Jump to content

Search the Community

Showing results for tags 'cushing's'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Welcome!
    • Introduce Yourself
    • Guest Questions
    • Cushing's Basics
    • News Items and Research
    • Announcements
    • Questions about how these boards work?
  • Get Active!
    • Meetings, events and information
    • Fundraising Ideas
    • Cushing's Awareness Day, April 8
    • Spread the Word
    • Marathons
    • Cushing's Clothes Closet
    • Cushing's Library
    • Cushing's Store
  • Cushing's
    • Resources
    • Types of Cushing's
    • Symptoms
    • Tests
    • Treatments
  • Miscellaneous
    • Other Diseases
    • Good News / Attitude of Gratitude
    • Inspirational / Motivational
    • Quotes and Affirmations
    • Lighten Up!
    • Word Games
    • Miscellaneous Chit Chat
    • Current Events
    • Cushie Commerce
    • Internet Classes
    • Recipes

Calendars

  • Cushie Calendar

Blogs

  • MaryO'Blog
  • Christy Smith's Blog
  • rooon55's Blog
  • LLMart's Blog
  • regina from florida's Blog
  • terri's Blog
  • Canasa's Blog
  • Tberry's Blog
  • LisaMK's Blog
  • diane177432's Blog
  • Jen1978's Blog
  • GreenGal's Blog
  • Yada Yada Yada
  • Jinxie's Blog
  • SherryC's Blog
  • stjfs' Blog
  • kalimae7371's Blog
  • Kristy's Blog
  • kathieb1's Blog
  • Yavanna's Blog
  • Johnni's Blog
  • AutumnOMA's Blog
  • Will Power
  • dropsofjupiter's Blog
  • Lorrie's Blog
  • DebMV's Blog
  • FarWind's Blog
  • sallyt's Blog
  • dseefeldt's Blog
  • ladylena's Blog
  • steffie's Blog
  • Lori L's Blog
  • mysticalsusan1's Blog
  • cathy442's Blog
  • Kathy711's Blog
  • Shannonsmom's Blog
  • jack's Blog
  • Kandy66's Blog
  • mars72's Blog
  • singlesweetness33's Blog
  • michelletm's Blog
  • JC_Adair's Blog
  • Lisa-A's Blog
  • Jen3's Blog
  • tammi's Blog
  • Ramblin' Rose (Maggie's)
  • monicaroni77's Blog
  • monicaroni's Blog
  • Saz's Blog
  • alison
  • Thankful for the Journey
  • Judy from Pgh's Blog
  • Addiegirl's Blog
  • candlelite2000's Blog
  • Courtney likes to talk......
  • Tanya's Blog
  • smoketooash's Blog
  • meyerfamily8's Blog
  • Sheila1366's Blog
  • A Guide to Blogging...
  • Karen's Blog
  • barbj222222's Blog
  • Amdy's Blog
  • Jesh's Blog
  • pumpkin's Blog
  • Jazlady's Blog
  • Cristalrose's Blog
  • kikicee's Blog
  • bordergirl's Blog
  • Shelby's Blog
  • terry.t's Blog
  • CanadianGuy's Blog
  • Mar's Cushie Couch
  • leanne's Blog
  • honeybee30's Blog
  • cat lady's Blog
  • Denarea's Blog
  • Caroline's Blog
  • NatalieC's Blog
  • Ahnjhnsn's Blog
  • A journey around my brain!
  • wisconsin's Blog
  • sonda's Blog
  • Siobhan2007's Blog
  • mariahjo's Blog
  • garcia9's Blog
  • Jessie's Blog
  • Elise T.'s Blog
  • glandular-mass' Blog
  • Rachel Bridgewater's Blog
  • judycolby's Blog
  • CathyM's Blog
  • MelissaTX's Blog
  • nessie21's Blog
  • crzycarin's Blog
  • Drenfro's Blog
  • CathyMc's Blog
  • joanna27's Blog
  • Just my thoughts!
  • copacabana's Blog
  • msmith3033's Blog
  • EyeRishGrl's Blog
  • SaintPaul's Blog
  • joyce's Blog
  • Tara Lou's Blog
  • penybobeny's Blog
  • From Where I Sit
  • Questions..
  • jennsarad's Blog
  • looking4answers2's Blog
  • julie's blog
  • cushiemom's Blog
  • greydragon's Blog
  • AmandaL's Blog
  • KWDesigns: My Cushings Journey
  • cushieleigh's Blog
  • chelser245's Blog
  • melissa1375's Blog
  • MissClaudie's Blog
  • missclaudie92's Blog
  • EEYORETJBD's Blog
  • Courtney's Blog
  • Dawn's Blog
  • Lindsay's Blog
  • rosa's Blog
  • Marva's Blog
  • kimmy's Blog
  • Cheryl's Blog
  • MissingMe's Blog
  • FerolV's Blog
  • Audrey's (phil1088) Blog
  • sugarbakerqueen's Blog
  • KathyBair's Blog
  • Jenn's Blog
  • LisaE's Blog
  • qpdoll's Blog
  • blogs_blog_140
  • beach's Blog
  • Reillmommy is Looking for Answers...
  • natashac's Blog
  • Lisa72's Blog
  • medcats10's Blog
  • KaitlynElissa's Blog
  • shygirlxoxo's Blog
  • kerrim's Blog
  • Nicki's Blog
  • MOPPSEY's Blog
  • Betty's Blog
  • And the beat goes on...
  • Lynn's Blog
  • marionstar's Blog
  • floweroscotland's Blog
  • SleepyTimeTea's Blog
  • Shelly3's Blog
  • fatnsassy's Blog
  • gaga's Blog
  • Jewels' Blog
  • SusieQ's Blog
  • kayc6751's Blog
  • moonlight's Blog
  • Sick of Being Sick
  • Peggy's Blog
  • kouta5m's Blog
  • TerryC's Blog
  • snowii's Blog
  • azZ9's Blog
  • MaMaT333's Blog
  • missaf's Blog
  • libertybell's Blog
  • LyssaFace's Blog
  • suzypar2002's Blog
  • Mutley's Blog
  • superc's Blog
  • lisajo42's Blog
  • alaustin's Blog
  • Tina1962's Blog
  • Ill never complain a single word about anything.. If I get rid of Cushings disease.
  • puddingtoast's Blog
  • AmberC's Blog
  • annacox
  • justwaiting's Blog
  • RachaelB's Blog
  • MelanieW's Blog
  • My Blog
  • FLHeather's Blog
  • HollieK's Blog
  • Bonny777's Blog
  • KatieO's Blog
  • LilDickens' Mini World
  • MelissaG's Blog
  • KelseyMichelle's Blog
  • Synergy's Blog
  • Carolyn1435's Blog
  • Disease is ugly! Do I have to be?
  • A journey of a thousand miles begins with a single wobble
  • MichelleK's Blog
  • lenalee's Blog
  • DebGal's Blog
  • Needed Answers
  • Dannetts Blog
  • Marisa's Blog
  • Is this cushings?
  • alicia26's Blog
  • happymish's Blog
  • mileymo's Blog
  • It's a Cushie Life!
  • The Weary Zebra
  • mthrgonenuts' Blog
  • LoriW's Blog
  • WendyG's Blog
  • khmood's Blog
  • Finding Answers and Pissing Everyone Off Along the Way
  • elainewwjd's Blog
  • brie's Blog
  • dturner242's Blog
  • dturner242's Blog
  • dturner242's Blog
  • Stop the Violins
  • FerolV's Internal Blog
  • beelzebubble's Blog
  • RingetteLUVR
  • Eaglemtnlake's Blog
  • mck25's Blog
  • vicki11's Blog
  • vicki11's Blog
  • ChrissyL's Blog
  • tpatterson757's Blog
  • Falling2Grace's Blog
  • meeks089's Blog
  • JustCurious' Blog
  • Squeak's Blog
  • Kill Bill
  • So It Begins ! Cushings / Pituitary Microadenoma
  • Crystal34's Blog
  • Janice Barrett

Categories

  • Helpful Articles
    • Links
    • Research and News
    • Useful Information
  • Pages
  • Miscellaneous
    • Databases
    • Templates
    • Media

Categories

  • New Features
  • Other

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests

  1. MeganOrrMD, JamesFindlingMD, NathanZwagermanMD, JenniferConnellyMD, KatherineAlbanoMS, JosephBoviMD Show more https://doi.org/10.1016/j.adro.2021.100813Get rights and content Under a Creative Commons license open access Abstract Pituitary carcinoma (PC) is an uncommon intracranial malignancy with a high rate of metastasis, mortality, and inconsistent response to therapy. Because PC is a rare condition (0.1%-0.2% of pituitary tumors), prospective studies and observable data are scarce. Some PC may have an endocrine secretory function and can arise from existing pituitary adenomas. Treatment often includes a combination of surgical resection, radiotherapy, and systemic therapies. Because of the poor treatment response rate and rapid progression, treatment is often palliative. Here we describe a unique, complete amelioration of severe Cushing's disease due to an ACTH secreting pituitary carcinoma followed by the development of pituitary hypoadrenalism after re-irradiation with concurrent temozolomide. Summary Pituitary carcinoma is a rare malignancy with high rates of metastases at diagnosis, inconsistent therapeutic response, and high mortality. Treatment includes a combination of surgical resections, radiotherapy, and medications. Because of the poor treatment response rate and rapid progression, treatment is often palliative. This report describes the complete resolution of severe Cushing's disease due to an ACTH secreting pituitary carcinoma followed by the development of pituitary hypoadrenalism after re-irradiation and concurrent temozolomide radio-sensitization. Introduction Pituitary adenomas (PA) are a common, benign tumor managed with combinations of surgery, radiotherapy, and medication. While uncommon, there are atypical PA with aggressive behaviors that are refractory to treatment. In rare instances, pituitary tumors can metastasize or spread. These malignant behaving tumors are called pituitary carcinomas (PC). PC is challenging to manage as they metastasize early and have a poor response to treatment. In reported PC cases, malignant transformation of atypical adrenocorticotrophic hormone (ACTH) secreting PA is a common pathogenesis.1 Features of PC include functional ACTH production and resistance to radiation. Because of the aggressive nature and systemic spread, the prognosis is poor with a high mortality rate of 66% at one year.2 Prospective studies and observable data are scarce. Prior reports of treatment include a combination of surgical resection, radiotherapy, and medication with inconsistent responses. Because of the poor treatment response rate and rapid progression, treatment is often palliative. This report describes a complete resolution of severe Cushing disease due to an ACTH secreting pituitary carcinoma followed by the development of pituitary hypoadrenalism after re-irradiation with concurrent temozolomide. Case Description A 53-year female presented with complaints of blurry vision, right-sided cranial nerve (CN) III palsy, diffuse edema of her face and extremities, and a 15 lb. weight gain over 2 weeks. Visual field testing revealed bitemporal hemianopsia which prompted imaging. MRI demonstrated a large intracranial sellar mass (4.0 × 4.3 cm) invading the suprasellar cistern and compressing the optic chiasm. ACTH and cortisol were elevated, which combined with radiographic evidence, established a diagnosis of an ACTH-secreting pituitary macroadenoma and Cushing's disease (CD). The patient underwent a transsphenoidal tumor debulking, followed by CyberKnife stereotactic radiosurgery two months after surgery (treated to 24 Gy, seeTable 2). Pathology revealed an atypical PA, positive for p53 and with a low Ki-67 index. Table 1. Clinical Course Date Condition 24 h urinary cortisol* Late salivary cortisol* Serum morning cortisol* ACTH* Nov 2009 Before 1st debulking surgery 3,192 N/A N/A 635 Feb 2010 Cyberknife 6.9 1.5 9.6 134 May 2014 Redo-Debulking 40.2 5.5 11.8 190.0 August 2017 3 months post RT 20.1 5.5 39.4 240.8 May 2018 1 year post RT 16.0 5.9 12.6 199.8 Feb 2019 1 year and 6 months post RT 2.1 3.6 6.8 111.8 Jan 2020 Post 3rd Debulking N/A N/A 8.4 88.5 ⁎ 24h urinary cortisol (NR:30-310 ug/24h). Late salivary cortisol(NR < 0.13 ug/dL). Serum morning cortisol (NR: 5-25 ug/dL). ACTH (NR <46 pg/dL) GC: glucocorticoids, CS: Cushing syndrome Table 2. CyberKnife Radiation Treatment Plan Cyber Knife Feb 2010 Target/OAR Volume(cm3) Max Dose(cGy) Min Dose(cGy) Mean Dose(cGy) Standard deviation (SD)(cGy) CTV 7 2817 1214 2403 240 PTV 6 2817 1323 2457 204 Brain Stem 34 1023 28 250 160 Left Eye 7 65 16 29 7 LON 2 1069 39 233 223 Optic Chiasm 1 845 194 448 164 Right Eye 7 164 16 31 12 RON 2 1267 48 298 216 After three years in remission, she experienced worsening symptoms associated with cortisol excess. Medical management of cabergoline (D2 receptor agonist) followed by pasireotide (somatostatin analog) was tried without clinical improvement. Imaging demonstrated the mass had recurred with non-congruent intracranial spread. This noncontiguous intracranial growth met the criteria for PC. A second transsphenoidal subtotal resection was performed. Pathology revealed atypical ACTH secreting adenoma with a similarly low Ki-67, but with a new loss of p53 signaling. Despite debulking, she had biochemical persistence of hypercortisolism. Over the next two months, the patient declined rapidly with weakness, and worsening Cushing's symptoms. She was enrolled in a Phase III clinical trial with osilodrostat (11-Beta hydroxylase inhibitor) however, could not tolerate the investigational drug and was taken off. Subsequent MRI showed evidence of progression with gross residual disease and interval growth. She was referred to radiation oncology. She completed a course of image-guided, intensity modulated, radiotherapy (IG-IMRT) with concurrent temodar (TMZ) radiosensitization. TMZ was dosed at 75 mg/m2 per day for 42 days during radiation. Her IG-IMRT plan consisted of a gross tumor volume (GTV); drawn for MR defined gross disease and a clinical target volume (CTV) encompassing gross disease at risk areas of microscopic disease extension (Figure 1). These volumes were then expanded to 2 planning target volumes (PTV). The first, and larger, PTV was created by expanding the CTV to PTV1 and treated to 50.4 Gy in 28 fractions (180 cGy/fraction). The GTV alone was expanded to PTV2 (integrated boost) and was treated to a total dose of 56 Gy in 28 fractions (200 cGy/fraction) (See Table 3). Over the next two years, the patient had a steady decline in ACTH and cortisol levels and experienced a significant improvement in CD symptoms. Amazingly, she developed hypocortisolemia. Following concurrent chemo-RT, her leg strength and ambulation improved, and she endorsed improvements in vision. Surveillance images taken a year and a half after chemo-RT showed stable size and configuration of the residual sella and parasellar lesion with obvious shrinkage of the residual PC compared to prior scans. Download : Download high-res image (798KB) Download : Download full-size image Figure 1. IG-IMRT Planning Images Radiotherapy Planning session MRI T1 weighted images with contrast (March 2017) showing PTV's and prescribed isodose lines. Red lines: 5600 cGy, dose1. Yellow lines: 5040 cGy, dose 2. Orange lines: PTV1. Purple lines: PTV2. Table 3. IG-IMRT Radiation Treatment Plan IG-IMRT May 2017 Target/OAR Volume(cm3) Max Dose(cGy) Min Dose(cGy) Mean Dose(cGy) SD(cGy) EqD2 (cGy) GTV 83 6091 4922 5621 233 CTV 24 6083 5292 5793 102 PTV 1 241 6118 4753 5423 270 PTV 2 51 6118 5074 5779 106 Brain Stem 32 5784 2374 4701 586 4324 CHIASM PRV 5 5640 4881 5266 171 5109 Eye_L 8 3173 537 1355 574 841 Eye_R 7 3680 542 1551 644 990 EyeLens_L 0.1 997 614 765 81 435 EyeLens_R 0.1 830 626 719 41 406 InnerEar_L 0.5 5088 4235 4687 164 4305 InnerEar_R 0.4 5673 4853 5165 112 5175 LacrimalGland_L 0.7 2207 734 1313 382 810 LacrimalGland_R 0.8 2518 1064 1736 340 1137 OpticChiasm 0.8 5367 4881 5177 89 4981 OpticNerve_L 0.5 5325 2742 4723 592 4353 OpticNerve_R 0.6 5327 3149 4799 493 4456 EqD2: Equivalent dose in 2 Gy fractions Two years following concurrent chemo-RT, a new clival nodule was noted on imaging. Biopsy confirmed pituitary carcinoma. This was managed with single fraction Gamma Knife delivering a margin dose of 16 Gy (Figure 2) to the biopsied area of recurrence. She remains in clinical remission with stable tumor appearance on recent imaging (Figure 3). Download : Download high-res image (686KB) Download : Download full-size image Figure 2. Gamma Knife Radiation Therapy Planning Images Gamma Knife Planning session MRI T1 weighted images with contrast (May 2020) showing GTV and prescribed isodose line. Red lines: 1600 cGy prescribed dose. Blue lines: GTV. Download : Download high-res image (469KB) Download : Download full-size image Figure 3. Follow-up Imaging Follow up MRI imaging (Jan 2021) showing stable tumor appearance at 8 months post-GK, and 46 months post-IGMRT with TMZ. Discussion Over a ten-year history of persistent symptoms and aggressive tumor behavior, this patient's diagnosis evolved from an atypical ACTH secreting pituitary macroadenoma to an invasive ACTH secreting pituitary carcinoma (PC) that was managed by fractionated imaged-guided intensity modulated radiotherapy (IG-IMRT) with concurrent temozolomide (TMZ). Approximately two years post-IG-IMRT, ACTH/cortisol labs had declined, and the lesion was reduced radiographically. Remarkably, she developed hypocortisolemia mandating hydrocortisone replacement therapy despite an elevated plasma ACTH. It is postulated that the remission of Cushing's disease was likely related to chemo-radiotherapy-induced alterations in the post-translation processing of proopiomelanocortin (POMC) with the production of biologically inactive ACTH and significant decreases in cortisol biosynthesis.4 To date, the patient endorses substantial strength, visual, and cognitive improvement. The mainstay of PC treatment begins with surgical transsphenoidal resection, followed by radiotherapy for residual tumor growth, and adjuvant medical treatment. Studies show in the case of atypical PA that progress to PC, early and aggressive treatment provides the longest survival.3 Surgical resection is the initial intervention to avoid morbidity and mortality related to mass effect of these large aggressive tumors, however, it is rarely complete.3 As a result, the residual disease progresses, and multiple surgeries may be performed after a recurrence of disease. Primary pituitary tumors that present with metastases at diagnosis are termed PC. If no metastases are present, histological evaluation can aid in the management of the tumor.3 Tumors with a high mitotic index, high Ki-67 index >3%, and/or p53 immunoreactivity are termed atypical PA for their aggressive growth and tendency to recur after resection.3 In both PC and atypical PA guidelines, evidence of post-surgical growth is treated with radiation therapy. In general, radiotherapy provides a modest benefit of local tumor control, especially when administered before distant metastases arise in atypical PA with malignant potential.3 Focal stereotactic treatment has shown mostly palliative benefit with little prognostic improvement.3 Finally, medical therapy is used to combat tumor growth and hypersecretory function. Non-chemotherapy biotherapy includes somatostatin analogs, particularly in the case of GH and TSH-producing tumors, with variable tumor reduction and a limited period of control. Chemotherapy agents such as doxorubicin, cisplatin, and etoposide-based chemotherapy have been implicated in the treatment of PC.3 Responses are variable and not widely replicated, but observational studies indicated prolonged survival in cases of distant metastases, and