Jump to content

Search the Community

Showing results for tags 'cushings syndrome'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Welcome!
    • News Items and Research
    • Announcements
    • Cushing's Basics
    • Guest Questions
  • Questions about how these boards work?
    • Avatars, Images and Skins
    • Blogs
    • Chatroom
    • Fonts, colors, bold, italics
    • Practice Pages
    • Suggestion Box
    • Timezones
    • Everything Else
  • Get Active!
    • Meetings, events and information
    • Fundraising Ideas
    • Cushing's Awareness Day, April 8
    • Spread the Word
    • Marathons
    • Cushing's Clothes Closet
    • Cushing's Library
    • Cushing's Store
  • Cushing's
    • Resources
    • Types of Cushing's
    • Symptoms
    • Tests
    • Treatments
  • Miscellaneous
    • Other Diseases
    • Good News / Attitude of Gratitude
    • Inspirational / Motivational
    • Quotes and Affirmations
    • Lighten Up!
    • Word Games
    • Miscellaneous Chit Chat
    • Current Events
    • Cushie Commerce
    • Internet Classes
    • Recipes

Calendars

  • Cushie Calendar

Blogs

  • MaryO'Blog
  • Christy Smith's Blog
  • rooon55's Blog
  • LLMart's Blog
  • regina from florida's Blog
  • terri's Blog
  • Canasa's Blog
  • Tberry's Blog
  • LisaMK's Blog
  • diane177432's Blog
  • Jen1978's Blog
  • GreenGal's Blog
  • Yada Yada Yada
  • Jinxie's Blog
  • SherryC's Blog
  • stjfs' Blog
  • kalimae7371's Blog
  • Kristy's Blog
  • kathieb1's Blog
  • Yavanna's Blog
  • Johnni's Blog
  • AutumnOMA's Blog
  • Will Power
  • dropsofjupiter's Blog
  • Lorrie's Blog
  • DebMV's Blog
  • FarWind's Blog
  • sallyt's Blog
  • dseefeldt's Blog
  • ladylena's Blog
  • steffie's Blog
  • Lori L's Blog
  • mysticalsusan1's Blog
  • cathy442's Blog
  • Kathy711's Blog
  • Shannonsmom's Blog
  • jack's Blog
  • Kandy66's Blog
  • mars72's Blog
  • singlesweetness33's Blog
  • michelletm's Blog
  • JC_Adair's Blog
  • Lisa-A's Blog
  • Jen3's Blog
  • tammi's Blog
  • Ramblin' Rose (Maggie's)
  • monicaroni77's Blog
  • monicaroni's Blog
  • Saz's Blog
  • alison
  • Thankful for the Journey
  • Judy from Pgh's Blog
  • Addiegirl's Blog
  • candlelite2000's Blog
  • Courtney likes to talk......
  • Tanya's Blog
  • smoketooash's Blog
  • meyerfamily8's Blog
  • Sheila1366's Blog
  • A Guide to Blogging...
  • Karen's Blog
  • barbj222222's Blog
  • Amdy's Blog
  • Jesh's Blog
  • pumpkin's Blog
  • Jazlady's Blog
  • Cristalrose's Blog
  • kikicee's Blog
  • bordergirl's Blog
  • Shelby's Blog
  • terry.t's Blog
  • CanadianGuy's Blog
  • Mar's Cushie Couch
  • leanne's Blog
  • honeybee30's Blog
  • cat lady's Blog
  • Denarea's Blog
  • Caroline's Blog
  • NatalieC's Blog
  • Ahnjhnsn's Blog
  • A journey around my brain!
  • wisconsin's Blog
  • sonda's Blog
  • Siobhan2007's Blog
  • mariahjo's Blog
  • garcia9's Blog
  • Jessie's Blog
  • Elise T.'s Blog
  • glandular-mass' Blog
  • Rachel Bridgewater's Blog
  • judycolby's Blog
  • CathyM's Blog
  • MelissaTX's Blog
  • nessie21's Blog
  • crzycarin's Blog
