein (12, 17, 27, 28). Here, EDC forms reactive O-acylisourea ester, thereby making the surface unstable. This O-acylisourea ester reacts with the NHS to form amine-reactive NHS ester with the surface still remaining semistable. Then, C-Mab with the amine group reacts with the amine-reactive NHS ester, thereby forming stable amide bonding that can immobilize C-Mab to the NHS on the surface of the graphene. Figure S2B shows the Fourier transform infrared (FTIR) spectroscopy spectra of the DI water after the cortisol sensor had been immersed for 24 hours. The spectra of the DI water in which the sensor was immersed were not significantly different from those of the pristine DI water. However, the C-Mab solution that had a concentration of 1 μg/ml had a significant peak intensity in the range of 3000 to 2800 cm−1, representing the N-H bonding in the C-Mab. These results indicated that C-Mab formed stable bonding on the carboxylated graphene and was negligibly detached by exposure to water. From https://advances.sciencemag.org/content/6/28/eabb2891
  22. Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the viral strain that has caused the coronavirus disease 2019 (COVID-19) pandemic, has presented healthcare systems around the world with an unprecedented challenge. In locations with significant rates of viral transmission, social distancing measures and enforced ‘lockdowns’ are the new ‘norm’ as governments try to prevent healthcare services from being overwhelmed. However, with these measures have come important challenges for the delivery of existing services for other diseases and conditions. The clinical care of patients with pituitary disorders typically involves a multidisciplinary team, working in concert to deliver timely, often complex, disease investigation and management, including pituitary surgery. COVID-19 has brought about major disruption to such services, limiting access to care and opportunities for testing (both laboratory and radiological), and dramatically reducing the ability to safely undertake transsphenoidal surgery. In the absence of clinical trials to guide management of patients with pituitary disease during the COVID-19 pandemic, herein the Professional Education Committee of the Pituitary Society proposes guidance for continued safe management and care of this population. Introduction In many centers worldwide, the evaluation and treatment of pituitary disorders has already been substantially impacted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the viral strain that has caused the coronavirus disease 2019 (COVID-19) pandemic. With reduced access to routine clinical services, patients with suspected or confirmed pituitary disease face the prospect of delays in diagnosis and implementation of effective treatment plans. Furthermore, patients undergoing surgery may be at increased risk from COVID-19, whilst the risk of infection to healthcare providers during pituitary surgery is of particular concern. Herein, we discuss several clinical scenarios where clinical care can be adjusted temporarily without compromising patient outcomes. For this expert guidance, The Pituitary Society Professional Education Committee, which includes neuroendocrinologists and neurosurgeons from four continents, held an online video conference call with subsequent discussions conducted through email communications. The suggestions are not evidence-based due to the novelty and timing of the pandemic; furthermore, re-evaluation every few months in light of emerging data, is recommended. The approach will also likely vary from country to country depending on the risk of viral infection, local rules for “lockdown”, and the capabilities of individual health care systems. Pituitary surgery challenges during the COVID-19 pandemic The significant challenges to pituitary surgery presented by COVID-19 can be considered in terms of the phase of the pandemic, the patient, the surgeon, and the healthcare institution (Table 1). Table 1 Pituitary surgery challenges and recommendations during COVID-19 pandemic Full size table The World Health Organization (WHO) recognizes several phases of a pandemic wave [1]. When the pandemic is in progress (WHO pandemic phase descriptions; Phase 6) [2] there is a high prevalence of active cases. In the immediate post-peak period, the pandemic activity appears to wane, but active cases remain, and additional waves may follow. Previous pandemics have had many such waves, each separated by several months (www.cdc.gov). The corollary is that there will remain a significant possibility of patients and surgeons contracting COVID-19 until a vaccine is developed or herd immunity is achieved by other means. The patient requiring pituitary surgery may be especially vulnerable to COVID-19 due to age and/or comorbidities. This is particularly true of patients with functioning pituitary adenomas such as those with Cushing’s