in aggressive atypical PA before malignant transformation.1-3 One report demonstrated significant regression of an ACTH-secreting PC and distant metastases induced with cisplatin and etoposide, two cytotoxic platinum-based chemotherapy drugs.4 These agents have variable CNS penetrance, unlike TMZ, but have potential benefit in cases of PC with high mitotic indices. Without prospective, randomized studies, significant conclusions on the benefits of chemotherapeutic agents have yet to be made. Current guidelines for PC that demonstrate progression after primary tumor debulking and radiotherapy include further surgery (alpha), focused radiotherapy (beta), chemotherapy (gamma), and treatment with radionuclides (delta).3 In this case, a complex PC/recurrent atypical PA had a stable positive response to combined fractionated IG-IMRT and TMZ, demonstrating radiological decrease in tumor volume, clinical improvement, and endocrine remission status post 1 year and 8 months. The lasting results of a combined therapy approach in treating PC have been illustrated in other literature examples. In a similar case, an ACTH secreting PC was treated with a course of concurrent radiotherapy, TMZ, and bevacizumab, an anti-VEGF monoclonal antibody.5 The multimodality course was implemented six weeks post-resection. At eight weeks, the resolution of a distant metastasis helped established a positive outcome. The patient followed up this course with a year of adjuvant TMZ. Five years post treatment, there has been no evidence of recurrent disease on imaging or with ACTH monitoring.5 Another report found that an aggressive, functional ACTH-producing pituitary adenoma was managed with concurrent TMZ and radiotherapy after failing maximal conventional therapy. As in the presented PC case, this PA was recurrent after surgical, medical, and radiotherapy interventions. It rapidly progressed biochemically, radiologically, and clinically. After initiating the combined concurrent TMZ and radiation, a rapid biochemical response was observed with cortisol normalization and regression of intracranial tumor volume on MRI at 3 and 6 months. The TMZ therapy was stopped after the sixth cycle, and at twenty-two months out from treatment, the patient continues to have stable tumor volume and biochemical remission. Although the patient did not have metastasis necessary for classification of PC, the recurrent clinical course and aggressive functional nature of the tumor demonstrate the lasting positive outcome of a combined modality approach on tumor growth and endocrine remission.6 In presenting this case, fractionated IG-IMRT with TMZ was effective in achieving stable endocrine remission and partial tumor regression for several years’ duration. The recurrent clival PA is ACTH non-secreting after IG-IMRT and concurrent TMZ which has improved the patient's clinical condition. Although this mass recurred after treatment, it is quite remarkable that her tumor has remained hormonally nonfunctional, and the patient continues to have a resolution of CD symptoms. Limited clinical information exists on successful treatment options for PC. Recurrence, metastasis, and mortality are high after exhausting conventional treatment. The alternative combined therapeutic approach of current TMZ and radiation has shown rare, and lasting effects in this patient. These findings may further support the use of combined fractionated radiotherapy with concurrent TMZ treating in patients with ACTH-secreting PC who fail standard surgical and medical interventions. References 1 Joehlin-Price, A. S., Hardesty, D. A., Arnold, C. A., Kirschner, L. S., Prevedello, D. M., & Lehman, N. L. (2017). Case report: ACTH-secreting pituitary carcinoma metastatic to the liver in a patient with a history of atypical pituitary adenoma and Cushing's disease. Diagnostic Pathology, 12(1), 1–8. https://doi.org/10.1186/s13000-017-0624-5 2 Borba, C. G., Batista, R. L., Musolino, N. R. de C., Machado, V. C., Alcantara, A. E. E., Silva, G. O. da, … Cunha Neto, M. B. C. da. (2015). Progression of an Invasive ACTH Pituitary Macroadenoma with Cushing's Disease to Pituitary Carcinoma. Case Reports in Oncological Medicine, 2015(Cd), 1–4. https://doi.org/10.1155/2015/810367 3 Kaltsas, G. A., Nomikos, P., Kontogeorgos, G., Buchfelder, M., & Grossman, A. B. (2005). Clinical review: Diagnosis and management of pituitary carcinomas. Journal of Clinical Endocrinology and Metabolism, 90(5), 3089–3099. https://doi.org/10.1210/jc.2004-2231 4 Cornell, R.F., Kelly, D. F., Bordo, G., Corroll, T. B., Duong, H. T., Kim, J., Takasumi, Y., Thomas, J. P., Wong, Y. L., & Findling, J. W. (2013). Chemotherapy-Induced Regression of an Adrenocorticotropin-Secreting Pituitary Carcinoma Accompanied by Secondary Adrenal Insufficiency. Case Reports in Endocrinology, 2013;2013:675298 https://doi.org/10.1155/2013/675298 5 Touma, W., Hoostal, S., Peterson, R. A., Wiernik, A., SantaCruz, K. S., & Lou, E. (2017). Successful treatment of pituitary carcinoma with concurrent radiation, temozolomide, and bevacizumab after resection. Journal of Clinical Neuroscience, 41, 75–77. https://doi.org/10.1016/j.jocn.2017.02.052 6 Misir Krpan, A., Dusek, T., Rakusic, Z., Solak, M., Kraljevic, I., Bisof, V., … Kastelan, D. (2017). A Rapid Biochemical and Radiological Response to the Concomitant Therapy with Temozolomide and Radiotherapy in an Aggressive ACTH Pituitary Adenoma. Case Reports in Endocrinology, 2017, 1–5. https://doi.org/10.1155/2017/2419590 Funding: None Disclosures: Dr. Findling reports grants, personal fees and other from Novartis, personal fees and other from Corcept Therapeutics, personal fees from Recordati, outside the submitted work. Research data are stored in an institutional repository and will be shared upon request to the corresponding author. © 2021 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. From https://www.sciencedirect.com/science/article/pii/S2452109421001718
  2. A team of scientists in Montreal and Paris has succeeded in identifying the gene responsible for the development of a food-dependent form of Cushing’s Syndrome, a rare disease affecting both adrenal glands. In their study published in The Lancet Diabetes & Endocrinology, Dr. Isabelle Bourdeau and Dr. Peter Kamenicky identify in the gene KDM1A the mutations responsible for the development of this unusual form of the disease. The scientists also show, for the first time, that the disease is genetically transmitted. Bourdeau is a researcher and a Université de Montréal medical professor practising at the CHUM Research Centre (CRCHUM), while Kamenicky works at the Hôpital de Bicêtre, part of the Assistance publique-hôpitaux de Paris network in France. Cushing’s Syndrome is caused by the overproduction of cortisol, a steroid hormone, by the two adrenal glands located above the kidneys. “When the tissues of the human body are exposed to this excess of cortisol, the effects for those with the disease are serious: weight gain, high blood pressure, depression, osteoporosis, and heart complications, for example,” said Bourdeau, co-lead author of the study with Dr. Fanny Chasseloup, a colleague from the French team. This discovery comes nearly 30 years after food-induced Cushing’s Syndrome was first described in 1992 by a research group led by Dr. André Lacroix at the CRCHUM and his colleagues Drs. Johanne Tremblay and Pavel Hamet. The form of the disease being studied by Bourdeau and her colleagues is caused specifically by the abnormal expression of the receptors of a hormone named GIP (glucose-dependent insulinotropic peptide), in both adrenal glands of patients. This hormone is produced by the small intestine in response to food intake. For people with the disease, cortisol concentrations increase abnormally every time they ingest food. The discovery of the genetic mechanism by the French and Quebec teams was made possible through the use of recent cutting-edge genetic techniques on tissues of patients including those investigated by Dr Lacroix at CHUM. Bourdeau was aided by CRCHUM researcher Martine Tétreault during the computer analyses related to the research project. Earlier diagnosis thanks to genetic analysis “In general, rare diseases are generally underdiagnosed in clinics,” said Bourdeau, the medical director of the adrenal tumors multidisciplinary team at the CHUM. “By identifying this new gene, we now have a way of diagnosing our patients and their families earlier and thus offer more personalized medicine. At the CHUM, genetic analysis is already offered in our Genetic Medicine Division.” In a remarkable demonstration of scientific cooperation, the Quebec and French teams were able to collect and study tissue specimens available in local and international biobanks in Canada, France, Italy, Greece, Belgium and the Netherlands. Blood and adrenal gland tissue samples of 17 patients—mostly women—diagnosed with GIP-dependent Cushing’s Syndrome were compared genetically with those of 29 others with non-GIP-dependent bilateral adrenal Cushing’s Syndrome. This was quite an accomplishment, given the rarity of the disease in the general population. It allowed the researchers to identify the genetic mutations of the KDM1A gene and to determine that the disease is genetically transmitted. Since 2009, the CHUM has been designated as the adrenal tumors quaternary care centre of the Quebec Cancer Program. About this study  “Loss of KDM1A in GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing’s syndrome: a multicenter retrospective cohort study,” by Drs. Fanny Chasseloup, Isabelle Bourdeau and their colleagues, was published Oct. 13, 2021, in The Lancet Diabetes & Endocrinology. Funding was provided by the Agence nationale de la recherche, the Fondation du Grand défi Pierre Lavoie, the Institut national du cancer, the Fonds de recherche du Québec-Santé, INSERM and Assistance publique-hôpitaux de Paris. About the CRCHUM The University of Montreal Hospital Research Centre (CRCHUM) is one of North America’s leading hospital research centres. It strives to improve adult health through a research continuum covering such disciplines as the fundamental sciences, clinical research and public health. Over 1,850 people work at the CRCHUM, including more than 550 researchers and more than 460 graduate students Media contact Jeff HeinrichUniversité de MontréalTel: 514 343-7593 Lucie DufresneCentre hospitalier de l’Université de MontréalTel: 514 890-8000 p. 15380
  3. Kate** on the Cushing’s support board (Cushing’s Help and Support) wrote this letter after having pituitary surgery… Dear friends and family: I am writing this letter to share with you some basic facts about Cushing’s Disease/Syndrome and the recovery process so that you will have sufficient information to form realistic expectations about me and my ability to engage in certain activities in light of this disease and its aftermath. As you know, Cushing’s is a rarely diagnosed endocrine disorder characterized by hypercortisolism. Cortisol is a hormone produced by the adrenal glands and is vital to regulate the body’s cardivoascular functions and metabolism, to boost the immune system and to fight inflammation. But its most important job is to help the body to respond to stress. The adrenal glands release cortisol in response to stress, so atheletes, women experiencing pregnancy, and those suffering from alcoholism, panic disorders and malnutrition naturally have higher-than-normal levels of cortisol. People with Cushing’s Syndrome live life with too much cortisol for their bodies as a result of a hormone-secreting tumor. Mine is located in the pituitary gland. Endogenous hypercortisolism leaves the body in a constant state of “fight or flight,” which ravages the body and tears down the body’s major systems including cardivascular, musculo-skeletal, endocrine, etc. Symptoms vary, but the most common symptoms include rapid, unexplained weight gain in the upper body with increased fat around the neck and face (“moon facies”); buffalo hump; facial flushing/plethora; muscle wasting in the arms and legs; purplish striae (stretch marks) on the abdomen, thighs, buttocks, arms and breasts; poor wound healing and bruising; severe fatigue; depression, anxiety disorders and emotional lability; cognitive difficulties; sleep disorders due to abnormally high nighttime cortisol production; high blood pressure and high blood sugar/diabetes; edema; vision problems; premature osteoperosis; and, in women, signs of hyperandrogenism such as menstrual irregularities, infertility, hirsutism, male-patterned balding and steroid-induced acne. Cushing's Symptoms http://www.cushings-info.com/images/1/12/Lady.gif A sketch of a typical Cushing’s patient. As you can see, the effects of the disease on the body are dramatic. Worse, the psychological and emotional effects of having a chronic, debilitating and disfiguring disease range from distressing to demoralizing. Imagine that, in the space of a year, you became unrecognizable to those around you and to yourself. You look in the mirror, but the person staring back a tyou is a stranger. You endure the stares and looks of pity from those who knew you before Cushing’s, fully aware that they believe you have “let yourself go” or otherwise allowed this to happen to your body. Nothing you can say or do will persuade them otherwise, so at some point, you stop trying and resolve to live your life in a stranger’s body. You feel increasingly sick, but when you explain your array of symptoms to your doctor, you are dismissed as a depressed hypochondriac who needs to diet and exercise more. Worse, your family members think the same thing — and are often quick to tell you how you need to “change your lifestyle” to overcome the effects of what you eventually will discover, once properly diagnosed, is a serious and rare disease. If only it were so simple! No one would choose to have Cushing’s. Those of us who have it would not wish it even on our worst enemy. Most people with Cushing’s long for the ability to do simple things, like walk a flight of stairs without having to sit for half an hour afterwards, or vacuum the house or even unload a dishwasher. One of the worst parts about this disease is the crushing fatigue and muscle wasting/weakness, which accompanies hypercortisolism. Not only do we become socially isolated because of the virilzing effects of an endocrine tumor, which drastically alters our appearance, but we no longer feel like ourselves with regard to energy. We would love to take a long bike ride, run three miles or go shopping like we used to — activities, which we took for granted before the disease struck. Those activities are sadly impossible at times for those with advanced stages of the disease. Sometimes, as with any serious illness, performing even basic tasks of daily care such as showering and dressing can exhaust the limited reserves of energy available to a Cushing’s patient. How do we explain to you what it’s like to watch our lives slip away? What response is sufficient to express the grief and frustration over losing so much of ourselves? It is often difficult to find the strength to explain how your well-meaning words of prompting and encouragement (to diet or exercise) only serve to leave us more isolated and feeling alone. Though we wouldn’t want it, we wish our disease were as well-understood as cancer so that those who love us would have a frame of reference for what we go through. With Cushing’s, there is such limited public awareness that we are left to describe the effects of the disease from a void, often with limited understanding from those who love us most, which is disheartening. The most frustrating misconception about this disease is that we somehow are “doing this to ourselves,” or delaying recovery because we need to continue steroid replacement or lack the energy to excercise often, which is sadly false. Trust me that we would love to have that much control over such a terrible disease. Fortunately, there is a good likelihood of remission from Cushing’s in the hands of a skilled pituitary surgeon. Unfortunately, the long-term remission rate is only 56%, meaning that 44% of people with Cushing’s will require a second (sometimes third) pituitary surgery, radiation or bilateraly adrenalectomy to resolve the hypercortisolism. Without successful treatment, Cushing’s leads to death. Even with successful treatment, I will have to be monitored for possible recurrence for the rest of my life. After surgery or other treatment, the recovery period can last months or even years. Because the tumor takes over control of the body’s production of cortisol, the adrenal glands, which had lain dormant prior to surgery, require time to start functioning properly again. Until this happens, we must take synthetic steroids or else risk adrenal insufficiency or adrenal crisis, which can be quickly life-threatening. Careful monitoring of our cortisol levels is critical during the weaning period. It is a rare but sad fact that some people’s adrenal glands never return to normal, and those people must continue to take hydrocortisone or prednisone — sometimes for life — simply in order for the body to perform correctly its basic systemic functions. The physical recovery from surgery can be quick, but the withdrawal from hydrocortisone can be a lengthy and extremely painful process. As I described above, Cushing’s causes a tearing-down of muscles and bone. While there is an over-abundance of cortisol in our bodies (as a result of the tumor), we often can’t feel the effects of the muscle-wasting and bone deterioration because of the anti-inflammatory action of cortisol. Upon weaning, however, these become painfully (literally!) evident. The physical pain experienced while weaning from cortisol has been described as worse than weaning from heroin. When cortisol levels are low, one experiences the symptoms akin to a really bad flu, including severe fatigue (”like a wet cement blanket laid on top of