Jump to content

MaryO

~Chief Cushie~
  • Posts

    8,073
  • Joined

  • Last visited

  • Days Won

    551

Everything posted by MaryO

  1. Abstract Objectives To assess the diagnostic performance of high-resolution contrast-enhanced MRI (hrMRI) with three-dimensional (3D) fast spin echo (FSE) sequence by comparison with conventional contrast-enhanced MRI (cMRI) and dynamic contrast-enhanced MRI (dMRI) with 2D FSE sequence for identifying pituitary microadenomas. Methods This single-institutional retrospective study included 69 consecutive patients with Cushing’s syndrome who underwent preoperative pituitary MRI, including cMRI, dMRI, and hrMRI, between January 2016 to December 2020. Reference standards were established by using all available imaging, clinical, surgical, and pathological resources. The diagnostic performance of cMRI, dMRI, and hrMRI for identifying pituitary microadenomas was independently evaluated by two experienced neuroradiologists. The area under the receiver operating characteristics curves (AUCs) were compared between protocols for each reader by using the DeLong test to assess the diagnostic performance for identifying pituitary microadenomas. The inter-observer agreement was assessed by using the κ analysis. Results The diagnostic performance of hrMRI (AUC, 0.95–0.97) was higher than cMRI (AUC, 0.74–0.75; p ≤ .002) and dMRI (AUC, 0.59–0.68; p ≤ .001) for identifying pituitary microadenomas. The sensitivity and specificity of hrMRI were 90–93% and 100%, respectively. There were 78% (18/23) to 82% (14/17) of the patients, who were misdiagnosed on cMRI and dMRI and correctly diagnosed on hrMRI. The inter-observer agreement for identifying pituitary microadenomas was moderate on cMRI (κ = 0.50), moderate on dMRI (κ = 0.57), and almost perfect on hrMRI (κ = 0.91), respectively. Conclusions The hrMRI showed higher diagnostic performance than cMRI and dMRI for identifying pituitary microadenomas in patients with Cushing’s syndrome. Key Points • The diagnostic performance of hrMRI was higher than cMRI and dMRI for identifying pituitary microadenomas in Cushing’s syndrome. • About 80% of patients, who were misdiagnosed on cMRI and dMRI, were correctly diagnosed on hrMRI. • The inter-observer agreement for identifying pituitary microadenomas was almost perfect on hrMRI. Introduction Cushing’s syndrome, caused by excessive exposure to glucocorticoids, is associated with considerable morbidity and increased mortality [1]. Cushing’s syndrome has diverse manifestations, including central obesity, moon facies, purple striae, and hypertension [2]. Cushing’s disease, due to adrenocorticotropic hormone (ACTH) hypersecretion from pituitary adenomas, is the most common etiology of ACTH-dependent Cushing’s syndrome [1, 2]. According to the Endocrine Society Clinical Practice Guideline, transsphenoidal surgery is the first-line treatment for Cushing’s disease [3]. The identification of pituitary adenomas on preoperative MRI can significantly increase the postoperative remission rate from 50 to 98% [4]. Therefore, it is critical to identify pituitary adenomas on MRI before surgery. However, there are considerable challenges in identifying ACTH-secreting pituitary adenomas. This is because about 90% of the tumors are microadenomas (less than 10 mm in size) and the median diameter at surgery is about 5 mm [5, 6]. Conventional contrast-enhanced MRI (cMRI) using a two-dimensional (2D) fast spin echo (FSE) sequence has been routinely used to acquire images with 2- to 3-mm slice thickness, but some microadenomas are difficult to be identified on cMRI, resulting in false negatives reported in up to 50% of patients with Cushing’s disease [7]. Dynamic contrast-enhanced MRI (dMRI) increases the sensitivity of identifying pituitary adenomas to 66% [8], but it also increases false positives at the same time [9, 10]. The 3D spoiled gradient recalled (SPGR) sequence has been introduced in high-resolution contrast-enhanced MRI (hrMRI) to acquire images with 1- to 1.2-mm slice thickness. It is reported that the 3D SPGR sequence is superior to the 2D FSE sequence in the identification of pituitary adenomas with a sensitivity of up to 80% [11,12,13], but it cannot satisfy the clinical needs that about 20% of the lesions are still missed. Therefore, techniques are needed that can help better identify pituitary adenomas, particularly microadenomas. Previously, the 3D FSE sequence was recommended in patients with hyperprolactinemia [14]. Recently, the 3D FSE sequence has developed rapidly and can provide superior image quality with diminished artifacts [15]. Sartoretti et al demonstrated in a very effective fashion that the 3D FSE sequence is a reliable alternative for pituitary imaging in terms of image quality [16]. However, to our knowledge, few studies have investigated the diagnostic performance of 3D FSE sequences for identifying ACTH-secreting pituitary adenomas, particularly microadenomas. The aim of our study was to assess the diagnostic performance of hrMRI with 3D FSE sequence by comparison with cMRI and dMRI with 2D FSE sequence for identifying ACTH-secreting pituitary microadenomas in patients with Cushing’s syndrome. Materials and methods This single-institutional retrospective study was approved by the Institutional Review Board of our hospital. The study was conducted in accordance with the Helsinki Declaration. The informed consent was waived due to the retrospective nature of the study. Study participants We retrospectively reviewed the medical records and imaging studies of 186 consecutive patients with ACTH-dependent Cushing’s syndrome, who underwent a combined protocol of cMRI, dMRI, and hrMRI from January 2016 to December 2020. Postoperative patients with Cushing’s disease (n = 97), patients with ectopic ACTH syndrome who underwent pituitary exploration (n = 2), and patients with macroadenomas (n = 5) or lack of pathology (n = 13) were excluded from the study. Finally, 69 patients with ACTH-dependent Cushing’s syndrome were included in the current study (Fig. 1) and the patients included were all surgically confirmed. Fig. 1 Flowchart of patient inclusion/exclusion process and image analysis. ACTH adrenocorticotropic hormone, CD Cushing’s disease, EAS ectopic ACTH syndrome, T1WI T1-weighted imaging, T2WI T2-weighted imaging Full size image MRI protocol All the patients were imaged on a 3.0 Tesla MR scanner (Discovery MR750w, GE Healthcare) using an 8-channel head coil. The MRI protocol included coronal T2-weighted imaging, coronal T1-weighted imaging, and sagittal T1-weighted imaging before contrast injection. After contrast injection of gadopentetate dimeglumine (Gd-DTPA) at 0.05 mmol/kg (0.1 mL/kg) with a flow rate of 2 mL/s followed by a 10-mL saline solution flush, dMRI and cMRI with 2D FSE sequence were obtained first, and hrMRI with 3D FSE sequence using variable flip angle technique was performed immediately afterward. Detailed acquisition parameters are presented in Table S1. Image analysis: diagnostic performance Image interpretation was independently conducted by two experienced neuroradiologists (F.F. and H.Y. with 25 and 16 years of experience in neuroradiology, respectively), who were blinded to patient information. The evaluation order of cMRI, dMRI, and hrMRI sequences was randomized. The identification of pituitary microadenomas on images was scored based on a three-point scale (0 = poor; 1 = fair; 2 = excellent). Scores of 1 or 2 represented the identification of the lesion. Reference standards were established by using all available imaging, clinical, surgical, and pathological resources, with a multidisciplinary team approach. Image analysis: image quality Two readers (Z.L. and B.H. with 4 years of experience in radiology, respectively) were asked to assess the image quality of cMRI, dMRI, and hrMRI. Before exposure to images used in the current study, these readers underwent a training session to make sure that they were comparable to the experienced neuroradiologists in terms of image quality assessment. Images were presented in a random order. Image quality was assessed by using a 5-point Likert scale [17], including overall image quality (1 = non-diagnostic; 2 = poor; 3 = fair; 4 = good; 5 = excellent), sharpness (1 = non-diagnostic; 2 = not sharp; 3 = a little sharp; 4 = moderately sharp; 5 = satisfyingly sharp), and structural conspicuity (1 = non-diagnostic; 2 = poor; 3 = fair; 4 = good; 5 = excellent). An example of image quality assessment is shown in Table S2. Final decision was made through a consensus agreement. The mean signal intensity of pituitary microadenomas, pituitary gland, and noise on cMRI, dMRI, and hrMRI was measured using an operator-defined region of interest. For noise, a 10-mm2 region of interest was placed in the background, and noise was defined as the standard deviation of the signal intensity of the background [17]. For pituitary microadenomas and pituitary gland, the region of interest should include a representative portion of the structure. The mean signal intensity of the pituitary microadenoma was replaced with that of the pituitary gland when no microadenoma was identified. A signal-to-noise ratio (SNR) was defined as the mean signal intensity of the pituitary microadenoma divided by noise. A contrast-to-noise ratio (CNR) was defined as the absolute difference of the mean signal intensity between the normal pituitary gland and pituitary microadenomas divided by noise [17]. Supplementary Fig. 1 shows how to measure the SNR and CNR with the region of interest in a contrast-enhanced pituitary MRI. Supplementary Fig. 2 shows the selection of images for the SNR and CNR calculation. Statistical analysis The κ analysis was conducted to assess the inter-observer agreement for identifying pituitary microadenomas. The κ value was interpreted as follows: below 0.20, slight agreement; 0.21–0.40, fair agreement; 0.41–0.60, moderate agreement; 0.61–0.80, substantial agreement; greater than 0.80, almost perfect agreement. To assess the diagnostic performance of cMRI, dMRI, and hrMRI for identifying pituitary microadenomas, the receiver operating characteristic curves were plotted and the area under curves (AUCs) were compared between MR protocols for each reader by using the DeLong test. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated. The Mann–Whitney U test was used to evaluate the difference in image quality scores and the Wilcoxon signed-rank test was used to evaluate SNR and CNR measurements between MR protocols. A p value of less than 0.05 was considered statistically significant. Statistical analysis was performed using MedCalc Statistical Software (version 20.0.15; MedCalc Software) and SPSS Statistics (version 22.0; IBM). Results Clinical characteristics A total of 69 patients (median age, 39 years; interquartile range [IQR], 29–54 years; 38 women [55%]) with ACTH-dependent Cushing’s syndrome were included in the study and their clinical characteristics are shown in Table 1. Among the 69 patients, 60 (87%) patients were diagnosed with Cushing’s disease and 9 (13%) were ectopic ACTH syndrome. The median disease course was 36 months (IQR, 12–78 months). The median serum cortisol, ACTH, and 24-h urine free cortisol level before surgery were 33.0 μg/dL (IQR, 25.1–40.1 μg/dL; normal range 4.0–22.3 μg/dL), 77.2 ng/L (IQR, 55.0–124.0 ng/L; normal range 0–46 ng/L), and 422.0 μg (IQR, 325.8–984.6 μg; normal range 12.3–103.5 μg), respectively. The median serum cortisol and 24-h urine free cortisol level after surgery were 3.0 μg/dL (IQR, 1.8–18.4 μg/dL) and 195.6 μg (IQR, 63.5–1240.3 μg), respectively. The median diameter of pituitary microadenomas was 5 mm (IQR, 4–5 mm), ranging from 3 to 9 mm. Table 1 Clinical characteristics of the patients Full size table Diagnostic performance of cMRI, dMRI, and hrMRI for identifying pituitary microadenomas The inter-observer agreement for identifying pituitary microadenomas by κ statistic between two readers was moderate on cMRI (κ = 0.50), moderate on dMRI (κ = 0.57), and almost perfect on hrMRI (κ = 0.91), respectively. The diagnostic performance for identifying pituitary microadenomas on cMRI, dMRI, hrMRI, and combined cMRI and dMRI is summarized in Table 2. For reader 1, the diagnostic performance of hrMRI (AUC, 0.95; 95%CI: 0.87, 0.99) was higher than that of cMRI (AUC, 0.75; 95%CI: 0.63, 0.85; p = 0.002), dMRI (AUC, 0.59; 95%CI: 0.47, 0.71; p < 0.001), and combined cMRI and dMRI (AUC, 0.65; 95%CI: 0.53, 0.76; p = 0.001). For reader 2, the diagnostic performance of hrMRI (AUC, 0.97; 95%CI: 0.89, 1.00) was higher than that of cMRI (AUC, 0.74; 95%CI: 0.63, 0.84; p = 0.001), dMRI (AUC, 0.68; 95%CI: 0.56, 0.79; p = 0.001), and combined cMRI and dMRI (AUC, 0.70; 95%CI: 0.58, 0.80; p = 0.003). Table 2 Diagnostic performance of cMRI, dMRI, and hrMRI for identifying pituitary microadenomas Full size table For reader 1, 23 of the 69 patients (33%) were misdiagnosed on both cMRI and dMRI, but 18 of the 23 misdiagnosed patients (78%) were correctly diagnosed on hrMRI. For reader 2, 17 of the 69 patients (25%) were misdiagnosed on both cMRI and dMRI, but 14 of the 17 misdiagnosed patients (82%) were correctly diagnosed on hrMRI. Figure 2 shows that a 5-mm pituitary microadenoma was identified on preoperative pituitary MRI. The margin of the lesion was fully delineated on hrMRI, but not on cMRI and dMRI. Figure 3 shows that a 3-mm pituitary microadenoma was missed on cMRI, but identified on dMRI and hrMRI. Figure 4 shows that a 5-mm pituitary microadenoma was correctly diagnosed on hrMRI, but missed on cMRI or dMRI. Figure 5 shows that a 4-mm pituitary microadenoma was evident on coronal images as well as reconstructed axial and reconstructed sagittal images on hrMRI. Fig. 2 Images in a 56-year-old man with Cushing’s disease. The 5-mm pituitary microadenoma (arrow) can be identified on (a) coronal contrast-enhanced T1-weighted image and (b) coronal dynamic contrast-enhanced T1-weighted image obtained with two-dimensional (2D) fast spin echo (FSE) sequence, but the margin is not fully delineated. The lesion (arrow) is well delineated on (c) coronal contrast-enhanced T1-weighted image on high-resolution MRI obtained with 3D FSE sequence. d Intraoperative endoscopic photograph during transsphenoidal surgery after exposure of the sellar floor shows a round pituitary microadenoma (arrow) Full size image Fig. 3 Images in a 34-year-old woman with Cushing’s disease. No tumor is identified on (a) coronal contrast-enhanced T1-weighted image obtained with two-dimensional (2D) fast spin echo (FSE) sequence. The 3-mm pituitary microadenoma (arrow) with delayed enhancement is identified on the left side of the pituitary gland on (b) coronal dynamic contrast-enhanced T1-weighted image obtained with 2D FSE sequence and (c) coronal contrast-enhanced T1-weighted image on high-resolution MRI obtained with 3D FSE sequence. d Intraoperative endoscopic photograph during transsphenoidal surgery shows a 3-mm pituitary microadenoma (arrow) Full size image Fig. 4 Images in a 43-year-old man with Cushing’s disease. The lesion is missed on (a) coronal contrast-enhanced T1-weighted image and (b) coronal dynamic contrast-enhanced T1-weighted image obtained with two-dimensional (2D) fast spin echo (FSE) sequence. c Coronal contrast-enhanced T1-weighted image on high-resolution MRI obtained with 3D FSE sequence shows a round pituitary microadenoma (arrow) measuring approximately 5 mm with delayed enhancement on the left side of the pituitary gland. d Intraoperative endoscopic photograph for microsurgical resection of the 5-mm pituitary microadenoma (arrow) Full size image Fig. 5 Images in a 48-year-old woman with Cushing’s disease. Preoperative high-resolution contrast-enhanced MRI using three-dimensional fast spin echo sequence shows a 4-mm pituitary microadenoma (arrow) with delayed enhancement is well delineated on the left side of the pituitary gland on (a) coronal, (b) reconstructed axial, and (c) reconstructed sagittal contrast-enhanced T1-weighted images. d Intraoperative endoscopic photograph during transsphenoidal surgery after exposure of the sellar floor shows a round pituitary microadenoma (arrow) Full size image Image quality of cMRI, dMRI, and hrMRI Image quality scores of cMRI, dMRI, and hrMRI are presented in Table 3. Scores for overall image quality, sharpness, and structural conspicuity on hrMRI (overall image quality, 5.0 [IQR, 5.0–5.0]; sharpness, 5.0 [IQR, 4.5–5.0]; structural conspicuity, 5.0 [IQR, 5.0–5.0]) were higher than those on cMRI (overall image quality, 4.0 [IQR, 3.5–4.0]; sharpness, 4.0 [IQR, 3.0–4.0]; structural conspicuity, 4.0 [IQR, 4.0–4.0]; p < 0.001 for all) and dMRI (overall image quality, 4.0 [IQR, 4.0–4.0]; sharpness, 4.0 [IQR, 4.0–4.0]; structural conspicuity, 4.0 [IQR, 4.0–4.5]; p < 0.001 for all). Table 3 Image quality scores on cMRI, dMRI, and hrMRI Full size table The SNR and CNR measurements are shown in Table 4. The SNR of the pituitary microadenomas on hrMRI (67.5 [IQR, 51.2–92.1]) was lower than that on cMRI (82.3 [IQR, 61.8–127.2], p < 0.001), but higher than that on dMRI (53.9 [IQR, 35.2–72.6], p = 0.001). The CNR on hrMRI (26.2 [IQR, 15.1–41.0]) was higher than that on cMRI (10.6 [IQR, 0–42.6], p = 0.023) and dMRI (11.2 [IQR, 0–29.8], p < 0.001). Table 4 SNR and CNR on cMRI, dMRI, and hrMRI Full size table Discussion The identification of pituitary microadenomas is considerably challenging but critical in patients with ACTH-dependent Cushing’s syndrome. Our study demonstrated that hrMRI with 3D FSE sequence had higher diagnostic performance (AUC, 0.95–0.97) than cMRI (AUC, 0.74–0.75; p ≤ 0.002) and dMRI (AUC, 0.59–0.68; p ≤ 0.001) for identifying pituitary microadenomas. To our knowledge, there are no previous studies specifically evaluating the identification of pituitary microadenomas on hrMRI with 3D FSE sequence by comparison with cMRI and dMRI in patients with ACTH-dependent Cushing’s syndrome, and this is the largest study conducted in ACTH-secreting microadenomas with a sensitivity of more than 90%. Recently, techniques for pituitary evaluation have developed rapidly. Because of false negatives and false positives on cMRI and dMRI using 2D FSE sequence [7, 9, 10], a 3D SPGR sequence was introduced for identifying pituitary adenomas. Previous studies demonstrated that the 3D SPGR sequence performed better than the 2D FSE sequence in the identification of pituitary adenomas with a sensitivity of up to 80% [11,12,13]. In patients with hyperprolactinemia, the 3D FSE sequence was recommended [14] and the 3D FSE sequence has rapidly developed recently with superior image quality [15, 16], suggesting that the 3D FSE sequence may be a reliable alternative for identifying pituitary adenomas. However, to our knowledge, few studies have investigated the diagnostic performance of the 3D FSE sequence for identifying ACTH-secreting pituitary adenomas. To fill the gaps, we conducted the current study and revealed that images obtained with the 3D FSE sequence had higher sensitivity (90–93%) in identifying pituitary microadenomas, than that in previous studies using the 3D SPGR sequence [8, 11,12,13]. There is a trade-off between spatial resolution and image noise. The reduced slice thickness can overcome the partial volume averaging effect, but it is associated with increased image noise [17]. Strikingly, our study showed that hrMRI had higher image quality scores than cMRI and dMRI, in terms of overall image quality, sharpness, and structural conspicuity. The SNR of the pituitary microadenomas on cMRI was slightly higher than that on hrMRI in our study. This is because the SNR was calculated as the mean signal intensity of the pituitary gland (instead of the pituitary microadenoma) divided by noise when no microadenoma was identified, and the mean signal intensity of the pituitary gland is higher than that of the pituitary microadenoma. About 40% of pituitary microadenomas were missed on cMRI, whereas less than 10% of pituitary microadenomas were missed on hrMRI. Given the situation mentioned above, the SNR on hrMRI was lower than that on cMRI. However, the CNR on hrMRI was significantly higher than that on cMRI and dMRI. Therefore, hrMRI in our study can dramatically improve the spatial resolution with high CNR, enabling the better identification of pituitary microadenomas. The identification of pituitary adenomas on preoperative MRI in patients with ACTH-dependent Cushing’s syndrome could help the differential diagnosis of Cushing’s syndrome and aids surgical resection of lesions. It should be noted that most of the pituitary adenomas in patients with Cushing’s disease are microadenomas [5, 6]. In our study, all the tumors are microadenomas with a median diameter of 5 mm (IQR, 4–5 mm), making the diagnosis more challenging. The sensitivity of identifying pituitary adenomas decreased from 80 to 72% after excluding macroadenomas in a previous study [12], whereas the sensitivity of identifying pituitary microadenomas in our study was 90–93% on hrMRI. In the current study, hrMRI performed better than cMRI, dMRI, and combined cMRI and dMRI, with high AUC (0.95–0.97), high sensitivity (90–93%), and high specificity (100%), superior to previous studies [8, 11,12,13]. The high sensitivity of hrMRI for identifying pituitary adenomas will help surgeons improve the postoperative remission rate [4]. The high specificity of hrMRI will assist clinicians to consider ectopic ACTH syndrome, and then perform imaging to identify ectopic tumors. Besides, the inter-observer agreement for identifying pituitary microadenomas was almost perfect on hrMRI (κ = 0.91), which was moderate on cMRI (κ = 0.50) and dMRI (κ = 0.57). Therefore, hrMRI using the 3D FSE sequence is a potential alternative that can significantly improve the identification of pituitary microadenomas. Limitations of the study included its retrospective nature and the relatively small sample size in patients with ectopic ACTH syndrome as negative controls. The bias may be introduced in the patient inclusion process. Only those patients who underwent all the cMRI, dMRI, and hrMRI scans were included. In fact, some patients will bypass hrMRI when obvious pituitary adenomas were detected on cMRI and dMRI. These patients were not included in the current study because of lack of hrMRI findings. Given the situation, the sensitivity of identifying pituitary adenomas will be higher with the enrollment of these patients. Besides, the timing of the sequence acquisition after contrast injection is essential [16] and bias may be introduced due to the postcontrast enhancement curve of both the pituitary gland and the microadenoma [14]. In the future, a prospective study with different sequence acquisition orders is needed to minimize possible interference caused by the postcontrast enhancement curve. Moreover, a larger sample size is also needed to verify the diagnostic performance of hrMRI using 3D FSE sequence for identifying pituitary microadenomas and to determine whether it can replace 2D FSE or 3D SPGR sequences for routinely evaluating the pituitary gland. In conclusion, hrMRI with 3D FSE sequence showed higher diagnostic performance than cMRI and dMRI for identifying pituitary microadenomas in patients with Cushing’s syndrome. Abbreviations ACTH: Adrenocorticotropic hormone AUC: Area under the receiver operating characteristics curve cMRI: Conventional contrast-enhanced MRI CNR: Contrast-to-noise ratio dMRI: Dynamic contrast-enhanced MRI FSE: Fast spin echo hrMRI: High-resolution contrast-enhanced MRI IQR: Interquartile range SNR: Signal-to-noise ratio SPGR: Spoiled gradient re called References Lacroix A, Feelders RA, Stratakis CA, Nieman LK (2015) Cushing’s syndrome. Lancet 386:913–927 Article CAS PubMed Google Scholar Loriaux DL (2017) Diagnosis and differential diagnosis of Cushing’s syndrome. N Engl J Med 376:1451–1459 Article CAS PubMed Google Scholar Nieman LK, Biller BM, Findling JW et al (2015) Treatment of Cushing’s syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 100:2807–2831 Article CAS PubMed PubMed Central Google Scholar Yamada S, Fukuhara N, Nishioka H et al (2012) Surgical management and outcomes in patients with Cushing disease with negative pituitary magnetic resonance imaging. World Neurosurg 77:525–532 Article PubMed Google Scholar Vitale G, Tortora F, Baldelli R et al (2017) Pituitary magnetic resonance imaging in Cushing’s disease. Endocrine 55:691–696 Article CAS PubMed Google Scholar Jagannathan J, Smith R, DeVroom HL et al (2009) Outcome of using the histological pseudocapsule as a surgical capsule in Cushing disease. J Neurosurg 111:531–539 Article PubMed PubMed Central Google Scholar Boscaro M, Arnaldi G (2009) Approach to the patient with possible Cushing’s syndrome. J Clin Endocrinol Metab 94:3121–3131 Article CAS PubMed Google Scholar Kasaliwal R, Sankhe SS, Lila AR et al (2013) Volume interpolated 3D-spoiled gradient echo sequence is better than dynamic contrast spin echo sequence for MRI detection of corticotropin secreting pituitary microadenomas. Clin Endocrinol (Oxf) 78:825–830 Article CAS PubMed Google Scholar Lonser RR, Nieman L, Oldfield EH (2017) Cushing’s disease: pathobiology, diagnosis, and management. J Neurosurg 126:404–417 Article PubMed Google Scholar Potts MB, Shah JK, Molinaro AM et al (2014) Cavernous and inferior petrosal sinus sampling and dynamic magnetic resonance imaging in the preoperative evaluation of Cushing’s disease. J Neurooncol 116:593–600 Article PubMed Google Scholar Grober Y, Grober H, Wintermark M, Jane JA, Oldfield EH (2018) Comparison of MRI techniques for detecting microadenomas in Cushing’s disease. J Neurosurg 128:1051–1057 Article PubMed Google Scholar Fukuhara N, Inoshita N, Yamaguchi-Okada M et al (2019) Outcomes of three-Tesla magnetic resonance imaging for the identification of pituitary adenoma in patients with Cushing’s disease. Endocr J 66:259–264 Article PubMed Google Scholar Patronas N, Bulakbasi N, Stratakis CA et al (2003) Spoiled gradient recalled acquisition in the steady state technique is superior to conventional postcontrast spin echo technique for magnetic resonance imaging detection of adrenocorticotropin-secreting pituitary tumors. J Clin Endocrinol Metab 88:1565–1569 Article CAS PubMed Google Scholar Magnaldi S, Frezza F, Longo R, Ukmar M, Razavi IS, Pozzi-Mucelli RS (1997) Assessment of pituitary microadenomas: comparison between 2D and 3D MR sequences. Magn Reson Imaging 15:21–27 Article CAS PubMed Google Scholar Lien RJ, Corcuera-Solano I, Pawha PS, Naidich TP, Tanenbaum LN (2015) Three-Tesla imaging of the pituitary and parasellar region: T1-weighted 3-dimensional fast spin echo cube outperforms conventional 2-dimensional magnetic resonance imaging. J Comput Assist Tomogr 39:329–333 PubMed Google Scholar Sartoretti T, Sartoretti E, Wyss M et al (2019) Compressed SENSE accelerated 3D T1w black blood turbo spin echo versus 2D T1w turbo spin echo sequence in pituitary magnetic resonance imaging. Eur J Radiol 120:108667 Article PubMed Google Scholar Kim M, Kim HS, Kim HJ et al (2021) Thin-slice pituitary MRI with deep learning-based reconstruction: diagnostic performance in a postoperative setting. Radiology 298:114–122 Article PubMed Google Scholar Download references Acknowledgements We thank Dr. Kai Sun, Medical Research Center, Peking Union Medical College Hospital, for his guidance on the statistical analysis in this study. Funding This study has received funding from the National Natural Science Foundation of China (grant 82071899), the National Key Research and Development Program of China (grants 2016YFC1305901, 2020YFA0804500), the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (grants 2017-I2M-3–008, 2021-I2M-1–025), the Beijing Natural Science Foundation (grant L182067) and National High Level Hospital Clinical Research Funding (2022-PUMCH-B-067, 2022-PUMCH-B-114). Author information Author notes Zeyu Liu and Bo Hou contributed equally to this work and share first authorship Hui You and Feng Feng contributed equally to this work and share corresponding authorship Authors and Affiliations Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing Dongcheng Distinct, Beijing, 100730, China Zeyu Liu, Bo Hou, Hui You, Mingli Li & Feng Feng Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing Dongcheng Distinct, Beijing, 100730, China Lin Lu, Lian Duan & Huijuan Zhu Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing Dongcheng Distinct, Beijing, 100730, China Kan Deng & Yong Yao State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing Dongcheng Distinct, Beijing, 100730, China Yong Yao, Huijuan Zhu & Feng Feng Corresponding authors Correspondence to Hui You or Feng Feng. Ethics declarations Guarantor The scientific guarantor of this publication is Feng Feng. Conflict of interest The authors of this manuscript declare no conflict of interest. Statistics and biometry No complex statistical methods were necessary for this paper. Informed consent Written informed consent was waived by the Institutional Review Board. Ethical approval Institutional Review Board approval was obtained. Methodology • retrospective • diagnostic or prognostic study • performed at one institution Additional information Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Supplementary Information Below is the link to the electronic supplementary material. Supplementary file1 (PDF 242 kb) Rights and permissions Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Reprints and Permissions From https://link.springer.com/article/10.1007/s00330-023-09585-1