disease (CD), where cortisol excess results in immunosuppression, hypercoagulability, diabetes mellitus and hypertension, and acromegaly which is also frequently complicated by diabetes mellitus and hypertension. Moreover, the risk for patients undergoing surgery that develop COVID-19 in the perioperative period appears to be very high. In a retrospective analysis of 34 patients who underwent elective—non pituitary—surgeries during the incubation period of COVID-19, 15 (44.1%) patients required admission to the intensive care unit, and 7 (20.5%) died [3]. Although this study included cases of variable technical difficulty, complexity and risk—from excision of breast lump to total hip replacement—we would suggest that patients undergoing pituitary surgery that develop COVID-19 are likely to be at similar or greater risk. These risks must be balanced carefully against the natural history of pituitary disease and, in particular, whether undue delay may result in irreversible morbidity such as visual loss in patients with pituitary apoplexy. The surgeon remains in direct contact with the patient throughout their operation and is therefore at risk of contracting COVID-19 if the patient has an active infection. Iorio-Morin et al. [4] suggest that surgeons performing transsphenoidal pituitary surgery (TSS) may be at the greatest risk, because such surgery is performed under general anesthesia, requiring intubation and extubation, exposes the colonized nasal mucosa, and usually involves sphenoid drilling, which can result in aerosolization of contaminated tissues. The healthcare institution will invariably divert resources from elective services to support the care of patients with COVID-19, with a knock-on effect on the capacity to manage patients with pituitary disease (Table 1). Bernstein et al. [5] suggest that surgery is particularly affected in such reorganization, because of both the need for redeployment of anesthesiologists able to manage patient airways, and availability of protective physical resources such as masks, gowns, and gloves (personal protective equipment; PPE). Furthermore, in areas with high number of infections, several operating rooms (OR)s were converted into intensive care units (ICU) to treat patients with COVID-19, thus limiting patients’ access to elective surgery even more. Recommendations for pituitary surgery When the viral risk is decreasing in a specific geographic area, we would advocate a stepwise, but flexible normalization of activity, addressing each of the aforementioned factors. Burke et al. [6] proposed a staged volume limiting approach to scheduling surgical cases depending on the number of community cases and inpatients with COVID-19, and staffing shortages. In extreme cases, where significant assistance is required from outside institutions, only emergent cases can proceed. Until further data become available, all patients undergoing pituitary surgery should undergo screening for COVID-19, until a vaccine is developed or herd immunity is achieved by other means. At the least, we recommend screening patients for cough, fever, or other recognized symptoms of infection with SARS-CoV-2, and taking swab samples for testing if there is any clinical suspicion. Depending on the level of COVID-19 activity in the community, and available resources, a more exhaustive strategy may be appropriate, including isolation of patients for up to 2 weeks before surgery, paired swabs and/or serological tests for all patients irrespective of symptoms, and routine chest X-ray or chest computed tomography (CT), depending on local guidance. In patients with COVID-19 in whom surgery is indicated, in general we recommend delaying surgery if possible, ideally until patients no longer have symptoms and have a negative swab test result. The nature of the patient’s pituitary disease is an important consideration, and we propose stratifying cases as emergent, urgent, or elective. We recommend that patients continue to be operated on in an emergent fashion if they present with pituitary apoplexy, acute severe visual loss, or other significant mass effect, or if there is concern regarding malignant pathology. Selected patients with slowly progressive visual loss, functioning tumors with aggressive clinical features, and those with an unclear diagnosis, may also benefit from urgent (but not emergent) surgery, with decisions made on a case-by-case basis. Patients with incidental and asymptomatic tumors, known nonfunctioning adenomas [7] or functioning tumors, which are well controlled with medical therapy, can be scheduled as elective cases. In most cases, TSS remains the safest, most effective, and most efficient approach to pituitary tumors. In a series of 9 consecutive patients without COVID-19 undergoing pituitary and skull base surgery during the pandemic, Kolias et al. [8] reported that none of the patients or staff contracted COVID-19 