me”); weakness and exhaustion; nausea; headache; vomiting; mental confusion. It is imperative for people who are on replacement steroids after Cushing’s surgery to carry extra Cortef (or injectable Solu-Cortef) with them at all times in addition to wearing a medic alert bracelet so that medical professionals will be alerted to the possiblity of adrenal insufficiency in the event of an adrenal crisis. People who have struggled with Cushing’s Syndrome all hope to return to “normal” at some point. Though none of us want to have Cushing’s, it is often a relief finally to have a correct diagnosis and treatment plan. For many, there is a gradual resolution of many Cushing’s symptoms within a few years of surgery or other successful treatment, and a good quality of life can be achieved. But regrettably, this is not possible in every case. Depending on the severity of the disease and the length of time before diagnosis and treatment, the prognosis can be poor and lead to shortened life expectancy and diminished quality of life. This is not a choice or something we can control, but it is the reality for some people who have suffered the consequences of long-term hypercortisolism. The best support you can give someone who is suffering from Cushing’s or its aftermath is to BELIEVE them and to understand that they are not manufacturing their illness or prolonging recovery. Ask them what they are able (and not able) to do, and then be prepared to help them in ways that matter — whether that be to bring them a meal or help them to run errands, pick up prescriptions from the pharmacy or clean their house. Because it’s these little everyday tasks, which can fall by the wayside when someone has (or has had) Cushing’s, and these are the things we miss the most: doing for ourselves. Ask us questions about the disease, and then actively listen to what we say. We know you don’t know much about Cushing’s — even our doctors sometimes lack information about this rare disease. But know we appreciate the interest and will tell you everything you want to know, because those of us who have it necessarily become experts in it just in order to survive. Thank you for caring about me and for hearing what I am saying in this letter. I know you love me and are concerned about me, and I appreciate that so much. Thank you also for taking the time to read this letter. I look forward to discussing further any questions you might have. In the meantime, I am attaching a brief article written by a woman who recently was diagnosed with Cushing’s. I hope hearing another person’s experiences will help you to understand what I’m going through so that when we talk, we will be coming from a similar starting place. Endocrinologists (doctors who specialize in Cushing's Syndrome and its related issues) realize the medical aspect and know the damaging effects that Cushing's has on the body. Family and friends see their Cushie suffering and know they are hurting physically and often times mentally and emotionally. However, understanding the debilitation of Cushing's and how it can affect every aspect of a person's life can only be truly realized by those who have experienced the syndrome. Cushings Help Organization, Inc., a non-profit family of websites maintained by MaryO, a pituitary Cushing's survivor, provides this letter for patients to provide to their family and friends in hopes of providing a better understanding Cushing's and it's many aspects. We're sorry to hear that your family member or friend has Cushing's Syndrome or suspected Cushing's. A person may feel better at times then at other times. It's common for a Cushing's patient to have burst of energy and then all of a sudden they become lethargic and don't feel like moving a muscle. There are many symptoms that are associated with Cushing's. They include weight gain, fatigue, muscle weakness, shortness of breath, feeling achy all over, headaches, blurred vision, mood swings, high blood pressure, stretch marks (straie), buffalo hump, diabetes, edema and the list goes on. Hormones affect every area of the body. It is important to note that not all patients have every symptom. Even some hallmark symptoms, such as straie or the "buffalo hump", may not be noticable on every patient. Not everyone who has Cushing's will experience the same symptoms, treatment, or recovery. Because not all "Cushies" have these symptoms, it makes diagnosis even more difficult. Cushing's can cause the physical appearance change due to weight gain, hair loss, rosacea, acne, etc. This can be very disturbing when looking in the mirror. Changes in appearance can often cause the Cushing's patient to withdraw from family and friends making it a very lonely illness. Patients often feel alone or withdrawn because few others understand. Cushing's can affect affect anyone of any age although it is more commen in women. Cushing's patients need to be able to take one day at time and learn to listen to their bodies. There will most likely be times when naps are needed during the day and often times may not be able to sleep at night due to surges of cortisol. Your Cushie doesn't expect you to understand Cushing's Syndrome completely. They do need you to be there for them and try to understand to the best of your ability what they feel and not give up on them. Often a Cushing's patient may be moody and say things that they don't mean. If this should happen with your Cushie try not to take it personally and know that it's most likely caused by the elevated cortisol and disturbances in other hormone levels caused by the Cushing's and not from the heart or true feelings of your Cushie. It can be very depressing and frustrating having so many limitations and experience things in life being taken from you. Cushing's patients are sick, not lazy, not hypochondriacs or even the newer term "Cyberchondriacs". If a Cushing's patient says they don't feel like doing something or they express how bad they feel let them know that you believe them. One of the most frustrating things to someone who is sick is to have those you love not believe you or support you. Telling a Cushie to think positive thoughts will not make him/her well and will just be aggrivating. Testing procedures can be lengthy and this can become frustrating for the patient and family. Often, it takes a while for results to come back and this can be stressful. Don't look to far ahead just take one day at a time and deal with the situation that is at hand at the present time. After a diagnosis is made then it's time for treatment. Surgery is usually the best treatment option for Cushing's that is caused by tumors. Don't be surprised if the surgeon's facility wants to run even more tests or redo some of those that have already been done. Your Cushie may have to travel a ways to find a surgeon who is trained in these delicate surgeries and who has performed many of them. Once the diagnosis has been made and treatment has finished then it's time for the recovery process. Not all patients who have surgery are cured and they have to make a choice along with the advice of their doctor as to what their next treatment option will be. The recovery from the surgery itself is similar to any other surgery and will take a while to recover. The recovery process obtained from getting a cure from Cushing's is quiet different from other surgeries. A Cushing's patients body has been exposed to excess cortisol, usually for quite a long time, and has become accustomed it. When the tumor is removed that has been responsible for the excessive cortisol and the body is no longer getting it this causes the body to have withdrawal symptoms. Withdrawal can be very hard causing an array of symptoms muscle aches, weakness, bone and joint pain, emotional disturbances etc. Thank you for reading this and we hope it will help you to understand a little more about Cushing's and the dibilating affect it can have on a person. Thank you for being there and supporting your Cushie during this time in their life. We realize that when a family member has Cushing's it not only affects the individual but other family members and those around them as well. Showing your love and support will encourage a speedy recovery for your Cushie. **Note: Kate died on on June 23, 2014. Read her In Memory page here: http://cushingsbios.com/2014/06/25/in-memory-kate-meyers/
  4. Abstract Background The most common etiologies of Cushing's syndrome (CS) are adrenocorticotropic hormone (ACTH)-producing pituitary adenoma (pitCS) and primary adrenal gland disease (adrCS), both of which burden patients with metabolic disturbance. The aim of this study was to compare the metabolic features of pitCS and adrCS patients. Methods A retrospective review including 114 patients (64 adrCS and 50 pitCS) diagnosed with CS in 2009–2019 was performed. Metabolic factors were then compared between pitCS and adrCS groups. Results Regarding sex, females suffered both adrCs (92.2%) and pitCS (88.0%) more frequently than males. Regarding age, patients with pitCS were diagnosed at a younger age (35.40 ± 11.94 vs. 39.65 ± 11.37 years, P = 0.056) than those with adrCS, although the difference was not statistically significant. Moreover, pitCS patients had much higher ACTH levels and more serious occurrences of hypercortisolemia at all time points (8 AM, 4 PM, 12 AM) than that in adrCS patients. Conversely, indexes, including body weight, BMI, blood pressure, serum total cholesterol, LDL-C, HDL-C, triglycerides, fasting plasma glucose, and uric acid, showed no differences between adrCS and pitCS patients. Furthermore, diabetes prevalence was higher in pitCS patients than in adrCS patients; however, there were no significant differences in hypertension or dyslipidemia prevalence between the two. Conclusions Although adrCS and pitCS had different pathogenetic mechanisms, different severities of hypercortisolemia, and different diabetes prevalences, both etiologies had similar metabolic characteristics. Keywords Cushing's syndrome Pituitary Cushing's Adrenal Cushing's Metabolic disturbance From https://www.sciencedirect.com/science/article/pii/S2095882X21000669
  5. https://doi.org/10.1016/j.radcr.2021.07.093 Abstract The chronic excess of glucocorticoids results in Cushing's syndrome. Cushing's syndrome presents with a variety of signs and symptoms including: central obesity, proximal muscle weakness, fatigue striae, poor wound healing, amenorrhea, and others. ACTH independent Cushing's syndrome is usually due to unilateral adenoma. A rare cause of it is bilateral adrenal adenomas. In this paper we report a case of a 43-year-old woman with Cushing's syndrome due to bilateral adrenal adenoma. Read the case report at https://www.sciencedirect.com/science/article/pii/S1930043321005690
  6. The occurrence of different subtypes of endogenous Cushing’s syndrome (CS) in single individuals is extremely rare. We here present the case of a female patient who was successfully cured from adrenal CS 4 years before being diagnosed with Cushing’s disease (CD). The patient was diagnosed at the age of 50 with ACTH-independent CS and a left-sided adrenal adenoma, in January 2015. After adrenalectomy and histopathological confirmation of a cortisol-producing adrenocortical adenoma, biochemical hypercortisolism and clinical symptoms significantly improved. However, starting from 2018, the patient again developed signs and symptoms of recurrent CS. Subsequent biochemical and radiological workup suggested the presence of ACTH-dependent CS along with a pituitary microadenoma. The patient underwent successful transsphenoidal adenomectomy, and both postoperative adrenal insufficiency and histopathological workup confirmed the diagnosis of CD. Exome sequencing excluded a causative germline mutation but showed somatic mutations of the β-catenin protein gene (CTNNB1) in the adrenal adenoma, and of both the ubiquitin specific peptidase 8 (USP8) and the glucocorticoid receptor (NR3C1) genes in the pituitary adenoma. In conclusion, our case illustrates that both ACTH-independent and ACTH-dependent CS may develop in a single individual even without evidence for a common genetic background. Introduction Endogenous Cushing´s syndrome (CS) is a rare disorder with an incidence of 0.2–5.0 per million people per year (1, 2). The predominant subtype (accounting for about 80%) is adrenocorticotropic hormone (ACTH)-dependent CS. The vast majority of this subtype is due to an ACTH-secreting pituitary adenoma [so called Cushing´s disease (CD)], whereas ectopic ACTH-secretion (e.g. through pulmonary carcinoids) is much less common. In contrast, ACTH-independent CS can mainly be attributed to cortisol-producing adrenal adenomas. Adrenocortical carcinomas, uni-/bilateral adrenal hyperplasia, and primary pigmented nodular adrenocortical disease (PPNAD) may account for some of these cases as well (3, 4). Coexistence of different subtypes of endogenous CS in single individuals is even rarer but has been described in few reports. These cases were usually observed in the context of prolonged ACTH stimulation on the adrenal glands, resulting in micronodular or macronodular hyperplasia (5–9). A sequence of CD and PPNAD was also described in presence of Carney complex, a genetic syndrome characterized by the loss of function of the gene encoding for the regulatory subunit type 1α of protein kinase A (PRKAR1A) (10). Moreover, another group reported the case of a patient with Cushing's disease followed by ectopic Cushing's syndrome more than 30 years later (8). To our knowledge, however, we here describe the first case report on a single patient with a cortisol-producing adrenocortical adenoma and subsequent CD. Read the rest of the article at https://www.frontiersin.org/articles/10.3389/fendo.2021.731579/full
  7. This article was originally published here J Clin Endocrinol Metab. 2021 Sep 3:dgab659. doi: 10.1210/clinem/dgab659. Online ahead of print. ABSTRACT CONTEXT: Confirming a diagnosis of Cushing’s disease (CD) remains challenging yet is critically important before recommending transsphenoidal surgery for adenoma resection. OBJECTIVE: To describe predictive performance of preoperative biochemical and imaging data relative to post-operative remission and clinical characteristics in patients with presumed CD. DESIGN, SETTING, PATIENTS, INTERVENTIONS: Patients (n=105; 86% female) who underwent surgery from 2007-2020 were classified into 3 groups: Group A (n=84) pathology-proven ACTH adenoma; Group B (n=6) pathology-unproven but with postoperative hypocortisolemia consistent with CD, and Group C (n=15) pathology-unproven, without postoperative hypocortisolemia. Group A+B were combined as Confirmed CD and Group C as Unconfirmed CD. MAIN OUTCOMES: Group A+B was compared to Group C regarding predictive performance of preoperative 24-hour urinary free cortisol (UFC), late night salivary cortisol (LNSC), 1mg dexamethasone suppression test (DST), plasma ACTH, and pituitary MRI. RESULTS: All groups had a similar clinical phenotype. Compared to Group C, Group A+B had higher mean UFC (p<0.001), LNSC(p=0.003), DST(p=0.06), ACTH(p=0.03) and larger MRI-defined lesions (p<0.001). The highest accuracy thresholds were: UFC 72 µg/24hrs; LNSC 0.122 µg/dl, DST 2.70 µg/dl, and ACTH 39.1 pg/ml. Early (3-month) biochemical remission was achieved in 76/105 (72%) patients: 76/90(84%) and 0/15(0%) of Group A+B versus Group C, respectively, p<0.0001. In Group A+B non-remission was strongly associated with adenoma cavernous sinus invasion. CONCLUSIONS: Use of strict biochemical thresholds may help avoid offering transsphenoidal surgery to presumed CD patients with equivocal data and improve surgical remission rates. Patients with Cushingoid phenotype but equivocal biochemical data warrant additional rigorous testing. PMID:34478542 | DOI:10.1210/clinem/dgab659
  8. Dr. Friedman is getting a lot of emails on booster shots versus third shots. Third shots are for immuno-compromised patients that the FDA is recommending for a small group of patients The FDA also has the intention to soon make booster doses widely available to all healthy individuals. I am writing to clarify the difference between booster shots and third doses. Third Doses for Immuno-Compromised Patients The purpose of a third dose of mRNA vaccine is to give immuno-compromised patients the same level of protection that two doses provide someone who has a normal immune system. It is recommended that the following people get a third dose Been receiving cancer treatment for tumors or cancers of the blood Received an organ transplant and are taking medicine to suppress the immune system Received a stem cell transplant within the last two years or are taking medicine to suppress the immune system Been diagnosed with moderate or severe immunodeficiency conditions (such as DiGeorge syndrome, Wiskott-Aldrich syndrome) An advanced or untreated HIV infection Been under active treatment with high-dose corticosteroids (> 20 mg of prednisone or 100 mg of hydrocortisone) or other drugs that may suppress immune response Dr. Friedman thinks it is unlikely that any of his patients have these conditions. Patients with Cushing’s syndrome, Addison’s, diabetes or thyroid disorders do not qualify. In contrast, a Booster Dose is for Patients With Healthy Immune Systems A booster dose—which is different from a third dose for immuno-compromised patients—is for healthy patients and is meant to enhance immunity and may protect against new variants of the virus. The Biden administration has announced that it intends to make booster doses available for people with healthy immune systems in September 2021, after they are authorized or approved by the FDA. This has not happened yet, but when it happens, Dr. Friedman would encourage his patients to get it. Dr. Friedman is expecting a booster shot against the Delta variant to be released in the fall of 2021 and would recommend that for his patients. Dr. Friedman wishes everyone to stay healthy.