  2. From Janice: A devastating horrific disease that doctors won’t believe we have. Feeling like we will collapse with each step. Carrying an empty plastic bag seems too heavy to manage. And no one will believe us. They think we are lazy, fat and crazy. What is your experience?
  3. Abstract Importance Cushing syndrome is defined as a prolonged increase in plasma cortisol levels that is not due to a physiological etiology. Although the most frequent cause of Cushing syndrome is exogenous steroid use, the estimated incidence of Cushing syndrome due to endogenous overproduction of cortisol ranges from 2 to 8 per million people annually. Cushing syndrome is associated with hyperglycemia, protein catabolism, immunosuppression, hypertension, weight gain, neurocognitive changes, and mood disorders. Observations Cushing syndrome characteristically presents with skin changes such as facial plethora, easy bruising, and purple striae and with metabolic manifestations such as hyperglycemia, hypertension, and excess fat deposition in the face, back of the neck, and visceral organs. Cushing disease, in which corticotropin excess is produced by a benign pituitary tumor, occurs in approximately 60% to 70% of patients with Cushing syndrome due to endogenous cortisol production. Evaluation of patients with possible Cushing syndrome begins with ruling out exogenous steroid use. Screening for elevated cortisol is performed with a 24-hour urinary free cortisol test or late-night salivary cortisol test or by evaluating whether cortisol is suppressed the morning after an evening dexamethasone dose. Plasma corticotropin levels can help distinguish between adrenal causes of hypercortisolism (suppressed corticotropin) and corticotropin-dependent forms of hypercortisolism (midnormal to elevated corticotropin levels). Pituitary magnetic resonance imaging, bilateral inferior petrosal sinus sampling, and adrenal or whole-body imaging can help identify tumor sources of hypercortisolism. Management of Cushing syndrome begins with surgery to remove the source of excess endogenous cortisol production followed by medication that includes adrenal steroidogenesis inhibitors, pituitary-targeted drugs, or glucocorticoid receptor blockers. For patients not responsive to surgery and medication, radiation therapy and bilateral adrenalectomy may be appropriate. Conclusions and Relevance The incidence of Cushing syndrome due to endogenous overproduction of cortisol is 2 to 8 people per million annually. First-line therapy for Cushing syndrome due to endogenous overproduction of cortisol is surgery to remove the causative tumor. Many patients will require additional treatment with medications, radiation, or bilateral adrenalectomy. From https://jamanetwork.com/journals/jama/article-abstract/2807073
  4. In this application note, Tecan presents a method for diagnosing Cushing's syndrome efficiently and accurately. The approach involves simultaneous the measurement of cortisol and dexamethasone levels using LC-MS/MS, which reduces false positives in dexamethasone suppression test (DSTs). The described LC-MS/MS method enables the tracking of multiple analytes, including cortisol, cortisone, and dexamethasone, in serum or plasma. Implementing this analytical approach offers clinical laboratories a straightforward means of performing DSTs, and the availability of a commercially available kit ensures reliable and reproducible results. Download this Article Download PDF >> From https://www.selectscience.net/application-articles/minimizing-the-number-of-false-positives-in-dexamethasone-suppression-testing-for-the-diagnosis-of-cushings-syndrome?artID=59632
  5. Abstract Rationale: Ectopic ACTH-producing pituitary adenoma (EAPA) of the clivus region is extraordinarily infrequent condition and merely a few reports have been reported to date. Patient concerns: The patient was a 53-year-old woman who presented with Cushing-like appearances and a soft tissue mass in the clivus region. Diagnoses: The final diagnosis of clivus region EAPA was established by clinical, radiological and histopathological findings. Interventions: The patient underwent gross total clivus tumor resection via transsphenoidal endoscopy. Outcomes: Half a year after surgery, the patient Cushing-like clinical manifestations improved significantly, and urinary free cortisol and serum adrenocorticotropin (ACTH) returned to normal. Lessons: Given the extreme scarcity of these tumors and their unique clinical presentations, it may be possible to misdiagnose and delayed treatment. Accordingly, it is especially crucial to summarize such lesions through our present case and review the literature for their precise diagnosis and the selection of optimal treatment strategies. 1. Introduction Pituitary adenoma arises from the anterior pituitary cells and is the commonest tumor of the sellar region.[1] It makes up approximately 10% to 15% of all intracranial tumors.[2] Ectopic pituitary adenoma (EPA) is defined as a pituitary adenoma that occurs outside the sellar area and has no direct connection to normal pituitary tissue.[3] The most frequent sites of EPA are the sphenoid sinus and suprasellar region, and much less frequent sites including the clivus region, cavernous sinus, and nasopharynx.[4] Hypercortisolism and the series of symptoms it leads to is termed Cushing syndrome (CS).[5] CS is classified into adrenocorticotropin (ACTH)-dependent and ACTH-independent CS depending on the cause, accounting for 80% to 85% and 15% to 20% of cases, respectively.[6] Pituitary adenoma accounts for ACTH-dependent CS 75% to 80%, while ectopic ACTH secretion accounts for the remaining 15% to 20%.[7] Ectopic CS is a very rare disorder of CS caused by an ACTH-secreting tumor outside the pituitary or adrenal gland.[8] It has been reported that ectopic ACTH-producing pituitary adenoma (EAPA) can occur in the sphenoid sinus, cavernous sinus, clivus, and suprasellar region,[9] with EAPA in the clivus region being extremely rare, and merely 6 cases have been reported in the English literature (Table 1).[10–15] Furthermore, as summarized in the Table 1, EAPA in the clivus area has unique symptoms, which may lead to misdiagnosis as well as delay in treatment. Therefore, we herein described a case of CS from an EAPA of the clivus region and reviewed relevant literature for the purpose of further understanding this extraordinarily unusual condition. Table 1 - Literature review of cases of primary clival ectopic ACTH-producing pituitary adenoma (including the current case). Reference Age (yr)/sex Symptoms Imaging findings Maximum tumor diameter (mm) Preoperative elevated hormone IHC Surgery RT Follow-up (mo) Outcome Ortiz et al 1975[10] 15/F NA NA NA NA NA Right transfrontal craniotomy, NA Yes NA Symptomatic relief Anand et al 1993[11] 58/F Anosphrasia, blurred vision, occasional left frontal headache, Routine radiographic evaluation revealed a clival tumor and nasopharyngeal mass with bone erosion. MRI demonstrated a Midline homogeneous mass. 30 ACTH ACTH in a few isolated cells Maxillotomy approach, GTR Yes 12 Symptomatic relief Pluta et al 1999[12] 20/F Cushing syndrome MRI revealed a hypodense contrast-enhancing lesion. NA ACTH ACTH Transsphenoidal surgery, GTR No 18 Symptomatic relief Shah et al 2011[13] 64/M Facial paresthesias, myalgias, decreased muscle strength, and fatigue CT imaging showed a clival mass. 21 ACTH ACTH NA, GTR No 7 Symptomatic relief Aftab et al 2021[14] 62/F Transient unilateral visual loss MRI showed a T2 heterogeneously enhancing hyperintense lesion. 21 No ACTH Transsphenoidal resection, GTR NO 6 Symptomatic relief Li et al 2023[15] 47/F Bloody nasal discharge, dizziness and headache CT revealed an ill-defined mass eroding the adjacent bone. MRI T1 showed a heterogeneous mass with hypointensity, hyperintensity on T2-weighted images and isointensity on diffusion-weighted images. 58 NA ACTH Transsphenoidal endoscopy, STR Yes 2 Symptomatic relief Current case 53/F Headache, and dizziness, Cushing syndrome CT demonstrated bone destruction and a soft tissue mass. MRI T1 revealed irregular isointense signal, and MRI T2 showed isointense signal/slightly high signal. 46 ACTH ACTH Transsphenoidal endoscopy, GTR NO 6 Symptomatic relief ACTH = adrenocorticotropin, CT = computed tomography, GTR = gross total resection, IHC = immunohistochemistry, MRI = magnetic resonance imaging, NA = not available, RT = radiotherapy, STR = subtotal resection. 2. Case presentation A 53-year-old female presented to endocrinology clinic of our hospital with headache and dizziness for 2 years and aggravated for 1 week. Her past medical history was hypertension, with blood pressure as high as 180/100 mm Hg. Her antihypertensive medications included amlodipine besylate, benazepril hydrochloride, and metoprolol tartrate, and she felt her blood pressure was well controlled. In addition, she suffered a fracture of the thoracic vertebrae 3 month ago; and bilateral rib fractures 1 month ago. Physical examination revealed that the patient presented classical Cushing-like appearances, including moon face and supraclavicular and back fat pads, and centripetal obesity (body mass index, 25.54 kg/m2) with hypertension (blood pressure, 160/85 mm Hg). Laboratory studies revealed high urinary free cortisol levels at 962.16 µg/24 hours (reference range, 50–437 µg/24 hours) and absence of circadian cortisol rhythm (F [0am] 33.14 µg/dL, F [8am] 33.52 µg/dL, F [4pm] 33.3 µg/dL). ACTH levels were elevated at 90.8 pg/mL (reference range, <46 pg/mL). The patient low-dose dexamethasone suppression test demonstrated the existence of endogenous hypercortisolism. High-dose dexamethasone suppression test results revealed that serum cortisol levels were suppressed by <50%, suggesting the possibility of ectopic ACTH-dependent CS. Serum luteinizing hormone and serum follicle stimulating hormone were at low levels, <0.07 IU/L (reference range, 15.9–54.0 IU/L) and 2.57 IU/L (reference range, 23.0–116.3 IU/L), respectively. Insulin-like growth factor-1, growth hormone (GH), prolactin (PRL), thyroid stimulating hormone, testosterone, progesterone and estradiol test results are all normal. Oral glucose tolerance test showed fasting glucose of 6.3 mmol/L and 2-hour glucose of 18.72 mmol/L; glycosylated hemoglobin (HbA1c) was 7.1%. Serum potassium fluctuated in the range of 3.14 to 3.38 mmol/L (reference range, 3.5–5.5 mmol/L), indicating mild hypokalemia. High-resolution computed tomography (CT) scan of the sinuses revealed osteolytic bone destruction of the occipital clivus and a soft tissue mass measuring 20 mm × 30 mm × 46 mm (Fig. 1A). The mass filled the bilateral sphenoid sinuses and involved the cavernous sinuses, but the pituitary was normal. Cranial MR scan showed the T1W1 isointense signal and the T2W1 isointense signal/slightly high signal in the sphenoid sinus and saddle area (Fig. 1B–D). Bone density test indicated osteoporosis. Figure 1.: Radiological findings. (A) CT demonstrated bone destruction and a soft tissue mass on the occipital clivus (white arrow). (B) Axial view of the MR T1 revealed irregular isointense signal in the sphenoid sinus and saddle area (white arrow). (C and D) Axial view and sagittal view of the MR T2 showed isointense signal/slightly high signal in the sphenoid sinus and saddle area (black arrow). CT = computed tomography. Subsequently, the patient underwent gross total clivus tumor resection via transsphenoidal endoscopy. During surgery, the tumor was found to be light red in color with a medium texture, and the tumor tissue protruded into the sphenoidal sinus cavity and eroded the clival area. Histologically, the tumor cells were nested, with interstitially rich blood sinuses and organoid arrangement (Fig. 2A). The tumor cells were relatively uniform in size, with light red cytoplasm, delicate pepper salt-like chromatin, and visible nucleoli (Fig. 2B). In addition, mitosis of tumor cells was extremely rare. Immunohistochemically, the neoplasm cells were diffuse positive for CK (Fig. 2C), CgA (Fig. 2D), ACTH (Fig. 2E), Syn and CAM5.2, with low Ki-67 labeling index (<1%) (Fig. 2F). Simultaneously, all other pituitary hormone markers like GH, thyroid stimulating hormone, PRL, luteinizing hormone, as well as follicle stimulating hormone were negatively expressed. On the basis of these medically historical, clinical, laboratorial, morphologic, and immunohistochemical findings, the final pathological diagnosis of an EAPA was established. Figure 2.: HE and immunohistochemical findings. (A) Histologic sections revealed morphologically homogeneous tumor cells in nests with a prominent and delicate vascularized stroma (H&E, × 200). (B) The tumor cells had fine chromatin with visible nuclei and rare mitoses (H&E, × 400). CK (C), CgA (D) and ACTH (E) immunohistochemically showed diffuse reactivity of the tumor cells (SP × 200). (F) The proliferation index is <1% on Ki-67 staining (SP × 200). When evaluated 2 months after surgery, her Cushing-like characteristics had well improved, and her blood pressure was normal. Furthermore, her serum cortisol and ACTH returned to the normal levels. Six-month postoperative follow-up revealed that serum cortisol and ACTH were stable at normal levels, and no signs of tumor recurrence were detected on imaging. 3. Discussion EAPA is defined as an ACTH-secreting ectopic adenoma located outside the ventricles, and has no continuity with the normal intrasellar pituitary gland.[9] ACTH promotes cortisol secretion by stimulating the adrenal cortical fasciculus. The clinical manifestations of hypercortisolism are diverse, and the severity is partly related to the duration of the cortisol increase.[8] Clival tumors are typically uncommon, accounting for 1% of all intracranial tumors. There are many differential diagnoses for clival lesions, including the most common chordoma (40%), meningioma, chondrosarcoma, astrocytoma, craniopharyngioma, germ cell tumors, non-Hodgkin lymphoma, melanoma, metastatic carcinoma, and rarely pituitary adenoma.[16] The commonest clival EPA is a PRL adenoma, followed by null cell adenoma, and the least common are ACTH adenoma and GH adenoma.[2] The clival EAPA is extremely unwonted, and only 6 other cases apart from ours have been reported in literature so far (Table 1). The average age of the patients with these tumors was 48 years (range, 15–64 years). There was a obvious female predominance with a female-to-male prevalence ratio of 6:1. Only 2 patients (2/6, 33.3%) with reported clinical symptoms, including our patients, presented with overt clinical manifestations of CS. Compression of the mass on adjacent structures (e.g., nerves) may result in anosphrasia, visual impairment, headache, myalgias, decreased muscle strength, dizziness and facial sensory abnormalities. The diagnosis and localization of these tumors relied heavily on radiological imaging. Head MRI was the most basic method used for them detection, for localization adenomas and their invasion of surrounding structures to guide the choice of treatment and surgical options methods. Radiographic characteristics had been reported in 6 patients with EAPA in the clivus region. All of these patients (6/6, 100%) had initial positive findings of sellar MRI (or CT) identifying an ectopic adenoma before surgery. MR T1 was usually a low-intensity or isointense signal, while MR T2 was usually an isointense or slightly higher signal. The maximum diameter of the tumor was reported in 5 cases, with the mean maximum diameter was 35.2 mm (range, 21–55 mm) according to preoperative MRI and intraoperative observations. As summarized in Table 1, 4/5 clival EAPA cases secreted ACTH. Histologically, all cases (6/6, 100%) expressed ACTH scatteredly or diffusely. The gold standard for the treatment of CS caused by EAPA was the surgical removal of EPA, which was essential to achieve remission and histological confirmation of the disease.[9] The most common method of EAPA resection in the clivus region was transsphenoidal sinus resection (4/6, 66.67%), followed by craniotomy (1/6, 16.67%) and maxillary osteotomy (1/6, 16.67%). Transsphenoidal endoscopic surgery allowed resection of the EAPA and manipulation of neurovascular structures and avoidance of cerebral atrophy, whereas craniotomy allowed full exposure of the suprasellar region, direct visualization or manipulation of the adenoma, and reduced the risk of postoperative CSF leak.[9] Both approaches had their advantages, and there was no consensus on which surgical approach was best for the treatment of EAPA in the slope area.[9] The choice of the best surgical approach was believed to be based on the condition of the adenoma, as well as the general condition of the patient and the experience of the surgeon.[9] As summarized in Table 1, most complete tumor resections were achieved regardless of the method chosen. A minority of patients underwent postoperative radiotherapy (3/7, 42.86%), and most of them had invasion of the surrounding bone tissue. All patients experienced effective postoperative relief of symptoms. In summary, due to the rarity of this disorder, an accurate preoperative diagnosis of EAPA in the slope area is extremely challenging for the clinician or radiologist. The final precise diagnosis relies on a combination of clinical symptoms, imaging findings, histology and immunohistochemical markers. For this type of tumor, surgery is an effective treatment to relieve the clinical manifestations caused by tumor compression or hormonal secretion. The choice of postoperative adjuvant radiotherapy is mainly based on the presence of invasion of the surrounding bone tissue. Further cases may be necessary to summarize the clinical features of such lesions and to develop optimal treatment strategies. Acknowledgments We would like to thank the patient and her family. Author contributions Conceptualization: Yutao He. Data curation: Ziyi Tang. Formal analysis: Na Tang. Methodology: Yu Lu, Fangfang Niu, Jiao Ye, Zheng Zhang, Chenghong Fang. Writing – original draft: Yutao He. Writing – review & editing: Yutao He, Lei Yao. Abbreviations: ACTH adrenocorticotropin CS cushing syndrome CT computed tomography EAPA ectopic ACTH-producing pituitary adenoma EPA ectopic pituitary adenoma GH growth hormone PRL prolactin References [1]. Gittleman H, Ostrom QT, Farah PD, et al. Descriptive epidemiology of pituitary tumors in the United States, 2004-2009. J Neurosurg. 2014;121:527–35. Cited Here | PubMed | CrossRef | Google Scholar [2]. Karras CL, Abecassis IJ, Abecassis ZA, et al. Clival ectopic pituitary adenoma mimicking a Chordoma: case report and review of the literature. Case Rep Neurol Med. 2016;2016:8371697. Cited Here | Google Scholar [3]. Bălaşa AF, Chinezu R, Teleanu DM, et al. Ectopic intracavernous corticotroph microadenoma: case report of an extremely rare pathology. Rom J Morphol Embryol. 2017;58:1447–51. Cited Here | Google Scholar [4]. Zhu J, Wang Z, Zhang Y, et al. Ectopic pituitary adenomas: clinical features, diagnostic challenges and management. Pituitary. 2020;23:648–64. Cited Here | Google Scholar [5]. Paleń-Tytko JE, Przybylik-Mazurek EM, Rzepka EJ, et al. Ectopic ACTH syndrome of different origin-diagnostic approach and clinical outcome. experience of one clinical centre. PLoS One. 2020;15:e0242679. Cited Here | PubMed | CrossRef | Google Scholar [6]. Sharma ST, Nieman LK, Feelders RA. Cushing’s syndrome: epidemiology and developments in disease management. Clin Epidemiol. 2015;7:281–93. Cited Here | Google Scholar [7]. Aniszewski JP, Young WF Jr, Thompson GB, et al. Cushing syndrome due to ectopic adrenocorticotropic hormone secretion. World J Surg. 2001;25:934–40. Cited Here | PubMed | CrossRef | Google Scholar [8]. Mohib O, Papleux E, Remmelink M, et al. An ectopic Cushing’s syndrome as a cause of severe refractory hypokalemia in the ICU. Acta Clin Belg. 2021;76:373–8. Cited Here | Google Scholar [9]. Sun X, Lu L, Feng M, et al. Cushing syndrome caused by ectopic adrenocorticotropic hormone-secreting pituitary adenomas: case report and literature review. World Neurosurg. 2020;142:75–86. Cited Here | Google Scholar [10]. Ortiz-Suarez H, Erickson DL. Pituitary adenomas of adolescents. J Neurosurg. 1975;43:437–9. Cited Here | PubMed | CrossRef | Google Scholar [11]. Anand VK, Osborne CM, Harkey HL. Infiltrative clival pituitary adenoma of ectopic origin. Otolaryngol Head Neck Surg. 1993;108:178–83. Cited Here | PubMed | CrossRef | Google Scholar [12]. Pluta RM, Nieman L, Doppman JL, et al. Extrapituitary parasellar microadenoma in Cushing’s disease. J Clin Endocrinol Metab. 1999;84:2912–23. Cited Here | View Full Text | PubMed | CrossRef | Google Scholar [13]. Shah R, Schniederjan M, DelGaudio JM, et al. Visual vignette.s Ectopic ACTH-secreting pituitary adenoma. Endocr Pract. 2011;17:966. Cited Here | Google Scholar [14]. Aftab HB, Gunay C, Dermesropian R, et al. “An Unexpected Pit” - ectopic pituitary adenoma. J Endocr Soc. 2021;5:A557–8. Cited Here | Google Scholar [15]. Li Y, Zhu JG, Li QQ, et al. Ectopic invasive ACTH-secreting pituitary adenoma mimicking chordoma: a case report and literature review. BMC Neurol. 2023;23:81. Cited Here | Google Scholar [16]. Wong K, Raisanen J, Taylor SL, et al. Pituitary adenoma as an unsuspected clival tumor. Am J Surg Pathol. 1995;19:900–3. Cited Here | View Full Text | PubMed | CrossRef | Google Scholar Hide full references list Keywords: clivus region; Cushing; Ectopic ACTH; like appearance; producing pituitary adenoma From https://journals.lww.com/md-journal/Fulltext/2023/06230/Cushing_syndrome_caused_by_an_ectopic.32.aspx
  6. On July 6, 1953, the NIH Clinical Center opened its doors to patients. Oveta Culp Hobby, the Secretary of Welfare, said at the time, “We are now carrying on in the United States the most intensive and widespread research attack on human disease that the world has ever seen.” Seventy years later, the Clinical Center remains a national focal point for clinical research and creating cures that improve the health of the nation and the world. Upcoming Events Check back for more details! Anniversary Celebration July 2023 Lipsett Auditorium Scientist Artists Exhibit Summer 2023 Clinical Center IF/THEN Exhibit Summer 2023 Clinical Center Arboretums 70th anniversary Grand Rounds Lecture June 28, 2023, noon – 1 pm Lipsett Auditorium Lecture features former NIH Director Dr. Francis Collins. Limited onsite seating. Also available on NIH Videocast. More info at https://www.cc.nih.gov/ocmr/history/70thanniversary.html