following adoption of a standardized risk-mitigation strategy. In the rare instances where a patient with COVID-19 requires emergent surgery that cannot be deferred, alternative transcranial approaches may be considered (avoiding nasal mucosa). To replace high-speed drilling, the use of non-powered tools such as rongeurs and chisels has been recommended. If this is not possible large suction tubes can be used to aspirate as much particulate matter as possible [9]. In such cases, the availability and use of PPE, and in particular filtering facepiece (FFP3) respirators, is mandated. Depending on the level of COVID-19 activity in the community, and the availability and effectiveness of testing, PPE may be appropriate in all cases. At an institutional level, there must remain flexibility in anticipation of further waves of COVID-19. This necessitates a reduction in capacity, particularly in available ICU beds, that must be recognized when scheduling challenging surgical cases. In the long term, resumption of full elective workloads depends on wider national and international factors, including widespread testing, and widespread immunity through vaccination or other means. Pituitary diseases diagnosis and management Acromegaly Acromegaly, a condition that arises from growth hormone (GH) excess, generally occurs as a result of autonomous GH secretion from a somatotroph pituitary adenoma [10, 11], is associated with substantial morbidity and excess mortality, which can be mitigated by prompt and adequate treatment [12]. Diagnosis is often delayed because of the low prevalence of the disease, the frequently non-specific nature of presenting symptoms, and the typically subtle progression of clinical features [10, 11]. During the COVID-19 pandemic many outpatient clinics have closed or limited work hours. Patients are often reluctant to seek care out of fear of possible exposure to the coronavirus. Therefore, even longer diagnostic delays are anticipated. In addition, patients who present with vision loss and larger tumors encroaching upon the optic apparatus are at risk for experiencing persistent visual compromise unless the optic chiasm and nerves are promptly decompressed. To improve patient access to care and minimize potentially deleterious delays in diagnosis and treatment, clinicians may conduct virtual visits (VV) using secure, internet-based electronic medical record platforms. A detailed history can be obtained and a limited physical examination is possible, including inspection of the face, skin and extremities. Diagnosis Establishing the diagnosis of acromegaly requires testing of serum insulin-like growth factor-I (IGF-I) levels [11] (Box 1). Access to accurate IGF-I assays is critical in light of the substantial analytical and post-analytical problems that have plagued several IGF-I immunoassays. While the oral glucose tolerance test (OGTT) is considered the diagnostic “gold standard”, this test is not essential in many patients, including those with a clear-cut clinical picture and an unequivocally elevated serum IGF-I level. Deferring the lengthy (2-h) OGTT may minimize the risk of potential exposure to infectious agents. Given the over-representation of macroadenomas in patients with acromegaly, pituitary imaging is indicated, preferably by a pituitary-specific magnetic resonance imaging (MRI) protocol, although CT may be performed to rule out a large tumor if MRI is not feasible. Obtaining imaging at satellite sites detached from major hospitals may also decrease the risk of infection exposure. Management Transsphenoidal pituitary surgery remains the treatment of choice for most patients with acromegaly [10, 11], and patients with visual compromise as a result of a pituitary adenoma compressing the optic apparatus should still undergo pituitary surgery promptly. Other patients could be treated medically until the pandemic subsides. Medical treatment options are somatostatin receptor ligands (SRLs), octreotide long-acting release (LAR), lanreotide depot and pasireotide LAR, pegvisomant and cabergoline (used off-label) [13]. Medical therapies can be effective in providing symptomatic relief, control GH excess or action, and potentially reduce tumor size (except pegvisomant, which does not have direct antiproliferative effects). Preoperative medical therapy has been reported to improve surgical outcomes in some, but not all studies. Pasireotide, which potentially can induce QTc prolongation, should be used with caution in patients who are taking, either as prophylaxis or treatment, medications for COVID-19 (azithromycin, hydroxychloroquine), which can also have an effect on QTc interval. Furthermore, as hyperglycemia is very frequent in patients treated with pasireotide and needs close monitoring at start of the treatment, this treatment should be reserved for truly resistant cases, with large tumors and who cannot have surgery