  • Drenfro's Blog
  • CathyMc's Blog
  • joanna27's Blog
  • Just my thoughts!
  • copacabana's Blog
  • msmith3033's Blog
  • EyeRishGrl's Blog
  • SaintPaul's Blog
  • joyce's Blog
  • Tara Lou's Blog
  • penybobeny's Blog
  • From Where I Sit
  • Questions..
  • jennsarad's Blog
  • looking4answers2's Blog
  • julie's blog
  • cushiemom's Blog
  • greydragon's Blog
  • AmandaL's Blog
  • KWDesigns: My Cushings Journey
  • cushieleigh's Blog
  • chelser245's Blog
  • melissa1375's Blog
  • MissClaudie's Blog
  • missclaudie92's Blog
  • EEYORETJBD's Blog
  • Courtney's Blog
  • Dawn's Blog
  • Lindsay's Blog
  • rosa's Blog
  • Marva's Blog
  • kimmy's Blog
  • Cheryl's Blog
  • MissingMe's Blog
  • FerolV's Blog
  • Audrey's (phil1088) Blog
  • sugarbakerqueen's Blog
  • KathyBair's Blog
  • Jenn's Blog
  • LisaE's Blog
  • qpdoll's Blog
  • blogs_blog_140
  • beach's Blog
  • Reillmommy is Looking for Answers...
  • natashac's Blog
  • Lisa72's Blog
  • medcats10's Blog
  • KaitlynElissa's Blog
  • shygirlxoxo's Blog
  • kerrim's Blog
  • Nicki's Blog
  • MOPPSEY's Blog
  • Betty's Blog
  • And the beat goes on...
  • Lynn's Blog
  • marionstar's Blog
  • floweroscotland's Blog
  • SleepyTimeTea's Blog
  • Shelly3's Blog
  • fatnsassy's Blog
  • gaga's Blog
  • Jewels' Blog
  • SusieQ's Blog
  • kayc6751's Blog
  • moonlight's Blog
  • Sick of Being Sick
  • Peggy's Blog
  • kouta5m's Blog
  • TerryC's Blog
  • snowii's Blog
  • azZ9's Blog
  • MaMaT333's Blog
  • missaf's Blog
  • libertybell's Blog
  • LyssaFace's Blog
  • suzypar2002's Blog
  • Mutley's Blog
  • superc's Blog
  • lisajo42's Blog
  • alaustin's Blog
  • Tina1962's Blog
  • Ill never complain a single word about anything.. If I get rid of Cushings disease.
  • puddingtoast's Blog
  • AmberC's Blog
  • annacox
  • justwaiting's Blog
  • RachaelB's Blog
  • MelanieW's Blog
  • My Blog
  • FLHeather's Blog
  • HollieK's Blog
  • Bonny777's Blog
  • KatieO's Blog
  • LilDickens' Mini World
  • MelissaG's Blog
  • KelseyMichelle's Blog
  • Synergy's Blog
  • Carolyn1435's Blog
  • Disease is ugly! Do I have to be?
  • A journey of a thousand miles begins with a single wobble
  • MichelleK's Blog
  • lenalee's Blog
  • DebGal's Blog
  • Needed Answers
  • Dannetts Blog
  • Marisa's Blog
  • Is this cushings?
  • alicia26's Blog
  • happymish's Blog
  • mileymo's Blog
  • It's a Cushie Life!
  • The Weary Zebra
  • mthrgonenuts' Blog
  • LoriW's Blog
  • WendyG's Blog
  • khmood's Blog
  • Finding Answers and Pissing Everyone Off Along the Way
  • elainewwjd's Blog
  • brie's Blog
  • dturner242's Blog
  • dturner242's Blog
  • dturner242's Blog
  • Stop the Violins
  • FerolV's Internal Blog
  • beelzebubble's Blog
  • RingetteLUVR
  • Eaglemtnlake's Blog
  • mck25's Blog
  • vicki11's Blog
  • vicki11's Blog
  • ChrissyL's Blog
  • tpatterson757's Blog
  • Falling2Grace's Blog
  • meeks089's Blog
  • JustCurious' Blog
  • Squeak's Blog
  • Kill Bill
  • So It Begins ! Cushings / Pituitary Microadenoma
  • Crystal34's Blog
  • Janice Barrett