  7. In Italy it is estimated that there are about 3,000 patients suffering from Cushing’s syndrome, while in Europe the number rises to over 50,000. The Cushing’s syndrome, a disease caused by the excessive production of cortisol by the pituitary gland due to a benign tumor of the gland, has seen a breakthrough in its treatment. Thanks to a new drug called osilodrostat, approved in 2020 by the Food and Drug Administration and subsequently by Aifa in Italy, patients unfit for surgery can benefit from a treatment that offers the same effects as a scalpel. Furthermore, this drug reduced symptoms in 80% of cases. Cushing’s syndrome has been dubbed “full moon face disease” due to its most obvious visible effects, such as a rounding of the face caused by fat accumulation and visible weight gain also on the waist and back. Despite its symptomatic relevance, the disease has long been poorly understood by both healthcare professionals and the general public. To raise awareness of this syndrome, the #Thiscushing campaign has been launched, which aims to spread knowledge about the disease. The campaign recently stopped in Rome, during the Congress of the Italian Society of Endocrinology (SIE), where a photographic exhibition was organized which represents moments of daily life of people affected by Cushing’s syndrome and their difficulties. Despite the debilitating symptoms, Cushing’s syndrome is often underdiagnosed, resulting in delays in diagnosis of up to 5-7 years. The disease presents a wide range of symptoms, ranging from difficulty performing even simple daily activities such as tying your shoes or getting out of bed, to common manifestations such as high cholesterol, hypertension and hyperglycemia, which can be confused with symptoms of other less common pathologies. serious. It is for this reason that the EIS experts are appealing for the inclusion of Cushing’s syndrome in the list of rare pathologies recognized by the Ministry of Health, in order to facilitate timely diagnosis and faster access to the necessary treatments. From https://www.breakinglatest.news/health/cushings-syndrome-a-new-drug-allows-you-to-avoid-surgery/
  8. YOU’RE INVITED! GoodHormoneHealth Webinar on Oh-Oh-Oh-Ozempic Dr. Theodore Friedman (The Wiz) will giving a webinar on Ozempic and other new weight loss medicines. Topics to be discussed include: Who should go on weight-loss medications? Which weight-loss medications are the best? What are the side effects? How do they work with diet and exercise? How do you get insurance coverage? There will be an opportunity for patients to share their experience on Facebook Sunday • Jul 9, 2023 • 6 PM PDT Via Zoom Click here to join the meeting or https://us02web.zoom.us/j/4209687343?pwd=amw4UzJLRDhBRXk1cS9ITU02V1pEQT09 OR +16699006833,,4209687343#,,,,*111116# OR Join on Facebook Live - https://www.facebook.com/goodhormonehealth Slides will be available on the day of the talk here. There will be plenty of time for questions using the chat button. For more information, email us at mail@goodhormonehealth.com
  9. YOU’RE INVITED! GoodHormoneHealth Webinar on Oh-Oh-Oh-Ozempic Dr. Theodore Friedman (The Wiz) will giving a webinar on Ozempic and other new weight loss medicines. Topics to be discussed include: Who should go on weight-loss medications? Which weight-loss medications are the best? What are the side effects? How do they work with diet and exercise? How do you get insurance coverage? There will be an opportunity for patients to share their experience on Facebook Sunday • Jul 9, 2023 • 6 PM PDT Via Zoom Click here to join the meeting orhttps://us02web.zoom.us/j/4209687343?pwd=amw4UzJLRDhBRXk1cS9ITU02V1pEQT09OR+16699006833,,4209687343#,,,,*111116#ORJoin on Facebook Live - https://www.facebook.com/goodhormonehealth Slides will be available on the day of the talk here. There will be plenty of time for questions using the chat button. For more information, email us at mail@goodhormonehealth.com
  10. Abstract Background The diagnosis of Cushing’s syndrome is challenging; however, through the clinical picture and the search for secondary causes of osteoporosis, it was possible to reach the diagnosis of the case reported. There was an independent, symptomatic ACTH hypercortisolism manifested by typical phenotypic changes, severe secondary osteoporosis and arterial hypertension in a young patient. Case presentation A 20-year-old Brazilian man with low back pain for 8 months. Radiographs showed fragility fractures in the thoracolumbar spine, and bone densitometry showed osteoporosis, especially when evaluating the Z Score (− 5.6 in the lumbar spine). On physical examination, there were wide violaceous streaks on the upper limbs and abdomen, plethora and fat increase in the temporal facial region, hump, ecchymosis on limbs, hypotrophy of arms and thighs, central obesity and kyphoscoliosis. His blood pressure was 150 × 90 mmHg. Cortisol after 1 mg of dexamethasone (24.1 µg/dL) and after Liddle 1 (28 µg/dL) were not suppressed, despite normal cortisoluria. Tomography showed bilateral adrenal nodules with more severe characteristics. Unfortunately, through the catheterization of adrenal veins, it was not possible to differentiate the nodules due to the achievement of cortisol levels that exceeded the upper limit of the dilution method. Among the hypotheses for the differential diagnosis of bilateral adrenal hyperplasia are primary bilateral macronodular adrenal hyperplasia, McCune–Albright syndrome and isolated bilateral primary pigmented nodular hyperplasia or associated with Carney’s complex. In this case, primary pigmented nodular hyperplasia or carcinoma became important etiological hypotheses when comparing the epidemiology in a young man and the clinical-laboratory-imaging findings of the differential diagnoses. After 6 months of drug inhibition of steroidogenesis, blood pressure control and anti-osteoporotic therapy, the levels and deleterious metabolic effects of hypercortisolism, which could also impair adrenalectomy in the short and long term, were reduced. Left adrenalectomy was chosen, given the possibility of malignancy in a young patient and to avoid unnecessary definitive surgical adrenal insufficiency if the adrenalectomy was bilateral. Anatomopathology of the left gland revealed expansion of the zona fasciculate with multiple nonencapsulated nodules. Conclusion The early identification of Cushing’s syndrome, with measures based on the assessment of risks and benefits, remains the best way to prevent its progression and reduce the morbidity of the condition. Despite the unavailability of genetic analysis for a precise etiological definition, it is possible to take efficient measures to avoid future damage. Peer Review reports Background Cushing’s syndrome may be exogenous or endogenous and, in this case, can be ACTH-dependent or independent. In the case reported, there was an independent, symptomatic ACTH hypercortisolism manifested by typical phenotypic changes, severe secondary osteoporosis and arterial hypertension in a young patient. Osteoporosis secondary to hypercortisolism occurs due to chronic reduction in bone formation, loss of osteocytes and increased reabsorption caused by intense binding of cortisol to glucocorticoid receptors present in bone cells [1]. In addition, excess cortisol impairs vitamin D metabolism and reduces endogenous parathyroid hormone secretion, intestinal calcium reabsorption, growth hormone release, and lean body mass [2]. Subclinical Cushing disease occurs in up to 11% of individuals diagnosed with early-onset osteoporosis and 0.5–1% of hypertension patients. [3] A cross-sectional study published in 2023 revealed a prevalence of 81.5% bone loss in 19 patients with Cushing’s syndrome [2]. The prevalence of osteopenia ranges from 60 to 80%, and the prevalence of osteoporosis ranges from 30 to 65% in patients with Cushing’s syndrome. Additionally, the incidence of fragility fractures ranges from 30 to 50% in these patients [4] and is considered the main cause of morbidity affecting the quality of life. The diagnosis is challenging, given the presence of confounding factors; however, through the clinical picture and the search for secondary causes of osteoporosis, it was possible to reach a syndromic diagnosis. Early identification of this syndrome, with measures based on the assessment of risks and benefits, remains the best way to prevent progression and reduce morbidity related to this disease [2]. Case presentation A 20-year-old Brazilian male patient reported low back pain that had evolved for 8 months, with no related trauma. He sought emergency care and performed spinal radiographs on this occasion (03/2019). Due to the several alterations observed in the images, he was referred to the Orthopedics Service of the Hospital of Federal University of Juiz de Fora, which prescribed orthopedic braces, indicated physical therapy and was referred again to the Osteometabolic Diseases outpatient clinic of the Endocrinology and Rheumatology Services of the Hospital of Federal University of Juiz de Fora on 10/2019. The radiographs showed a marked reduction in the density of bone structures, scoliotic deviation with convexity toward the left and reduction in the height of the lumbar vertebrae, with partial collapses of the vertebral bodies at the level of T12, L1, L2, L3 and L5, with recent collapses in T12 and L1, suggesting bone fragility fractures. The same can be seen in posterior magnetic resonance imaging (Fig. 1). Fig. 1 Radiography and Magnetic Resonance Imaging (MRI) of lumbosacral spine in profile Full size image Bone scintigraphy on 08/2019 did not reveal hyper flow or anomalous hyperemia in the topography of the thoracolumbar spine, and in the later images of the exam, there was a greater relative uptake of the tracer in the lumbar spine (vertebrae T10–T12, L2–L4), of nonspecific aspect, questioning the presence of osteoarticular processes or ankylosing spondylitis. It was also observed in the bone densitometry requested in October 2019, performed by dual-energy X-ray absorptiometry (DXA), low bone mineral density (BMD) in the lumbar spine, femoral neck and total femur, when comparing the results to evaluating the Z Score (Table 1). Table 1 Dual-energy X-ray absorptiometry (DXA) Full size table Thus, the diagnosis of osteoporosis was established, and treatment with vitamin D 7000 IU per week was started due to vitamin D3 insufficiency associated with the bisphosphonate alendronate 70 mg, also weekly. The patient had a past pathological history of fully treated syphilis (2018) and perianal condyloma with a surgical resection on 09/2017 and 02/2018. In the family history, it was reported that a maternal uncle died of systemic sclerosis. In the social context, the young person denied drinking alcohol and previous or current smoking. On physical examination, there were no lentiginous skin areas or blue nevi; however, wide violet streaks were observed on the upper limbs and abdomen, with plethora and increased fat in the temporal facial region and hump (Fig. 2a, b), limb ecchymosis, hypotrophy of the arms and thighs, central obesity and kyphoscoliosis. Systemic blood pressure (sitting) was 150 × 90 mmHg, BMI was 26.09 kg/m2, and waist circumference was 99 cm, with no reported reduction in height, maintained at 1.55 m. Fig. 2 Changes in the physical examination. a Violet streaks on the upper limbs, b Violet streaks on abdomen Full size image An investigation of secondary causes for osteoporosis was initiated, with the following laboratory test results (Table 2). Table 2 Laboratory tests Full size table Computed tomography of the abdomen with adrenal protocol performed on 08/13/2020 characterized isodense nodular formation in the body of the left adrenal and in the lateral portion of the right adrenal, measuring 1.5 cm and 0.6 cm, respectively. The lesions had attenuation of approximately 30 HU, showing enhancement by intravenous contrast, with an indeterminate washout pattern in the late phase after contrast (< 60%) (Fig. 3). Fig. 3 Computed tomography abdomen with adrenal protocol Full size image After contact with the interventional radiology of the Hospital of Federal University of Juiz de Fora, catheterization of adrenal veins was performed on 10/2020; however, it was not possible to perform adequate lesion characterization due to obtaining serum cortisol levels that extrapolated the dilutional upper limit of the method (Table 3). Table 3 Adrenal catheterization Full size table The calculation of the selectivity index was 6.63 (Reference Value (RV) > 3), confirming the good positioning of the catheter within the vessels during the procedure. The calculated lateralization index was 1.1296 (VR < 3), denoting bilateral hormone production. However, as aldosterone was not collected from a peripheral vein, it was not possible to obtain the contralateral rate and define whether there was contralateral suppression of aldosterone production [5]. Due to pending diagnoses for a better therapeutic decision and Cushing’s syndrome in clear evolution and causing organic damage, it was decided, after catheterization, to make changes in the patient’s drug prescription. Ketoconazole 400 mg per day was started, the dose of vitamin D was increased to 14,000 IU per week, and ramipril 5 mg per day was prescribed due to secondary hypertension. In addition, given the severity of osteoporosis, it was decided to replace previously prescribed alendronate with zoledronic acid. Magnetic resonance imaging of the upper abdomen was performed on 06/19/2021, which demonstrated lobulated nodular thickening in the left adrenal gland with areas of decreased signal intensity in the T1 out-phase sequence, denoting the presence of fat, and homogeneous enhancement using contrast, measuring approximately 1.7 × 1.5 × 1.3 cm, suggestive of an adenoma. There was also a small nodular thickening in the lateral arm of the right adrenal, measuring approximately 0.8 × 0.6 cm, which was difficult to characterize due to its small dimensions and nonspecific appearance. PPNAD or carcinoma became an important etiological hypothesis for the case described when comparing the epidemiology in a young man and the clinical-laboratory-imaging findings of the differential diagnoses. According to a dialog with the patient and family, the group of experts opted for unilateral glandular surgical resection on the left side (11/11/2021), where more significant changes were visualized, as there was a possibility of malignancy in a young patient and to avoid a definitive adrenal insufficiency condition because of bilateral adrenalectomy. This would first allow the analysis of the material and follow-up of the evolution of the condition with the permanence of the contralateral gland. In the macroscopic analysis of the adrenalectomy specimen, adrenal tissue weighing 20 g and measuring 9.3 × 5.5 × 2.0 cm was described, completely surrounded by adipose tissue. The gland has a multinodular surface and varies between 0.2 and 1.6 cm in thickness, showing a cortex of 0.1 cm in thickness and a medulla of 1.5 cm in thickness (Fig. 4). Fig. 4 Left adrenal Full size image The microscopic analysis described the expansion of the zona fasciculate, with the formation of multiple nonencapsulated nodules composed of polygonal cells with ample and eosinophilic cytoplasm and frequent depletion of intracytoplasmic lipid content. No areas of necrosis or mitotic activity were observed. The histopathological picture is suggestive of cortical pigmented micronodular hyperplasia of the adrenal gland. For the final etiological definition and an indication of contralateral adrenalectomy, which could be unnecessary and would avoid chronic corticosteroid therapy, or else, it would be necessary to protect the patient from future complications with the maintenance of the disease in the right adrenal gland, it would be essential to search for mutations in the PRKAR1A, PDE11A, PDE8B and PRKACA genes [15]; however, such genetic analysis is not yet widely available, and the impossibility of carrying it out at the local level did not allow a complete conclusion of the case. Discussion Through the clinical picture presented and the research of several secondary causes for osteoporosis, it was possible to arrive at the diagnosis of Cushing syndrome [6]. There was symptomatic independent ACTH hypercortisolism, manifested by typical phenotypic changes, severe secondary osteoporosis, and arterial hypertension in a young patient. The diagnosis of Cushing’s syndrome is always challenging, given the presence of confounding factors such as the following: Physiological states of hypercortisolism—pseudo Cushing (strenuous exercise, pregnancy, uncontrolled diabetes, sleep apnea, chronic pain, alcohol withdrawal, psychiatric disorders, stress, obesity, glucocorticoid resistance syndromes); Cyclic or mild—subclinical Cushing’s pictures; Frequent and, even unknown, short- and long-term use of corticosteroids under different presentations; Increase in the general population incidence of diabetes and obesity; Screening tests with singularities for collection and individualized for different patient profiles. It is important to note that the basal morning cortisol measurement is not the ideal test to assess hypercortisolism and is better applied to the assessment of adrenal insufficiency. However, the hypercortisolism of the case was unequivocal, and this test was also shown to be altered several times. As no test is 100% accurate, the current guidelines suggest the use of at least two first-line functional tests that focus on different aspects of the pathophysiology of the hypothalamic‒pituitary‒adrenal axis to confirm the hypercortisolism state: 24-hours cortisol, nocturnal salivary cortisol, morning serum cortisol after suppression with 1 mg of dexamethasone or after Liddle 1. Given that night-time salivary cortisol would require hospitalization, the other suggested tests were chosen, which are easier to perform in this context [7, 8]. Subsequently, tests were performed to determine the cause of hypercortisolism, such as serum ACTH levels and adrenal CT. The suppressed ACTH denoted the independence of its action. CT showed bilateral adrenal nodules with more severe features: solid lesion, attenuation > 10 UI on noncontrast images, and contrast washout speed < 60% in 10 minutes. In this case, it is essential to make a broad clinical decision and dialog with the patient to weigh and understand the risks and benefits of surgical treatment [9]. Among the main diagnostic hypotheses for the differential diagnosis of bilateral adrenal hyperplasia are primary bilateral macronodular adrenal hyperplasia, McCune–Albright syndrome (MAS) and bilateral primary pigmented nodular hyperplasia (PPNAD) isolated or associated with Carney’s complex. Another possibility would be bilateral adrenocorticotropic hormone (ACTH)-dependent macronodular hyperplasia secondary to long-term adrenal stimulation in patients with Cushing’s disease (ACTH-secreting pituitary tumor) or ectopic ACTH production, but the present case did not present with ACTH elevation. Primary macronodular adrenal hyperplasia (nodules > 1 cm) predominates in women aged 50–60 years and may also be detected in early childhood (before 5 years) in the context of McCune–Albright syndrome. Most cases are considered sporadic; however, there are now several reports of familial cases whose presentation suggests autosomal dominant transmission. Several pathogenic molecular causes were identified in the table, indicating that it is a heterogeneous disease [10]. The pathophysiology occurs through the expression of anomalous ectopic hormone receptors or amplified eutopic receptors in the adrenals. It usually manifests in an insidious and subclinical way, with cortisol secretion mediated through receptors for gastric inhibitory peptide (GIP), vasopressin (ADH), catecholamines, interleukin 1 (IL-1), leptin, luteinizing hormone (LH), serotonin or others. Nodular development is not always synchronous or multiple; thus, hypercortisolism only manifests when there is a considerable increase in the number of adrenocortical cells, with severe steroidogenesis observed by cortisoluria greater than 3 times the upper limit of normal. Patients with mild Cushing’s syndrome should undergo screening protocols to identify aberrant receptors, as this may alter the therapeutic strategy. If there is evidence of abnormal receptors, treatment with beta-blockers is suggested for patients with beta-adrenergic receptors or with gonadotropin-releasing hormone (GnRH) agonists (and sex steroid replacement) for patients with LH/hCG receptors. In patients in whom aberrant hormone receptors are not present or for whom no specific pharmacological blockade is available or effective, the definitive treatment is bilateral adrenalectomy, which is known to make the patient dependent on chronic corticosteroid therapy [11]. Studies have shown the effectiveness of unilateral surgery in the medium and long term, opting for the resection of the adrenal gland of greater volume and nodularity by CT, regardless of the values obtained by catheterization of adrenal veins, but with the possibility of persistence or recurrence in the contralateral gland. Another possibility would be total unilateral adrenalectomy associated with subtotal contralateral adrenalectomy [12]. In McCune–Albright syndrome (MAS), there are activating mutations in the G-protein GNAS1 gene, generating autonomic hyperfunction of several tissues, endocrine or not, and there may be, for example, a constant stimulus similar to ACTH on the adrenal gland. In this case, pituitary levels of ACTH are suppressed, and adrenal adenomas with Cushing’s syndrome appear. Hypercortisolism may occur as an isolated manifestation of the syndrome or be associated with the triad composed of polyostotic fibrous dysplasia, café au lait spots with irregular borders and gonadal hyperfunction with peripheral precocious puberty. The natural history of Cushing’s syndrome in McCune-Albright syndrome (MAS) is heterogeneous, with some children evolving with spontaneous resolution of hypercortisolism, while others have a more severe condition, eventually requiring bilateral adrenalectomy [13]. PPNAD predominates in females, in people younger than 30 years, multiple and small (< 6 mm) bilateral pigmented nodules (surrounded by atrophied cortex), which can reach 1.5 cm in adulthood, with family genetic inheritance (66%) or sporadic inheritance (33%), and as part of the Carney complex reported in 40% of cases. In 70% of cases, inactivating mutations are identified in the PKA regulatory 1-alpha subunit (PRKAR1A), a tumor suppressor gene [14]. Osteoporosis is often associated with this condition [15]. One test that can distinguish patients with PPNAD from other primary adrenocortical lesions is cortisoluria after sequential suppression with low- and high-dose dexamethasone. In contrast to most patients with primary adrenocortical disease, who demonstrate no change in urinary cortisol, 70% of PPNAD patients have a paradoxical increase in urinary cortisol excretion [16]. The treatment of choice for PPNAD is bilateral adrenalectomy due to the high recurrence rate for primary adrenal disease [17]. Carney complex is a multiple neoplastic syndrome with autosomal dominant transmission, characterized by freckle-like cutaneous hyperpigmentation (lentiginosis), endocrine tumors [(PPNAD), testicular and/or thyroid tumors and acromegaly] and nonendocrine tumors, including cutaneous, cardiac, mammary, and osteochondral myxomas, among others. In the above case, the transthoracic echocardiogram of the patient on 03/18/2021 showed cavities of normal dimensions, preserved systolic and diastolic functions, no valve changes and no lentiginous skin areas and blue nevi, making the diagnosis of the syndrome less likely. The definitive diagnosis of Carney requires two or more main manifestations. Several related clinical components may suggest the diagnosis but not define it. The diagnosis can also be made if a key criterion is present and a first-degree relative has Carney or an inactivating mutation of the gene encoding PRKAR1A [18]. The adenoma is usually small in size (< 3 cm), similar to the nodules in this case; however, it is usually unilateral, with an insidious and mild evolution, especially in adult women over 35 years of age, producing only 1 steroid class. Carcinomas are usually large (> 6 cm), and only 10% are bilateral. They should be suspected mainly when the tumor presents with hypercortisolism associated with hyperandrogenism. They have a bimodal age distribution, with peaks in childhood and adolescence, as well as at the end of life [3]. Conclusion Early identification of Cushing’s syndrome, with measures based on the assessment of risks and benefits, remains the best way to prevent progression and reduce morbidity [2]. After 6 months of drug inhibition of steroidogenesis, blood pressure control and anti-osteoporotic therapy, the objective was to minimize the levels and deleterious metabolic effects of hypercortisolism, which could also harm the surgical procedure in the short and long term through infections, dehiscence, nonimmediate bed mobilization and cardiovascular events. Unilateral adrenalectomy was chosen, given the possibility of malignancy in a young patient and to avoid definitive surgical adrenal insufficiency if the adrenalectomy was bilateral. Despite the unavailability of genetic analysis for a precise etiological definition, it is possible to take efficient measures to avoid unnecessary consequences or damage. Availability of data and materials All data generated or analysed during this study are included in this published article [and its Additional file 1]. The datasets generated and/or analysed during the current study are available in the link https://ufjfedubr-my.sharepoint.com/:v:/g/personal/barbara_reis_ufjf_edu_br/EVpIR005sPZGlQvMJhIwSaUB0Hig4KOjhkG4D4cMggUwHA?e=Dk8tng. Abbreviations ACTH: Adrenocorticotropic hormone PPNAD: Bilateral primary pigmented nodular hyperplasia DXA: Dual energy X-ray absorptiometry GIP: Gastric inhibitory peptide GnRH: Gonadotropin-releasing hormone IL-1: Interleukin 1 BMD: Low bone mineral density LH: Luteinizing hormone MAS: McCune–Albright syndrome PRKAR1A: PKA regulatory 1-alpha subunit ADH: Vasopressin References Pedro AO, Plapler PG, Szejnfeld VL. Manual brasileiro de osteoporose: orientações práticas para os profissionais de saúde. 1st ed. São Paulo: Editora Clannad; 2021. ISBN 978-65-89832-00-3. Naguib R, Elkemary EZ, Elsharkawi KM. The severity of bone loss: a comparison between Cushing’s disease and Cushing’s syndrome. J Endocrinol Metab. 2023;13(1):33–8. https://doi.org/10.14740/jem857. Article Google Scholar Vilar L, et al. Endocrinologia Clínica. 6th ed. Rio de Janeiro: Guanabara Koogan; 2016. Google Scholar Wang D, Dang CX, Hao YX, Yu X, Liu PF, Li JS. Relationship between osteoporosis and Cushing syndrome based on bioinformatics. Medicine (Baltimore). 