yet. Notably, lanreotide depot, cabergoline or pegvisomant can be administered by the patient or a family member and therefore an in-person visit to a clinic is not required. If SRLs that require health care professional administration are required, raising the dose may allow the interval between injections to be extended beyond 4 weeks while maintaining disease control. Virtual visits can be implemented to monitor the patient’s course and response to medical therapy during the pandemic. Careful management of comorbidities associated with acromegaly remains an essential part of patient care [14, 15]. Prolactinomas Hyperprolactinemia may be physiological in origin or arise because of an underlying pathophysiologic cause, medication use or laboratory artifact. Therefore, an initial evaluation for hyperprolactinemia should include a comprehensive medication history, a thorough evaluation for secondary causes, including primary hypothyroidism, and a careful assessment for clinical features of hyperprolactinemia, including hypogonadism and galactorrhea. Unless a secondary cause of hyperprolactinemia can be established definitively, further investigation is indicated to evaluate the etiology of hyperprolactinemia. Diagnosis The diagnosis of a lactotroph adenoma can be inferred in most patients based on the presence of a pituitary adenoma and an elevated prolactin level, which is typically proportionate in magnitude to adenoma size. Pituitary imaging (MRI or CT) is therefore a key step in the investigation of hyperprolactinemia. Evaluation for hypopituitarism is also necessary. Management Although observation and routine follow-up with serial prolactin levels and imaging is acceptable for patients who are asymptomatic and who have a microadenoma, most patients diagnosed with a prolactinoma will require treatment. Dopamine-agonists (DA) can normalize prolactin levels and lead to reduction in size of the lactotroph adenoma [16]. In patients who have a microadenoma and who are not seeking fertility, hormone-replacement therapy may also be appropriate if serum prolactin is routinely followed and imaging performed as necessary. Medical therapy can be managed effectively and efficiently via VVs coupled with laboratory/imaging studies as needed. However, in all patients in whom a DA will be initiated, it is critical that a comprehensive psychiatric history is obtained prior to commencing treatment. Patients may not readily volunteer their psychiatric history and may not appreciate the relevance of such information. For example, until specifically questioned about their psychiatric history, the patient described in the illustrative case (Box 2) did not report a history of severe depression, suicide attempt and prolonged psychiatric hospitalization 8 months prior to presentation with hyperprolactinemia. At the time of the visit, he was not taking any psychiatric medications and was not under the care of a mental health team. Given this patient’s significant psychiatric history, lack of ongoing psychiatric care, and the well-recognized adverse effects of DA therapy, including increased impulsivity, depression and psychosis [17], a DA was not initiated. Counseling on potential DA side-effects is crucial, as they may also present in individuals with no prior psychiatric history [17]. Furthermore, during the COVID-19 pandemic when there is reduced access to routine medical and mental health care, patients who develop symptoms of severe depression may not have ready access to mental health services, or may not seek care. Therefore, it is particularly important to make patients aware of these potential side effects and the critical importance of reporting them. In the small number of patients for whom medical therapy is not possible and where surveillance is not appropriate (e.g., macroprolactinoma with visual loss) the risks and benefits of surgical intervention will need to be carefully weighed. Cushing’s disease Left untreated, CD has significant morbidity and mortality, and delays in diagnosis (from a few months to even years) are common. Clinical presentation is also very variable with some patients having subtle symptoms while others present with more striking/classical features. Severe hypercortisolemia induces immunosuppression, which may place patients with untreated CD at particular risk from COVID-19. New patients referred for endocrinology evaluation with clinical suspicion of Cushing’s Diagnosis Screening for, and confirmation of Cushing’s syndrome (CS) and, furthermore, localization for CD is laborious and requires serial visits and testing procedures [18, 19]. If initial laboratory abnormalities are consistent with hypercortisolemia, a VV should allow for an estimate of the severity of clinical presentation and facilitate planning for further testing and treatment. Careful questioning for potential causes of exogenous CS (including, but not limited to, history