  9. Cushing disease is caused by tumour in the pituitary gland which leads to excessive secretion of a hormone called adrenocorticotrophic (ACTH), which in turn leads to increasing levels of cortisol in the body. Cortisol is a steroid hormone released by the adrenal glands and helps the body to deal with injury or infection. Increasing levels of cortisol increases the blood sugar and can even cause diabetes mellitus. However the disease is also caused due to excess production of hypothalamus corticotropin releasing hormone (CRH) which stimulates the synthesis of cortisol by the adrenal glands. The condition is named after Harvey Cushing, the doctor who first identified the disease in 1912. Cushing disease results in Cushing syndrome. Cushing syndrome is a group of signs and symptoms developed due to prolonged exposure to cortisol. Signs and symptoms of Cushing syndrome includes hypertension, abdominal obesity, muscle weakness, headache, fragile skin, acne, thin arms and legs, red stretch marks on stomach, fluid retention or swelling, excess body and facial hair, weight gain, acne, buffalo hump, tiredness, fatigue, brittle bones, low back pain, moon shaped face etc. Symptoms vary from individual to individual depending upon the disease duration, age and gender of the patient. Get Sample Copy of this Report @ https://www.persistencemarketresearch.com/samples/14155 Disease diagnosis is done by measuring levels of cortisol in patient’s urine, saliva or blood. For confirming the diagnosis, a blood test for ACTH is performed. The first-line treatment of the disease is through surgical resection of ACTH-secreting pituitary adenoma, however disease management is also done through medications, Cushing disease treatment market comprises of the drugs designed for lowering the level of cortisol in the body. Thus patients suffering from Cushing disease are prescribed medications such as ketoconazole, mitotane, aminoglutethimide metyrapone, mifepristone, etomidate and pasireotide. Cushing’s disease treatment market revenue is growing with a stable growth rate, this is attributed to increasing number of pipeline drugs. Also increasing interest of pharmaceutical companies to develop Cushing disease drugs is a major factor contributing to the revenue growth of Cushing disease treatment market over the forecast period. Current and emerging players’ focuses on physician education and awareness regarding availability of different drugs for curing Cushing disease, thus increasing the referral speeds, time to diagnosis and volume of diagnosed Cushing disease individuals. Growing healthcare expenditure and increasing awareness regarding Cushing syndrome aids in the revenue growth of Cushing’s disease treatment market. Increasing number of new product launches also drives the market for Cushing’s disease Treatment devices. However availability of alternative therapies for curing Cushing syndrome is expected to hamper the growth of the Cushing’s disease treatment market over the forecast period. For entire list of market players, request for Table of content here @ https://www.persistencemarketresearch.com/toc/14155 The Cushing’s disease Treatment market is segment based on the product type, technology type and end user Cushing’s disease Treatment market is segmented into following types: By Drug Type Ketoconazole Mitotane Aminoglutethimide Metyrapone Mifepristone Etomidate Pasireotide By End User Hospital Pharmacies Retail Pharmacies Drug Stores Clinics e-Commerce/Online Pharmacies Cushing’s disease treatment market revenue is expected to grow at a good growth rate, over the forecast period. The market is anticipated to perform well in the near future due to increasing awareness regarding the condition. Also the market is anticipated to grow with a fastest CAGR over the forecast period, attributed to increasing investment in R&D and increasing number of new product launches which is estimated to drive the revenue growth of Cushing’s disease treatment market over the forecast period. Depending on geographic region, the Cushing’s disease treatment market is segmented into five key regions: North America, Latin America, Europe, Asia Pacific (APAC) and Middle East & Africa (MEA). North America is occupying the largest regional market share in the global Cushing’s disease treatment market owing to the presence of more number of market players, high awareness levels regarding Cushing syndrome. Healthcare expenditure and relatively larger number of R&D exercises pertaining to drug manufacturing and marketing activities in the region. Also Europe is expected to perform well in the near future due to increasing prevalence of the condition in the region. Asia Pacific is expected to grow at the fastest CAGR because of increase in the number of people showing the symptoms of Cushing syndrome, thus boosting the market growth of Cushing’s disease treatment market throughout the forecast period. Some players of Cushing’s disease Treatment market includes CORCEPT THERAPEUTICS, HRA Pharma, Strongbridge Biopharma plc, Novartis AG, etc. However there are numerous companies producing branded generics for Cushing disease. The companies in Cushing’s disease treatment market are increasingly engaged in strategic partnerships, collaborations and promotional activities to capture a greater pie of market share. The research report presents a comprehensive assessment of the market and contains thoughtful insights, facts, historical data, and statistically supported and industry-validated market data. It also contains projections using a suitable set of assumptions and methodologies. The research report provides analysis and information according to categories such as market segments, geographies, types, technology and applications.
  10. SAN DIEGO, CA, USA I August 10, 2021 I Crinetics Pharmaceuticals, Inc. (Nasdaq: CRNX), a clinical stage pharmaceutical company focused on the discovery, development, and commercialization of novel therapeutics for rare endocrine diseases and endocrine-related tumors, today announced positive preliminary findings from the single ascending dose (SAD) portion of a first-in-human Phase 1 clinical study with CRN04894 demonstrating pharmacologic proof-of-concept for this first-in-class, investigational, oral, nonpeptide adrenocorticotropic hormone (ACTH) antagonist that is being developed for the treatment of conditions of ACTH excess, including Cushing’s disease and congenital adrenal hyperplasia. “ACTH is the central hormone of the endocrine stress response. Even though we’ve known about its clinical significance for more than 100 years, there has never been an ACTH antagonist available to intervene in diseases of excess stress hormones. This is an important milestone for the field of endocrinology and for our company,” said Scott Struthers, Ph.D., founder and chief executive officer of Crinetics. “I am extremely proud of our team that conceived, discovered and developed CRN04894 this far. This is the second molecule to emerge from our in-house discovery efforts and demonstrate pharmacologic proof of concept. I am very excited to see what it can do in upcoming clinical studies.” The 39 healthy volunteers who enrolled in the SAD cohorts were administered oral doses of CRN04894 (10 mg to 80 mg, or placebo) two hours prior to a challenge with synthetic ACTH. Analyses of basal cortisol levels (before ACTH challenge) showed that CRN04894 produced a rapid and dose-dependent reduction of cortisol by 25-56%. After challenge with a supra-pathophysiologic dose of ACTH (250 mcg), CRN04894 suppressed cortisol (as measured by AUC) up to 41%. After challenge with a disease-relevant dose of ACTH (1 mcg), CRN04894 showed a clinically meaningful reduction in cortisol AUC of 48%. These reductions in cortisol suggest that CRN04894 is bound with high affinity to its target receptor on the adrenal gland and blocking the activity of ACTH. CRN04894 was well tolerated in the healthy volunteers who enrolled in these SAD cohorts and all adverse events were considered mild. “We are very encouraged by these single ascending dose data which clearly demonstrate proof of ACTH antagonism with CRN04894 exposure in healthy volunteers,” stated Alan Krasner, M.D., chief medical officer of Crinetics. “We look forward to completing this study and assessing results from the multiple ascending dose cohorts. As a clinical endocrinologist, I recognize the pioneering nature of this work and eagerly look forward to further understanding the potential of CRN04894 for the treatment of diseases of ACTH excess.” Data Review Conference Call Crinetics will hold a conference call and live audio webcast today, August 10, 2021 at 4:30 p.m. Eastern Time to discuss the results of the CRN04894 SAD cohorts. To participate, please dial 800-772-3714 (domestic) or 212-271-4615 (international) and refer to conference ID 21996541. To access the webcast, please visit the Events page on the Crinetics website. The archived webcast will be available for 90 days. About the CRN04894-01 Phase 1 Study Crinetics is enrolling healthy volunteers in this double-blind, randomized, placebo-controlled Phase 1 study of CRN04894. Participants will be divided into multiple cohorts in the single ascending dose (SAD) and multiple ascending dose (MAD) phases of the study. In the SAD phase, safety and pharmacokinetics are assessed. In addition, pharmacodynamic responses are evaluated before and after challenges with injected synthetic ACTH to assess pharmacologic effects resulting from exposure to CRN04894. In the MAD phase, participants will be administered placebo or ascending doses of study drug daily for 10 days. Assessments of safety, pharmacokinetics and pharmacodynamics will also be performed after repeat dosing. About CRN04894 Adrenocorticotropic hormone (ACTH) is synthesized and secreted by the pituitary gland and binds to melanocortin type 2 receptor (MC2R), which is selectively expressed in the adrenal gland. This interaction of ACTH with MCR2 stimulates the adrenal production of cortisol, a stress hormone that is involved in the regulation of many systems. Cortisol is involved for example in the regulation of blood sugar levels, metabolism, inflammation, blood pressure, and memory formulation, and excess adrenal androgen production can result in hirsutism, menstrual dysfunction, infertility in men and women, acne, cardiometabolic comorbidities and insulin resistance. Diseases associated with excess of ACTH, therefore, can have significant impact on physical and mental health. Crinetics’ ACTH antagonist, CRN04894, has exhibited strong binding affinity for MC2R in preclinical models and demonstrated suppression of adrenally derived glucocorticoids and androgens that are under the control of ACTH, while maintaining mineralocorticoid production. About Cushing’s Disease and Congenital Adrenal Hyperplasia Cushing’s disease is a rare disease with a prevalence of approximately 10,000 patients in the United States. It is more common in women, between 30 and 50 years of age. Cushing’s disease often takes many years to diagnose and may well be under-diagnosed in the general population as many of its symptoms such as lethargy, depression, obesity, hypertension, hirsutism, and menstrual irregularity can be incorrectly attributed to other more common disorders. Congenital adrenal hyperplasia (CAH) encompasses a set of disorders that are caused by genetic mutations that result in impaired cortisol synthesis with a prevalence of approximately 27,000 patients in the United States. This lack of cortisol leads to a loss of feedback mechanisms and results in persistently high levels of ACTH, which in turn causes overstimulation of the adrenal cortex. The resulting adrenal hyperplasia and over-secretion of other steroids (particularly androgens) and steroid precursors can lead to a variety of effects from improper gonadal development to life-threatening adrenal crisis. About Crinetics Pharmaceuticals Crinetics Pharmaceuticals is a clinical stage pharmaceutical company focused on the discovery, development, and commercialization of novel therapeutics for rare endocrine diseases and endocrine-related tumors. The company’s lead product candidate, paltusotine, is an investigational, oral, selective nonpeptide somatostatin receptor type 2 agonist for the treatment of acromegaly, an orphan disease affecting more than 26,000 people in the United States. A Phase 3 program to evaluate safety and efficacy of paltusotine for the treatment of acromegaly is underway. Crinetics also plans to advance paltusotine into a Phase 2 trial for the treatment of carcinoid syndrome associated with neuroendocrine tumors. The company is also developing CRN04777, an investigational, oral, nonpeptide somatostatin receptor type 5 (SST5) agonist for congenital hyperinsulinism, as well as CRN04894, an investigational, oral, nonpeptide ACTH antagonist for the treatment of Cushing’s disease, congenital adrenal hyperplasia, and other diseases of excess ACTH. All of the company’s drug candidates are new chemical entities resulting from in-house drug discovery efforts and are wholly owned by the company. SOURCE: Crinetics Pharmaceuticals From https://pipelinereview.com/index.php/2021081178950/Small-Molecules/Crinetics-Pharmaceuticals-Oral-ACTH-Antagonist-CRN04894-Demonstrates-Pharmacologic-Proof-of-Concept-with-Dose-Dependent-Cortisol-Suppression-in-Single-Ascending-Dose-Port.html
  11. Ahmed Saeed Mubarak Mohamed1, Ahmed Iqbal2, Suveera Prasad3, Nigel Hoggard4, Daniel Blackburn1 Correspondence to Dr Daniel Blackburn, Sheffield Teaching Hospitals NHS Foundation Trust Department of Clinical Neurology, Sheffield S10 2JF, UK; d.blackburn@sheffield.ac.uk Abstract Cushing’s disease is a rare endocrine condition in which a pituitary corticotroph adenoma drives excess adrenal cortisol production, and is one cause of endogenous Cushing’s syndrome. We present a young woman with 3 weeks of headaches and cognitive disturbance who subsequently developed florid psychosis requiring multiple admissions under neurology and psychiatry. Her clinical stigmata of hypercortisolism and biochemical abnormalities prompted an MR scan of the pituitary, which confirmed a pituitary microadenoma. Treatment with metyrapone and subsequent surgery led to complete recovery within 2 months. Cushing’s disease commonly causes neuropsychiatric symptoms and can present with psychosis. Diagnosing Cushing’s disease can be challenging, but with early diagnosis and treatment it has an excellent prognosis. http://dx.doi.org/10.1136/practneurol-2021-002974 Get the full text
  12. This article was originally published here Endocrinol Diabetes Metab Case Rep. 2021 May 1;2021:EDM210038. doi: 10.1530/EDM-21-0038. Online ahead of print. ABSTRACT SUMMARY: In this case report, we describe the management of a patient who was admitted with an ectopic ACTH syndrome during the COVID pandemic with new-onset type 2 diabetes, neutrophilia and unexplained hypokalaemia. These three findings when combined should alert physicians to the potential presence of Cushing’s syndrome (CS). On admission, a quick diagnosis of CS was made based on clinical and biochemical features and the patient was treated urgently using high dose oral metyrapone thus allowing delays in surgery and rapidly improving the patient’s clinical condition. This resulted in the treatment of hyperglycaemia, hypokalaemia and hypertension reducing cardiovascular risk and likely risk for infection. Observing COVID-19 pandemic international guidelines to treat patients with CS has shown to be effective and offers endocrinologists an option to manage these patients adequately in difficult times. LEARNING POINTS: This case report highlights the importance of having a low threshold for suspicion and investigation for Cushing’s syndrome in a patient with neutrophilia and hypokalaemia, recently diagnosed with type 2 diabetes especially in someone with catabolic features of the disease irrespective of losing weight. It also supports the use of alternative methods of approaching the diagnosis and treatment of Cushing’s syndrome during a pandemic as indicated by international protocols designed specifically for managing this condition during Covid-19. PMID:34013889 | DOI:10.1530/EDM-21-0038 From https://www.docwirenews.com/abstracts/rapid-control-of-ectopic-cushings-syndrome-during-the-covid-19-pandemic-in-a-patient-with-chronic-hypokalaemia/
  13. Abstract Background: Cushing’s syndrome is a condition caused by excessive glucocorticoid with insomnia as one of its neuropsychiatric manifestation. Cushing’s syndrome may be caused by excessive adrenocorticotropin hormone (ACTH-dependent), for example from ACTH producing pituitary tumors, or by overproduction of cortisol by adrenocortical tumors. In this report, we presented a case with Cushing’s syndrome manifesting as chronic insomnia with adrenal cortical adenoma and pituitary microadenoma. Case presentation: A 30-year-old woman was consulted from the Neurologic Department to the Internal Medicine Department with the chief complaint of insomnia and worsening headache for 6 months prior to the admission. She had undergone head MRI and abdominal CT scan previously and was found to have both pituitary microadenoma and left adrenal mass. From the physical examination she had clinical signs of Cushing’s syndrome like Cushingoid face and purplish striae on her stomach. Midnight cortisol serum examination was done initially and showed high level of cortisol. High dose dexamethasone suppression test or DST (8 mg overnight) was later performed to help determine the main cause of Cushing’s syndrome. The result failed to reach 50% suppression of cortisol serum, suggestive that the Cushing’s syndrome was not ACTH-dependent from the pituitary but potentially from overproduction of cortisol by the left adrenal mass. Therefore, left adrenalectomy was performed and the histopathological study supported the diagnosis of adrenal cortical adenoma. Conclusion: Chronic insomnia is a very important symptoms of Cushing’s syndrome that should not be neglected. The patient had both microadenoma pituitary and left adrenal mass thus high dose DST test (8 mg overnight) needed to be performed to differentiate the source of Cushing’s syndrome. The result showed only little suppression therefore the pituitary microadenoma was not the source of Cushing’s syndrome and more suggestive from the adrenal etiology. Keywords: Cushing’s syndrome; insomnia; adrenal cortical adenoma; pituitary microadenoma; dexamethasone suppression test Permalink/DOI: https://doi.org/10.14710/jbtr.v7i1.9247I Read the entire article here: https://ejournal2.undip.ac.id/index.php/jbtr/article/view/9247/5440