Categories

  • Helpful Articles
    • Links
    • Research and News
    • Useful Information
  • Pages
  • Miscellaneous
    • Databases
    • Templates
    • Media

Categories

  • New Features
  • Other

Product Groups

  • Subscriptions
  • Donations

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests

  1. Abstract Cushing's syndrome is a rare cause of myocardial infarction and heart failure. Herein, we report a female patient who presented acute myocardial infarction and heart failure with reduced ejection fraction. The patient was found to have hypercortisolism secondary to adrenocortical adenoma and responded well to therapy. This case underlines the effects of hypercortisolism on the cardiovascular system. The clinical presentation of this patient is unique because non-atherosclerotic myocardial infarction is rarely reported in Cushing's syndrome patients. Introduction Cushing's syndrome is an endocrine condition associated with excessive secretion of cortisol. Hypertension, vascular atherosclerosis, and chronic cardiac remodelling and dysfunction are commonly recognized cardiovascular complications in Cushing's syndrome patients.1 Herein, we report a rare case of Cushing's syndrome patient with a primary diagnosis of non-atherosclerotic myocardial infarction and heart failure (HF). Case Report A 61-year-old female with a past medical history of chronic obstructive pulmonary disease was admitted with sudden onset chest pain on 6 February 2018. Electrocardiogram showed ST-segment elevation in leads V3–V5. Blood biochemical results of 1 h after the onset of chest pain: cardiac troponin I (cTnI) 0.06 ug/L↑, creatine kinase (CK) 63 U/L, creatine phosphokinase-MB (CK-MB) 22 U/L, aspartate transferase (AST) 19 U/L, and lactic dehydrogenase (LDH) 482 U/L. Myocardial injury markers were markedly elevated at the time point of 18 h after onset: cTnI 13.9 ug/L↑, CK 613 U/L↑, CK-MB 102 U/L↑, AST 112 U/L↑, and LDH 833 U/L↑. Due to the acute ECG changes and elevated myocardial injury markers, the patient was preliminarily diagnosed as ST-segment elevation myocardial infarction (STEMI) and underwent coronary angiography, which showed no stenosis, occlusion or dissection of coronary arteries (Figure 1). Echocardiography showed enlarged left atrial dimension (LAD, 55 mm) and left ventricular end diastolic dimension (LVDd, 57 mm), and reduced ejection fraction (EF, 33%). The patient was treated for STEMI and HF, and was started on aspirin, statin, diuretic of furosemide and spirolactone, metoprolol, and Sacubitril/valsartan (SV, initiated June, 2020). The patient was strictly adherent to the medication prescribed (Table 1). Figure 1 Open in figure viewerPowerPoint Coronary angiogram demonstrating no significant obstruction in coronary artery circulation. Table 1. Echocardiography results 2020-06-22 2020-09-02 2021-03-29 2021-06-02 2021-09-01 2021-10-22 2021-12-21 LAD (mm) 55 55 46 52 47 44 41 LVDd (mm) 57 57 53 55 54 51 55 IVS (mm) 10 10 11 10 10 10 11 LVPW (mm) 11 11 11 10 11 9 10 EF (%) 33 30 31 39 47 49 52.5 EF, ejection fraction; IVS, interventricular septum; LAD, left atrium dimension; LVDd, left ventricular end diastolic dimension; LVPW, left ventricular posterior wall. However, the patient's condition was not improved despite optimized medication. On 26 January 2021, the patient was re-admitted with recurrent chest distress and oedema, with new symptoms of facial plethora, centripetal obesity, and hyperglycaemia (Figure S1). Abdominal CT scan showed a right adrenal adenoma (Figure 2). Cardiac magnetic resonance imaging revealed enlarged LVDd (62 mm), and reduced EF, with delayed myocardial enhancement and evidence of myocardial fibrosis and fatty deposits (Figure 3). Laboratory findings showed hypokalaemia: potassium 3.0 mmol/L, elevated serum cortisol level, low plasma ACTH level, and positive 1-mg overnight dexamethasone suppression test. Based on the above findings, the patient was diagnosed with