2022;101(43): e31283. Article CAS PubMed Google Scholar Williams TA, Reincke M. Management of Endocrine Disease: diagnosis and management of primary aldosteronism: the Endocrine Society guideline 2016 revisited. Eur J Endocrinol. 2018;179(1):R19–29. https://doi.org/10.1530/EJE-17-0990. Article CAS PubMed Google Scholar Compston J, Cooper A, Cooper C, Gittoes N, Gregson C, Harvey N, National Osteoporosis Guideline Group (NOGG), et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos. 2017;12(1):43. https://doi.org/10.1007/s11657-017-0324-5. Article CAS PubMed PubMed Central Google Scholar Nieman LK. Diagnosis of Cushing’s syndrome in the modern era. Endocrinol Metab Clin N Am. 2018;47(2):259–73. https://doi.org/10.1016/j.ecl.2018.02.001. Article Google Scholar Herr K, Muglia VF, Koff WJ, Westphalen AC. Imaging of the adrenal gland lesions. Radiol Bras. 2014;47(4):228–39. https://doi.org/10.1590/0100-3984.2013.1762. Article PubMed PubMed Central Google Scholar Hsiao HP, Kirschner LS, Bourdeau I, Keil MF, Boikos SA, Verma S, et al. Clinical and genetic heterogeneity, overlap with other tumor syndromes, and atypical glucocorticoid hormone secretion in adrenocorticotropin-independent macronodular adrenal hyperplasia compared with other adrenocortical tumors. J Clin Endocrinol Metab. 2009;94(8):2930–7. https://doi.org/10.1210/jc.2009-0516. Article CAS PubMed PubMed Central Google Scholar Mircescu H, Jilwan J, N’Diaye N, et al. Are ectopic or abnormal membrane hormone receptors frequently present in adrenal Cushing’s syndrome? J Clin Endocrinol Metab. 2000;85(10):3531–6. https://doi.org/10.1210/jcem.85.10.6865. Article CAS PubMed Google Scholar Miller BS, Auchus RJ. Evaluation and treatment of patients with hypercortisolism: a review. JAMA Surg. 2020;155(12):1152–9. https://doi.org/10.1001/jamasurg.2020.3280. Article PubMed Google Scholar Haddad NG, Eugster EA. Peripheral precocious puberty including congenital adrenal hyperplasia: causes, consequences, management and outcomes. Best Pract Res Clin Endocrinol Metab. 2019;33(3):101273. https://doi.org/10.1016/j.beem.2019.04.007. Article PubMed Google Scholar Bonnet-Serrano F, Bertherat J. Genetics of tumors of the adrenal cortex. Endocr Relat Cancer. 2018;25(3):R131–52. https://doi.org/10.1530/ERC-17-0361. Article CAS PubMed Google Scholar Carney JA, Young WF Jr. Primary pigmented nodular adrenocortical disease and its associated conditions. Endocrinologist. 1992;2:6. Article Google Scholar Stratakis CA, Sarlis N, Kirschner LS, Carney JA, Doppman JL, Nieman LK, et al. Paradoxical response to dexamethasone in the diagnosis of primary pigmented nodular adrenocortical disease. Ann Intern Med. 1999;131(8):585–91. https://doi.org/10.7326/0003-4819-131-8-199910190-00006. Article CAS PubMed Google Scholar Powell AC, Stratakis CA, Patronas NJ, Steinberg SM, Batista D, Alexander HR, et al. Operative management of Cushing syndrome secondary to micronodular adrenal hyperplasia. Surgery. 2008;143(6):750–8. https://doi.org/10.1016/j.surg.2008.03.022. Article PubMed Google Scholar Almeida MQ, Stratakis CA. Carney complex and other conditions associated with micronodular adrenal hyperplasias. Best Pract Res Clin Endocrinol Metab. 2010;24(6):907–14. https://doi.org/10.1016/j.beem.2010.10.006. Article CAS PubMed PubMed Central Google Scholar Hannah-Shmouni F, Stratakis CA. A gene-based classification of primary adrenocortical hyperplasias. Horm Metab Res. 2020;52(3):133–41. https://doi.org/10.1055/a-1107-2972. Article CAS PubMed Google Scholar Download references Acknowledgements Not applicable. Funding Not applicable. Author information Authors and Affiliations Serviço de Endocrinologia, Hospital Universitário da Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil Bárbara Oliveira Reis, Christianne Toledo Sousa Leal, Danielle Guedes Andrade Ezequiel, Ana Carmen dos Santos Ribeiro Simões Juliano, Flávia Lopes de Macedo Veloso, Leila Marcia da Silva, Lize Vargas Ferreira, Mariana Ferreira & Gabriel Zeferino De Oliveira Souza Contributions All the authors contributed to the conception and design of the work and have approved the submitted version. All authors read and approved the final manuscript. Corresponding author Correspondence to Bárbara Oliveira Reis. Ethics declarations Ethics approval and consent to participate Not applicable. Consent for publication Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal. Competing interests The authors declare that they have no competing interests. Additional information Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Supplementary Information Additional file 1. Surgical removal of adrenal gland. Rights and permissions Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Reprints and Permissions From https://jmedicalcasereports.biomedcentral.com/articles/10.1186/s13256-023-03968-0
  11. Abstract The association between empty sella turcica (EST) syndrome and Cushing's disease has been rarely reported. It is plausible to hypothesize that EST syndrome in association with Cushing's disease can be attributed to intracranial hypertension. In this case report, we present a 47-year-old male patient who presented with weight loss, fatigue, easy bruising, acanthosis nigricans, and skin creases hyperpigmentation. Investigations revealed hypokalemia and confirmed the diagnosis of Cushing's disease. Magnetic resonance imaging (MRI) brain showed a partial EST syndrome and a new pituitary nodule as compared with previous brain imaging. Transsphenoidal surgery was pursued and was complicated by cerebrospinal fluid leakage. This case reflects the rare association of EST syndrome and Cushing's disease, suggesting the increased risk of postoperative complications in this setting and the diagnostic challenge that EST syndrome imposes. We review the literature for a possible mechanism of this association. Introduction Cushing's disease is commonly caused by an adrenocorticotropic hormone (ACTH)-producing pituitary adenoma, which can be very challenging to be seen on brain magnetic resonance imaging (MRI) [1]. Empty sella turcica (EST) syndrome is a radiological diagnosis of apparently empty turcica secondary to outpouching of the arachnoid mater into the turcica, which can be attributed to intracranial hypertension (ICHTN). This can make the visual diagnosis of pituitary adenoma even more challenging in clinical practice. ICHTN has been also associated with Cushing's disease and might explain this infrequent association between EST and Cushing's disease [1]. EST syndrome can be either partial or complete, primary or secondary and has been seen infrequently with Cushing's disease. In this setting, not only that it is likely to obscure an underlying pituitary lesion, but also it does contribute to the risk of postoperative complications [2]. Case Presentation A 47-year-old male presented to the emergency department (ED) with slowly progressive generalized limb muscle weakness affecting both distal and proximal muscles over a few weeks and gait instability for three days prior to presentation. He also reported unintentional 40 pounds weight loss over the previous four months. Past medical history was significant for type II diabetes mellitus, hypothyroidism, hypertension, and dyslipidemia. In the ED, vital signs included a blood pressure of 140/90 mmHg, a heart rate of 66 beats per minute, a respiratory rate of 16 cycles per minute, and SpO2 of 97% on room air. Body mass index has decreased to 22 kg/m2 from a baseline of 26 kg/m2 one month prior. On the physical exam, he exhibited cachexia, easy bruising, acanthosis nigricans, and hyperpigmentation of skin creases. All other systems were negative. Complete metabolic panel and complete blood count were obtained showing hyperglycemia of 311 mg/dl, see Table 1. Further lab evaluation showed elevated salivary cortisol at 2.96 microgram/dl (reference range 0.094-1.551 mcg/dl), elevated 24-hour urinary free cortisol at 156 mcg/24 hour (reference 10-100 mcg/24h), positive overnight dexamethasone suppression test with serum cortisol at 2.8 mcg/dl (reference more than 2 mcg/dl), negative anti-adrenal antibodies, normal aldosterone, and elevated dehydroepiandrostenedione at 401 mcg/dl (reference 32-240 mcg/dl), with lack of suppression of the ACTH level at 35.1 pg/ml (reference 10-60 pg/ml). This confirmed the diagnosis of Cushing's disease. Variable Finding Reference Random glucose 311 Less than 200 mg/dl Sodium 141 137-145 mmol/L Potassium 2.5 3.5-5.1 mmol/L Chloride 96 98-107 mmol/L Bicarbonate 32 22-30 mmol/L Blood urea nitrogen 32 9-20 mg/dl Creatinine 0.52 0.66-1.25 mg/dl Calcium 8.7 8.6-10.3 mg/dl Total protein 5.5 6.5-8.5 g/dl Albumin 3.3 3.5-5 g/dl Total bilirubin 0.6 0.2-1.3 mg/dl Alkaline phosphatase 115 38-126 U/L Aspartate transaminase 17 17-59 U/L Alanine transaminase 39 Less than 49 U/L White blood cell count 10x10^3 cells/mcl 4-10x1063 cells/mcl Hemoglobin 15.3 13.7-17.5 g/dl Platelet 281 150-400x10^3 cells/mcl Table 1: Lab Findings Computed tomography (CT) scan of the head was unremarkable. CT scan of the chest was also unremarkable. CT scan of abdomen and pelvis showed no adrenal mass. Ultrasound of the kidneys was unremarkable. Pituitary MRI brain protocol for adenoma showed a partial EST, shortening within neurohypophysis and a new 10 x 8 x 4 mm nodule along the floor of pituitary sella as compared to MRI four years ago (Figure 1). Figure 1: Magnetic Resonance Imaging (MRI) Brain MRI brain showing partially empty sella turcica syndrome ( black arrow) with a small nodule at the floor of the turcica (white arrow). The diagnosis of Cushing’s disease was confirmed, and the patient underwent trans-sphenoidal resection of pituitary adenoma. Histological examination showed positive CAM 5.2, positive chromogranin, and ACTH immunostains. The patient presented to the ED five days after discharge home. He stated that he noticed drainage from the nose that transitioned from bloody to clear fluid and has been increasing in quantity for two days with associated intermittent headaches since the surgery. He was afebrile with stable vital signs. No signs of infection were noted on basic labs. These were significant only for mild asymptomatic hyponatremia of 131 mmol/L and hypokalemia of 3.3 mmol/L. The patient was diagnosed with cerebrospinal fluid (CSF) leakage and had a lumbar drain trial. The trial was unsuccessful after several days, and the patient underwent a transnasal endoscopic repair of CSF rhinorrhea using nasoseptal flaps. At an outpatient follow-up one month and three months after the surgery, prior lab abnormalities including hypokalemia, hyponatremia, and hyperglycemia resolved. No further evidence of CSF leakage was appreciated, and he remained asymptomatic. Discussion EST syndrome is characterized by herniation of the subarachnoid space into the intrasellar space with compression of the pituitary gland into the posteroinferior wall [3]. This is likely to obscure the presence of underlying pituitary mass. The incidence of EST syndrome in the general population is estimated at 20%. The association between EST syndrome and Cushing's disease has been reported infrequently. A retrospective study of 68 patients with Cushing's disease found that 16% of these have EST syndrome [3]. Cushing's disease usually results from pituitary adenomas secreting ACTH, and even the smallest microadenomas can produce a systemic disease. These microadenomas can be very difficult to recognize on brain MRI [4]. This is complicated in EST syndrome and even further with the possibility of ectopic ACTH production. A retrospective study of 197 patients diagnosed with Cushing's disease concluded that EST syndrome is associated with higher prevalence of MRI-negative Cushing's disease. This was attributed to ICHTN and pituitary gland compression [1]. Although surgery is curative in 70-90% of cases, EST syndrome was found to have higher risk of postoperative complications among those with Cushing's disease including diabetes insipidus, hypopituitarism, and CSF leakage [3]. This is usually because in the case of MRI-negative Cushing's disease with total EST syndrome, empiric surgical exploration is sought after inferior petrosal sampling confirms the pituitary origin of excess ACTH, and postoperative remission indicates adequate tumor resection [2]. This entails a higher chance of uncertainty and injury to healthy pituitary tissue. EST syndrome can be either primarily due to defects in the sellar diaphragm or anatomical variant or secondary to ICHTN. EST syndrome has been reported in association with many conditions associated with elevated intracranial pressure including tumors, thrombosis, meningitis, hydrocephalus, and Arnold-Chiari malformation [5]. Reversal of EST syndrome has been reported in those with idiopathic ICHTN with therapy by acetazolamide, ventriculoperitoneal shunt, and lumbar puncture [6,7]. A study has shown correlation between CSF circulation impairment or blockage and EST syndrome [8]. The incidence of EST syndrome in association with symptomatic intracranial hypertension is variable and ranges from 2.5% for total EST syndrome to 94% for partial EST syndrome [9]. Impaired CSF circulation and dynamics have been reported in 77% of patients with EST syndrome [10]. In addition to intracranial hypertension, EST syndrome has also been described in association with obesity, meningioma, pediatric nevoid basal cell carcinoma, therapy for growth hormone deficiency and even in healthy individuals [9]. Lack of symptoms of intracranial hypertension in this patient does not rule it out as intracranial hypertension in EST syndrome represents a spectrum that ranges from asymptomatic, milder intracranial hypertension to symptomatic intracranial hypertension with headache, visual disturbance, and papilledema [10]. This explains the fact that only 8-14% of EST syndrome progress to symptomatic ICHTN, while symptomatic ICHTN has been associated with EST syndrome in 94% of cases. ICHTN has been seen in association with disturbance of the hypothalamic-pituitary-adrenal axis. This has been reported after surgical and medical treatment of Cushing's disease, withdrawal of long-term steroid therapy, initial presentation of Addison’s disease, or relative glucocorticoids deficiency [11]. Cortisol excess increases CSF production and reduces its absorption, hence increasing intracranial pressure [12]. Another possible mechanism is the expression of both mineralocorticoid responsive epithelial sodium channel receptors on the basolateral membrane of the CSF producing epithelial cells of the choroid plexus as well as the expression of 11-beta hydroxysteroid dehydrogenase type 1 enzyme, which is a bidirectional enzyme that mainly functions to convert the inactive cortisone to active cortisol. These mechanisms play a role in maintaining the balance between CSF production and absorption [13,14]. In this case, the patient presented some clinical findings that are rarely associated with Cushing's disease, combined with a radiological feature that masked the true diagnosis. Our patient presented with significant weight loss, rather than central obesity, which is normally associated with Cushing’s disease. Although possible, the increase in ACTH due to Cushing's disease is not sufficient to cause hyperpigmentation, which is a classical finding of Addison's disease, where the entire adrenal cortex is usually affected due to an autoimmune destruction; however, the zona glomerulosa of the adrenal cortex produces aldosterone and its deficiency would lead to hyperkalemia [15]. Our patient presented with both hyperpigmentation and hypokalemia. Conclusions EST syndrome is an uncommon radiological finding of apparently EST that has been reported in association with ICHTN. The latter has also been seen in association with Cushing's disease/syndrome. This is likely to result from glucocorticoid excess-induced change in CSF flow dynamics. EST has been infrequently described in association with Cushing's disease. This association has a clinical implication as it is likely to obscure the visualization of pituitary lesions responsible for Cushing's disease, contribute to diagnostic uncertainty, and increase the risk of healthy pituitary tissue injury and the risk of postoperative complications including CSF leakage. References Himes BT, Bhargav AG, Brown DA, Kaufmann TJ, Bancos I, Van Gompel JJ: Does pituitary compression/empty sella syndrome contribute to MRI-negative Cushing's disease? A single-institution experience. Neurosurg Focus. 2020, 48:E3. 10.3171/2020.3.FOCUS2084 Sun Y, Sun Q, Fan C, et al.: Diagnosis and therapy for Cushing's disease with negative dynamic MRI finding: a single-centre experience. Clin Endocrinol (Oxf). 2012, 76:868-76. 10.1111/j.1365-2265.2011.04279.x Manavela MP, Goodall CM, Katz SB, Moncet D, Bruno OD: The association of Cushing's disease and primary empty sella turcica. Pituitary. 2001, 4:145-51. 10.1023/a:1015310806063 Chatain GP, Patronas N, Smirniotopoulos JG, et al.: Potential utility of FLAIR in MRI-negative Cushing's disease. J Neurosurg. 2018, 129:620-8. 10.3171/2017.4.JNS17234 Friedman DI, Jacobson DM: Diagnostic criteria for idiopathic intracranial hypertension. Neurology. 2002, 59:1492-5. 10.1212/01.wnl.0000029570.69134.1b Triggiani V, Giagulli VA, Moschetta M, Guastamacchia E: An unusual case of reversible empty sella. Endocr Metab Immune Disord Drug Targets. 2016, 16:154-6. 10.2174/1871530315666151001141507 Wind JJ, Lonser RR, Nieman LK, DeVroom HL, Chang R, Oldfield EH: The lateralization accuracy of inferior petrosal sinus sampling in 501 patients with Cushing's disease. J Clin Endocrinol Metab. 2013, 98:2285-93. 10.1210/jc.2012-3943 Brismar K, Bergstrand G: CSF circulation in subjects with the empty sella syndrome. Neuroradiology. 1981, 21:167-75. 10.1007/BF00367338 Ranganathan S, Lee SH, Checkver A, Sklar E, Lam BL, Danton GH, Alperin N: Magnetic resonance imaging finding of empty sella in obesity related idiopathic intracranial hypertension is associated with enlarged sella turcica. Neuroradiology. 2013, 55:955-61. 10.1007/s00234-013-1207-0 Maira G, Anile C, Mangiola A: Primary empty sella syndrome in a series of 142 patients. J Neurosurg. 2005, 103:831-6. 10.3171/jns.2005.103.5.0831 Zada G, Tirosh A, Kaiser UB, Laws ER, Woodmansee WW: Cushing's disease and idiopathic intracranial hypertension: case report and review of underlying pathophysiological mechanisms. J Clin Endocrinol Metab. 2010, 95:4850-4. 10.1210/jc.2010-0896 Sinclair AJ, Ball AK, Burdon MA, Clarke CE, Stewart PM, Curnow SJ, Rauz S: Exploring the pathogenesis of IIH: an inflammatory perspective. J Neuroimmunol. 2008, 201:212-20. 10.1016/j.jneuroim.2008.06.029 Sinclair AJ, Onyimba CU, Khosla P, et al.: Corticosteroids, 11beta-hydroxysteroid dehydrogenase isozymes and the rabbit choroid plexus. J Neuroendocrinol. 2007, 19:614-20. 10.1111/j.1365-2826.2007.01569.x Amin MS, Wang HW, Reza E, Whitman SC, Tuana BS, Leenen FH: Distribution of epithelial sodium channels and mineralocorticoid receptors in cardiovascular regulatory centers in rat brain. Am J Physiol Regul Integr Comp Physiol. 2005, 289:R1787-97. 10.1152/ajpregu.00063.2005 Stratakis CA: Skin manifestations of Cushing's syndrome. Rev Endocr Metab Disord. 2016, 17:283-6. 10.1007/s11154-016-9399-3 From https://www.cureus.com/articles/161111-cushings-disease-associated-with-partially-empty-sella-turcica-syndrome-a-case-report#!/
  12. The Cushing’s Hub Editorial Board announces the final call for the 2023 Cushing’s Hub Competition!Now is your last chance to submit your favourite clinical scenario for a chance to see it appear as an Interactive Clinical Case on Cushing’s Hub. While any Cushing’s-focused scenario is welcome, submissions that examine interesting presentations of mild-to-severe hypercortisolaemia, or long-term disease outcomes (including health-related quality of life) are particularly encouraged.The successful entrant will see their clinical scenario developed into a pedagogically enhanced, interactive e-learning module. The winner will also be invited to take part in a short film sequence to introduce their work, which will be promoted at launch worldwide via social media.Don’t miss a chance to share your work with the endocrine community, click here for details on how to enter.Closing date for entries 30 June 2023
  13. I'm glad I didn't know this before my recent knee surgery! Abstract Background Cushing’s syndrome (CS) is a disorder characterized by exposure to supraphysiologic levels of glucocorticoids. The purpose of this study was to evaluate the association between CS and postoperative complication rates following total joint arthroplasty (TJA). Methods Patients diagnosed with CS undergoing TJA for degenerative etiologies were identified from a large national database and matched 1:5 to a control cohort using propensity scoring. Propensity score matching resulted in 1,059 total hip arthroplasty (THA) patients with CS matched to 5,295 control THA patients and 1,561 total knee arthroplasty (TKA) patients with CS matched to 7,805 control TKA patients. Rates of medical complications occurring within 90 days of TJA and surgical-related complications occurring within 1 year of TJA were compared using odds ratios. Results The THA patients with CS had higher incidences of pulmonary embolism (Odds Ratio (OR) 2.21, P=0.0026), urinary tract infection (OR 1.29, P=0.0417), pneumonia (OR 1.58, P=0.0071), sepsis (OR 1.89, P=0.0134), periprosthetic joint infection (OR 1.45, P=0.0109), and all-cause revision surgery (OR 1.54, P=0.0036). The TKA patients with CS had significantly higher incidences of urinary tract infection (OR 1.34, P=0.0044), pneumonia (OR 1.62, P=0.0042), and dislocation (OR 2.43, P=0.0049) and a lower incidence of manipulation under anesthesia (MUA) (OR 0.63, P=0.0027). Conclusion Cushing’s syndrome is associated with early medical- and surgical-related complications following TJA and a reduced incidence of MUA following TKA. Introduction Cushing’s syndrome (CS) is characterized by exposure to supraphysiologic levels of glucocorticoids, whether endogenous or exogenous. Chronic exposure to hypercortisolism can lead to the development of comorbidities known to be risk factors for complications following total joint arthroplasty (TJA) including obesity, hypertension, diabetes, hyperlipidemia, and cerebrovascular disease.[1,2] Hypercortisolism is also a known risk factor for the development of osteonecrosis, and there have been several case reports of this disease being caused by endogenous production of corticosteroids.[3, 4, 5, 6, 7, 8] It can therefore be expected that the incidence of arthroplasty procedures among CS patients is likely higher than the general population. It is important to identify and understand patient specific risk factors for complications following TJA. There has been a major push recently to investigate the association between uncommon disorders and complication rates following TJA in order to risk stratify, counsel, and optimize these patients appropriately.[9, 10, 11, 12, 13, 14, 15] The typical clinical features of CS include increased central adiposity, purple striae, thin skin, fatigue, and proximal atrophy of the upper and lower limbs.[16,17] The most common etiology of endogenous CS is overproduction of adrenocorticotropic hormone (ACTH) from a pituitary adenoma, although ACTH-independent forms of CS may be caused by overproduction of glucocorticoids from the adrenal glands.[2] First-line laboratory tests for the diagnosis of CS include 24-hour urinary free cortisol, late night salivary cortisol, and the dexamethasone suppression test to determine if the negative feedback of the hypothalamic-pituitary-adrenal axis is functioning appropriately.[16] Hypercortisolism associated with CS is known to have a deleterious effect on bone health by decreasing osteoblast function and increasing bone resorption and has been associated with decreased bone mineral density at various sites in the femur including Ward’s triangle, the femoral neck, and the greater trochanter.[18] The effect of these changes in physiology on outcomes following TJA remains unclear. There are few prior case reports describing arthroplasty procedures for CS patients,[3, 4, 5] with one case report of total hip arthroplasty (THA) for femoral head osteonecrosis complicated by pulmonary thromboembolism requiring a 10-day admission to the ICU.[3] However, no large scale studies to date have investigated complication rates following TJA within this patient population. It is therefore important to better understand the risks associated with this pathology. The purpose of this study was to evaluate the association between CS and postoperative complication rates following TJA. We hypothesized that patients who have CS would have increased incidences of early medical- and surgical-related complications. Section snippets Methods This is a retrospective cohort study utilizing the commercially available M151Ortho database via PearlDiver (PearlDiver Inc., Colorado Springs, Colorado). This database contains deidentified records for 151 million patients in the United States in accordance with the Health Insurance Portability and Accountability Act (HIPAA). Patient records were queried using International Classification of Diseases (ICD) codes and Current Procedural Terminology (CPT) codes. This study was deemed exempt from Results The THA patients who had CS had significantly higher 90-day incidences of PE (OR 2.21, P=0.0026), UTI (OR 1.29, P=0.0417), pneumonia (OR 1.58, P=0.0071), and sepsis (OR 1.89, P=0.0134) (Table 2). The TKA patients who had CS had significantly higher 90-day incidences of UTI (OR 1.34, P=0.0044) and pneumonia (OR 1.62, P=0.0042) (Table 3). Regarding surgical-related complications, CS patients undergoing THA had significantly higher incidences of PJI (OR 1.45, P=0.0109) and all-cause revision Discussion This study revealed that patients who have CS are at increased risk of developing early postoperative complications following TJA. Understanding this risk profile is important for accurate shared decision making between CS patients and their clinicians. Interestingly, CS seems to influence rates of instability and stiffness following TKA as patients in the test cohort were more likely to sustain a dislocation and less likely to undergo MUA. Rates of infectious medical complications including Conclusion Cushing’s syndrome is associated with an increased risk of early infectious complications following TJA including UTI, pneumonia, sepsis, and hip PJI and an increased incidence of dislocation following TKA. Interestingly, CS appears to be protective against arthrofibrosis as patients who have CS had lower incidences of MUA following TKA. Clinicians may be guided by this study to accurately risk stratify and counsel patients with CS prior to undergoing TJA. References (29) A. Lacroix et al. Cushing’s syndrome Lancet (2015) H.G. Moore Total Joint Arthroplasty in Patients With Achondroplasia: Comparison of 90-Day Adverse Events and 5-Year Implant Survival Arthroplast Today (2021) M.J. Gouzoulis et al. Hidradenitis Suppurativa Leads to Increased Risk of Wound-Related Complications following Total Joint Arthroplasty Arthroplast Today (2022) H.G. Moore Total Hip Arthroplasty in Patients With Cerebral Palsy: A Matched Comparison of 90-Day Adverse Events and 5-Year Implant Survival J. Arthroplasty (2021) M.W. Cole et al. The Impact of Celiac Disease on Complication Rates After Total Joint Arthroplasty: A Matched Cohort Study Arthroplast Today (2022) M.R. Mercier et al. Outcomes Following Total Hip Arthroplasty in Patients With Postpolio Syndrome: A Matched Cohort Analysis J. Arthroplasty (2022) M. Barbot et al. Cushing’s syndrome: Overview of clinical presentation, diagnostic tools and complications Best Pract. Res. Clin. Endocrinol. Metab (2020) E. Salt Moderating effects of immunosuppressive medications and risk factors for post-operative joint infection following total joint arthroplasty in patients with rheumatoid arthritis or osteoarthritis Semin. Arthritis Rheum (2017) R. Gandhi Predictive risk factors for stiff knees in total knee arthroplasty J. Arthroplasty (2006) P.E. Scranton Management of knee pain and stiffness after total knee arthroplasty J. Arthroplasty (2001) From https://www.sciencedirect.com/science/article/abs/pii/S0883540323006484