  14. This month marks a little over one year since the first surge of COVID-19 across the United States. April is also Adrenal Insufficiency Awareness month, a good time to review the data on how COVID-19 infection can impact the adrenal glands. The adrenal glands make hormones to help regulate blood pressure and the ability to respond to stress. The hormones include steroids such as glucocorticoid (cortisol), mineralocorticoid (aldosterone), and forms of adrenaline known as catecholamines (norepinephrine, epinephrine, and dopamine). The activity of the adrenal gland is controlled through its relationship with the pituitary gland (the master regulator of hormones in the body). Some common adrenal diseases include the following: Addison’s Disease (where the body attacks the adrenal glands making them dysfunctional) Hyperaldosteronism Cushing’s Syndrome Pheochromocytoma Adrenal Nodules/Masses (termed incidentaloma) Congenital adrenal hyperplasia COVID-19 was found in the adrenal and pituitary glands of some patients who succumbed to the illness, suggesting that these organs might be among the targets for infection. One of the first highly effective therapies for COVID-19 infection was the use of IV steroid (dexamethasone) supplementation in hospitalized patients in patients requiring oxygen. A focused search of COVID-19-related health literature shows 85 peer-reviewed papers that have been published in medical literature specifically on the adrenal gland and COVID-19. This literature focuses on three phases of COVID infection that may impact the adrenal gland: the acute active infection phase, the immediate post-infection phase, and the long-term recovery phase. Medical research has identified that during the acute active infection, the adrenal system is one of the most heavily affected organ systems in the body in patients who have COVID-19 infection requiring hospitalization. In these cases, supplementation with the steroid dexamethasone serves as one of the most powerful lifesaving treatments. Concern has also been raised regarding the period of time just after the acute infection phase – particularly, the development of adrenal insufficiency following cases of COVID-19 hospitalizations. Additionally, some professional societies recommend that for patients who have adrenal insufficiency and are on adrenal replacement therapy, they be monitored closely post-COVID-19 vaccine for the development of stress-induced adrenal insufficiency. In mild-to-moderate COVID-19 cases, there does not seem to be an effect on adrenaline-related hormones (norepinephrine, epinephrine, dopamine). However, in cases of severe COVID-19 infection triggering the development of shock, patients will need supplementation with an infusion of catecholamines and a hormone called vasopressin to maintain their blood pressure. Finally, some studies have addressed the concern of adrenal insufficiency during the long-term recovery phase. Dr Sara Bedrose, adrenal endocrine specialist at Baylor College of Medicine, indicates that studies which included adrenal function in COVID survivors showed a large percentage of patients with suboptimal cortisol secretion during what is called ACTH stimulation testing. Results indicated that most of those cases had central adrenal insufficiency. It was concluded that adrenal insufficiency might be among the long-term consequences of COVID-19 and it seemed to be secondary to pituitary gland inflammation (called hypophysitis) or due to direct hypothalamic damage. Long-term follow-up of COVID 19 survivors will be necessary to exclude a gradual and late-onset adrenal insufficiency. Some patients who have COVID-19 will experience prolonged symptoms. To understand what is happening to them, patients may question whether or not they have a phenomenon called adrenal fatigue. This is a natural question to ask, especially after having such a severe health condition. A tremendous amount of resources are being developed to investigate the source and treatment of the symptoms, and this work has only just begun. However, adrenal fatigue is not a real medical diagnosis. It’s a term to describe a group of signs and symptoms that arise due to underactive adrenal glands. Current scientific data indicate that adrenal fatigue is not in and of itself a medical disease – although a variety of over-the-counter supplements and compounded medications may be advocated for in treatment by alternative medicine/naturopathic practitioners. My takeaway is that we have learned a great deal about the effects COVID-19 infection has on the adrenal glands. Long-term COVID-19 remains an area to be explored – especially in regards to how it may affect the adrenal glands. -By Dr. James Suliburk, associate professor of surgery in the Division of Surgical Oncology and section chief of endocrine surgery for the Thyroid and Parathyroid Center at Baylor College of Medicine From https://blogs.bcm.edu/2021/04/22/how-does-covid-19-impact-the-adrenal-gland/
  15. until
    I plan to do the Cushing's Awareness Challenge again. A past year info is here: https://cushieblogger.com/2018/03/11/time-to-sign-up-for-the-cushings-awareness-challenge-2018/ The original page is getting very slow loading, so I've moved my own posts to this newer blog. As always, anyone who wants to join me can share their blog URL with me and I'll add it to the links on the right side, so whenever a new post comes up, it will show up automatically. If the blogs are on WordPress, I try to reblog them all to get even more exposure on the blog, on Twitter and on Facebook at Cushings Help Organization, Inc. If you have photos, and you give me permission, I'll add them to the Pinterest page for Cushing's Help. The Cushing’s Awareness Challenge is almost upon us again! Do you blog? Want to get started? Since April 8 is Cushing’s Awareness Day, several people got their heads together to create the Tenth Annual Cushing’s Awareness Blogging Challenge. All you have to do is blog about something Cushing’s related for the 30 days of April. There will also be a logo for your blog to show you’ve participated. Please let me know the URL to your blog in the comments area of this post, on the Facebook page, in one of the Cushing's Help Facebook Groups, on the message boards or an email and I will list it on CushieBloggers ( http://cushie-blogger.blogspot.com/ ) The more people who participate, the more the word will get out about Cushing’s. Suggested topics – or add your own! In what ways have Cushing’s made you a better person? What have you learned about the medical community since you have become sick? If you had one chance to speak to an endocrinologist association meeting, what would you tell them about Cushing’s patients? What would you tell the friends and family of another Cushing’s patient in order to garner more emotional support for your friend? challenge with Cushing’s? How have you overcome challenges? Stuff like that. I have Cushing’s Disease….(personal synopsis) How I found out I have Cushing’s What is Cushing’s Disease/Syndrome? (Personal variation, i.e. adrenal or pituitary or ectopic, etc.) My challenges with Cushing’s Overcoming challenges with Cushing’s (could include any challenges) If I could speak to an endocrinologist organization, I would tell them…. What would I tell others trying to be diagnosed? What would I tell families of those who are sick with Cushing’s? Treatments I’ve gone through to try to be cured/treatments I may have to go through to be cured. What will happen if I’m not cured? I write about my health because… 10 Things I Couldn’t Live Without. My Dream Day. What I learned the hard way Miracle Cure. (Write a news-style article on a miracle cure. What’s the cure? How do you get the cure? Be sure to include a disclaimer) Give yourself, your condition, or your health focus a mascot. Is it a real person? Fictional? Mythical being? Describe them. Bonus points if you provide a visual! 5 Challenges & 5 Small Victories. The First Time I… Make a word cloud or tree with a list of words that come to mind when you think about your blog, health, or interests. Use a thesaurus to make it branch more. How much money have you spent on Cushing’s, or, How did Cushing’s impact your life financially? Why do you think Cushing’s may not be as rare as doctors believe? What is your theory about what causes Cushing’s? How has Cushing’s altered the trajectory of your life? What would you have done? Who would you have been What three things has Cushing’s stolen from you? What do you miss the most? What can you do in your Cushing’s life to still achieve any of those goals? What new goals did Cushing’s bring to you? How do you cope? What do you do to improve your quality of life as you fight Cushing’s? How Cushing’s affects children and their families Your thoughts…?
  16. A large study of mortality in Cushing’s syndrome calculated a threefold higher mortality rate for these patients, with cerebrovascular and atherosclerotic vascular diseases and infection accounting for 50% of deaths, researchers reported. “[We have seen] improvement in outcome since 2000, but mortality is still unacceptably high,” Padiporn Limumpornpetch, MD, an endocrinologist at Prince of Songkla University in Thailand and PhD student at the University of Leeds, U.K., told Healio during the ENDO annual meeting. “The mortality outcome has shown an unacceptable standardized mortality rate of 3:1, with poorer outcomes in patients with adrenal Cushing’s [and] active and larger tumors in Cushing’s disease.” Atherosclerotic vascular disease was the top cause of death in Cushing's disease, with infection coming in as the second-highest cause of death. Data were derived from Limumpornpetch P. OR04-4. Presented at: ENDO annual meeting; March 20-23, 2021 (virtual meeting). For a meta-analysis and meta-regression analysis of cause of death among patients with benign endogenous Cushing’s syndrome, Limumpornpetch and colleagues reviewed data published from 1952 to January 2021 from 92 study cohorts with 19,181 patients that reported mortality rates, including 66 studies that reported causes of death. The researchers calculated the standardized mortality rate (SMR) for Cushing’s syndrome at 3 (95% CI, 2.3-3.9). For patients with adrenal Cushing’s syndrome, SMR was 3.3 (95% CI, 0.5-6.6) — higher than for those with Cushing’s disease, with an SMR of 2.8 (95% CI, 2.1-3.7). Rates were similar by sex and by type of adrenal tumor. Deaths occurring within 30 days of surgery for Cushing’s syndrome fell to 3% after 2000 from 10% before that date (P < .005). During the entire study period, atherosclerotic vascular disease accounted for 27.4% of deaths in Cushing’s syndrome, and 12.7% were attributable to infection, 11.7% to cerebrovascular diseases, 10.6% to malignancy, 4.4% to thromboembolism, 2.9% to active disease, 3% to adrenal insufficiency and 2.2% to suicide. “We look forward to the day when our interdisciplinary approach to managing these challenging patients can deliver outcomes similar to the background population,” Limumpornpetch said. From https://www.healio.com/news/endocrinology/20210322/mortality-rate-in-cushings-syndrome-unacceptably-high
  17. John P H Wilding 1 Affiliations expand PMID: 32061161 DOI: 10.1530/EJE-20-0099 Abstract Endocrine disorders such as Cushing's syndrome and hypothyroidism may cause weight gain and exacerbate metabolic dysfunction in obesity. Other forms of endocrine dysfunction, particularly gonadal dysfunction (predominantly testosterone deficiency in men and polycystic ovarian syndrome in women), and abnormalities of the hypothalamic-pituitary-adrenal axis, the growth hormone-IGF-1 system and vitamin D deficiency are common in obesity. As a result, endocrinologists may be referred people with obesity for endocrine testing and asked to consider treatment with various hormones. A recent systematic review and associated guidance from the European Society of Endocrinology provide a useful evidence summary and clear guidelines on endocrine testing and treatment in people with obesity. With the exception of screening for hypothyroidism, most endocrine testing is not recommended in the absence of clinical features of endocrine syndromes in obesity, and likewise hormone treatment is rarely needed. These guidelines should help reduce unnecessary endocrine testing in those referred for assessment of obesity and encourage clinicians to support patients with their attempts at weight loss, which if successful has a good chance of correcting any endocrine dysfunction. Similar articles Classical endocrine diseases causing obesity. Weaver JU.Front Horm Res. 2008;36:212-228. doi: 10.1159/000115367.PMID: 18230905 Review. Is obesity an endocrine condition? Stocks AE.Aust Fam Physician. 1977 Feb;6(2):109-16.PMID: 558747 FPIN’s clinical inquiries. Secondary causes of obesity. Allen G, Safranek S.Am Fam Physician. 2011 Apr 15;83(8):972-3.PMID: 21524038 No abstract available. [Role of the endocrine system in the pathogenesis of non-alcoholic fatty liver disease]. Hagymási K, Reismann P, Rácz K, Tulassay Z.Orv Hetil. 2009 Nov 29;150(48):2173-81. doi: 10.1556/OH.2009.28749.PMID: 19923096 Review. Hungarian. Obesity and endocrine disease. Kokkoris P, Pi-Sunyer FX.Endocrinol Metab Clin North Am. 2003 Dec;32(4):895-914. doi: 10.1016/s0889-8529(03)00078-1.PMID: 14711067 Review. From https://pubmed.ncbi.nlm.nih.gov/32061161/
  18. This sounds a lot like what we have been doing for the last 20 years... HRA Pharma Rare Diseases, an affiliate of global consumer healthcare company HRA Pharma, has announced it is funding an online platform containing information and news on Cushing’s Syndrome. The ‘Cushing’s Hub’, developed by Springer Healthcare Education, is set to make all information on the rare condition available in one place for medical professionals to access. Cushing’s Syndrome affects less than one in 10,000 people in the EU, and is categorised as a rare and severe condition caused by prolonged high levels of cortisol in the blood. The new hub is managed by an independent editorial board consisting of three international Cushing’s Syndrome experts - Professor Frédéric Castinetti from France, Dr Niki Karavitaki from the UK and Associate Professor Dr Greisa Vila from Austria. According to HRA Pharma Rare Diseases, the ‘Cushing’s Hub’ is the first online platform dedicated to all aspects of the rare condition. “As a company which is dedicated to improving the lives of those with rare diseases, we felt it was crucial to support the development of a platform that can help healthcare professionals in the diagnosis, management and follow up of Cushing’s Syndrome. We are confident the platform will help improve the lives of many,” said Evelina Paberžė, COO of HRA Pharma Rare Diseases.
  19. Yu Wang, Zhixiang Sun, Zhiquan Jiang Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People’s Republic of China Correspondence: Zhiquan Jiang Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui 233004, People’s Republic of China Tel +86-13966075971 Email bbjiangzhq@163.com Abstract: Cushing’s disease (CD), also known as adrenocorticotropic hormone (ACTH)-dependent pituitary Cushing’s syndrome, is a rare and serious chronic endocrine disease that is usually caused by a pituitary adenoma (especially a pituitary microadenoma). Meningioma is the most common type of primary intracranial tumor and is usually benign. The patient in this case report presented with CD coexisting with pituitary microadenoma and meningioma, which is an extremely rare comorbidity. The pathogenesis of CD associated with meningioma remains unclear. Here, we describe the case of bilateral lower extremity edema, lower limb pain, abdominal purplish striae, and abdominal distension for 9 months in a 47-year-old woman. Two years ago, the patient underwent a hysterectomy at a local hospital for hysteromyoma. She had no previous radiotherapeutic treatment or other medical history. Magnetic resonance imaging of her head revealed a sellar lesion (7.8 mm × 6.4 mm) and a spherical mass (3.0 cm × 3.0 cm) in the right frontal convexity. Her level of serum adrenocorticotropic hormone (ACTH) was 169 pg/mL, and her cortisol levels were 933 nmol/mL and 778 nmol/mL at 8 am and 4 pm, respectively. Preoperatively, she was diagnosed with ACTH-secreting pituitary microadenoma and meningioma. Excision of the meningioma was performed through a craniotomy, while an endoscopic endonasal transsphenoidal approach was used to remove the pituitary adenoma. Meningioma and pituitary adenoma were confirmed by postoperative pathology. On the basis of this unusual case, the relevant literature was reviewed to illustrate the diagnosis and treatment of Cushing’s disease and to explore the pathogenesis of pituitary adenoma associated with meningioma. Keywords: Cushing’s disease, pituitary adenoma, meningioma Introduction Cushing’s disease (CD) is a severe condition caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary tumor that accounts for approximately 70% of all cases of endogenous Cushing’s syndrome. It has a total incidence of 1–2 cases per million per year and a prevalence rate of approximately 30 patients per million per year, making it an uncommon disease.1 Meningiomas account for 15–25% of all intracranial tumors, with an annual incidence of 6 cases per 100,000 persons.2 CD combined with meningioma is a rare condition, and even rarer in patients who have no previously known risk factors for either tumor. To the best of our knowledge, its pathogenesis have not been clearly described to date. Case Presentation Clinical History and Laboratory Findings A 47-year-old woman was admitted to the endocrinology department of our hospital with chief complaints of bilateral lower extremity edema, left lower limb pain, abdominal purplish striae, and abdominal distension for 9 months. Two years ago, the patient had a hysterectomy at a local hospital for hysteromyoma. She had no previous radiotherapeutic treatment or other medical history. She weighed 90 kg and was 165 cm tall with a body mass index (BMI) of 33. Physical examination showed typical features of Cushing’s syndrome, including centripetal obesity, moon face, pedal edema, and buffalo hump. Her skin was thin and dry, with acne and hirsutism. On admission, her blood pressure was 146/115 mmHg and routine biochemical blood tests confirmed comorbidity with diabetes mellitus, hyperlipidemia, and hypokalemia. Endocrine measurements showed that her serum ACTH was 169 pg/mL (reference value: 5–50 pg/mL), cortisol (8 am) was 933 nmol/L (reference value: 138–690 nmol/L), and cortisol (4 pm) was 778 nmol/L (reference value: 69–345 nmol/L), indicating that her ACTH and cortisol levels were dramatically increased. Cortisol secretion was increased and had lost its circadian rhythm. The low-dose dexamethasone suppression test showed that cortisol suppression was < 50%, while a >50% suppression of cortisol was found in the high-dose dexamethasone suppression test. Serum prolactin, follicle-stimulating hormone, luteinizing hormone, testosterone, free thyroid hormone (FT3 and FT4), and thyrotropin values were normal. Endocrinological evaluation suspected that pituitary lesions caused Cushing syndrome. Imaging Analysis The patient underwent a magnetic resonance imaging (MRI) scan to image her head. T1-weighted MRI with contrast enhancement showed a spherical enhancing mass (3.0 cm × 3.0 cm) in the right frontal convexity and a dural tail sign (Figure 1A). In the sellar area, the enhancement degree of the lesion (7.8 mm × 6.4 mm) was significantly lower than that of the surrounding pituitary tissue, and the pituitary stalk was displaced to the right (Figure 1A and B). No abnormalities were found on plain or enhanced adrenal computed tomography scans. Figure 1 Enhanced magnetic resonance imaging (MRI) of the patient’s head: (A) Coronal view of the gadolinium-enhanced T1-weighted