Cushing's syndrome and started treatment with the glucocorticoid receptor inhibitor mifepristone on 5 February 2021. Figure 2 Open in figure viewerPowerPoint Abdominal CT scan showed adrenal adenoma at the right. Figure 3 Open in figure viewerPowerPoint Cardiac magnetic resonance imaging revealed enlarged LVDd, reduced EF, with delayed myocardial enhancement, evidence of myocardial fibrosis and fatty deposits. With mifepristone added to the previous medical therapy (aspirin, statin, sacubitril/valsartan, metoprolol and diuretic of furosemide and spirolactone, and mifepristone), the patient's condition and cardiac function improved, and echocardiography (21 December 2021) showed increased EF (52.5%). The patient underwent partial adrenalectomy on 22 December 2021. Postoperative pathology confirmed adrenal cortical adenoma. At last follow-up on 29 May 2023, the patient showed marked improvement in face and body shape, with no complaints of chest distress or oedema (Figure S2). Discussion In this case, the patient was first evaluated for STEMI due to her symptoms of chest pain, and the elevated ST-segment on ECG, along with the moderately elevated troponin I and other cardiac enzyme levels. However, coronary atherosclerotic heart disease was ruled out by the normal cardiac catheterization. We presume that a possible reason for acute myocardial infarction (AMI) might be vasospastic angina due to abnormal hormone levels with Cushing's syndrome, leading to increased excessive myocardial metabolic demand and relative myocardial hypoxia, which eventually induced myocardial infarction. Although coronary atherosclerotic heart disease is the main cause of AMI, many non-atherosclerotic processes can lead to an imbalance between decreased coronary blood flow and increased myocardial metabolic demand. To date, non-atherosclerotic myocardial infarction has rarely been reported in Cushing's syndrome patients. Vieira JT et al. reported that a patient with Cushing's disease was considered to have spontaneous coronary artery dissection, which is a rare reason for AMI.2 Cushing's syndrome is associated with an increased risk of cardiac failure,3 with both structural alterations and functional impairment. In our case, the patient's CMR imaging showed typical features of cardiac geometry, function, and fibrosis, in accordance with previous reports.4 The underlying mechanisms may be the enhanced responsiveness to angiotensin II and activation of the mineralocorticoid receptor in direct response to cortisol excess.5 Our patient responded well to the therapy of conventional anti-HF medication of sacubitril/valsartan, metoprolol, and diuretic, once mifepristone was added. This favourable response to the pharmacological regimen supports the benefits of the agents for the normalization of excess cortisol. This case indicates that early diagnosis and effective treatment of Cushing's syndrome may be crucial in preventing irreversible cardiac dysfunction secondary to cardiovascular events and heart failure. Acknowledgements This work was financially supported by the National Natural Science Foundation of China (81900409 and 82172182) and the PLA Youth Training Project for Medical Science (19QNP037). Conflict of interest The authors declares that there is no conflict of interest. From https://onlinelibrary.wiley.com/doi/10.1002/ehf2.14548
  2. Abstract The most common cause of Cushing syndrome (CS) is exposure to exogenous glucocorticoids. There is an increasing incidence of adulterated over-the-counter (OTC) supplements containing steroids. We present a case of Artri King (AK)-induced CS in a 40-year-old woman who presented with an intertrochanteric fracture of her right femur. Laboratory testing revealed suppressed cortisol and adrenocorticotropic hormone, which was consistent with suppression of the hypothalamic-pituitary-adrenal (HPA) axis. Following the cessation of the AK supplement, the patient’s HPA axis recovered, and the clinical