of high-dose oral corticosteroids, intraarticular injections or topical preparations) is an important first step. Subsequently, establishing the likelihood and pretest probability of CS is more important than ever now, when testing may be delayed. While presentation varies significantly between patients, some features, although not all highly sensitive, are more specific, e.g. easy bruising, facial plethora, large wide > 1 cm violaceous striae, proximal weakness and hypokalemia. Diagnosis of CS is often challenging even under normal circumstances, however, a diagnosis by VV is more nuanced and difficult. Conversely, if a patient has a high likelihood of CS, we recommend limited laboratory evaluation (urinary free cortisol (UFC), adrenocorticotropic hormone (ACTH), liver panel, basic metabolic panel), preferably at a smaller local laboratory rather than a Pituitary Center, to reduce viral risk exposure. Salivary cortisol samples could represent a hazard for laboratory staff and they are prohibited in some countries [18, 19]. In the US, laboratories have continued to process salivary cortisol samples and salivary cortisol has higher sensitivity compared with UFC and has the convenience of mailing multiple specimens at a time, without travel [18, 19]. Though usually we strongly recommend sequential laboratory testing under normal circumstances, limiting trips to a laboratory is preferred during COVID-19. If preliminary assessment confirms ACTH-dependent CS [18, 19] and no visual symptoms are reported, imaging may be delayed. However, in the presence of any visual symptoms, and recognizing the challenges of undertaking a formal visual field assessment, proceeding directly with MRI or CT (shorter exam time and easier machine access) imaging, will allow confirmation or exclusion of a large pituitary adenoma compressing the optic chiasm. If the latter is confirmed, the patient will need to be evaluated by a neurosurgeon. In contrast, a small pituitary adenoma may not be visible on CT, but in such cases MRI may be deferred for a few months until COVID-19 restrictions limiting access to care are lifted. Another VV will help to decide, in conjunction with patient’s preference, the best next step, which in cases of more severe clinical Cushing’s, and in the absence of a large pituitary adenoma, would be medical therapy. The magnitude of 24 h-UFC elevation could also represent a criterion for primary therapy, since higher values have been associated with increased risk of infection. In parallel, it is also important to address comorbidities including diabetes mellitus, hypertension and hyperlipidemia. In light of the increased risk of venous thromboembolism, in discussion with primary care providers, plans for regular mobilization/exercise as permitted (including at home when orders to stay in are in place) and/or prophylactic low weight molecular heparin should be considered. Management First line medical therapy options vary, depending on country availability, regulatory approval and patient comorbidities. Ideally, an oral medication, which is easier to administer is preferred; options include ketoconazole, osilodrostat or metyrapone [20, 21]. Cabergoline therapy, which has lesser efficacy [20, 21] compared with adrenal steroidogenesis inhibitors, can be also attempted in very mild cases. The initial laboratory profile should be reviewed to exclude significant abnormalities of renal and/or liver function prior to commencing treatment. Starting doses of all medications should be the lowest possible to avoid adrenal insufficiency (AI) and up titration should be slow, with VVs weekly if possible. All patients with CS on any type of medical therapy should have prescribed glucocorticoids (GC) both in oral and injectable forms available at home and information regarding AI should be provided during a VV when starting therapy for CS. Down titration of other medications for diabetes and hypertension may also be needed over time. Pasireotide (both subcutaneous and LAR preparations) would be a second line option, reflecting higher risk of significant hyperglycemia that would require treatment [22]. If the clinical features of CS are mild and longstanding, with no acute deterioration, another possibility is to aggressively treat the associated comorbidities for a few months; depending on local circumstances, this may actually be less risky for the patient by avoiding the risk of AI/crisis and the need for an emergency department (ED) visit and/or admission. For patients with Cushing’s disease with endocrinology chronic care Patients in remission after surgery with adrenal insufficiency on glucocorticoid replacement These patients are likely to remain at slightly higher risk of COVID-19 infection due to immunosuppression from previous hypercortisolemia. Furthermore, GC doses should be adjusted to prevent adrenal crisis and visits to an ED. Lower GC daily