image showing a spherical enhancing mass in the right frontal convexity and a dural tail sign. A round low-intensity lesion can be seen on the right side of the pituitary gland, and the pituitary stalk is displaced to the right. (B) Sagittal T1-weighted sequence with contrast showing the degree of enhancement is lower than that of the pituitary in the sellar region. Treatment and Pathological Examination Physical examination, endocrine examination, and head MRI successfully proved that pituitary microadenoma caused Cushing’s syndrome (specifically CD) comorbid with asymptomatic meningioma. In order to receive surgical treatment, the patient was referred from the endocrinology department to neurosurgery. She underwent neuroendoscopic transsphenoidal surgery and the pituitary microadenoma was removed. The sellar floor was reconstructed with artificial dura mater, and after this reconstruction, no cerebrospinal fluid leakage was observed. The pathological specimen was examined and was determined to be consistent with a pituitary microadenoma (Figure 2A). One month later, excision of the meningioma was performed through a right frontal trephine craniotomy. Histological examination revealed a WHO grade I meningioma (Figure 2B). Figure 2 (A) Histopathologic examination revealed a pituitary adenoma (Hematoxylin and eosin staining, 100×). (B) Histopathologic examination revealed a meningioma (Hematoxylin and eosin staining, 100×). Outcome and Follow Up On the second day after the operation, her cortisol level dropped below the normal range in the morning. Hydrocortisone replacement therapy was started on the same day. In addition, she had developed transient diabetes insipidus, which was treated with desmopressin. Three months postoperatively, after hydrocortisone replacement therapy, the symptoms of Cushing’s disease were alleviated, and the cortisol level returned to normal, which was 249nmol/L (reference value: 138~690nmol/L). At the 1-year follow-up, no lesions were observed on the MRI scan and the symptoms of Cushing’s syndrome were in remission. The use of hydrocortisone supplements were discontinued and hormone levels remained normal, indicating recovery of the hypothalamic–pituitary–adrenal (HPA) axis. The patient had lost 30 kg and her BMI had dropped to 22, while her blood glucose, triglyceride level, and blood pressure had all returned to normal. Physical changes in the patient pre- and post-treatment are shown in Figure 3A and B. Figure 3 Abdominal appearance with striae (A) preoperation and (B) 4 months postoperation. Discussion Cushing’s Disease CD is a serious clinical condition caused by a pituitary adenoma secreting a high level of ACTH, leading to hypercortisolism. The proportion of ACTH-secreting pituitary adenomas (corresponding to CD) among hormone-secreting pituitary adenomas is 4.8%–10%, which affects women three times more frequently than men, mainly occurs in those 40–60 years old.3,4 Exposure to excessive cortisol can lead to various manifestations of Cushing’s syndrome and increases in morbidity and mortality.5 Therefore, early diagnosis and treatment of CD are very important. The diagnosis and differential diagnosis of CD is very complicated, and these have always been challenging problems in clinical endocrinology. Once Cushing’s syndrome is diagnosed, its etiology should be determined. A diagnosis of Cushing’s disease is made based on a biochemical examination confirming the pituitary origin of the condition and exclude other sources (namely, ectopic ACTH secretion and adrenocortical tumors).3 High-dose dexamethasone suppression and corticotropin-releasing-hormone stimulation tests may be used to distinguish high-secretion sources of pituitary and ectopic ACTH. More than 90% of the pituitary adenomas that cause CD are microadenomas (≤10 mm in diameter), and 40% of the cases cannot be located by radiological examination.5 Examination with bilateral inferior petrosal sinus sampling (BIPSS) is necessary for CD patients in whom noninvasive biochemical and imaging examinations do not lead to a definitive diagnosis.6 The first-line treatment for CD is transsphenoidal selective tumor resection (TSS) with approximately 78% of the patients in remission after the operation, and 13% of patients relapse within 10 years after surgery. Therefore, there are a considerable number of patients who have experienced long-term surgical failure and require additional second-line treatment, such as radiotherapy, bilateral adrenalectomy, or medication.4 The pathogenesis of CD is unclear, but recent studies have confirmed that there are somatic activation mutations of multiple genes in adrenocorticotropin adenomas, while ubiquitin specific peptidase 8 (USP8) is the most common, accounting for about 50% of the mutations in these adenomas.7 Pituitary Adenoma Associated with Meningioma Radiotherapy used to treat pituitary tumors is a well-known reason for the development of meningiomas. Gene mutations are a common molecular characteristic of meningiomas, with inactivation of the neurofibromatosis type 2 (NF2) tumor suppressor gene found in 55% of meningiomas, and a further 25% of meningiomas accounted for by recently described mutations in other genes.8 Simultaneous occurrence of pituitary adenoma and meningioma without a history of radiotherapy is a rare condition clinically, having only been described in 49 cases before 2019,9 while ACTH-secreting pituitary adenomas (CD) comorbid with meningioma have been reported even less frequently. In the reported cases, the most common site of meningioma is parasellar, accounting for 44.9%, while meningioma located in the distant part of the adenoma is rare.9,10 A number of clinicians have suggested that the coexistence of meningiomas and pituitary adenomas is incidental, with no relationship between the two diseases.2,11 Genetic imbalances have been found in pituitary adenomas, including in particular the chromosomal deletions of 1p, 2q, 4, 5, 6, 11q, 12q, 13q, and 18q, and the overexpression of 9q, 16p, 17p, 19, and 20q. Functional adenomas have more such imbalances than nonfunctional adenomas, corresponding in particular to deletions of chromosomes 4 and 18q, and the overexpression of chromosomes 17 and 19.12 Meanwhile, estrogen receptor positive de novo meningiomas significantly involve chromosomes 14 and 22.13 The study by Hwang et al14 reported that the expression levels of heterogeneous nuclear ribonucleoprotein (hnRNP) family proteins were significantly higher in pituitary adenomas and meningiomas than that in normal brain tissues. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) and its downstream signaling pathways play an pivotal role in pituitary tumor, meningioma, and other brain tumors. Zhu et al15 reported that multiple endocrine neoplasia type 1 (MEN1) plays an important role in pituitary adenoma associated with meningioma by upregulating the mammalian target of rapamycin signaling pathway. They found that rapamycin treatment promotes apoptosis in primary cells of the pituitary adenoma and meningioma in cases of pituitary adenoma associated with meningioma. Recurrence of pituitary adenoma, younger age, and larger size of meningioma have been shown to be significantly associated with MEN1 mutation.16 Mathuriya et al17 suggested that hormones may contribute to the occurrence of meningiomas. de Vries et al9 reported that compared with other types of adenomas, the proportion of growth hormone adenomas is higher, accounting for about one third of cases. Meanwhile, Friend et al18 demonstrated that activation of GH/insulin-like growth factor-1 (IGF-1) axis clearly increased the growth rate of meningiomas. However, in the present case, we observed the coexistence of ACTH-secreting adenoma and meningioma. Further studies are required to understand whether ACTH or cortisol are related to the occurrence and development of meningioma. In our case, pituitary microadenoma was the cause of Cushing’s syndrome, while the meningioma was an incidental imaging observation. With the popularity and technological progress of high-resolution imaging technology, the reported prevalence of intracranial lesions related to dominant pathology has increased.2 However, when imaging examinations are limited to specific regions, the diagnosis of lesions in other locations is likely to be omitted. For example, in our case, performing MRI of the sellar region alone may have meant that the meningioma was missed. Conclusion Cushing’s disease is the most common cause of endogenous Cushing’s syndrome and is caused by ACTH-secreting pituitary adenoma.It is associated with severe complications and reduced quality of life, so early diagnosis and treatment are critical. The coexistence of CD, pituitary adenoma, and meningioma is very rare, and the exact mechanisms underlying such comorbidity are currently unclear and need further study. Data Sharing Statement The data that support the findings of this study are available on request from the corresponding author, Zhiquan Jiang. Ethics and Consent Statement Based on the regulations of the department of research of the Bengbu Medical College, institutional review board approval is not required for case reports. Consent for Publication Written informed consent has been provided by the patient to have the case details and any accompanying images published. Author Contributions All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work. Funding The authors declared that this case has received no financial support. Disclosure The authors report no conflicts of interest in this work. References 1. Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing’s syndrome. Lancet. 2015;386(9996):913–927. doi:10.1016/S0140-6736(14)61375-1 2. Curto L, Squadrito S, Almoto B, et al. MRI finding of simultaneous coexistence of growth hormone-secreting pituitary adenoma with intracranial meningioma and carotid artery aneurysms: report of a case. Pituitary. 2007;10(3):299–305. doi:10.1007/s11102-007-0011-4 3. Mehta GU, Lonser RR. Management of hormone-secreting pituitary adenomas. Neuro Oncol. 2017;19(6):762–773. doi:10.1093/neuonc/now130 4. Pivonello R, De Leo M, Cozzolino A, Colao A. The treatment of Cushing’s disease. Endocr Rev. 2015;36(4):385–486. doi:10.1210/er.2013-1048 5. Tritos NA, Biller BMK. Current management of Cushing’s disease. J Intern Med. 2019;286(5):526–541. doi:10.1111/joim.12975 6. Fan C, Zhang C, Shi X, et al. Assessing the value of bilateral inferior petrosal sinus sampling in the diagnosis and treatment of a complex case of Cushing’s disease. Intractable Rare Dis Res. 2013;2(1):24–29. doi:10.5582/irdr.2013.v2.1.24 7. Sbiera S, Kunz M, Weigand I, Deutschbein T, Dandekar T, Fassnacht M. The new genetic landscape of Cushing’s disease: deubiquitinases in the spotlight. Cancers. 2019;11(11):1761. doi:10.3390/cancers11111761 8. Apra C, Peyre M, Kalamarides M. Current treatment options for meningioma. Expert Rev Neurother. 2018;18(3):241–249. doi:10.1080/14737175.2018.1429920 9. de Vries F, Lobatto DJ, Zamanipoor Najafabadi AH, et al. Unexpected concomitant pituitary adenoma and suprasellar meningioma: a case report and review of the literature. Br J Neurosurg. 2019:1–5. doi:10.1080/02688697.2018.1556782. 10. Gosal JS, Shukla K, Praneeth K, et al. Coexistent pituitary adenoma and frontal convexity meningioma with frontal sinus invasion: a rare association. Surg Neurol Int. 2020;11:270. doi:10.25259/SNI_164_2020 11. Cannavo S, Curto L, Fazio R, et al. Coexistence of growth hormone-secreting pituitary adenoma and intracranial meningioma: a case report and review of the literature. J Endocrinol Invest. 1993;16(9):703–708. doi:10.1007/BF03348915 12. Szymas J, Schluens K, Liebert W, Petersen I. Genomic instability in pituitary adenomas. Pituitary. 2002;5(4):211–219. doi:10.1023/a:1025313214951 13. Pravdenkova S, Al-Mefty O, Sawyer J, Husain M. Progesterone and estrogen receptors: opposing prognostic indicators in meningiomas. J Neurosurg. 2006;105(2):163–173. doi:10.3171/jns.2006.105.2.163 14. Hwang M, Han MH, Park HH, et al. LGR5 and downstream intracellular signaling proteins play critical roles in the cell proliferation of neuroblastoma, meningioma and pituitary adenoma. Exp Neurobiol. 2019;28(5):628–641. doi:10.5607/en.2019.28.5.628 15. Zhu H, Miao Y, Shen Y, et al. The clinical characteristics and molecular mechanism of pituitary adenoma associated with meningioma. J Transl Med. 2019;17(1):354. doi:10.1186/s12967-019-2103-0 16. Zhu H, Miao Y, Shen Y, et al. Germline mutations in MEN1 are associated with the tumorigenesis of pituitary adenoma associated with meningioma. Oncol Lett. 2020;20(1):561–568. doi:10.3892/ol.2020.11601 17. Mathuriya SN, Vasishta RK, Dash RJ, Kak VK. Pituitary adenoma and parasagittal meningioma: an unusual association. Neurol India. 2000;48(1):72. 18. Friend KE, Radinsky R, McCutcheon IE. Growth hormone receptor expression and function in meningiomas: effect of a specific receptor antagonist. J Neurosurg. 1999;91(1):93–99. doi:10.3171/jns.1999.91.1.0093 This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms. From https://www.dovepress.com/cushingrsquos-disease-caused-by-a-pituitary-microadenoma-coexistent-wi-peer-reviewed-fulltext-article-IJGM
  20. For years before and after their diagnosis, people with Cushing’s disease use more psychotropic medications — those that affect mood, thoughts, or perception — for mental health problems than their healthy peers, a study in Sweden found. Notably, patients experiencing long-term disease remission still showed higher use of antidepressants and sleeping pills than healthy individuals. These findings highlight Cushing’s persistent negative effects on mental health, according to researchers. Additionally, the results of this study, based on prescribed medication dispenses in Sweden, support the importance of earlier diagnoses of Cushing’s disease — and the need for close and long-term monitoring of neuropsychiatric symptoms in this patient population, the researchers said. The study, “Psychotropic drugs in patients with Cushing’s disease before diagnosis and at long-term follow-up — a nationwide study,” was published in the Journal of Clinical Endocrinology & Metabolism. Mental health issues such as anxiety, depression, sleep disturbances, and cognitive impairments are part of the wide range of symptoms caused by the abnormally high levels of the cortisol hormone that characterize Cushing’s syndrome. Of note, Cushing’s disease is a form of Cushing’s syndrome caused by a tumor in the pituitary gland. A “few” studies have reported the elimination or partial lessening of neuropsychiatric symptoms after successful Cushing’s treatment, according to the researchers. But others noted that “impaired cognitive function and quality of life seemed to persist for a long time after biochemical [cortisol level-based] remission had been achieved,” the team wrote. Now, these researchers, from several universities in Sweden, have assessed the use of psychotropic medications — reflecting mental health burden — in 372 people with Cushing’s disease. The use of such medications was assessed five years before diagnosis, at the time of diagnosis, and at five and 10 years post-diagnosis. The patients, diagnosed between 1990 and 2018, were identified through the Swedish Pituitary Register, which covers 95% of all people with Cushing’s disease in the country. Most of the patients (76%) were women. Altogether, the patients’ mean age at diagnosis was 44 years. For each individual with Cushing’s, four sex-, age-, and residential area-matched healthy individuals were used as controls for comparative analyses. Data on each individual’s dispenses of medications commonly used for neuropsychiatric issues were obtained from the Swedish Prescribed Drug Register. This register, which fully covers all prescribed medications given throughout the country, also was used to determine each patient’s dispenses of other medications for Cushing’s disease symptoms, such as high blood pressure, also called hypertension, and diabetes. The results showed that the use of antidepressants, anxiolytics — medications to lessen anxiety — and sleeping pills was at least twofold higher in Cushing’s patients than in healthy individuals during the five-year period before diagnosis, and at the time of diagnosis. Five years after diagnosis, the proportion of patients using antidepressants (26%) and sleeping pills (22%) remained unchanged, and even individuals in remission showed significantly higher use of such medications than did controls (20–26% vs. 8.6–12%). According to the results, one-third of the patients on antidepressants since their diagnosis were able to discontinue treatment before the five-year assessment — most having achieved disease remission. However, 47% of those receiving antidepressants at five years had initiated such treatment at a median of 2.4 years after diagnosis. During the five-year follow-up, older age and being a woman appeared to increase the risk of antidepressant use among Cushing’s disease patients. At 10 years of follow-up, the use of antidepressants and sleeping pills was not significantly different between groups, despite the fact that antidepressants use remained about the same among patients. Notably, researchers conducted an analysis of 76 patients with sustained remission for a median of 9.3 years, and 292 matching controls. That analysis showed that the use of antidepressants and sleeping pills was significantly higher among patients. The use of other medications, such as those for hypertension and diabetes, also was significantly more common among Cushing’s disease patients before, at diagnosis, and at five years post-diagnosis — although the post-diagnosis numbers dropped by half during that period. After 10 years, only the use of anti-diabetic medications remained significantly higher in patients as compared with controls. These findings suggest that other conditions associated with Cushing’s disease, such as hypertension and diabetes, are effectively lessened with treatment. However, they also highlight that “many patients with CD [Cushing’s disease] will have persistent mental health problems,” the researchers wrote. In addition, visits to a psychiatrist and hospital admissions for treatment of psychiatric disorders tended to be more common among Cushing’s disease patients, even before diagnosis, the team noted. “This nationwide register-based study shows that use of psychotropic drugs in CD patients is increased from several years before diagnosis,” the researchers wrote, adding that this use “remained elevated regardless of remission status, suggesting persisting negative effects on mental health,” the researchers wrote. These findings highlight the importance of early diagnosis of Cushing’s disease and of considering neuropsychiatric symptoms “as an important part of the disease,” they concluded. There is a “need for long-term monitoring of mental health” in Cushing’s, they wrote. From https://cushingsdiseasenews.com/2021/02/24/cushings-found-to-cause-persistent-negative-mental-health-effects-swedish-study/