manifestations of CS improved. This case emphasizes the need for better regulation of OTC supplements and the need for cautious use. Introduction Cushing syndrome (CS) is a condition that occurs because of high blood levels of glucocorticoids (GCs). These patients can present with a variety of systemic signs and symptoms, including truncal obesity, easy bruising of the skin, violaceous abdominal striae, resistant hypertension, dysglycemia, as well as osteoporosis. CS can occur because of adrenal etiologies such as adrenal adenoma, adrenal cancer, or adrenal hyperplasia or from an adrenocorticotropic hormone (ACTH)-producing pituitary adenoma or ectopic tumor. However, the most common cause of CS is the exogenous administration of GCs [1]. While exogenous GCs are often medically prescribed for the treatment of inflammatory conditions, some patients may be accidentally exposed to exogenous GCs from over-the-counter (OTC) supplements. We present a case of a young woman who developed exogenous CS and suffered a hip fracture as a result of taking an OTC supplement, Artri King (AK), adulterated with GCs. Case Presentation A 40-year-old obese woman presented to the hospital following a fall at home. She reported a snapping noise and sudden right hip pain while trying to stand up, and subsequently fell to the floor. She had noted right-sided hip pain for several days preceding her fall. She was evaluated in the emergency department where computed tomography (CT) imaging of the right lower extremity showed an intertrochanteric fracture of the right femur (Figure 1). The patient underwent open reduction and internal fixation of her right femur. The patient reported an unexplained weight gain of approximately 40 lbs in the preceding five months with a peak weight of 223 lbs (101 kg) and a body mass index (BMI) of 37 kg/m2. The patient denied taking any medications or supplements at the time of hospitalization. The endocrinology team was consulted to evaluate for causes of secondary osteoporosis in this young woman. Figure 1: A CT scan showing the right intertrochanteric fracture of the right femur (yellow arrows) Diagnostic assessment Her vital signs showed a blood pressure of 142/96 mmHg, heart rate of 68 beats per minute, temperature of 98.1°F (36.7°C), and 98% oxygenation on room air. Physical examination did not reveal abdominal striae or buffalo hump. She did have supraclavicular fat deposition and central obesity. No proximal muscle weakness was present. Laboratory tests were pertinent for decreased 25-hydroxy vitamin D, increased parathyroid hormone (PTH), and normal calcium (Table 1). These findings were consistent with secondary hyperparathyroidism due to vitamin D deficiency. Dual-energy X-ray absorptiometry (DEXA) scan revealed osteoporosis (Figures 2, 3 and Tables 2, 3). Further testing showed normal thyroid-stimulating hormone (TSH), estradiol, follicle-stimulating hormone (FSH), and luteinizing hormone (LH), thus ruling out hyperthyroidism and primary ovarian insufficiency as possible causes of reduced bone mineral density (Table 1). Random cortisol was checked as hypercortisolism was suspected but it was found to be decreased along with decreased ACTH as well (Table 4). A cosyntropin stimulation test was performed, which showed decreased baseline cortisol with inappropriately decreased cortisol levels at 30 minutes and 60 minutes (Table 5). Given the discordance between the patient’s presentation and the lab results, assay interference was suspected, and further evaluation of the adrenal function was performed. Repeat labs using liquid chromatography-mass spectrometry (LCMS) assay again confirmed persistently low cortisol (Table 4). A 24-hour free urine cortisol was too low to quantify per assay despite the adequate volume. Further evaluation showed overall low adrenal steroids, including deoxycorticosterone, 17-hydroxyprogesterone, androstenedione, 11-deoxycortisol, pregnenolone, dehydroepiandrosterone