  14. Abstract Summary Cushing’s syndrome due to ectopic adrenocorticotropic hormone (ACTH) secretion (EAS) by a pheochromocytoma is a challenging condition. A woman with hypertension and an anamnestic report of a ‘non-secreting’ left adrenal mass developed uncontrolled blood pressure (BP), hyperglycaemia and severe hypokalaemia. ACTH-dependent severe hypercortisolism was ascertained in the absence of Cushingoid features, and a psycho-organic syndrome developed. Brain imaging revealed a splenial lesion of the corpus callosum and a pituitary microadenoma. The adrenal mass displayed high uptake on both 18F-FDG PET/CT and 68Ga-DOTATOC PET/CT; urinary metanephrine levels were greatly increased. The combination of antihypertensive drugs, high-dose potassium infusion, insulin and steroidogenesis inhibitor normalized BP, metabolic parameters and cortisol levels; laparoscopic left adrenalectomy under intravenous hydrocortisone infusion was performed. On combined histology and immunohistochemistry, an ACTH-secreting pheochromocytoma was diagnosed. The patient's clinical condition improved and remission of both hypercortisolism and catecholamine hypersecretion ensued. Brain magnetic resonance imaging showed a reduction of the splenial lesion. Off-therapy BP and metabolic parameters remained normal. The patient was discharged on cortisone replacement therapy for post-surgical hypocortisolism. EAS due to pheochromocytoma displays multifaceted clinical features and requires prompt diagnosis and multidisciplinary management in order to overcome the related severe clinical derangements. Learning points A small but significant number of cases of adrenocorticotropic hormone (ACTH)-dependent Cushing’s syndrome are caused by ectopic ACTH secretion by neuroendocrine tumours, which is usually associated with severe hypercortisolism causing severe clinical and metabolic derangements. Ectopic ACTH secretion by a pheochromocytoma is exceedingly rare but can be life-threatening, owing to the simultaneous excess of both cortisol and catecholamines. The combination of biochemical and hormonal testing and imaging procedures is mandatory for the diagnosis of ectopic ACTH secretion, and in the presence of an adrenal mass, the possibility of an ACTH-secreting pheochromocytoma should be taken into account. Immediate-acting steroidogenesis inhibitors are required for the treatment of hypercortisolism, and catecholamine excess should also be appropriately managed before surgical removal of the tumour. A multidisciplinary approach is required for the treatment of this challenging entity. Keywords: Adult; Female; White; Italy; Adrenal; Pituitary; Unique/unexpected symptoms or presentations of a disease; May; 2023 Background Cushing’s syndrome (CS) is a rare endocrine disease characterized by high levels of glucocorticoids; it increases morbidity and mortality due to cardiovascular and infectious diseases (1, 2, 3). To diagnose CS, adrenocorticotropic hormone (ACTH)-dependent disease must be distinguished from ACTH-independent disease, and pituitary ACTH production from ectopic production. About 20% of ACTH-dependent cases arise from ectopic ACTH secretion (EAS) (2, 3, 4). EAS is most often due to aberrant ACTH production by small-cell lung carcinoma or neuroendocrine tumours originating in the lungs or gastrointestinal tract; this, in turn, strongly increases cortisol production by the adrenal glands (3, 4, 5). Since the first-line treatment of EAS is the surgical removal of the ectopic ACTH-secreting tumour, its prompt and accurate localization is crucial. Rapid cortisol reduction by means of immediate-acting steroidogenesis inhibitors (4) is mandatory in order to treat the related endocrine, metabolic and electrolytic derangements. EAS by a pheochromocytoma is exceedingly rare and can be life-threatening. We describe the case of a woman with hypertension and a known ‘non-secreting’ left adrenal mass, who manifested uncontrolled blood pressure (BP), hyperglycaemia, hypokalaemia and psycho-organic syndrome associated with damage of the splenium of the corpus callosum. These findings were eventually seen to be related to an ACTH-secreting left pheochromocytoma, which was ascertained by hormonal evaluation and morphological and functional imaging assessment and confirmed by histopathology/immunostaining. Hormonal hypersecretion resolved after adrenalectomy and metabolic derangements normalized. Case presentation A 72-year-old woman with hypertension was taken to the emergency department because of increased BP (200/100 mm Hg). High BP (190/100 mmHg) was confirmed, whereas oxygen saturation (98%), heart rate (84 bpm) and lung and abdomen examination were normal. Electrocardiogram and chest x-ray were unremarkable. Captopril 50 mg orally, followed by intramuscular clonidine, normalized BP. The patient looked thin and reported significant weight loss (10 kg) over the previous 6 months; she was on antihypertensive therapy with bisoprolol 5 mg/day and irbesartan 150 mg/day, and ezetimibe 10 mg/day for dyslipidaemia. The patient’s records included a previous diagnosis in another hospital of normofunctioning multinodular goitre and a 2.5 cm-left solid inhomogeneous adrenal mass with well-defined margins, which was found on CT performed 6 years earlier during the work-up for hypertension. On the basis of hormonal data and absent uptake on 123I metaiodobenzylguanidine scintigraphy, the adrenal lesion had been deemed to be non-functioning and follow-up had been advised. Unfortunately, only initial cortisol (15.7 μg/dL) and 24-h urine-free cortisol (UFC) levels (32.5 μg/24 h) were retrievable; both proved normal. Investigations Blood chemistry showed neutrophilic leucocytosis, hyperglycaemia with increased glycated haemoglobin, severe hypokalaemia and metabolic alkalosis (Table 1). Potassium infusion (50 mEq in 500 mL saline/24 h) was rapidly started, together with a subcutaneous rapid-acting insulin analogue and prophylactic enoxaparin. The patient experienced mental confusion, hallucinations and restlessness; non-enhanced computed tomography (CT) of the brain revealed a hypodense area of the splenium of the corpus callosum, possibly due to metabolic damage (Fig. 1A). View Full Size Figure 1 Non-enhanced CT showing a hypodense area of the splenium of the corpus callosum (arrows), without mass effect (A, axial view). Contrast-enhanced MR image showing a hypointense pituitary lesion (arrow) which enhances more slowly than normal pituitary parenchyma, deemed suspicious for microadenoma (B, coronal view). FLAIR MR image showing hyperintense signal of the splenium of the corpus callosum (asterisk), which partially extended to the crux of the left fornix (arrow) (C, axial view). As the lesion showed no restricted diffusion on DWI (D, axial view), an ischaemic lesion was excluded. A progressive reduction in the extension of the hyperintense signal in the splenium of the corpus callosum (arrowheads) and in the crux of the left fornix (arrows) was observed on FLAIR MR images (2 months (E); 3 months (F); axial view). CT, computed tomography; DWI, diffusion-weighted imaging; FLAIR, fluid-attenuated inversion recovery; MR, magnetic resonance. Citation: Endocrinology, Diabetes & Metabolism Case Reports 2023, 2; 10.1530/EDM-22-0308 Download Figure Download figure as PowerPoint slide Table 1 Hormonal and biochemical evaluation of patient throughout hospitalization and follow-up. Normal range On hospital admission After surgery 10 days 2 months 3 months 6 months 9 months 12 months 16 months ACTH (pg/mL) 9–52 551 7 37 50 29.5 26 40.9 52 Morning cortisol† (µg/dL) 7–19.2 63.4 14 5.1 3.5 3.8 4.2 7.2 12.8 After 1 mg overnight dexamethasone  ACTH 583  Cortisol 60 DHEAS (µg/dL) 9.4–246 201 24-h urinalysis (µg/24 h)  Adrenaline 0–14.9 95.5  Noradrenaline 0–66 1133  Metanephrine 74–297 1927  Normetanephrine 105–354 1133 Chromogranin A 0–108 290 Renin (supine) (µU/mL) 2.4–29 3.9 14.6 Aldosterone (supine) (ng/dL) 3–15 3.4 12.5 LH (mIU/mL)* > 10 0.3 65.8 FSH (mIU/mL)* > 25 1.9 116 PRL (ng/mL) 3–24 13.7 FT4 (ng/dL) 0.9–1.7 1.1 1.2 FT3 (pg/mL) 1.8–4.6 1.1 2.7 TSH (µU/mL) 0.27–4.2 0.23 1.3 PTH (pg/mL) 15–65 166 Calcium (mg/dL) 8.2–10.2 8.2 Calcitonin (pg/mL) 0–10 1 Glycaemia (mg/dL) 60–110 212 69 73 83 Potassium (mEq/L) 3.5–5 2.4 3.3 3.9 4.2 3.7 5 4.4 3.9 Leucocytes (K/µL) 4.0–9.3 15.13 HbA1c (mmol/mol) 20–42 55 30 HCO3− (mEq/L) 22–26 41.8 *For menopausal age; †07:00–10:00 h. The patient was transferred to the internal medicine ward. Although potassium infusion was increased to 120 mEq/day, serum levels did not normalize; a mineralocorticoid receptor antagonist (potassium canreonate) was therefore introduced, but the effect was partial. In order to control BP, the irbersartan dose was increased (300 mg/day) and amlodipine (10 mg/day) was added. The combination of severe hypertension, newly occurring diabetes and resistant hypokalaemia prompted us to hypothesize a common endocrine aetiology. A thorough hormonal array showed very high ACTH and cortisol levels, whereas supine renin and aldosterone levels were in the low-normal range (Table 1). Since our patient proved repeatedly non-compliant with 24-h urine collection, UFC could not be measured. After an overnight 1 mg dexamethasone suppression test, cortisol levels remained unchanged, whereas ACTH levels slightly increased (Table 1). Notably, the patient showed no Cushingoid features. Gonadotropin levels were inappropriately low for the patient’s age; FT4 levels were normal, whereas FT3 and thyroid-stimulating hormone (TSH) levels were reduced and calcitonin levels were normal (Table 1). HbA1c levels were increased (Table 1). Finally, secondary hyperparathyroidism, associated with low-normal calcium levels and reduced vitamin D levels, was found (Table 1). Brain contrast-enhanced magnetic resonance (MR) imaging revealed a 5-mm median posterior pituitary microadenoma (Fig. 1B) and a hyperintense lesion of the splenium of the corpus callosum (Fig. 1C). Diffusion-weighted MR images of the lesion showed no restricted diffusion (Fig. 1D), thus excluding an ischaemic origin. Petrosal venous sampling for ACTH determination at baseline and after CRH stimulation was excluded, as it was deemed a high-risk procedure, given the patient's poor condition. Since the ACTH and cortisol levels were greatly increased and were associated with severe hypokalaemia, EAS was hypothesized; total-body contrast-enhanced CT revealed the left adrenal mass (3 cm), which showed regular margins and heterogeneous enhancement (Fig. 2A and B) and measured 25 Hounsfield units. There was no evidence of adrenal hyperplasia in the contralateral adrenal gland. The adrenal mass showed intense tracer uptake on both 18F-FDG PET/CT (Fig. 2C and D), suggestive of adrenal malignancy or functioning tumour, and 68Ga-DOTATOC PET/CT (Fig. 3), which is characteristic of a neuroendocrine lesion. No other sites of suspicious tracer uptake were detected. View Full Size Figure 2 Contrast-enhanced abdominal computed tomography showing a 3-cm left adrenal mass (arrow) with well-defined margins and inhomogeneus enhancement, deemed compatible with an adenoma (A, coronal view; B, axial view). The adrenal mass showed high uptake (SUV max: 7.3) on 18F-FDG PET/CT (C, coronal view; D, axial view). Citation: Endocrinology, Diabetes & Metabolism Case Reports 2023, 2; 10.1530/EDM-22-0308 Download Figure Download figure as PowerPoint slide View Full Size Figure 3 The left adrenal mass displaying very high uptake (SUV max: 40) on 68Ga-DOTATOC PET/CT (arrow, axial view). Citation: Endocrinology, Diabetes & Metabolism Case Reports 2023, 2; 10.1530/EDM-22-0308 Download Figure Download figure as PowerPoint slide Bisoprolol was withdrawn, and 24-h urinary catecholamine, metanephrine and normetanephrine levels proved significantly increased, as were chromogranin A levels (Table 1). In sum, an ACTH-secreting pheochromocytoma was suspected and the pituitary microadenoma was deemed a likely incidental finding. The patient’s mental state worsened, fluctuating from sopor to restlessness, which required parenteral neuroleptics and restraint. An electroencephalogram revealed a specific slowdown of cerebral electrical activity. Following rachicentesis, the cerebrospinal fluid showed pleocytosis (lympho-monocytosis), whereas a culture test and polymerase chain reaction for common neurotropic agents were negative. The neurologist hypothesized a psycho-organic syndrome secondary to severe metabolic derangement. Intravenous ampicillin, acyclovir and B vitamins were empirically started. The patient was transferred to the subintensive unit, where a nasogastric tube and central venous catheter were inserted, and enteral nutrition was started. Treatment Ketoconazole was started at a dosage of 200 mg twice daily; both cortisol and ACTH levels significantly decreased over a few days (Fig. 4), with a progressive decrease in glucose levels and normalization of potassium levels and BP on therapy. Subsequently, ketoconazole was titrated to 600 mg/day owing to a new increase in cortisol levels, which eventually normalized (Fig. 4). Of note, ACTH levels partially decreased on ketoconazole treatment (Fig. 4). View Full Size Figure 4 ACTH and cortisol levels throughout the patient’s hospitalization and follow-up. Citation: Endocrinology, Diabetes & Metabolism Case Reports 2023, 2; 10.1530/EDM-22-0308 Download Figure Download figure as PowerPoint slide Doxazosin 2 mg/day was added and the patient's systolic BP blood settled at around 100 mm Hg; after a few days, bisoprolol was restarted. Contrast-enhanced MR showed a partial reduction of the hyperintense splenial lesion (Fig. 1E). Despite the severe clinical condition and the high risks of adrenal surgery, the patient’s relatives strongly requested the procedure and laparoscopic left adrenalectomy was planned. Alpha-blocker and fluid infusion were continued, ketoconazole was withdrawn the day before surgery, and a 100 mg IV bolus of hydrocortisone was administered just before the operation, followed by 200 mg/day, at first in continuous infusion, then as a 100 mg bolus every 8 h. After the removal of the left adrenal mass, noradrenaline infusion was required, owing to the occurrence of severe hypotension. Outcome and follow-up Pathology revealed a 2.5 cm reddish-brown encapsulated tumour, which was compatible with pheochromocytoma (Fig. 5A and B); ACTH immunostaining was positive in about 30% of tumour cells (Fig. 5C). This confirmed the diagnostic hypothesis of an ACTH-secreting pheochromocytoma. The tumour was stained for Chromogranin A (Fig. 5D). There were no signs of adrenal cortex hyperplasia in the resected gland. Thorough germinal genetic testing, comprising the commonest pheochromocytoma/paraganglioma genes: CDKN1B, KIF1B, MEN1, RET, SDHA, SDHB, SDHC, SDHD, SDHAF2 and TMEM127, was negative. View Full Size Figure 5 Histological images of adrenal pheochromocytoma: the tumour is composed of well-defined nests of cells (‘zellballen’) (A; haematoxylin-eosin stain (HE), ×20) with pleomorphic nuclei with prominent nucleoli, basophilic or granular amphophilic cytoplasm (B; HE, ×40). The mitotic index was low: 1 mitosis per 30 high-power fields, and Ki-67 was 1%. On immunohistochemistry, cytoplasmatic ACTH staining was found in about 30% of tumour cells (C; ×20), whereas most tumour cells were stained for chromogranin A (D; ×20). Citation: Endocrinology, Diabetes & Metabolism Case Reports 2023, 2; 10.1530/EDM-22-0308 Download Figure Download figure as PowerPoint slide One week after surgery ACTH levels had dropped to a low-normal value: 7 pg/mL, and cortisol levels (before morning hydrocortisone bolus administration) were normal: 14 µg/dL (Fig. 4). The patient’s clinical status slowly improved and the nasogastric tube was removed; intravenous hydrocortisone was carefully tapered until withdrawal and high-dose oral cortisone acetate (62.5 mg/day) was started. This dose was initially required since BP remained low (systolic: 90 mm Hg); thereafter, cortisone was reduced to 37.5 mg/day. Plasma cortisol levels before morning cortisone administration were reduced (Fig. 4). A new MR of the brain showed a further partial reduction of the splenial lesion (Fig. 1F). The patient was discharged with normal off-therapy BP and metabolic parameters. During follow-up, she fully recovered, and BP and metabolic parameters remained normal. Gonadotropin levels became adequate for the patient’s age, and TSH and renin/aldosterone levels normalized (Table 1). Hypoadrenalism, however, persisted for more than 1 year; as the last hormonal evaluation, 16 months after surgery, showed normal baseline cortisol levels, the cortisone dose was tapered (12.5 mg/day) and further hormonal examination was scheduled (Table 1). ACTH and cortisol levels throughout the patient’s hospitalization and follow-up are shown in Fig. 4. Discussion The diagnosis of EAS is challenging and requires two steps: confirmation of increased ACTH and cortisol levels and anatomic distinction from pituitary sources of ACTH overproduction. Besides metabolic derangements (hyperglycaemia, hypertension), EAS-related severe hypercortisolism may cause profound hypokalaemia (3, 4, 5). In our patient, the combination of worsening hypertension, newly occurring diabetes and resistant hypokalaemia raised the suspicion of a common endocrine cause. ACTH-dependent severe hypercortisolism was ascertained, and subsequent brain MR revealed a pituitary microadenoma. The diagnosis of CS requires the combination of two abnormal test results: 24-h UFC, midnight salivary cortisol and/or abnormal 1 mg dexamethasone suppression testing (2, 6). ACTH evaluation (low/normal-high) is fundamental to tailoring the imaging technique. The very high cortisol levels found in our patient were unchanged after overnight dexamethasone testing, whereas UFC could not be assessed owing to the lack of compliance with urine collection. The accuracy of the UFC assays, however, may be impaired by cortisol precursors and metabolites. Salivary cortisol assessment was not performed since the specific assay is not available in our hospital. The combination of ACTH-dependent severe hypercortisolism and hypokalaemia prompted us to suspect EAS. The differential diagnosis between pituitary and ectopic ACTH-dependent CS involves high-dose (8 mg) dexamethasone suppression testing, which has relatively low diagnostic accuracy (6). Owing to the patient's very high cortisol levels and severe hypokalaemia, this testing was not performed, on account of the risks of administering corticosteroids in a patient already exposed to excessive levels (6). Furthermore, owing to the increase in ACTH levels observed after overnight dexamethasone testing, we postulated the possible occurrence of glucocorticoid-driven positive feedback on ACTH secretion, which has been described in EAS, including cases of pheochromocytoma (7). Finally, in the case of EAS suspected of being caused by pheochromocytoma, we do not recommend performing high-dose dexamethasone suppression testing, owing to the risk of triggering a catecholaminergic crisis (8). The dynamic tests commonly used to distinguish patients with EAS from those with Cushing's disease are the CRH stimulation test and the desmopressin stimulation test, either alone or in combination with CRH testing (6). Owing to the rapid worsening of our patient’s condition, dynamic testing was not done; however, the clinical picture and hormonal/biochemical data were suggestive of EAS. EAS is mainly (45–50%) due to neuroendocrine tumours, mostly of the lung (small-cell lung cancer and bronchial tumours), thymus or gastrointestinal tract; however, up to 20% of ACTH-secreting tumours remain occult (3, 4, 5). ACTH-secreting pheochromocytomas are responsible for about 5% of cases of EAS (3, 4, 9, 10). Indeed, this rate ranges widely, from 2.5% (11) to 15% (12), according to the different case series. Patients with EAS due to pheochromocytoma present with severe CS, overt diabetes mellitus, hypertension and hypokalaemia (3); symptoms of catecholamine excess may be unapparent (3), making the diagnosis more challenging. A recent review of 99 patients with ACTH- and/or CRH-secreting pheochromocytomas found that the vast majority displayed a Cushingoid phenotype (10); by contrast, another review of 24 patients reported that typical Cushingoid features were observed in only 30% of patients, whereas weight loss was a prevalent clinical finding (13). We hypothesized that the significant weight loss reported by our patient was largely due to the hypermetabolic state induced by catecholamines, which directly reduce visceral and subcutaneous fat, as recently reported (14). Our patient showed no classic stigmata of CS, owing to the rapid onset of severe hypercortisolism (10, 13), whereas she had worsening hypertension and newly occurring diabetes mellitus, which were related to both cortisol and catecholamine hypersecretion; hypokalaemia was deemed to be secondary to severe hypercortisolism. Indeed, greatly increased cortisol levels act on the mineralocorticoid receptors of the distal tubule after saturating 11β-hydroxysteroid dehydrogenase type 2, leading to hypokalaemia (4). Consequently, hypokalaemia is much more common (74–95% of patients) in EAS than in classic Cushing’s disease (10%) (3, 4, 10). This apparent mineralocorticoid excess suppresses renin and aldosterone secretion, as was ascertained in our patient. In this setting, the most effective way to manage hypokalaemia is to treat the hypercortisolism itself by administering immediate-acting steroidogenesis inhibitors, combined with potassium infusion and a mineralocorticoid receptor-antagonist (e.g. spironolactone) at an appropriate dosage (100–300 mg/day) (4). In ACTH-secreting pheochromocytoma, cortisol hypersecretion potentiates catecholamine-induced hypertension by stimulating the phenol-etholamine-N-methyl–transferase enzyme, which transforms noradrenaline to adrenaline (4). Indeed, in our patient, the significant ketoconazole-induced reduction in cortisol secretion led to satisfactory BP control on antihypertensive drugs. After the biochemical diagnosis of pheochromocytoma, a selective alpha-blocker was added, and after a few days, a beta-blocker was restarted in order to control reflex tachycardia (15). Our patient had greatly increased ACTH levels (>500 pg/mL) associated with very high cortisol levels (>60 µg/dL), which, together with the finding of hypokalaemia, prompted us to hypothesize EAS. With regard to these findings, ACTH levels are usually higher (>200 pg/mL) in patients with EAS than in those with CS due to a pituitary adenoma; however, considerable overlapping occurs (3, 11, 16). Most patients with ACTH-secreting pheochromocytomas in those series had ACTH levels >300 pg/mL, and a few had normal ACTH levels (9), thus complicating the diagnosis. In addition, patients with EAS usually have higher cortisol levels than those with ACTH-secreting adenomas (3, 11). In our patient, the left adrenal mass was deemed the culprit of EAS, and owing to very high urinary metanephrine levels, a pheochromocytoma was suspected. It can be assumed that the adrenal tumour, which was anamnestically reported as ‘non-secreting’, but on which only part of the initial hormonal data were available, was actually a pheochromocytoma at the time of the first diagnosis but displayed a silent clinical and hormonal behaviour. The mass subsequently showed significant uptake on both 18F-FDG PET/CT and 68Ga-DOTATOC PET/CT (4, 5). It is claimed that 68Ga-DOTATOC PET/CT provides a high grade (90%) of sensitivity and specificity in the diagnosis of tumours that cause EAS (4, 5); nevertheless, a recent systematic review reported much lower sensitivity (64%), which increased to 76% in histologically confirmed cases (17). In patients with EAS, immediate-acting steroidogenesis inhibitors are required in order to achieve prompt control of severe hypercortisolism (4). Ketoconazole is one of the drugs of choice since it inhibits adrenal steroidogenesis at several steps. In our patient, ketoconazole rapidly reduced cortisol levels to normal values, without causing hepatic toxicity (4). Moreover, ketoconazole proved effective at a moderate dosage (600 mg/day), which falls within the mean literature range (18, 19). However, dosages up to 1200–1600 mg/day are sometimes required in severe cases (usually EAS) (18, 19). Speculatively, our results might reflect an