  21. Rosario Pivonello,a,b Rosario Ferrigno,a Andrea M Isidori,c Beverly M K Biller,d Ashley B Grossman,e,f and Annamaria Colaoa,b Over the past few months, COVID-19, the pandemic disease caused by severe acute respiratory syndrome coronavirus 2, has been associated with a high rate of infection and lethality, especially in patients with comorbidities such as obesity, hypertension, diabetes, and immunodeficiency syndromes.1 These cardiometabolic and immune impairments are common comorbidities of Cushing's syndrome, a condition characterised by excessive exposure to endogenous glucocorticoids. In patients with Cushing's syndrome, the increased cardiovascular risk factors, amplified by the increased thromboembolic risk, and the increased susceptibility to severe infections, are the two leading causes of death.2 In healthy individuals in the early phase of infection, at the physiological level, glucocorticoids exert immunoenhancing effects, priming danger sensor and cytokine receptor expression, thereby sensitising the immune system to external agents.3 However, over time and with sustained high concentrations, the principal effects of glucocorticoids are to produce profound immunosuppression, with depression of innate and adaptive immune responses. Therefore, chronic excessive glucocorticoids might hamper the initial response to external agents and the consequent activation of adaptive responses. Subsequently, a decrease in the number of B-lymphocytes and T-lymphocytes, as well as a reduction in T-helper cell activation might favour opportunistic and intracellular infection. As a result, an increased risk of infection is seen, with an estimated prevalence of 21–51% in patients with Cushing's syndrome.4 Therefore, despite the absence of data on the effects of COVID-19 in patients with Cushing's syndrome, one can make observations related to the compromised immune state in patients with Cushing's syndrome and provide expert advice for patients with a current or past history of Cushing's syndrome. Fever is one of the hallmarks of severe infections and is present in up to around 90% of patients with COVID-19, in addition to cough and dyspnoea.1 However, in active Cushing's syndrome, the low-grade chronic inflammation and the poor immune response might limit febrile response in the early phase of infection.2 Conversely, different symptoms might be enhanced in patients with Cushing's syndrome; for instance, dyspnoea might occur because of a combination of cardiac insufficiency or weakness of respiratory muscles.2 Therefore, during active Cushing's syndrome, physicians should seek different signs and symptoms when suspecting COVID-19, such as cough, together with dysgeusia, anosmia, and diarrhoea, and should be suspicious of any change in health status of their patients with Cushing's syndrome, rather than relying on fever and dyspnoea as typical features. The clinical course of COVID-19 might also be difficult to predict in patients with active Cushing's syndrome. Generally, patients with COVID-19 and a history of obesity, hypertension, or diabetes have a more severe course, leading to increased morbidity and mortality.1 Because these conditions are observed in most patients with active Cushing's syndrome,2 these patients might be at an increased risk of severe course, with progression to acute respiratory distress syndrome (ARDS), when developing COVID-19. However, a key element in the development of ARDS during COVID-19 is the exaggerated cellular response induced by the cytokine increase, leading to massive alveolar–capillary wall damage and a decline in gas exchange.5 Because patients with Cushing's syndrome might not mount a normal cytokine response,4 these patients might parodoxically be less prone to develop severe ARDS with COVID-19. Moreover, Cushing's syndrome and severe COVID-19 are associated with hypercoagulability, such that patients with active Cushing's syndrome might present an increased risk of thromboembolism with COVID-19. Consequently, because low molecular weight heparin seems to be associated with lower mortality and disease severity in patients with COVID-19,6 and because anticoagulation is also recommended in specific conditions in patients with active Cushing's syndrome,7 this treatment is strongly advised in hospitalised patients with Cushing's syndrome who have COVID-19. Furthermore, patients with active Cushing's syndrome are at increased risk of prolonged duration of viral infections, as well as opportunistic infections, particularly atypical bacterial and invasive fungal infections, leading to sepsis and an increased mortality risk,2 and COVID-19 patients are also at increased risk of secondary bacterial or fungal infections during hospitalisation.1 Therefore, in cases of COVID-19 during active Cushing's syndrome, prolonged antiviral treatment and empirical prophylaxis with broad-spectrum antibiotics1, 4 should be considered, especially for hospitalised patients (panel ). Panel Risk factors and clinical suggestions for patients with Cushing's syndrome who have COVID-19 Reduction of febrile response and enhancement of dyspnoea Rely on different symptoms and signs suggestive of COVID-19, such as cough, dysgeusia, anosmia, and diarrhoea. Prolonged duration of viral infections and susceptibility to superimposed bacterial and fungal infections Consider prolonged antiviral and broad-spectrum antibiotic treatment. Impairment of glucose metabolism (negative prognostic factor) Optimise glycaemic control and select cortisol-lowering drugs that improve glucose metabolism. Hypertension (negative prognostic factor) Optimise blood pressure control and select cortisol-lowering drugs that improve blood pressure. Thrombosis diathesis (negative prognostic factor) Start antithrombotic prophylaxis, preferably with low-molecular-weight heparin treatment. Surgery represents the first-line treatment for all causes of Cushing's syndrome,8, 9 but during the pandemic a delay might be appropriate to reduce the hospital-associated risk of COVID-19, any post-surgical immunodepression, and thromboembolic risks.10 Because immunosuppression and thromboembolic diathesis are common Cushing's syndrome features,2, 4 during the COVID-19 pandemic, cortisol-lowering medical therapy, including the oral drugs ketoconazole, metyrapone, and the novel osilodrostat, which are usually effective within hours or days, or the parenteral drug etomidate when immediate cortisol control is required, should be temporarily used.9 Nevertheless, an expeditious definitive diagnosis and proper surgical resolution of hypercortisolism should be ensured in patients with malignant forms of Cushing's syndrome, not only to avoid disease progression risk but also for rapidly ameliorating hypercoagulability and immunospuppression;9 however, if diagnostic procedures cannot be easily secured or surgery cannot be done for limitations of hospital resources due to the pandemic, medical therapy should be preferred. Concomitantly, the optimisation of medical treatment for pre-existing comorbidities as well as the choice of cortisol-lowering drugs with potentially positive effects on obesity, hypertension, or diabates are crucial to improve the eventual clinical course of COVID-19. Once patients with Cushing's syndrome are in remission, the risk of infection is substantially decreased, but the comorbidities related to excess glucocorticoids might persist, including obesity, hypertension, and diabetes, together with thromboembolic diathesis.2 Because these are features associated with an increased death risk in patients with COVID-19,1 patients with Cushing's syndrome in remission should be considered a high-risk population and consequently adopt adequate self-protection strategies to minimise contagion risk. In conclusion, COVID-19 might have specific clinical presentation, clinical course, and clinical complications in patients who also have Cushing's syndrome during the active hypercortisolaemic phase, and therefore careful monitoring and specific consideration should be given to this special, susceptible population. Moreover, the use of medical therapy as a bridge treatment while waiting for the pandemic to abate should be considered. Go to: Acknowledgments RP reports grants and personal fees from Novartis, Strongbridge, HRA Pharma, Ipsen, Shire, and Pfizer; grants from Corcept Therapeutics and IBSA Farmaceutici; and personal fees from Ferring and Italfarmaco. AMI reports non-financial support from Takeda and Ipsen; grants and non-financial support from Shire, Pfizer, and Corcept Therapeutics. BMKB reports grants from Novartis, Strongbridge, and Millendo; and personal fees from Novartis and Strongbridge. AC reports grants and personal fees from Novartis, Ipsen, Shire, and Pfizer; personal fees from Italfarmaco; and grants from Lilly, Merck, and Novo Nordisk. All other authors declare no competing interests. Go to: References 1. Kakodkar P, Kaka N, Baig MN. A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19) Cureus. 2020;12 [PMC free article] [PubMed] [Google Scholar] 2. Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BMK, Colao A. Complications of Cushing's syndrome: state of the art. Lancet Diabetes Endocrinol. 2016;4:611–629. [PubMed] [Google Scholar] 3. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17:233–247. [PubMed] [Google Scholar] 4. Hasenmajer V, Sbardella E, Sciarra F, Minnetti M, Isidori AM, Venneri MA. The immune system in Cushing's syndrome. Trends Endocrinol Metab. 2020 doi: 10.1016/j.tem.2020.04.004. published online May 6, 2020. [PubMed] [CrossRef] [Google Scholar] 5. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect. 2020;80:607–613. [PMC free article] [PubMed] [Google Scholar] 6. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18:1094–1099. [PubMed] [Google Scholar] 7. Isidori AM, Minnetti M, Sbardella E, Graziadio C, Grossman AB. Mechanisms in endocrinology: the spectrum of haemostatic abnormalities in glucocorticoid excess and defect. Eur J Endocrinol. 2015;173:R101–R113. [PubMed] [Google Scholar] 8. Nieman LK, Biller BM, Findling JW. Treatment of Cushing's syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2015;100:2807–2831. [PMC free article] [PubMed] [Google Scholar] 9. Pivonello R, De Leo M, Cozzolino A, Colao A. The treatment of Cushing's disease. Endocr Rev. 2015;36:385–486. [PMC free article] [PubMed] [Google Scholar] 10. Newell-Price J, Nieman L, Reincke M, Tabarin A. Endocrinology in the time of COVID-19: management of Cushing's syndrome. Eur J Endocrinol. 2020 doi: 10.1530/EJE-20-0352. published online April 1. [PubMed] [CrossRef] [Google Scholar] From https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282791/
  22. About Who Should Attend: Individuals with Cushing’s disease and their caregivers. When: Thursday, March 4, 2021, 6 PM, Eastern Where: Virtual presentation via Zoom. Click the Zoom link for the online event or call one of the phone numbers below: 833-548-0276 (US Toll-free) 833-548-0282 (US Toll-free) 877-853-5257 (US Toll-free) 888-475-4499 (US Toll-free) Whether you log on via computer or telephone, you will be asked for the meeting ID and password. Meeting ID: 969 3392 7432 Passcode: 945590 Attendees will be muted until the end of the presentation, at which time we will take questions. There is no fee for this event. Contact Maggie Bobrowitz with any questions: Margaret.Bobrowitz@DignityHealth.org or (888) 726-9370.
  23. About Who Should Attend: Individuals with Cushing’s disease and their caregivers. When: Thursday, March 4, 2021, 6 PM, Eastern Where: Virtual presentation via Zoom. Click the Zoom link for the online event or call one of the phone numbers below: 833-548-0276 (US Toll-free) 833-548-0282 (US Toll-free) 877-853-5257 (US Toll-free) 888-475-4499 (US Toll-free) Whether you log on via computer or telephone, you will be asked for the meeting ID and password. Meeting ID: 969 3392 7432 Passcode: 945590 Attendees will be muted until the end of the presentation, at which time we will take questions. There is no fee for this event. Contact Maggie Bobrowitz with any questions: Margaret.Bobrowitz@DignityHealth.org or (888) 726-9370.
  24. The Journal of Clinical Endocrinology & Metabolism, dgab079, https://doi.org/10.1210/clinem/dgab079 Abstract Context Psychiatric symptoms are common in Cushing’s disease (CD) and seem only partly reversible following treatment. Objective To investigate drug dispenses associated to psychiatric morbidity in CD patients before treatment and during long-term follow-up. Design Nationwide longitudinal register-based study. Setting University Hospitals in Sweden. Subjects CD patients diagnosed between 1990 and 2018 (N=372) were identified in the Swedish Pituitary Register. Longitudinal data was collected from 5 years before, at diagnosis and during follow-up. Four matched controls per patient were included. Cross-sectional subgroup analysis of 76 patients in sustained remission was also performed. Main outcome measures Data from the Swedish Prescribed Drug Register and the Patient Register. Results In the 5-year period before, and at diagnosis, use of antidepressants (OR 2.2[95%CI 1.3-3.7] and 2.3[1.6-3.5]), anxiolytics (2.9[1.6-5.3] and 3.9[2.3-6.6]) and sleeping pills (2.1[1.2-3.7] and 3.8[2.4-5.9]) was more common in CD than controls. ORs remained elevated at 5-year follow-up for antidepressants (2.4[1.5-3.9]) and sleeping pills (3.1[1.9-5.3]). Proportions of CD patients using antidepressants (26%) and sleeping pills (22%) were unchanged at diagnosis and 5-year follow-up, whereas drugs for hypertension and diabetes decreased. Patients in sustained remission for median 9.3 years (IQR 8.1-10.4) had higher use of antidepressants (OR 2.0[1.1-3.8]) and sleeping pills (2.4[1.3-4.7]), but not of drugs for hypertension. Conclusions Increased use of psychotropic drugs in CD was observed before diagnosis and remained elevated regardless of remission status, suggesting persisting negative effects on mental health. The study highlights the importance of early diagnosis of CD, and the need for long-term monitoring of mental health. Cushing’s syndrome, hypercortisolism, neuropsychiatry, depression, sleeping disorder Issue Section: Clinical Research Article Read more at https://academic.oup.com/jcem/advance-article/doi/10.1210/clinem/dgab079/6132459?rss=1
  25. https://doi.org/10.1002/jbmr.4033 ABSTRACT Endogenous Cushing's syndrome (CS) is a rare cause of secondary osteoporosis. The long‐term consequences for bone metabolism after successful surgical treatment remain largely unknown. We assessed bone mineral density and fracture rates in 89 patients with confirmed Cushing's syndrome at the time of diagnosis and 2 years after successful tumor resection. We determined five bone turnover markers at the time of diagnosis, 1 and 2 years postoperatively. The bone turnover markers osteocalcin, intact procollagen‐IN‐propeptide (PINP), alkaline bone phosphatase, CTX‐I, and TrAcP 5b were measured in plasma or serum by chemiluminescent immunoassays. For comparison, 71 sex‐, age‐, and body mass index (BMI)‐matched patients in whom Cushing's syndrome had been excluded were studied. None of the patients received specific osteoanabolic treatment. At time of diagnosis, 69% of the patients had low bone mass (mean T‐score = −1.4 ± 1.1). Two years after successful surgery, the T‐score had improved in 78% of patients (mean T‐score 2 years postoperatively −1.0 ± 0.9). The bone formation markers osteocalcin and intact PINP were significantly decreased at time of diagnosis (p ≤ 0.001 and p = 0.03, respectively), and the bone resorption marker CTX‐I and TrAcP 5b increased. Postoperatively, the bone formation markers showed a three‐ to fourfold increase 1 year postoperatively, with a moderate decline thereafter. The bone resorption markers showed a similar but less pronounced course. This study shows that the phase immediately after surgical remission from endogenous CS is characterized by a high rate of bone turnover resulting in a striking net increase in bone mineral density in the majority of patients. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research. Introduction Cushing's syndrome (CS) is a rare disease with approximately 0.7 to 2.4 new cases per 1 million per year.1 Osteoporosis and osteopenia are typical comorbidities of patients with endogenous and exogenous CS. Depending on the study, 60% to 80% of patients have evidence for a reduced bone mineral density2 characteristically affecting the entire skeleton.3 About 5% of all cases of secondary osteoporosis are caused by hypercortisolism.4 However, data from prospective, well‐powered studies are rare, and few risk factors that would predict bone health have been identified so far. Guidelines for the management of osteoporosis due to endogenous CS are still missing.5 In terms of risk assessment, the subtype of CS does not seem to influence osteoporosis risk,6 whereas the morning cortisol levels are negatively correlated with lumbar bone mineral density.6 The duration of endogenous Cushing's syndrome (or the duration of exogenous replacement therapy after successful surgery) obviously affects bone mineral density.7 Whether the T‐score is the best predictor for fracture risk is not quite clear.2 Another area of uncertainty is the natural course of osteoporosis and bone turnover markers once the diagnosis of Cushing's syndrome has been established. A number of studies have addressed this topic, but the interpretation of the results is hampered because of limited patient numbers, concomitant osteoanabolic treatment, or both.8-10 In‐depth insight on bone remodeling in CS might come from bone turnover marker studies. For example, the bone formation marker osteocalcin is suppressed in untreated CS,3 a consistent observation making it useful as a diagnostic marker for CS.2 Based on the paucity of data, the lack of evidence for treatment guidelines, and the pressing open questions regarding risk assessment and management of osteoporosis, we performed a sufficiently powered study to analyze the natural course of bone turnover and bone mineral density in a monocentric cohort of patients with endogenous Cushing's syndrome. To the best of our knowledge, this is the first such study, and the data obtained will be instrumental for clinicians who care for patients with Cushing's syndrome. Materials and Methods Patients This study was performed as part of the prospective German Cushing registry, which has included 450 consecutive patients referred to our department for suspected CS since 2012. Structure and general characteristics of the registry have been described in detail previously.11-14 All patients included in the registry underwent a standardized biochemical screening and clinical examination at time of diagnosis and a yearly follow‐up after treatment to treat comorbidities and diagnose recurrence of the disease early. In all patients, standard screening for CS with a 1 mg low‐dose overnight dexamethasone suppression test (LDDST), collection of 24‐hour urine (UFC), and sampling of midnight salivary cortisol were performed. When the diagnosis of CS was confirmed, further subtyping was based on plasma adrenocorticotropic hormone (ACTH), corticotropin‐releasing hormone (CRH) test, high‐dose dexamethasone suppression test, imaging, and inferior petrosal sinus sampling (in case of ACTH dependence). Final diagnosis was CS in 156 patients and exclusion of CS in the remaining 294 patients. Patients with excluded CS were a quite heterogenic group with lead