doses (10–15 mg hydrocortisone/day) are now frequently used for replacement and virtual and/or phone visits are encouraged to evaluate an appropriate regimen and sufficient supplies of medication and injectable GC (at home) should be prescribed. Patients with potential symptoms of under replacement may require an increase in daily dose, while balancing any risk of GC over replacement and possible consequent immunosuppression. Patients in non-remission treated with medical therapy (dependent on country availability) Doses may need to be adjusted to reduce the risk of AI/crisis and reduce the need for serial laboratory work. Monthly or bimonthly VVs are appropriate for clinical evaluation and up titration should be slower than usual. Patients with CD on medical therapy need to have at home prescriptions for oral and injectable GC and instruction on AI surveillance. Patients should also be advised, that if they develop a fever, to stop Cushing’s medication for few days; if they develop AI symptoms, GC administration will be required. In some countries, block and replace regimens are also employed to avoid risk of AI. Of note, for mifepristone, a glucocorticoid receptor (GR) antagonist, patients will require much higher doses of GC to reverse the blockade (1 mg of dexamethasone approximately per 400 mg of mifepristone) and for several days, as drug metabolites also have GR antagonist effects. Furthermore, for all patients who have made dose changes or discontinued medications for Cushing’s, it is essential to follow very closely and consider adjustments in the doses of concomitant medications, especially insulin, other antidiabetic and antihypertensive medications, and potassium supplements. If patients have history of radiotherapy and are still on medications for CD, a VV every few months should be performed to determine if anti-Cushing’s treatment can be slowly down-titrated (to avoid AI). A morning serum cortisol would be ideal to rule out AI off medications, however, if laboratory testing cannot be undertaken safely, clinical evaluation by serial VVs can be helpful. While head-to-head data will never be available, in COVID-19 hotspots, given the higher risk of infection with laboratory testing or face to face visits, mild hypercortisolemia might be “better” than adrenal crisis, especially in the short term! Patients with CD have increased rates of depression, anxiety and can have decreased quality of life (QoL) even when in long-term remission, thus in the challenging circumstances of the current pandemic it is it even more important to focus on psychological evaluation during virtual endocrinology visits, with referral to virtual counseling as needed. From https://link.springer.com/article/10.1007/s11102-020-01059-7?utm_source=newsletter_370
  23. I think we always knew Cushing's and pregnancy were related... Abstract Cushing’s syndrome (CS) during pregnancy is very rare with a few cases reported in the literature. Of great interest, some cases of CS during pregnancy spontaneously resolve after delivery. Most studies suggest that aberrant luteinizing hormone (LH)/human chorionic gonadotropin (hCG) receptor (LHCGR) seems to play a critical role in the pathogenesis of CS during pregnancy. However, not all women during pregnancy are observed cortisol hypersecretion. Moreover, some cases of adrenal tumors or macronodular hyperplasia with LHCGR expressed, have no response to hCG or LH. Therefore, alternative pathogenic mechanisms are indicated. It has been recently reported that estrogen binding to estrogen receptor α (ERα) could enhance the adrenocortical adenocarcinoma (ACC) cell proliferation. Herein, we hypothesize that ERα is probably involved in CS development during pregnancy. Better understanding of the possible mechanism of ERα on cortisol production and adrenocortical tumorigenesis will contribute to the diagnosis and treatment of CS during pregnancy. Read the entire article here: https://www.sciencedirect.com/science/article/pii/S0306987720303893?via%3Dihub
  24. Presented by Georgios A. Zenonos, MD Assistant Professor of Neurological Surgery Associate Director, Center for Skull Base Surgery University of Pittsburgh Medical Center 200 Lothrop Street, Pittsburgh PA, 15217 Presbyterian Hospital, Suite B400 No Registration is Required. It will be webcast by Microsoft Teams. Click here to attend. Date: Friday, July 17, 2020 Time: 10:00 AM Pacific Daylight Time, 1:00 PM Eastern Daylight Time
  25. Presented by Georgios A. Zenonos, MD Assistant Professor of Neurological Surgery Associate Director, Center for Skull Base Surgery University of Pittsburgh Medical Center 200 Lothrop Street, Pittsburgh PA, 15217 Presbyterian Hospital, Suite B400 No Registration is Required. It will be webcast by Microsoft Teams. Click here to attend. Date: Friday, July 17, 2020 Time: 10:00 AM Pacific Daylight Time, 1:00 PM Eastern Daylight Time
×
×
  • Create New...