enhanced inhibitory action of ketoconazole at the adrenal level, which was able to override the strong ectopic ACTH stimulation. In addition, the finding that, following cortisol reduction, ACTH levels paradoxically decreased suggests an additive and direct effect of the drug. This effect has been observed in a few patients with EAS (20) and is supported by in vitro studies showing a direct anti-proliferative and pro-apoptotic effect of ketoconazole on ectopic ACTH secretion by tumours (21). Finally, the reduction in ACTH levels during treatment with steroidogenesis inhibitors prompts us to postulate the presence of glucocorticoid-driven positive feedback on ACTH secretion, as already described in neuroendocrine tumours (7, 20, 21). The coexistence of EAS and ACTH-producing pituitary adenoma is very rare but must be taken into account. In our case, we deemed the pituitary mass found on MR to be a non-secreting microadenoma. This hypothesis was strengthened by the finding that, following exeresis of the ACTH-secreting pheochromocytoma, ACTH normalized, hypercortisolism vanished and pituitary function recovered. These findings suggest that: (i) altered pituitary function at the baseline was secondary to the inhibitory effect of hypercortisolism; (ii) the excessive production of cortisol was driven by ACTH overproduction outside the pituitary gland, specifically within the adrenal gland tumour. In our patient, a few days after surgery, morning cortisol levels before hydrocortisone bolus administration were ‘normal’. Owing to both the half-life of hydrocortisone (8–12 h) and the supraphysiological dosage used, it is likely that a residual part of the drug, which cross-reacts in the cortisol assay, was still circulating at the time of blood collection, thus resulting in ‘normal’ cortisol values. Following the switch to oral cortisone, cortisol levels before therapy were low, thus confirming post-surgical hypocortisolism. Hypocortisolism remained throughout the first year after surgery, and glucocorticoid therapy was continued. Sixteen months after surgery, baseline cortisol levels returned to the normal range; cortisone therapy was therefore tapered and a further hormonal check was scheduled. Assessment of the cortisol response to ACTH stimulation testing would be helpful in order to check the resumption of the residual adrenal function. A peculiar aspect of our case was the occurrence of a psycho-organic syndrome together with the finding of a splenial lesion on brain imaging, which was deemed secondary to metabolic injury. Indeed, the increased cortisol levels present in patients with Cushing’s disease are detrimental to the white matter of the brain, including the corpus collosum, causing subsequent clinical derangements (22). Besides the direct effects of hypercortisolism, the splenial damage was also probably due to long-standing hypertension, worsened by newly occurring catecholamine hypersecretion and diabetes. Together with the normalization of cortisol and glycaemic levels, and of BP, a partial reduction in the splenial damage was observed on two subsequent MR examinations, and the patient's neurological condition slowly improved until she fully recovered. In our patient, thorough germinal genetic testing for the commonest pheochromocytoma/paraganglioma (PPGL) genes proved negative. Since approximately 40% of these tumours have germline mutations, genetic testing is recommended regardless of the patient’s age and family history. In the absence of syndromic, familial or metastatic presentation, the selection of genes for testing may be guided by the tumour location and biochemical phenotype. Alterations of the PPGL genes can be divided into two groups: 10 genes (RET, VHL, NF1, SDHD, SDHAF2, SDHC, SDHB, SDHA, TMEM127 and MAX) that have well-defined genotype–phenotype correlations, thus allowing to tailor imaging procedures and medical management, and a group of other emerging genes, which lack established genotype–phenotype associations; for patients in whom mutations of genes belonging to this second group are detected, and hence hereditary predisposition is established, only general medical surveillance and family screening can be planned (23, 24). In conclusion, our case highlights the importance of investigating patients with hypertension and metabolic derangements such as diabetes and hypokalaemia, since these findings may be a sign of newly occurring EAS, which, in rare cases, may be due to an ACTH-secreting pheochromocytoma. Since the additive effect of cortisol and catecholamine can cause dramatic clinical consequences, the possibility of an ACTH-secreting pheochromocytoma should be taken into account in the presence of an adrenal mass. EAS must be considered an endocrine emergency requiring urgent multi-specialist treatment. Surgery, whenever possible, is usually curative, and anatomic brain damage, as ascertained in our patient, may be at least partially reversible. Declaration of interest The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported. Funding This study did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector. The study was approved by the Local Ethics Committee (no: 732/2022). Patient consent The patient provided written informed consent. Author contribution statement All authors contributed equally to the conception, writing and editing of the manuscript. L Foppiani took care of the patient during hospitalization and in the outpatient department, performed the metabolic and endocrine work-up, conceived the study, analysed the data and wrote the manuscript. MG Poeta evaluated the patient during hospitalization with regard to neurological problems and planned the related work-up (brain imaging procedures and rachicentesis). M Rutigliani analysed the histological specimens and performed immunohistochemical studies. S Parodi performed CT and MR scans and analysed the related images. U Catrambone performed the left adrenalectomy. L Cavalleri performed general anaesthesia and assisted the patient during the surgical and post-surgical periods. G Antonucci revised the manuscript. P Del Monte helped in the endocrine work-up, in the evaluation of hormonal data and in the revision of the manuscript. A Piccardo performed 18F-FDG PET/CT and analysed the related images. Acknowledgement The work of Prof Silvia Morbelli in performing and analysing 68Ga-DOTATOC PET/CT is gratefully acknowledged. References 1↑ Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BMK, Colao A. Complications of Cushing's syndrome: state of the art. The Lancet Diabetes & Endocrinology 2016 4 611–629. (https://doi.org/10.1016/S2213-8587(1600086-3) Search Google Scholar Export Citation 2↑ Fleseriu M, Auchus R, Bancos I, Ben-Shlomo A, Bertherat J, Biermasz NR, Boguszewski CL, Bronstein MD, Buchfelder M, Carmichael JD, et al.Consensus on diagnosis and management of Cushing's disease: a guideline update. Lancet. Diabetes and Endocrinology 2021 9 847–875. (https://doi.org/10.1016/S2213-8587(2100235-7) PubMed Search Google Scholar Export Citation 3↑ Gabi JN, Milhem MM, Tovar YE, Karem ES, Gabi AY, & Khthir RA. Severe Cushing syndrome due to an ACTH-producing pheochromocytoma: a case presentation and review of the literature. Journal of the Endocrine Society 2018 2 621–630. (https://doi.org/10.1210/js.2018-00086) Search Google Scholar Export Citation 4↑ Young J, Haissaguerre M, Viera-Pinto O, Chabre O, Baudin E, & Tabarin A. Management of endocrine disease: Cushing's syndrome due to ectopic ACTH secretion: an expert operational opinion. European Journal of Endocrinology 2020 182 R29–R58. (https://doi.org/10.1530/EJE-19-0877) PubMed Search Google Scholar Export Citation 5↑ Hayes AR, & Grossman AB. The ectopic adrenocorticotropic hormone syndrome: rarely easy, always challenging. Endocrinology and Metabolism Clinics of North America 2018 47 409–425. (https://doi.org/10.1016/j.ecl.2018.01.005) PubMed Search Google Scholar Export Citation 6↑ Hayes AR, & Grossman AB. Distinguishing Cushing's disease from the ectopic ACTH syndrome: needles in a haystack or hiding in plain sight? Journal of Neuroendocrinology 2022 34 e13137. (https://doi.org/10.1111/jne.13137) Search Google Scholar Export Citation 7↑ Sakuma I, Higuchi S, Fujimoto M, Takiguchi T, Nakayama A, Tamura A, Kohno T, Komai E, Akina Shiga A, Nagano H, et al.Cushing syndrome due to ACTH-secreting pheochromocytoma, aggravated by glucocorticoid-driven positive-feedback loop. Journal of Clinical Endocrinology and Metabolism 2016 101 841–846. (https://doi.org/10.1210/jc.2015-2855) PubMed Search Google Scholar Export Citation 8↑ Barrett C, van Uum SH, & Lender JW. Risk of catecholaminergic crises following glucocorticoid administration in patients with an adrenal mass: a literature review. Clinical Endocrinology 2015 83 622–628. (https://doi.org/10.1111/cen.12813) Search Google Scholar Export Citation 9↑ Ballav C, Naziat A, Mihai R, Karavitaki N, Ansorge O, & Grossman AB. Mini-review: pheochromocytomas causing the ectopic ACTH syndrome. Endocrine 2012 42 69–73. (https://doi.org/10.1007/s12020-012-9646-7) PubMed Search Google Scholar Export Citation 10↑ Elliott PF, Berhane T, Ragnarsson O, & Falhammar H. Ectopic ACTH- and/or CRH-Producing pheochromocytomas. Journal of Clinical Endocrinology and Metabolism 2021 106 598–608. (https://doi.org/10.1210/clinem/dgaa488) Search Google Scholar Export Citation 11↑ Isidori AM, Kaltsas GA, Pozza C, Frajese V, Newell-Price J, Reznek RH, Jenkins PJ, Monson JP, Grossman AB, & Besser GM. The ectopic adrenocorticotropin syndrome: clinical features, diagnosis, management, and long-term follow-up. Journal of Clinical Endocrinology and Metabolism 2006 91 371–377.. (https://doi.org/10.1210/jc.2005-1542) PubMed Search Google Scholar Export Citation 12↑ Salgado LR, Fragoso MCB, Knoepfelmacher M, Machado MC, Domenice S, Pereira MA, & de Mendonça BB. Ectopic ACTH syndrome: our experience with 25 cases. European Journal of Endocrinology 2006 155 725–733. (https://doi.org/10.1530/eje.1.02278) PubMed Search Google Scholar Export Citation 13↑ Paleń-Tytko JE, Przybylik-Mazurek EM, Rzepka EJ, Pach DM, Sowa-Staszczak AS, Gilis-Januszewska A, & Hubalewska-Dydejczyk AB. Ectopic ACTH syndrome of different origin: diagnostic approach and clinical outcome. Experience of one clinical centre. PLoS One 2020 15 e0242679. (https://doi.org/10.1371/journal.pone.0242679) PubMed Search Google Scholar Export Citation 14↑ Krumeich LN, Cucchiara AJ, Nathanson KL, Kelz RR, Fishbein L, Fraker DL, Roses RE, Cohen DL, & Wachtel H. Correlation between plasma catecholamines, weight, and diabetes in pheochromocytoma and paraganglioma. Journal of Clinical Endocrinology and Metabolism 2021 106 e4028–e4038. (https://doi.org/10.1210/clinem/dgab401) PubMed Search Google Scholar Export Citation 15↑ Bihain F, Nomine-Criqui C, Guerci P, Gasman S, Klein M, & Brunaud L. Management of patients with treatment of pheochromocytoma: a critical appraisal. Cancers (Basel) 2022 14 3845. (https://doi.org/10.3390/cancers14163845) PubMed Search Google Scholar Export Citation 16↑ Ilias I, Torpy DJ, Pacak K, Mullen N, Wesley RA, & Nieman LK. Cushing’s syndrome due to ectopic corticotropin secretion: 20 years’ experience at the National Institute of Health. Journal of Clinical Endocrinology and Metabolism 2005 90 4955–4962. (https://doi.org/10.1210/jc.2004-2527) Search Google Scholar Export Citation 17↑ Varlamov E, Hinojosa-Amaya JM, Stack M, & Fleseriu M. Diagnostic utility of gallium-68-somatostatin receptor PET/CT in ectopic ACTH-secreting tumours: a systematic literature review and single-center clinical experience. Pituitary 2019 22 445–455. (https://doi.org/10.1007/s11102-019-00972-w) PubMed Search Google Scholar Export Citation 18↑ Varlamov EV, Han AJ, & Fleseriu M. Updates in adrenal steroidogenesis inhibitors for Cushing's syndrome. A practical guide. Best Practice and Research. Clinical Endocrinology and Metabolism 2021 35 101490. (https://doi.org/10.1016/j.beem.2021.101490) PubMed Search Google Scholar Export Citation 19↑ Marques JVO, & Boguszewski CL. Medical therapy in severe hypercortisolism. Best Practice and Research. Clinical Endocrinology and Metabolism 2021 35 101487. (https://doi.org/10.1016/j.beem.2021.101487) Search Google Scholar Export Citation 20↑ Sharma ST, & Nieman LK. Prolonged remission after long-term treatment with steroidogenesis inhibitors in Cushing's syndrome caused by ectopic ACTH secretion. European Journal of Endocrinology 2012 166 531–536. (https://doi.org/10.1530/EJE-11-0949) PubMed Search Google Scholar Export Citation 21↑ Martinez AD, Feelders RA, de Herder WW, Castaño JP, Moreno MAG, Dogan F, van Dungen R, van Koetsveld P, & Hofland LJ. Effects of ketoconazole on ACTH-producing and non-ACTH-producing neuroendocrine tumor cells. Hormones and Cancer 2019 107–119. (https://doi.org/10.1007/s12672-019-00361-6) Search Google Scholar Export Citation 22↑ Cui M, Zhou T, Feng S, Liu X, Wang F, Zhang Y, & Yu X. Altered microstructural pattern of white matter in Cushing’s disease identified by automated fiber quantification. NeuroImage. Clinical 2021 31 102770. (https://doi.org/10.1016/j.nicl.2021.102770) PubMed Search Google Scholar Export Citation 23↑ Lenders JWM, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SKG, Hassan Murad MH, Naruse M, Pacak K, Young WF Jr & Endocrine Society. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. Journal of Clinical Endocrinology and Metabolism 2014 99 1915–1942. (https://doi.org/10.1210/jc.2014-1498) PubMed Search Google Scholar Export Citation 24↑ Sarkadi B, Saskoi E, Butz H, & Patocs A. Genetics of pheochromocytomas and paragangliomas determine the therapeutical approach. International Journal of Molecular Sciences 2022 23 1450. (https://doi.org/10.3390/ijms23031450) PubMed Search Google Scholar Export Citation From https://edm.bioscientifica.com/view/journals/edm/2023/2/EDM22-0308.xml
  15. Introduction: The first-line treatment for Cushing’s disease is transsphenoidal surgery for pituitary tumor resection. Ketoconazole has been used as a second-line drug despite limited data on its safety and efficacy for this purpose. The objective of this meta-analysis was to analyze hypercortisolism control in patients who used ketoconazole as a second-line treatment after transsphenoidal surgery, in addition to other clinical and laboratory criteria that could be related to therapeutic response. Methods: We searched for articles that evaluated ketoconazole use in Cushing’s disease after transsphenoidal surgery. The search strategies were applied to MEDLINE, EMBASE, and SciELO. Independent reviewers assessed study eligibility and quality and extracted data on hypercortisolism control and related variables such as therapeutic dose, time, and urinary cortisol levels. Results: After applying the exclusion criteria, 10 articles (one prospective and nine retrospective studies, totaling 270 patients) were included for complete data analysis. We found no publication bias regarding reported biochemical control or no biochemical control (p = 0.06 and p = 0.42 respectively). Of 270 patients, biochemical control of hypercortisolism occurred in 151 (63%, 95% CI 50-74%) and no biochemical control occurred in 61 (20%, 95% CI 10-35%). According to the meta-regression, neither the final dose, treatment duration, nor initial serum cortisol levels were associated with biochemical control of hypercortisolism. Conclusion: Ketoconazole can be considered a safe and efficacious option for Cushing’s disease treatment after pituitary surgery. Systematic review registration: https://www.crd.york.ac.uk/prospero/#searchadvanced, (CRD42022308041). 1 Introduction Cushing’s disease (CD) results from an adrenocorticotropic hormone (ACTH) secreting pituitary tumor, which leads to chronic hypercortisolism (1, 2). It is a potentially fatal disease, with mortality rates up to 3.7 times higher than the general population (3, 4). CD is three times more common in women. According to consensus, the first-line treatment for CD is pituitary tumor resection surgery with the transsphenoidal technique (4, 5), which achieves short-term biochemical control rates of 60 to 80%, depending on the experience of the treatment center. In long-term follow-up, recurrence rates range from 20 to 30% even in cases with complete initial biochemical control (6, 7). Medication is a therapeutic option in patients who do not achieve biochemical control with transsphenoidal surgery (TSS), have recurrent hypercortisolism, and have contraindications or high surgical risk, or it can be used while waiting for the efficacy of radiation techniques (8). In such cases, adrenal-blocking drugs become important. Ketoconazole is an antifungal drug, a synthetic imidazole derivative that blocks multiple enzymes involved in adrenal steroidogenesis pathways (CYP11A1, CYPP17, CYP11B2, and CYP11B1). It was recently approved for use in CD by the European Union (9) and has been recommended for off-label use in the United States (2, 10, 11). Although recommended by professional guidelines (not regulatory authorities) for hypercortisolism, its use as an antifungal has been more restricted since regulatory agencies in Europe and the United States have issued statements regarding its high risk of hepatotoxicity, including reported deaths from liver failure (12, 13). Recently, a levorotatory derivative (Levoketoconazole) with estimated lower hepatotoxicity was introduced (14). Clinical studies evaluating the efficacy and adverse effects of ketoconazole in CD are scarce. Their limited and heterogeneous samples include hypercortisolism control as a first-line therapy or after TSS and they include patients with ACTH-dependent Cushing’s syndrome with indeterminate etiology (11–13). Two recent meta-analyses had divergent results regarding hypercortisolism remission rates with ketoconazole use: 46% vs. 64% (15, 16). Adverse effects, treatment interruption, and treatment-associated deaths have also been reported. Thus, studies evaluating the efficacy of ketoconazole for its main indication and continued or recurrent hypercortisolism after TSS are not currently available. This meta-analysis aimed to analyze the prevalence of biochemical control of hypercortisolism in CD patients who used ketoconazole as a second-line therapy after TSS, in addition to clinical and laboratory parameters that can predict therapeutic response and serious adverse effects due to ketoconazole treatment. 2 Materials and methods This systematic review and meta-analysis study was performed according to the PRISMA system (17) and was registered in the International Prospective Register of Systematic Reviews (CRD42022308041). 2.1 Identification of studies A search was performed in three databases: MEDLINE, EMBASE, and SciELO. In MEDLINE, using the Medical Subject Headings “Pituitary ACTH hypersecretion” or “Cushing’s disease” and “Ketoconazole” or “Fluconazole”, 305 articles were found. In EMBASE, using the Emtree terms “Cushing’s disease” and “ketoconazole” or “fluconazole”, 544 results were found. In SciELO, using the terms “Cushing’s disease” and “Ketoconazole” or “fluconazole”, five articles were found. The complete search strategy can be found in Supplementary Material 1. The searches were performed in June 2021 and updated in May 2022 although no new studies were added to the analysis through this step. A manual search was performed for references to reviews and meta-analyses in the included studies, as well as systematic reviews or articles on related topics. Every potential article was considered eligible for review, with no language limitations. Whenever necessary, authors were contacted to confirm information or supply missing data. 2.2 Selection criteria We selected observational, case-control, or clinical trials that included CD patients diagnosed through clinical manifestations in association with at least two positive screenings for hypercortisolism, baseline ACTH > 20 pg/ml, pituitary adenoma confirmed in surgery, bilateral petrosal sinus catheterization, or pituitary MRI showing a lesion > 6 mm (18). Patients must have undergone transsphenoidal surgery as first-line therapy, either without postoperative remission or with recurrence during clinical follow-up. Consequently, ketoconazole was used as a second-line treatment to control hypercortisolism. Studies of patients who received radiotherapy concomitantly with ketoconazole were not excluded. 2.3 Study selection, data extraction, and quality assessment Two authors (CV and ACVM) performed independent searches in the databases, selecting potential studies based on titles and abstracts for further analysis of the complete articles. Inter-rater agreement was 0.88 according to Cohen’s kappa coefficient (95% CI, 0.83-0.93) for the selected studies. Disagreements were resolved by consensus between the investigators (CV and ACVM) or when necessary, by a discussion with a third investigator (MAC). Baseline characteristics and outcomes were extracted from studies that met the inclusion criteria, including baseline and post-drug cortisol measurements, mean and maximum treatment duration, ketoconazole dose, potential adverse effects, and drug intolerance. The considered outcomes were the prevalence of complete, partial (reduction of > 50% in cortisol levels despite incomplete normalization of 24-h UFC), or no biochemical control of hypercortisolism with ketoconazole use. Data were extracted only when the studies reported ketoconazole use after transsphenoidal surgery (TSS). Studies that did not subdivide ketoconazole data into pre-and post-transsphenoidal surgery were excluded. Disagreements about data extraction were discussed until a consensus was reached. The original authors were contacted by e-mail to resolve questions or obtain missing data. Study quality was evaluated using a modified Newcastle–Ottawa scale (19). 2.4 Data analysis Rates of complete, partial, and no biochemical control were analyzed across all included studies and the pooled prevalence was calculated. Cochrane’s χ2 and I² tests were used to assess heterogeneity between studies, and p = 0.05 was considered significant. Incidence estimates were obtained by random effects models. Meta-regression was performed to analyze the relationship between ketoconazole dose, treatment time, and baseline cortisol level. Publication bias was assessed with a funnel plot that assesses the incidences in relation to the standard error of each study, which was determined using the Begg and Egger tests. Meta-analysis was performed using R version 4.1.2 and R META package version 4.19.2. 3 Results Electronic and manual database searches resulted in 735 studies, of which 652 were excluded after analyzing the titles and abstracts. We selected 83 studies for full-text review. After applying the exclusion criteria, 10 articles remained (totaling 270 patients) for analysis and complete data extraction (10, 20–28). The flow diagram is shown in Figure 1. No articles using the term fluconazole in the context of CD were found in the searches. Figure 1 Figure 1 Flow diagram: Identification and selection of articles for the meta-analysis. All of the selected studies used normalized 24-h UFC levels as a criterion for biochemical control of hypercortisolism except for one (24), which used serum cortisol level and the suppression test with 2 mg of dexamethasone (Liddle test). Most patients were women and were treated with ketoconazole for a mean of 31.4 months and a maximum of 45 months. Details of each included study are presented in Table 1. Unpublished data from a conference abstract from a Brazilian cohort were included and were supplemented through direct contact with the authors (27). Table 1 Table 1 Characteristics of the included studies. The study quality analysis is shown in Table 2. In general, the quality of the articles was adequate. Some data could not be extracted due to uncertainty about when TSS had been performed and ketoconazole therapy had begun. In such cases, the authors were contacted and, if they did not respond by the time of the analyses, the data were excluded. The study by Huguet et al. (23) was excluded from the analysis of the “no biochemical control” variable for not mentioning non-remission as a possible outcome. Table 2 Table 2 Quality of the included studies (one-star maximum for each item, except comparability of cohorts, with two maximum). Begg and Egger’s tests were performed to assess publication bias regarding biochemical control of hypercortisolism. Since the results were not significant, there was no need to perform a trim-and-fill analysis. Funnel Plots (Figures 2, 3) demonstrate the lack of publication bias regarding biochemical control and no biochemical control (p = 0.06 and p = 0.42, respectively). Figure 2 Figure 2 Funnel Plot of hypercortisolism remission with Ketoconazole. Figure 3 Figure 3 Funnel Plot of hypercortisolism non-remission with ketoconazole. 3.1 Control of hypercortisolism (biochemical control) Ten studies (270 patients) indicated the prevalence of biochemical control of hypercortisolism in patients who underwent TSS and received ketoconazole as a second-line therapy. A total of 151 patients had complete biochemical control (63%; 95% CI, 50-74%; see Figure 4). We performed a meta-analysis without including Correa Silva’s unpublished data, and the prevalence of hypercortisolism remission remained at 63%. These charts can be found in the Supplementary Material. Figure 4 Figure 4 Forest plot of hypercortisolism remission with Ketoconazole. The high variability between studies is partly explained by the clinical differences between cohorts, which explain the 39 to 89% variation in remission rates. The lowest complete remission rate, 39%, was found in Di Somma et al. However, in addition to being the only prospective study, there was a high rate of partial biochemical control (61%), and no patient was classified as no biochemical control. This cohort also had the highest mean baseline cortisol levels (1413 nmol/24h, 9.46 times above the upper reference limit) and the lowest mean final ketoconazole dose (400 mg daily). The highest remission rate, 89%, was found in Sonino et al., a retrospective cohort, which might explain why ketoconazole was administered only in patients with a more favorable clinical response. Heterogeneity was 57% in this analysis. No biochemical control occurred in 61 of 270 patients or 20% of the sample (95% CI, 10-35%) (Figure 5). The four cohorts with the highest rates of non-remission, Kakade HR et al. (50%), Luisetto G et al. (50%), Castinetti F et al. (41%), and Espinosa de los Monteros et al. (26.7%) did not involve the concept of partial biochemical control, which was used in the other cohorts. Heterogeneity was 4% in this analysis. Figure 5 Figure 5 Forest plot of hypercortisolism non-remission with ketoconazole. Although the concept of partial response was not addressed directly in most studies, some patients experienced a reduction of > 50% in cortisol levels despite incomplete normalization. This condition was described in five cohorts (10, 21, 26, 27, 28), demonstrating partial benefits from ketoconazole in 59 patients (21.7%). Only five papers mentioned how many patients underwent radiotherapy during treatment with ketoconazole; at least 59 patients (21%) received radiotherapy treatment concomitantly or subsequent to ketoconazole (10, 22, 23, 27, 28). 