sulfate, corticosterone, and progesterone. Lab test Patient's value Reference range 25-hydroxy vitamin D 12.8 ng/ml 30-100 ng/ml Parathyroid hormone (PTH) 86.2 pg/ml 10-66 pg/ml Serum calcium 9.5 ng/dl 8.8-10.5 mg/dl Thyroid-stimulating hormone (TSH) 2.49 mIU/L 0.36-3.74 mIU/L Estradiol 57.1 pg/ml 19.8-144.2 pg/ml Follicle-stimulating hormone (FSH) 5.4 mIU/ml 2.5-10.4 mIU/ml Luteinizing hormone (LH) 6 mIU/ml 1.9-12.5 mIU/ml Table 1: Patient's lab values on admission Figure 2: Dual-energy X-ray absorptiometry (DEXA) scan of the femoral neck showing osteopenia Figure 3: Dual-energy X-ray absorptiometry (DEXA) scan of the lumbar spine showing osteoporosis Region Area (cm2) Bone mineral content (g) Bone mineral density (g/cm2) T-score Peak reference Z-score Age-matched Femoral neck 4.76 3.53 0.742 -1.0 87 -0.7 91 Total 33.39 26.14 0.783 -1.3 83 -1.1 85 Table 2: Summary of dual-energy X-ray absorptiometry (DEXA) scan results of the femoral neck Region Area (cm2) Bone mineral content (g) Bone mineral density (g/cm2) T-score Peak reference Z-score Age-matched L1 10.79 7.56 0.701 -2.6 71 -2.4 73 L2 11.79 9.06 0.768 -2.4 75 -2.1 77 L3 12.70 9.98 0.786 -2.7 73 -2.4 75 L4 15.57 11.42 0.733 -3.0 69 -2.7 71 Total 50.86 38.03 0.748 -2.7 71 -2.5 73 Table 3: Summary of dual-energy X-ray absorptiometry (DEXA) scan results of the lumbar spine Lab test Patient's values while on Artri King Patient's values four weeks off of Artri King Reference range Random cortisol (routine assay) <0.64 μg/dL 7.3 μg/dL 5-25 μg/dL Adrenocorticotropic hormone (ACTH) 1.5 pg/ml 12 pg/ml 7.2-63.3 pg/ml Random cortisol (using liquid chromatography-mass spectrometry (LCMS) assay) 0.526 μg/dL N/A 5-25 μg/dL Table 4: Patient's cortisol and adrenocorticotropic hormone levels before and after stopping Artri King Cosyntropin stimulation test Patient value Reference range Baseline cortisol 1.64 μg/dL 5-25 μg/dL Cortisol after 30 minutes 1.33 μg/dL >18 μg/dL Cortisol after 60 minutes 6.48 μg/dL >18 μg/dL Table 5: Results of cosyntropin test while on Artri King Treatment She was started on teriparatide as well as vitamin D and calcium supplementation for the treatment of osteoporosis. Based on the aforementioned testing and the apparent symptoms of hypercortisolism, the patient was questioned again about the potential intake of steroids. She then recalled that she had been taking AK, an OTC supplement promoted for joint pain and arthritis. She reported that she had been taking two tablets of the supplement three times a day intermittently for the past three years. The patient neglected to bring it to the medical team’s attention before because she was under the impression that it was a multivitamin and did not have implications on her diagnosis. She was asked to stop the supplement and was educated about potential adrenal insufficiency symptoms and GC withdrawal. Outcome and follow up Repeat labs after four weeks off AK showed improved cortisol and ACTH levels indicating recovery of her hypothalamic-pituitary-adrenal (HPA) axis (Table 4). She lost 25 lbs in this time span with lifestyle modification. She continues teriparatide for osteoporosis, and monitoring of her bone mineral density is planned. Discussion This patient initially presented with a pathological fracture of her right femoral head. Given her young age, causes of secondary osteoporosis, including CS, were explored. The prevalence of osteoporosis in CS patients is 50% [2]. The effects of GC on bone health have been well studied. The major mechanism by which GC affects bone mineral density is by impairment of bone formation. GCs increase osteoblast and osteocyte apoptosis and decrease osteoblast function through their catabolic effects, which result in a dramatic decrease in bone formation rate. A prolonged lifespan of osteoclasts is observed with GC. A decrease in bone formation markers such as P1NP and osteocalcin has been observed in patients treated with GC [3]. Long-term GC use is