symptoms such as obesity (73%), arterial hypertension (50%), or hirsutism (33%). Final diagnoses in these subjects were metabolic syndrome, polycystic ovary syndrome (PCOS), obesity, depression, or primary hyperaldosteronism. Patient selection is shown in Fig. 1. Figure 1 Open in figure viewerPowerPoint Patient selection. *Very young age; patient conducted densitometry in a different clinic/outpatient clinic; patient refused densitometry. CS = Cushing's syndrome; BMD = bone mineral density; BMI = body mass index. Bold text indicates actual cohort of the study. In our analysis, we excluded patients for whom no densitometry data were available (n = 63) and patients receiving pharmacologic treatment for osteoporosis following diagnosis (n = 4). Densitometry data were not available for multiple reasons (very young age, external densitometry in a different clinic, missing consent to perform densitometry). We matched the remaining 89 patients with 71 controls subjects selected from those subjects in whom CS was excluded. Matching was done according to sex, age, and body mass index (BMI). None of the patients and controls received specific osteoanabolic or antiresorptive treatment, but 47% of patients with CS received vitamin D supplementation after remission. At time of diagnosis, 11% of controls and 17% of patients with CS received vitamin D supplementation. Methods In patients with confirmed CS, a bone mineral densitometry was conducted. Bone mineral density (BMD) was determined at the lumbar spine and the femur (neck and total femur). If a reduced bone mineral density was diagnosed, a follow‐up densitometry was performed 2 years after surgery. If bone mineral density was normal initially or during follow‐up, only one further densitometry was performed 2 or 3 years after initial diagnosis. An improvement or decrease of bone mineral density was defined according to the least significant change (LSC = 2.8 × 1.8%).15 Accordingly, an alteration of more than 5.04% of BMD was rated as significant. A detailed fracture history was taken and X‐ray of the spine was performed when clinical suspicion for fractures was high. In all patients, blood samples (serum and plasma) were taken at time of diagnosis and also 1 and 2 years after successful transsphenoidal surgery or adrenalectomy. Blood was taken in the fasting state between 8:00 and 10:00 a.m. Samples were centrifuged within 20 minutes at 4°C and stored at −80° until assayed. Three bone formation markers and two bone resorption markers were measured: osteocalcin, intact procollagen I‐N‐propeptide (PINP), and bone alkaline phosphatase (BAP) as bone formation markers, and CrossLaps (CTX‐I) and tartrate‐resistant acid phosphatase (5b TrAcP5b) as bone resorption marker, on basis of published data demonstrating their usefulness in CS and primary osteoporosis.2, 16 Samples were measured at the Endocrine Laboratory of the Department of Internal Medicine IV on the iSYS automated analyzer (IDS‐iSYS, Boldon, UK) by well‐validated assays.17, 18 Published, method‐specific reference intervals are available from a large healthy population.19, 20 For the determination of osteocalcin, an N‐MID assay was used, as pre‐analytics are less critical in this assay.21 TrAcp 5b is a new marker, which, in contrast to CTX‐1, can also reliably be measured in the non‐fasting state.22 Statistical analysis In a priori power analysis, we calculated that a total sample size of 102 would be sufficient to identify significant differences between groups, assuming a medium effect size (0.5), a power of 1 – β = 0.80 and a type I error of α = 0.05, with 51 subjects having Cushing's syndrome and 51 subjects being control subjects after excluding Cushing's syndrome. For statistical analysis, SPSS 25 (IBM Corp., Armonk, NY, USA) was used. Clinical characteristics are shown as mean and standard deviation when data is normal distributed; otherwise as median and ranges. Because of the lack of normal distribution of bone turnover markers, nonparametric tests were used to test differences between groups. Differences between bone turnover markers at different times were tested by Friedman test. Multiple regression analysis was used to investigate differences between CS and the control group regarding bone turnover markers adjusted for sex, age, and BMI. Any p values < 0.05 were considered to indicate statistical significance. Results Patient characteristics The clinical and biochemical characteristics of the patient sample are summarized in Table 1. Sixty‐five percent of patients had pituitary CS, 28% adrenal, and 7% suffered from ectopic CS. Patients and controls were well‐matched regarding sex, age, and vitamin D levels and supplementation, but differed in terms of diabetes prevalence. Table 1. Clinical and Biochemical Baseline Characteristics of Patients with Cushing's Syndrome (CS) and Control Subjects in Whom CS Has Been Excluded CS at time of diagnosis (n = 89) CS excluded (n = 71) p Value Sex 66 women (74%), 23 men (26%) 53 women (75%), 18 men (25%) 0.94 Age (years) 44 ± 13 43 ± 14 0.56 BMI 30 ± 7 31 ± 6 0.11 Vitamin D (ng/mL) 24 ± 10 24 ± 12 0.59 Vitamin D supplementation 17% 11% 0.37 Diabetes mellitus 30% (26) 11% (7) 0.007 Morning serum cortisol (μg/dL) 18 (11.7–24.9) 8.4 (5.9–11.6) ≤0.001 LDDST (μg/dL) 14.7 (7.7–23.7) 1.0 (0.8–1.2) ≤0.001 UFC (μg/24 h) 587 (331–843) 140 (78–216) ≤0.001 ACTH (pg/mL) 47 (9–76) 13 (9–18) ≤0.001 Late‐night salivary cortisol (ng/mL) 7.9 (3.3–11.8) 1.2 (0.6–1.8) ≤0.001 Bone turnover markers Osteocalcin (ng/mL) 8 (5–13) 13 (10–17) <0.001 PINP (ng/mL) 35 (29–62) 52 (35–73) 0.025 BAP (μg/L) 23 (16–31) 17 (14–24) 0.006 CTX‐I (ng/mL) 0.28 (0.17–0.42) 0.23 (0.12–0.32) 0.033 TrAcP (U/L) 2.3 (1.7–3.4) 1.9 (1.3–2.4) 0.009 Date are shown as mean ± standard deviation or median and ranges. BMI = body mass index; LDDST = low‐dose dexamethasone suppression test; UFC = urinary free cortisol; ACTH = adrenocorticotropic hormone; PINP = intact procollagen I‐N‐propeptide; BAP = bone alkaline phosphatase; CTX‐I = CrossLaps; TrAcP = tartrate‐resistant acid phosphatase. Bold numbers indicate statistical significance. Baseline evaluation At time of diagnosis, the mean levels of bone formation markers osteocalcin and intact PINP were significantly decreased compared with the controls, and the bone formation marker bone alkaline phosphatase was increased (Table 1; Fig. 2). Both bone degradation markers CTX and TrAcP were increased (Table 1). Taken together, this demonstrates increased bone resorption and decreased bone formation in florid CS. Results of multiple linear regression analysis comparing Cushing's syndrome patients and controls are shown in Table 2. Bone markers were similar in patients with a reduced bone mass versus those with a normal bone mass (data not shown). Figure 2 Open in figure viewerPowerPoint Bone turnover markers and bone mineral density at baseline and 1 and 2 years after remission. Boxplot = median and ranges of bone turnover marker in patients with Cushing's syndrome.Gray box = median and ranges of bone turnover markers in the control group.PINP = procollagen I‐N‐propeptide; BAP = bone alkaline phosphatase; TrAcP = tartrate‐resistant acid phosphatase; CTX‐I = CrossLaps. Table 2. Results of Multiple Linear Regression Analysis Comparing Cushing's Syndrome Patients Versus Controls Dependent variable Standardized regression coefficient and p value for group variable Unadjusted Adjusted for age, sex, and BMI Osteocalcin (ng/mL) −0.392, 0.006 −0.375, 0.010 PINP (ng/mL) −0.215, 0.204 −0.256, 0.145 BAP (μg/L) 0.404, 0.001 0.470, <0.001 CTX‐I (ng/mL) 0.111, 0.366 0.065, 0.616 TrAcP (U/L) 0.227, 0.014 0.186, 0.069 PINP = procollagen I‐N‐propeptide; BAP = bone alkaline phosphatase; CTX‐I = CrossLaps; TrAcP = tartrate‐resistant acid phosphatase. Bold numbers indicate statistical significance. Overall, bone mineral density was decreased with an average lowest T‐score of −1.4 (±1.1). BMD was significantly lower (p = 0.001) at the femoral neck (T‐score = −0.9 ± 1.0) and the spine (T‐score = −1.0 ± 1.5) compared with the total femur (T‐score = −0.5 ± 1.2). Twenty‐eight patients (32%) had a normal bone mineral density, 46 (52%) osteopenia, and the other 15 patients (17%) osteoporosis with a T‐score lower than −2.5. Seventeen of the patients (19%) had a history of low‐trauma osteoporotic fractures (9 vertebral fractures, 8 nonvertebral fractures). The fractures took place shortly before diagnosis (58%) or more than 2 years before diagnosis of the CS (42%). Patients with osteoporotic fractures had a significantly lower T‐score than patients without fractures (T‐score = −1.9 ± 0.8 versus −1.3 ± 1.1, p = 0.03) but did not differ in the values of the bone turnover markers or standard biochemical screening. Subtype, age, or BMI also did not differ between groups. However, men were significantly at higher risk of having fractures than women (35% of men had fractures versus 14% of women, p = 0.03). Both severity of hypercortisolism and duration of CS did not contribute to fractures rates (data not shown), but UFC was significantly higher in patients with a T‐score lower than −1.5 (Table 3). Table 3. Biochemical Markers in Patients With Cushing's Syndrome With a T‐Score Lower Than −1.5 and Above −1.5 Shown in Median and Ranges Variable T‐score < −1.5 (n = 39) T‐score ≥ −1.5 (n = 42) p Values LDDST (μg/dL) 16.6. (10.3–28.3) 11.9 (6.1–21.9) 0.12 UFC (μg/24 h) 706 (410–906) 398 (285–787) 0.03 Late‐night salivary cortisol (ng/mL) 8.3 (3.5–13.6) 5.7 (2.9–11.7) 0.39 ACTH (pg/mL) 53 (16–73) 42 (6–82) 0.88 LDDST = low‐dose dexamethasone suppression test; UFC = urinary free cortisol; ACTH = adrenocorticotropic hormone. Bold numbers indicate statistical significance. One‐ and 2‐year follow‐up Surgical tumor resection leading to biochemical remission of CS resulted in a strong increase of bone formation markers tested at 1‐year follow‐up (Table 4; Fig. 2A, B). After 2 years, the markers had decreased slightly but remained elevated. Bone resorption markers were mildly increased at time of diagnosis, increased further at 1 year post‐surgery, and returned almost to normal levels at 2 years (Table 4; Fig. 2D, E). A follow‐up bone densitometry conducted in 40 patients showed a parallel increase of the T‐score of 0.6 ± 0.8 (Fig. 2F). In particular, BMD of the spine improved (Table 5). Table 4. Bone Turnover Markers and Bone Mass in Patients With Cushing's Syndrome at Time of Diagnosis and During 2 Years of Follow‐Up Time of diagnosis (n = 50) 1 year in remission (n = 45) 2 years in remission (n = 38) p (0 versus 1) p (0 versus 2) p (1 versus 2) T‐score −1.5 (−2.0 to −0.8) – −1.1 (−1.5 to −0.4) – <0.001 – Osteocalcin (ng/mL) 8 (5–13) 30 (14–60) 21 (13–31) <0.001 0.008 0.3 PINP (ng/mL) 35 (29–62) 117 (52–221) 69 (46–113) <0.001 0.1 0.1 BAP (μg/L) 23 (16–31) 26 (19–38) 22 (15–31) 0.2 0.4 0.1 CTX‐I (ng/mL) 0.28 (0.17–0.42) 0.51 (0.22–0.91) 0.25 (0.18–0.73) 0.01 0.1 0.04 TrAcP (U/L) 2.3 (1.7–3.4) 2.8 (1.8–4.0) 2.3 (2–3.2) 0.1 0.6 0.002 PINP = procollagen I‐N‐propeptide; BAP = bone alkaline phosphatase; CTX‐I = CrossLaps; TrAcP = tartrate‐resistant acid phosphatase. Bold numbers indicate statistical significance. Table 5. Overview: T‐Scores, Z‐Scores, and BMD Values With Percent Changes (Mean and Standard Deviation) Variable CS at time of diagnosis CS 2 years in remission p Values, percent changes (↑) Femoral neck T‐score femoral neck −0.81 ± 0.97 −0.59 ± 0.86 0.06 Z‐score femoral neck −0.59 ± 0.98 −0.28 ± 0.79 0.02 BMD (g/cm2) femoral neck 0.91 ± 0.12 0.95 ± 0.12 0.16; 4% ↑ Femur T‐score femur −0.49 ± 1.11 −0.42 ± 1.04 0.67 Z‐score femur −0.40 ± 1.04 −0.37 ± 0.85 0.31 BMD (g/cm2) femur 0.95 ± 0.15 0.97 ± 0.14 0.77, 2% ↑ Spine T‐score spine −0.96 ± 1.56 −0.55 ± 1.25 <0.001 Z‐score spine −0.85 ± 1.53 −0.58 ± 1.14 <0.001 BMD (g/cm2) spine 1.08 ± 0.22 1.13 ± 0.15 0.001, 0.6% ↑ BMD = bone mineral density; CS = Cushing's syndrome. Bold numbers indicate statistical significance. In 78% of patients, bone mineral density improved after 2 years; in 45% of patients, T‐score improved more than 0.5. No clinical fractures occurred after successful treatment of the CS. There was no significant correlation between improvement of bone mineral density and any of the bone turnover markers. Discussion This study investigated for the first time to our knowledge a panel of bone formation and resorption markers in a large cohort of patients with CS over the long term. The unique and comprehensive data show that initially bone metabolism is characterized by decreased bone formation and increased bone resorption, in line with the classical action of glucocorticoids. Successful treatment of endogenous Cushing's syndrome leads to a strong activation of bone turnover, characterized by increased bone formation and bone resorption, a process that is continuous beyond year 2 after remission of CS, although at a reduced activity level. In parallel, bone mineral density increases in the majority of patients. Although 19% had low‐trauma fractures at baseline, none of the subjects experienced clinical fractures during follow‐up. In summary, these data give new insight into bone healing after remission of CS. They strongly suggest that an observational approach to the bone phenotype is justified as long as remission from CS is secured. Reversibility of osteoporosis and bone turnover markers Although established in osteoporosis research, bone turnover markers are not measured on a routine basis in patients with CS. However, it is a consistent result from different studies that osteocalcin is depressed in patients with CS. In fact, this finding is so reliable that it was even suggested to use osteocalcin in the diagnosis of CS.2 P1NP and procollagen carboxy‐terminal propeptide (P1CP) have also been studied in several studies, with contradictory results.23 In a retrospective study with 21 patients with CS, it was shown that osteocalcin is depressed; this applies also for PINP, whereas CTX is increased.24 Some studies already have focused on the reversibility of osteoporosis after treatment of CS. In the majority of patients, bone mineral density increased within 2 years after successful treatment8-10, 25 Hermus and colleagues showed in a study with 20 patients that bone mineral density did not change 3 or 6 months after surgery but increased thereafter in almost all patients.8 In a study with 68 patients, the patients were followed up for 4 years. Bone mineral density increased over lumbar spine and femur but decreased at the forearm.25 The authors concluded that bone minerals were redistributed from the peripheral to the axial skeleton. In our study, bone mineral density also improved in the majority of patients but remained reduced in some. We did not find any difference in bone turnover markers between patients with improvement and without improvement. Current treatment guidelines and treatment suggestions As observed in our study, bone formation markers increase significantly after surgical cure, whereas bone degradation markers are mildly elevated at baseline and increase slightly at 1 year, returning within the normal range at 2 years. So far, there is no international guideline on the treatment of osteoporosis induced by endogenous CS and very few controlled interventional studies. In an opinion paper, Scillitani and colleagues recommended to treat all patients with vitamin D and calcium but not with bisphosphonates.5 In a randomized open‐label study by Di Somma and colleagues,26 39 patients (18 patients with active CS and 21 patients with CS in remission) received alendronate or no medication. Patients with active CS also received ketoconazole to control hypercortisolism. Bone mineral density improved and serum levels of osteocalcin increased in patients who received alendronate to a greater extent than those receiving no alendronate. In a small study by the same research group,27 15 patients with CS (9 adolescent patients and 6 adults) were observed for 2 years after successful treatment, showing that osteocalcin levels and bone mineral density increased significantly. Strengths and limitations Although this study has several strengths, including the large prospective design and measuring a panel of bone formation and resorption markers, there are a few limitations. Some asymptomatic fractures may have been overlooked because an X‐ray was not taken systematically in each patient. Furthermore, a follow‐up bone densitometry was not available for all patients. Additionally, patients in the control group suffered from diabetes, overweight, arterial hypertension, or other diseases. Novel aspects and outlook This study analyzes for the first time in a comprehensive way bone turnover markers during the course of CS. The data show that cure from CS leads to increases in bone remodeling and bone mineral density, in line with spontaneous “bone healing.” Our data support a wait‐and‐watch strategy despite a high endogenous risk for additional fractures, based on the baseline assessment. This observation will influence future therapeutic strategies in patients with CS. Our data suggest that the phase immediately after remission from CS is characterized by a high rate of bone turnover, resulting in a spontaneous net increase in bone mineral density in the majority of patients. Both bone attachment and bone degradation markers increase significantly, leading to an increase in bone mass and to a reduced risk of osteoporotic fractures. This unconstrained increase in bone formation markers after remission should be considered before specific therapy is initiated. Our data do not favor specific pharmacologic interventions with bisphosphonates or denosumab during this phase of remodeling because they may disrupt the osteoblast‐mediated bone mass increase. Disclosures All authors state that they have no conflicts of interest. Acknowledgments This work is part of the German Cushing's Registry CUSTODES and has been supported by a grant from the Else Kröner‐Fresenius Stiftung to MR (2012_A103 and 2015_A228). Additionally, AR, FB, and MR received funding by the Deutsche Forschungsgemeinschaft (CRC/TRR 205/1 “The Adrenal Gland”). Furthermore, funds for this project were provided by the Verein zur Förderung von Wissenschaft und Forschung an der Medizinischen Fakultät der Ludwig‐Maximilians‐Universität München eV to LB. The data are stored on the following repository: https://figshare.com/ and will be made accessible after publication of the article. Authors’ roles: LB served as the principal investigator in this work and was responsible for the study conception and design, the analysis and interpretation of the data, and the drafting of the manuscript. JF, SZ, AO, AR, GR and SB contributed to the collection and analysis of the data. MS, FB, MD, MB substantially contributed to the interpretation of the data and the drafting of the manuscript. RS contributed to the conceptual design of the study, the interpretation of data and the revision of the paper. MR contributed to the conceptual design of the study, the collection, analysis and interpretation of data, and the drafting and revision of the paper. All authors contributed to the critical revision of the manuscript and approved the final version for publication. From https://asbmr.onlinelibrary.wiley.com/doi/full/10.1002/jbmr.4033
×
×
  • Create New...