3.2 Adverse effects Although all of the studies described adverse effects from ketoconazole, only two provided information about them after TSS (26, 28). The following stood out among the main adverse effects: elevated transaminase levels, diarrhea, abdominal pain, skin rash, gynecomastia, and adrenal insufficiency. Medication discontinuation due to intolerance was reported in three studies (10, 20, 28). Due to insufficient data, it was not possible to perform a meta-analysis of the prevalence of adverse effects. No deaths related to ketoconazole were reported in any study. 3.3 Meta-regression In studies that evaluated hypercortisolism remission, meta-regression was used to analyze which variables influenced the occurrence or not of biochemical control. Both the final dose of ketoconazole (six studies with a mean dose of 628 mg/day: range 400 mg to 779 mg/day), the duration of drug treatment (seven studies with a mean duration of 31 months), and the baseline 24-h UFC levels (seven studies with a mean of 4.48 times above the reference value) showed no association with hypercortisolism remission (data not shown). 4 Discussion Drug treatment in CD is reserved only for patients with no biochemical control after TSS, in those who are not candidates for surgical treatment, or in those awaiting the effects of radiotherapy (2, 4). The available drugs in this context act in several ways: as adrenal blockers (ketoconazole, osilodrostat, metyrapone, mitotane, levoketoconazole, and etomidate), somatostatin receptor ligands (pasireotide), dopamine receptor agonists (cabergoline), or as glucocorticoid receptor blockers (mifepristone) (2, 29). These drugs must be prescribed considering aspects such as the potential for remission, potential adverse effects, availability, and cost. Moreover, no single drug has yet been demonstrated as superior to the others (2, 30, 31). Comparing our analyses with previous studies, we found that hypercortisolism control in patients who had already undergone TSS was higher than in studies that did not subdivide ketoconazole use into pre- and post-transsphenoidal surgery or in studies evaluating multiple etiologies of hypercortisolism (15, 16, 32). Our meta-analysis evaluated 10 studies from different countries and ethnic groups regarding CD treatment with ketoconazole due to non-remission or recurrence after TSS. The hypercortisolism biochemical control rate we found after TSS (63%) was greater than some prospective studies evaluating current drugs such as levoketoconazole but was also similar to that found in a systematic review by Pivonello et al. (64%) (14, 32). However, it was higher than that found in the most recent meta-analysis (36 to 46%) (15). These two systematic reviews (14, 15) did not subdivide ketoconazole use into pre- and post-transsphenoidal surgery, which can significantly impact the hypercortisolism control rate. A multicenter study by Castinetti et al. showed greater efficacy in patients who had already undergone TSS (68% control) compared to preoperative use (48.7% control) (10). These findings may be due to the fact that assessing patients with different states of hypercortisolism broadens the sample beyond only CD patients (i.e., probably including patients with ectopic ACTH syndrome and other etiologies) and, thus, the percentage of controlled patients may be lower. According to the literature, even without complete biochemical control, patients who present some reduction in serum cortisol levels, partial biochemical control, or improvement in any associated comorbidities are candidates for continuing ketoconazole alone or in a possible association with other medications (2). Our meta-analysis found that such was the case in 59 patients. Although the concept of partial response was not addressed directly in most of the included studies, some individuals experienced a > 50% reduction in cortisol levels but not complete normalization. By analyzing the overall rate of non-responders (20%), we can extrapolate that approximately 80% of patients treated with ketoconazole experienced some improvement in cortisol levels, which in itself demonstrates the medication’s efficacy. Although we considered the hypercortisolism biochemical control rate to be satisfactory with ketoconazole, many patients may lose biochemical control over the course of treatment or have long-term oscillations, and it has been suggested that this can occur in up to 23% of those who achieved initial control using the drug (2, 32), which shows the dynamic nature of their treatment and the constant challenge in clinical practice. This could not be established in our meta-analysis due to the lack of reported data (15, 16, 32). Although tumor size is not necessarily related to cortisol levels in CD, those with macroadenomas have a lower chance of remission after TSS (2, 33). Patients who use ketoconazole preoperatively may already have larger lesions, which makes surgery difficult, or active pituitary lesions, which can reduce the ability to achieve control through medication. In our meta-analysis, only two studies described tumor size and correlated it with remission after ketoconazole therapy (10, 24). The hypothesis that patients with lower pre-treatment serum cortisol levels or who used higher doses of ketoconazole would have higher biochemical control rates was not confirmed since we found no relationship between longer duration of use and higher remission rates. The data included in this review do not provide a profile of patients most likely to benefit from ketoconazole treatment. Other reviews of ketoconazole therapy in any context of Cushing’s syndrome have found that up to 20% of patients experience adverse effects such as elevated transaminase levels, with the majority being asymptomatic moderate elevation, i.e., < 5 times the upper limit of normality. These hepatic changes do not appear dose-dependent and are usually reversed within 2 to 12 weeks after ketoconazole discontinuation or dose reduction (34). When compared, up to 32% of participants experienced mild adverse effects in the levoketoconazole study, with 13% having to discontinue treatment (14). Our analyses have several limitations since nine of the 10 primary studies that were included in the meta-analysis were retrospective and uncontrolled in design. We could find no randomized clinical trials, and we know that only randomized, controlled trials with an intention to treat analysis can provide accurate estimates of drug efficacy. New therapeutic options are under investigation in clinical trials and will likely bring more robust data about hypercortisolism control in CD. Despite the limitations, consensus continues to indicate adrenal blockers, including ketoconazole, for patients with moderate CD and no visible lesions in MRI. The recommendation is that drug therapy should be individualized, based on the patient’s clinical picture, hypercortisolism severity, and medication availability and cost, so that treatment is optimized and applied for the necessary period of time (2, 33, 35, 36). 5 Conclusion Our meta-analysis showed that ketoconazole effectively controlled hypercortisolism in approximately 63% of CD patients when used according to its principal indication, i.e., in patients without remission after TSS. No association was found between hypercortisolism biochemical control and total medication dose, treatment duration, or initial serum cortisol levels. No serious adverse effects or treatment-related deaths were observed in these patients. These findings indicate that based on the current literature available, ketoconazole is an efficacious and safe drug for treating active CD after pituitary surgery. Data availability statement The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author. Author contributions CV, SPG and MAC created the research format. CV and ACVM developed the search strategies and independently applied the eligibility criteria, subsequently extracting the data. CV and ACVM performed a peer review of the data and assessed risk of bias. CV and VNH performed the meta-analysis. MAC oversaw all phases of the meta-analysis and arbitrated conflicts of opinion. SPG and TCR participated in the final data review and discussion. All authors contributed to the article and approved the submitted version. Funding This work was supported by the “Coordena̧cão de Aperfei̧coamento de Pessoal de Ńıvel Superior” (CAPES), Ministry of Health - Brazil, through a PhD scholarship; and the Research Incentive Fund (FIPE) of Hospital de Cĺınicas de Porto Alegre (HCPA) and Programa de Excelência Acadêmica from CAPES (PROEX). Acknowledgments The authors would like to thank Ana Cabral, librarian at the Federal University of Rio Grande do Sul, for her availability and assistance with the database searches and Professor Silvia Regina Correa da Silva for kindly providing additional unpublished data from her study. Conflict of interest TCR received a CNPQ research grant. MAC worked on clinical research for Crinetics and on the advisory board for Novo Nordisk. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Publisher’s note All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher. Supplementary material The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo.2023.1145775/full#supplementary-material References 1. Fleseriu M, Castinetti F. Updates on the role of adrenal steroidogenesis inhibitors in cushing’s syndrome: a focus on novel therapies. Pituitary (2016). 643–53. doi: 10.1007/s11102-016-0742-1 PubMed Abstract | CrossRef Full Text | Google Scholar 2. Fleseriu M, Auchus R, Bancos I, Ben-Shlomo A, Bertherat J, Biermasz NR, et al. Consensus on diagnosis and management of cushing’s disease: a guideline update. Lancet Diabetes Endocrinol (2021) 9(12):847–75. doi: 10.1016/S2213-8587(21)00235-7 PubMed Abstract | CrossRef Full Text | Google Scholar 3. Nieman LK, Biller BMK, Findling JW, Newell-Price J, Savage MO, Stewart PM, et al. The diagnosis of cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab (2008) 93(5):1526–40. doi: 10.1210/jc.2008-0125 PubMed Abstract | CrossRef Full Text | Google Scholar 4. Nieman LK, Biller BMK, Findling JW, Murad MH, Newell-Price J, Savage MO, et al. Treatment of cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab (2015) 100(8):2807–31. doi: 10.1210/jc.2015-1818 PubMed Abstract | CrossRef Full Text | Google Scholar 5. Clayton RN, Raskauskiene D, Reulen RC, Jones PW. Mortality and morbidity in cushing’s disease over 50 years in Stoke-on-Trent, UK: audit and meta-analysis of literature. J Clin Endocrinol Metab (2011). 632–42. doi: 10.1210/jc.2010-1942 PubMed Abstract | CrossRef Full Text | Google Scholar 6. Patil CG, Prevedello DM, Lad SP, Vance ML, Thorner MO, Katznelson L, et al. Late recurrences of cushing’s disease after initial successful transsphenoidal surgery. J Clin Endocrinol Metab (2008) 93(2):358–62. doi: 10.1210/jc.2007-2013 PubMed Abstract | CrossRef Full Text | Google Scholar 7. Hofmann BM, Hlavac M, Martinez R, Buchfelder M, Müller OA, Fahlbusch R. Long-term results after microsurgery for cushing disease: experience with 426 primary operations over 35 years. J Neurosurg (2008) 108(1):9–18. doi: 10.3171/JNS/2008/108/01/0009 PubMed Abstract | CrossRef Full Text | Google Scholar 8. Rubinstein G, Osswald A, Zopp S, Ritzel K, Theodoropoulou M, Beuschlein F, et al. Therapeutic options after surgical failure in cushing’s disease: a critical review. Best Pract Res Clin Endocrinol Metab (2019) 33(2):101270. doi: 10.1016/j.beem.2019.04.004 PubMed Abstract | CrossRef Full Text | Google Scholar 9. Agency EM. Ketoconazole HRA recommended for approval in cushing’s syndrome European medicines agency facilitates patients’ access to a treatment of a. (2014) 44(September). Google Scholar 10. Castinetti F, Guignat L, Giraud P, Muller M, Kamenicky P, Drui D, et al. Ketoconazole in cushing’s disease: is it worth a try. J Clin Endocrinol Metab (2014) 99(5):1623–30. doi: 10.1210/jc.2013-3628 PubMed Abstract | CrossRef Full Text | Google Scholar 11. Castinetti F, Nieman LK, Reincke M, Newell-Price J. Approach to the patient treated with steroidogenesis inhibitors. J Clin Endocrinol Metab (2021) 106(7):2114–23. doi: 10.1210/clinem/dgab122 PubMed Abstract | CrossRef Full Text | Google Scholar 12. Greenblatt DJ, Mikus G. Ketoconazole and liver injury: a five-year update. Clin Pharmacol Drug Dev (2019) 8(1):6–8. doi: 10.1002/cpdd.652 PubMed Abstract | CrossRef Full Text | Google Scholar 13. Yan JY, Nie XL, Tao QM, Zhan SY, Zhang Y. Ketoconazole associated hepatotoxicity: a systematic review and meta-analysis. BioMed Environ Sci (2013) 26(7):605–10. doi: 10.3967/0895-3988.2013.07.013 PubMed Abstract | CrossRef Full Text | Google Scholar 14. Fleseriu M, Pivonello R, Elenkova A, Salvatori R, Auchus RJ, Feelders RA, et al. Efficacy and safety of levoketoconazole in the treatment of endogenous cushing’s syndrome (SONICS): a phase 3, multicentre, open-label, single-arm trial. Lancet Diabetes Endocrinol (2019) 7(11):855–65. doi: 10.1016/S2213-8587(19)30313-4 PubMed Abstract | CrossRef Full Text | Google Scholar 15. Simões Corrêa Galendi J, Correa Neto ANS, Demetres M, Boguszewski CL, Nogueira V dos SN. Effectiveness of medical treatment of cushing’s disease: a systematic review and meta-analysis. Front Endocrinol (Lausanne) (2021) 12(September):1–12. doi: 10.3389/fendo.2021.732240 CrossRef Full Text | Google Scholar 16. Broersen LHA, Jha M, Biermasz NR, Pereira AM, Dekkers OM. Effectiveness of medical treatment for cushing’s syndrome: a systematic review and meta-analysis. Pituitary (2018) 21(6):631–41. doi: 10.1007/s11102-018-0897-z PubMed Abstract | CrossRef Full Text | Google Scholar 17. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (2021) 89:372. doi: 10.1136/bmj.n71 CrossRef Full Text | Google Scholar 18. Boscaro M, Arnaldi G. Approach to the patient with possible cushing’s syndrome. J Clin Endocrinol Metab (2009) 94(9):3121–31. doi: 10.1210/jc.2009-0612 PubMed Abstract | CrossRef Full Text | Google Scholar 19. Wells G, Shea B OD. The Newcastle–Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hosp Res Inst (2016). Google Scholar 20. Castinetti F, Morange I, Jaquet P, Conte-Devolx B, Brue T. Ketoconazole revisited: a preoperative or postoperative treatment in cushing’s disease. Eur J Endocrinol (2008) 158(1):91–9. doi: 10.1530/EJE-07-0514 PubMed Abstract | CrossRef Full Text | Google Scholar 21. Di Somma C, Colao A, Pivonello R, Klain M, Faggiano A, Tripodi FS, et al. Effectiveness of chronic treatment with alendronate in the osteoporosis of cushing’s disease. Clin Endocrinol (Oxf) (1998) 48(5):655–62. doi: 10.1046/j.1365-2265.1998.00486.x PubMed Abstract | CrossRef Full Text | Google Scholar 22. Espinosa-De-Los-Monteros AL, Sosa-Eroza E, Espinosa E, Mendoza V, Arreola R, Mercado M. Long-term outcome of the different treatment alternatives for recurrent and persistent cushing disease. Endocr Pract (2017) 23(7):759–67. doi: 10.4158/EP171756.OR PubMed Abstract | CrossRef Full Text | Google Scholar 23. Huguet I, Aguirre M, Vicente A, Alramadan M, Quiroga I, Silva J, et al. Análisis de los resultados del tratamiento de la enfermedad de cushing en los hospitales de castilla-la mancha. Endocrinol y Nutr (2015) 62(5):217–23. doi: 10.1016/j.endonu.2015.02.007 CrossRef Full Text | Google Scholar 24. Kakade HR, Kasaliwal R, Khadilkar KS, Jadhav S, Bukan A, Khare S, et al. Clinical, biochemical and imaging characteristics of cushing’s macroadenomas and their long-term treatment outcome. Clin Endocrinol (Oxf) (2014) 81(3):336–42. doi: 10.1111/cen.12442 PubMed Abstract | CrossRef Full Text | Google Scholar 25. Luisetto G, Zangari M, Camozzi V, Boscaro M, Sonino N, Fallo F. Recovery of bone mineral density after surgical cure, but not by ketoconazole treatment, in cushing’s syndrome. Osteoporos Int (2001) 12(11):956–60. doi: 10.1007/s001980170025 PubMed Abstract | CrossRef Full Text | Google Scholar 26. Sonino N, Boscaro M, Paoletta A, Mantero F, Zillotto D. Ketoconazole treatment in cushing’s syndrome: experience in 34 patients. Clin Endocrinol (Oxf) (1991) 35(4):347–52. doi: 10.1111/j.1365-2265.1991.tb03547.x PubMed Abstract | CrossRef Full Text | Google Scholar 27. Correa-Silva SR, Gaeta P, Alves GM, Alves Martins MR, Abucham J, Judith Lengyel A-M. Preoperative and long-term postoperative ketoconazole treatment in cushing disease: clinical aspects and plasma acth behavior during its use. Endocr Rev (2011) 32(3). Google Scholar 28. Viecceli C, Mattos ACV, Costa MCB, de Melo RB, Rodrigues TdaC, Czepielewski MA. Evaluation of ketoconazole as a treatment for cushing’s disease in a retrospective cohort. Front Endocrinol (Lausanne) (2022) 13(October). doi: 10.3389/fendo.2022.1017331 PubMed Abstract | CrossRef Full Text | Google Scholar 29. Gadelha MR, Neto LV. Efficacy of medical treatment in cushing’s disease: a systematic review. Clin Endocrinol (Oxf) (2014) 80(1):1–12. doi: 10.1111/cen.12345 PubMed Abstract | CrossRef Full Text | Google Scholar 30. Fleseriu M, Petersenn S. New avenues in the medical treatment of cushing’s disease: corticotroph tumor targeted therapy. J Neurooncol (2013) 114(1):1–11. doi: 10.1007/s11060-013-1151-1 PubMed Abstract | CrossRef Full Text | Google Scholar 31. Fleseriu M, Petersenn S. Medical management of cushing’s disease: what is the future? Pituitary (2012) 15(3):330–41. doi: 10.1007/s11102-012-0397-5 PubMed Abstract | CrossRef Full Text | Google Scholar 32. Pivonello R, De Leo M, Cozzolino A, Colao A. The treatment of cushing’s disease. Endocr Rev (2015) 36(4):385–486. doi: 10.1210/er.2013-1048 PubMed Abstract | CrossRef Full Text | Google Scholar 33. Capatina C, Hinojosa-Amaya JM, Poiana C, Fleseriu M. Management of patients with persistent or recurrent cushing’s disease after initial pituitary surgery. Expert Rev Endocrinol Metab (2020) 15(5):321–39. doi: 10.1080/17446651.2020.1802243 PubMed Abstract | CrossRef Full Text | Google Scholar 34. Young J, Bertherat J, Vantyghem MC, Chabre O, Senoussi S, Chadarevian R, et al. Hepatic safety of ketoconazole in cushing’s syndrome: results of a compassionate use programme in France. Eur J Endocrinol (2018) 178(5):447–58. doi: 10.1530/EJE-17-0886 PubMed Abstract | CrossRef Full Text | Google Scholar 35. Pivonello R, Ferrigno R, De Martino MC, Simeoli C, Di Paola N, Pivonello C, et al. Medical treatment of cushing’s disease: an overview of the current and recent clinical trials. Front Endocrinol (Lausanne) (2020) 11(December). doi: 10.3389/fendo.2020.00648 CrossRef Full Text | Google Scholar 36. Fleseriu M, Loriaux DL, Ludlam WH. Second-line treatment for cushing’s disease when initial pituitary surgery is unsuccessful. Curr Opin Endocrinol Diabetes Obes (2007) 14(4):323–8. doi: 10.1097/MED.0b013e328248b498 PubMed Abstract | CrossRef Full Text | Google Scholar Keywords: ketoconazole, Cushing’s disease, treatment, systematic review, meta-analysis Citation: Viecceli C, Mattos ACV, Hirakata VN, Garcia SP, Rodrigues TdC and Czepielewski MA (2023) Ketoconazole as second-line treatment for Cushing’s disease after transsphenoidal surgery: systematic review and meta-analysis. Front. Endocrinol. 14:1145775. doi: 10.3389/fendo.2023.1145775 Received: 16 January 2023; Accepted: 07 April 2023; Published: 08 May 2023. Edited by: Monica Livia Gheorghiu, Carol Davila University of Medicine and Pharmacy, Romania Reviewed by: Leandro Kasuki, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Brazil Przemyslaw Witek, Warsaw Medical University, Poland Copyright © 2023 Viecceli, Mattos, Hirakata, Garcia, Rodrigues and Czepielewski. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. *Correspondence: Mauro Antônio Czepielewski, maurocze@terra.com.br Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher. From https://www.frontiersin.org/articles/10.3389/fendo.2023.1145775/full
  16. The following is a summary of “Treatment of Cushing Disease With Pituitary-Targeting Seliciclib,” published in the March 2023 issue of Endocrinology & Metabolism by Liu, et al. Seliciclib (R-roscovitine) has been shown in preclinical studies to inhibit neoplastic corticotroph proliferation and the production of adrenocorticotropic hormone (ACTH) in the pituitary gland. Therefore, for a study, researchers sought to investigate the effectiveness of seliciclib as a pituitary-targeting treatment for patients with Cushing’s disease (CD). Two prospective, open-label, phase 2 trials were conducted at a tertiary referral pituitary center. Adult patients with de novo, persistent, or recurrent CD received oral seliciclib 400 mg twice daily for four consecutive days each week for four weeks. The primary endpoint in the single-center study was normalization of 24-hour urinary free cortisol (UFC; ≤ 50 µg/24 hours) at the end of the study, and in the multicenter study, the primary endpoint was UFC normalization or a ≥ 50% reduction in UFC from baseline to the end of the study. Of the 16 patients who consented, 9 were treated with seliciclib. The mean UFC decreased by 42% from 226.4 ± 140.3 µg/24 hours at baseline to 131.3 ± 114.3 µg/24 hours at the end of the study. The longitudinal model showed significant reductions in UFC from baseline to each treatment week. Three patients achieved a ≥ 50% reduction in UFC (range, 55%-75%), and two exhibited a 48% reduction; none achieved UFC normalization. Plasma ACTH decreased by 19% (P = 0.01) in patients with ≥48% UFC reduction. Three patients developed grade ≤ 2 elevated liver enzymes, anemia, and/or elevated creatinine, resolved with dose interruption/reduction. Two patients developed grade 4 liver-related serious adverse events that resolved within four weeks of seliciclib discontinuation. The results suggested that seliciclib may target pituitary corticotrophs in CD and reverse hypercortisolism. Although potential liver toxicity of seliciclib resolves with treatment withdrawal, a further determination is required to establish the lowest effective dose. Source: academic.oup.com/jcem/article-abstract/108/3/726/6754906?redirectedFrom=fulltext
  17. Solu-Cortef® Pfizer has been experiencing a supply issue for our life saving drug Solu-Cortef® and many in our community have been unable to find it. According to Pfizer they will soon be back to "normal" production rates. (projected end of June) However, we understand that some of you are still unable to fill your prescriptions and are out or will soon be out and need more. We will be sharing all we know so far about this shortage and our suggestions for obtaining the medication. Here you can see a copy of their initial letter about the problem. Understanding Pfizer's process to obtain the medication What to do when their process doesn't work Understanding Pfizer's process to obtain 50 or 100 mg Solo-Cortef in the Act-O-Vial While some pharmacies may still have the medication others will need to order it and due to the supply issue Pfizer is requiring a form. This form must be filled out by your doctor or pharmacist. It has space for an electronic signature (Either your doctor or the pharmacist must sign it). The form must be emailed to PISupplyContinuity@pfizer.com Pfizer has sent letters to the Endocrine Society, Pediatric Endocrine Society, and Pharmacy organizations outlining the process to get Solu-Cortef®. IMPORTANT: The form is for emergency use only. Meaning your are out of soul-cortef or will be out soon. If requesting overnight delivery the form must arrive by 3:00 CT M-F. There is a $25 (plus additional $ based on weight) fee for overnight shipping. While the pharmacy may charge the patient for this service we do not know if insurance will cover that additional cost so if possible it's best to get this form filled out and sent before you run out. A physician or pharmacy is also able to call the supply continuity team M-F by 6:00 p.m. CT at 1-844-646-4398. Tell them to pick "Option 1" - customer then "Option 3" - supply continuity. Pfizer will NOT work directly with the patient through this number. What to do when their process doesn't work If your physician or pharmacist has filled out the form and called the supply continuity team and you still can't get your medication email us with the following: Pharmacy name, address and phone number. Your name and date of birth. We also have a google doc where we are tracking the issue we encourage you to share your data with us. Names are optional, but we encourage use of this form to help us track the problem on a larger scale. Other ideas Ask the pharmacist if they are able to get Solu-Cortef® in the powder form or in a different dose. If yes, then ask your physician to write a script for the option they have available. Be sure to get the new dosing and mixing instructions as they may change due to the higher/lower dose. Some of our members who are not salt wasting use a Dexamethasone injection as their emergency medication. There is also a solu-medrol act-o-vial. Ask your doctor if one of these would work for you or your loved one until the Solu-Cortef can be obtained. If you are salt wasting you still may be able to use dex or medrol. Be sure ask your doctor what to do to replace your mineralocorticoids during a crisis. If your local hospital has a pharmacy try to fill your prescription there. One of our members was able to get her prescription filled and mailed from Canada.
  18. Sorry I haven't been around much - the knee replacement surgery and physical therapy have taken more than the little energy I have.  :(

    Hopefully, I'll be back soon!

  19. Abstract Objective To evaluate whether age-related differences exist in clinical characteristics, diagnostic approach and management strategies in patients with Cushing’s syndrome included in the European Registry on Cushing’s Syndrome (ERCUSYN). Design Cohort study. Methods We analyzed 1791 patients with CS, of whom 1234 (69%) had pituitary-dependent CS (PIT-CS), 450 (25%) adrenal-dependent CS (ADR-CS) and 107 (6%) had an ectopic source (ECT-CS). According to the WHO criteria, 1616 patients (90.2%) were classified as younger (<65 years) and 175 (9.8%) as older (>65 years). Results Older patients were more frequently males and had a lower BMI and waist circumference as compared with the younger. Older patients also had a lower prevalence of skin alterations, depression, hair loss, hirsutism and reduced libido, but a higher prevalence of muscle weakness, diabetes, hypertension, cardiovascular disease, venous thromboembolism and bone fractures than younger patients, regardless of sex (p<0.01 for all comparisons). Measurement of UFC supported the diagnosis of CS less frequently in older patients as compared with the younger (p<0.05). An extra-sellar macroadenoma (macrocorticotropinoma with extrasellar extension) was more common in older PIT-CS patients than in the younger (p<0.01). Older PIT-CS patients more frequently received cortisol-lowering medications and radiotherapy as a first-line treatment, whereas surgery was the preferred approach in the younger (p<0.01 for all comparisons). When transsphenoidal surgery was performed, the remission rate was lower in the elderly as compared with their younger counterpart (p<0.05). Conclusions Older CS patients lack several typical symptoms of hypercortisolism, present with more comorbidities regardless of sex, and are more often conservatively treated. From https://academic.oup.com/ejendo/advance-article-abstract/doi/10.1093/ejendo/lvad008/7030701?redirectedFrom=fulltext&login=false
  20. What is cortisol? Cortisol is an essential hormone that your body produces naturally. It comes from two adrenal glands above the kidneys, controlled by the pituitary gland that regulates your body’s reaction to fight-or-flight. Many consider the pituitary gland the master gland for regulating development, reproduction and blood pressure. During stressful times, the pituitary gland signals the adrenals to release the right amount of cortisol into your bloodstream. There are other ways cortisol supports healthy bodily functions, such as boosting metabolism, decreasing inflammation and regulating the sleep-wake cycle. It’s when the adrenal glands produce too much or too little cortisol that problems arise. Signs of high cortisol in the body You may be experiencing high cortisol levels if you’re holding onto weight in your belly or face or have noticed fat deposits in your shoulder or stretch marks on your stomach. Muscle weakness, blood sugar spikes, high blood pressure and hirsutism (unwanted hair growth) may be other red flags. Sometimes, irregular periods also indicate a hormonal imbalance. Women with infrequent periods and high stress, weight gain, acne and excessive body hair could have polycystic ovarian syndrome (PCOS). In this scenario, an endocrinologist can prescribe hormone-balancing medications and suggest lifestyle changes to regulate your body’s function. You should always be proactive about your health, regardless of the situation, and managing your cortisol is no different. Among other issues, having too-high cortisol levels for too long could put you at risk of type 2 diabetes because cortisol spikes your glucose levels for an extended time. How does cortisol affect energy levels? ... Irritability, depression, muscle pains and reduced libido are also possible effects of low cortisol production. Five ways to achieve hormonal balance Remember how I mentioned the importance of being proactive about your health? These five tips can help you achieve balanced cortisol and improve your energy levels. Check-in with a specialist If you suspect your cortisol is wonky, call your doctor. They may be able to run labs or prescribe treatment to help you regulate the hormones. It’s especially important to check in with a specialist to rule out reproductive issues, diabetes or other serious conditions (like Cushing's!). Take medication Different medications can help control cortisol imbalance symptoms. Nearly 150 million women worldwide use birth control to prevent pregnancy or tend to other female reproductive and hormonal problems. Doctors may also recommend medicines that tackle your cortisol issue directly. Additionally, you could ask for sleep medication or antidepressants to deal with daytime fatigue, irritability and mood swings. Although the right dose can make a significant difference in your daily life, some people find that antidepressants make them groggy. However, taking them before bedtime can improve your sleep cycle and concentration. Practise relaxation techniques Considering cortisol is known as the ‘stress hormone’, it only makes sense to keep your anxiety and stress to a minimum. Helpful relaxation techniques include yoga, meditation and breathing exercises. Creative hobbies like painting, journaling and scrapbooking are other ways to distract yourself from whatever’s stressing you out. If there was ever a time to invest in an adult colouring book or new yoga pants, it’s now. Diet and exercise Exercising and eating healthy can also regulate your hormones and give you a much-needed energy boost during the day. Exercise can reduce cortisol levels and increase endorphins which can provide pain relief and improve your mood. Studies have shown that anti-inflammatory foods rich in omega-3s are excellent for combatting excess or low cortisol. Snack on nuts, seeds, yogurt and eggs to keep your energy up. You could also start getting excited about trying new seafood recipes for dinner. Sleep well Cortisol is a stimulant so if you have a cortisol imbalance, there’s a good chance you’re tossing and turning at night. Your body starts producing cortisol during the second part of your sleep hours and reaches its peak about mid-morning. It then begins to dip in the evening, allowing sleep hormones like melatonin and adenosine to take over. A healthy sleep cycle can vastly improve your body’s natural cortisol production and adrenal function. Balance your cortisol for more energy Regulating your cortisol can make a dramatic difference in your energy levels and it can also help you sleep better through the night. So if you’re encountering any of the above issues, head to your doctor and get control of your body’s hormones to feel better and more alive throughout the day. Adapted from https://fashionjournal.com.au/life/cortisol-energy-levels/
  21. This virtual chat, moderated by Shauna Nelson - MAGIC's Cushing's Division Consultant, is an opportunity for adult members to share stories, discuss treatments and successes that have worked for them. Sign up here
  22. Abstract N-of-1 trials can serve as useful tools in managing rare disease. We describe a patient presenting with a typical clinical picture of Cushing’s Syndrome (CS). Further testing was diagnostic of ectopic Adrenocorticotropic Hormone (ACTH) secretion, but its origin remained occult. The patient was offered treatment with daily pasireotide at very low doses (300 mg bid), which resulted in clinical and biochemical control for a period of 5 years, when a pulmonary typical carcinoid was diagnosed and dissected. During the pharmacological treatment period, pasireotide was tentatively discontinued twice, with immediate flare of symptoms and biochemical markers, followed by remission after drug reinitiation. This is the first report of clinical and biochemical remission of an ectopic CS (ECS) with pasireotide used as first line treatment, in a low-grade lung carcinoid, for a prolonged period of 5 years. In conclusion, the burden of high morbidity caused by hypercortisolism can be effectively mitigated with appropriate pharmacological treatment, in patients with occult tumors. Pasireotide may lead to complete and sustained remission of hypercortisolism, until surgical therapy is feasible. The expression of SSTR2 from typical carcinoids may be critical in allowing the use of very low drug doses for achieving disease control, while minimizing the risk of adverse events. Download PDF (2083K)
  23. Abstract Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis. Surgical resection may be curative if localized disease is identified, although recurrence is common. Research shows that the use of adjuvant therapeutic regimens such as EDP-M (combination of mitotane, etoposide, doxorubicin, and cisplatin) in high-risk patients has survival benefits. A 75-year-old female was incidentally found to have a right adrenal heterogeneous internal enhancement measuring 5.0 x 3.7cm. The workup confirmed autonomous adrenal production of corticosteroids and she was referred to surgery for an adrenalectomy. A T2 ACC with positive margins and lympho-vascular invasion was resected, following which she was started on external beam radiation followed by four cycles of carboplatin and etoposide. Despite initial treatments, she was diagnosed with refractory metastatic disease at subsequent follow-ups. Pembrolizumab immunotherapy was started, but disease progression continued, and she was eventually transitioned to mitotane 1g twice daily. She continued to worsen and was eventually transitioned to hospice care. The management of ACC remains diagnostically challenging, especially because most patients do not present until an advanced stage of disease. Surgery is commonly employed with a curative intent, and opinions regarding adjuvant cytotoxic therapy and/or radiotherapy remain mixed. Introduction Adrenocortical carcinoma (ACC) is a rare and aggressive endocrine malignancy with an annual incidence of 0.5-2.0 cases per million persons [1]. ACC is associated with an unsatisfactory prognosis with an estimated median survival of about three to four years. The five-year survival is 60-80% for tumors confined to the adrenal space, 35-50% for locally advanced disease, and 0% to 28% in cases of metastatic disease [2]. Surgical en-bloc resection is commonly employed and is recommended for locoregional disease. There is no standard of care for the management of ACC although cytotoxic cisplatin-based regimens such as EDP-M (a combination of mitotane, etoposide, doxorubicin, and cisplatin) may be employed as adjuvant therapy in those with very high recurrence risk. Mitotane is recommended for patients with a high risk of recurrence (stage III disease, R1 resection margins, or Ki67 >10%) although its routine use for low/moderate risk disease is controversial [3]. Despite complete resection of early-stage disease, recurrence rates in ACC are still very high and appropriate management remains a challenge. We demonstrate a patient with a limited-stage T2 ACC who, despite receiving primary surgery, adjuvant chemotherapy and radiotherapy, progressed to metastatic disease. Case Presentation A 75-year-old female was evaluated by endocrinology for an incidentally discovered adrenal mass. A week prior, she was hospitalized for chest pain. A CT angiogram to exclude aortic dissection revealed a large right adrenal lesion with foci of heterogeneous internal enhancement measuring 5.0 cm x 3.7 cm (Figure 1). Figure 1: Computed tomography (CT) scan of the abdomen demonstrating incidentally noted adrenal mass. White circle: Large irregular right-sided adrenal mass with foci of heterogenous internal enhancement noted She was initially asymptomatic, and denied constitutional symptoms such as fatigue or unexplained loss of weight. However, she had a history of hypertension and anxiety, which raised concern for a pheochromocytoma. She otherwise denied unexplained bruising, palpitations, muscle aches, tremors, and heat/cold intolerance. Aside from hypertension and anxiety, she had a history of type II diabetes mellitus managed on metformin alone. Her family history was remarkable for a brother who also had a left adrenal lesion which was found to be a non-functional adenoma following adrenalectomy. Her vitals were normal except for a blood pressure of 150/90. Examination showed a well-nourished female with no obvious Cushingoid features, such as increased dorsocervical fat pad, axillary or abdominal striations, or unexplained extremity bruising. Cardiac and respiratory exams were within normal limits, and no lymphadenopathy was appreciated. She was scheduled for further workup of her adrenal incidentaloma and was found to have an elevated serum cortisol level. An overnight low-dose dexamethasone suppression test was non-suppressed, and adrenocorticotropic hormone (ACTH) level was found to be low (Table 1). These findings confirmed autonomous adrenal production of corticosteroids, and she was referred to surgery for adrenalectomy. Investigation (units) Value (initial) Value (repeat) Reference range 24-hour urinary epinephrine (mcg/24hr) <1.4 - <21 24-hour urinary norepinephrine (mcg/24hr) 28 - 15-80 24-hour urinary metanephrines (mcg/24hr) <29 - 30-180 24-hour urinary normetanephrines (mcg/24hr) 211 - 148-560 Plasma renin activity (ng/mL/hr) 0.2 - 0.2-1.6 Serum aldosterone (ng/dL) 4.1 - 2-9 Serum cortisol (ug/dL) 22.2 54.1 2.7-10.5 (for 6-8PM) 24-hour urinary cortisol (mcg/day) 22.9 1347 <45 ACTH level (pg/mL) 3.2 - 7.2-63.3 Table 1: Investigations performed in the workup of the patient's incidentaloma. Repeat values for select investigations are presented a year later after she presented with metastatic disease. ACTH: adrenocorticotropic hormone She successfully underwent surgery without complications. A surgical pathology report showed a high-grade adrenocortical carcinoma with positive surgical margins. Small vessel lymphovascular invasion was noted, but regional lymph nodes could not be assessed. The primary tumor was staged T2, with a mitotic rate of 22/50 high power fields that marked it as high grade histologically (Figure 2). Figure 2: Hematoxylin & eosin stain of a section of tissue from pathologic biopsy under high power microscopy. Noted are the increased number of mitotic figures, increased nuclear:cytoplasmic ratio, and abnormal mitotic figures typical for a high-grade malignancy, She was subsequently referred to oncology for further evaluation, and proceeded with external beam radiation therapy for a total dose of 4500 cGy over 25 fractions, followed by adjuvant therapy with four cycles of carboplatin and etoposide. Dose reduction was needed after cycle two for worsening fatigue and neuropathy, but she otherwise tolerated the treatments well. Nearly a year later, a regular surveillance CT demonstrated multiple sub-centimeter pulmonary nodules with patchy ground-glass abnormalities concerning for metastatic disease. In view of her disease progression, she started pembrolizumab immunotherapy. Repeat imaging, in the setting of worsening fatigue and anorexia, confirmed enlargement of her multiple lung nodules with a new soft tissue mediastinal mass also being found (Figure 3). She developed worsening lower extremity edema and required hospitalizations for recurrent hypokalemia with hypertension. Endocrinologic evaluation revealed grossly elevated 24-hour urinary free cortisol and elevated serum cortisol levels consistent with severe Cushing’s syndrome, and she was started on high-dose ketoconazole. Figure 3: CT of the chest demonstrating multiple nodules in the lungs consistent with metastatic disease progression. Green lines: Identified lung parenchymal nodules measuring 2.60 cm (panel 1) and 2.24 cm (panel 2) in greatest diameter. Despite six months of immunotherapy, repeat imaging showed substantial increase in size of both her multiple bilateral lung nodules. Extensive mediastinal and hilar adenopathy was also noted. Her treatment regimen was switched once more to mitotane 1g twice daily. She also had multiple subsequent hospitalizations for severe hypokalemia complicated by atrial fibrillation with rapid ventricular response. She continued to clinically deteriorate, with increasing shortness of breath, fatigue, and chest pain. A goals of care discussion was held in view of her aggressive disease course and multiple lines of failed therapy. She was then transitioned to hospice care, and her mitotane was stopped. Discussion Although overall adrenal tumors are common in the population, affecting about 3-10% of people, most of these are benign. ACC on the other hand is rare, and approximately 40-60% of ACCs are found to be functional tumors that produce hormones. Fifty to 80% of these functional ACCs secrete cortisol [4]. A surprising percentage of these may even be picked up incidentally, with one multicentric and retrospective evaluation of 1096 cases demonstrating that 12% of adrenal incidentalomas are ACCs [2]. Despite improved detection rates, however, this has not translated to earlier detection and treatment of ACC [5]. The first proposed TNM staging classification scheme for ACC in 2003 by the International Union Against Cancer (UICC) had notable shortcomings, including similar outcomes for both stage II and III disease [6]. A study of 492 patients in a German ACC registry found that disease-specific survival (DSS) did not significantly differ between stage II and stage III ACC (hazard ratio, 1.38; 95% confidence interval, 0.89-2.16) and furthermore, patients who had stage IV ACC without distant metastases had an improved DSS compared with patients who had metastatic disease (P = .004) [7]. The American Joint Committee of Cancer (AJCC), and the European Network for the Study of Adrenal Tumors (ENSAT) consequently developed revised staging systems that better reflect patient prognosis. The most important predictors of survival in patients with ACC are tumor grade, tumor stage, and surgical treatment. For patients after surgical resection, the administration of adjunctive therapy is guided by the risk of recurrence. Despite early-stage resection, disease recurrence rates in ACC are very high. Besides the EDP-M regimen, no others have been successfully evaluated in large, randomized trials [4]. Whenever possible, it is still recommended that patients be referred to a clinical trial on an individual basis. The ADJUVO clinical trial consisted of 91 low-recurrence-risk ACC patients who were randomly assigned to either observation or adjuvant mitotane therapy after surgical resection. Low recurrence risk is defined as Ki67<10%, stage I-III according to ENSAT classification, and microscopically complete resection. Adjuvant mitotane treatment failed to demonstrate statistically significant differences in disease-free survival, recurrence-free survival and overall survival between these patient groups [8]. Our case seems to suggest that even limited-stage disease may need to be managed aggressively not just with primary surgery, but also adjuvant chemoradiotherapy, especially with a high histologic grade. PD-1 blockade in adrenocortical carcinoma was evaluated in a phase II study of 39 participants, with a progression-free survival of 2.1 months independent of mismatch repair deficiency status being reported [9]. Despite switching to pembrolizumab in our patient, disease progression continued unabated, calling into question the clinical benefit of PD-1 blockade in ACC. A small study on the use of metyrapone with EDP-M in three advanced ACC patients with Cushing’s syndrome displayed a good safety profile with minor drug-drug interactions and appears to be a good option in combination with mitotane and other cytotoxic chemotherapies [10]. Ketoconazole is often less effective than metyrapone and requires regular monitoring of liver function tests, although it also inhibits androgen production. Conclusions This case demonstrates the unfortunate prognosis of many patients with ACC. Although patients may present with classical symptoms of hypercortisolism or hyperandrogenism, many patients do not present with symptoms until the disease has advanced. Surgery may be employed with curative intent, although the evidence for adjuvant radiotherapy is mixed. The management for patients with ACC continues to remain a challenge due to the lack of evidence for optimal therapeutic management. In view of the aggressive nature of ACC, patients with high-grade histology despite limited-stage disease require adjuvant chemoradiation in addition to primary surgery to maximize the chances of progression-free survival. Also, although the use of PD-1 blockade has revolutionized cancer care in several other tumor types, evidence of clear benefit in ACC is lacking, as our case demonstrates. References Kerkhofs TM, Verhoeven RH, Van der Zwan JM, et al.: Adrenocortical carcinoma: a population-based study on incidence and survival in the Netherlands since 1993. Eur J Cancer. 2013, 49:2579-86. 10.1016/j.ejca.2013.02.034 Else T, Kim AC, Sabolch A, et al.: Adrenocortical carcinoma. Endocr Rev. 2014, 35:282-326. 10.1210/er.2013-1029 Survival Rates for Adrenal Cancer. (2022). https://www.cancer.org/cancer/adrenal-cancer/detection-diagnosis-staging/survival-by-stage.html. Fassnacht M, Dekkers OM, Else T, et al.: European Society of Endocrinology Clinical Practice Guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the European Network for the Study of Adrenal Tumors. Eur J Endocrinol. 2018, 179:G1-G46. 10.1530/EJE-18-0608 Kebebew E, Reiff E, Duh QY, Clark OH, McMillan A: Extent of disease at presentation and outcome for adrenocortical carcinoma: have we made progress?. World J Surg. 2006, 30:872-8. 10.1007/s00268-005-0329-x Fassnacht M, Wittekind C, Allolio B: [Current TNM classification systems for adrenocortical carcinoma]. Pathologe. 2010, 31:374-8. 10.1007/s00292-010-1306-1 Fassnacht M, Johanssen S, Quinkler M, et al.: Limited prognostic value of the 2004 International Union Against Cancer staging classification for adrenocortical carcinoma: proposal for a Revised TNM Classification. Cancer. 2009, 115:243-50. 10.1002/cncr.24030 Berruti A, Fassnacht M, Libè R, et al.: First randomized trial on adjuvant mitotane in adrenocortical carcinoma patients: the Adjuvo Study. J Clin Oncol. 2022, 40:1. 10.1200/JCO.2022.40.6_suppl.001 Raj N, Zheng Y, Kelly V, et al.: PD-1 blockade in advanced adrenocortical carcinoma. J Clin Oncol. 2020, 38:71-80. 10.1200/JCO.19.01586 Claps M, Cerri S, Grisanti S, et al.: Adding metyrapone to chemotherapy plus mitotane for Cushing's syndrome due to advanced adrenocortical carcinoma. Endocrine. 2018, 61:169-72. 10.1007/s12020-017-1428-9 From https://www.cureus.com/articles/135058-an-aggressive-case-of-adrenocortical-carcinoma-complicated-by-paraneoplastic-cushings-syndrome#!/
  24. I'm going to be having a total left knee replacement surgery in early February so I may not be around so much for a while.  My surgeon knows I need extra steroids.  I've started blogging about this at https://maryomedical.com/2022/12/21/bees-knees-pre-tkr/

    1. MaryO

      MaryO

      And, although this was supposed to be today, this has been rescheduled for March 9 :(

      https://maryomedical.com/2023/01/28/bees-knees-pre-tkr-setback/

       

  25. Date change! This webinar is now Sunday • January 22, 2023 • 6 PM PST Via Zoom Click here to join the meeting orhttps://us02web.zoom.us/j/4209687343?pwd=amw4UzJLRDhBRXk1cS9ITU02V1pEQT09OR+16699006833,,4209687343#,,,,*111116#Slides will be available on the day of the talk here. There will be plenty of time for questions using the chat button.
×
×
  • Create New...