associated with increased risk for fractures with a reported global prevalence of fractures of 30-50%. The risk for vertebral fractures is even higher, particularly in the thoracic and lumbar vertebrae. Interestingly, the risk for fracture with GC use peaks early in the course of treatment, often as early as three months into treatment, and declines rapidly after GC discontinuation [4]. An increased fracture risk has been described even with relatively low doses of GC (2.5-7.5 mg of prednisone or other equivalently dosed GC) and even with short-term use of under 30 days [5]. Our patient’s initial labs confirmed adrenal suppression despite our initial suspicion of CS, given her ongoing weight gain, central obesity, and osteoporosis. However, no obvious source of exogenous GC was identified. In most cases, the source of exogenous GC is easily identified through medication reconciliation; however, in our case, the patient was inadvertently exposed to steroids from an unregulated supplement, AK. The supplement’s ingredients were listed as glucosamine, chondroitin, collagen, vitamin C, curcumin, methylsulfonylmethane, nettle, and omega-3 fatty acids, with no mention of any steroid components. In a letter to the editor of the Internal Medicine magazine, several doctors published their concerns about a recent increase in CS cases associated with the use of AK and other similarly unregulated products [6]. Based on our literature search, three similar cases were published [7,8]. The reported cases developed CS after taking Artri King for several months, but none of them presented with a fracture. A warning by the U.S. Food & Drug Administration (FDA) was issued on April 20, 2022, indicating that FDA laboratory testing of this supplement confirmed the presence of undeclared drug ingredients, including dexamethasone, methocarbamol, and diclofenac. The FDA, however, was unable to confirm the exact amount of dexamethasone that these supplements contained [9]. Adverse events, including liver toxicity and death, were reported by the FDA. One study revealed that between 2007 and 2016, the FDA had issued more than 700 warnings about the sale of dietary supplements that contained unlisted and potentially dangerous ingredients. The majority of these supplements included those marketed for sexual enhancement, weight loss, or muscle building [10]. This case highlights the risks of undisclosed ingredients in OTC supplements. Conclusions In conclusion, we recommend that a thorough reconciliation of medication and supplements be obtained for all patients with CS. Supplements should be stopped and HPA axis testing should be repeated in patients with suspected exogenous GC exposure, even if steroids are not declared in the ingredients. It is also important to monitor such patients for adrenal insufficiency due to GC withdrawal and consider GC tapering if necessary. Our patient showed improvement in cortisol levels with no overt symptoms of adrenal insufficiency without the need for GC therapy. This case demonstrates the first case of AK-induced CS resulting in a pathological fracture. Given the increased use and availability of OTC supplements, this case highlights on the importance of detailed history-taking and the role of supplements in causing CS. This case also stresses the need for further education and counseling of our patients as well as tighter control on the manufacturing and sale of these supplements. References Lacroix A, Feelders RA, Stratakis CA, Nieman LK: Cushing's syndrome. Lancet. 2015, 386:913-27. 10.1016/S0140-6736(14)61375-1 Mancini T, Doga M, Mazziotti G, Giustina A: Cushing's syndrome and bone. Pituitary. 2004, 7:249-52. 10.1007/s11102-005-1051-2 Briot K, Roux 😄 Glucocorticoid-induced osteoporosis. RMD Open. 2015, 1:e000014. 10.1136/rmdopen-2014-000014 Canalis E, Mazziotti G, Giustina A, Bilezikian JP: Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007, 18:1319-28. 10.1007/s00198-007-0394-0 Waljee AK, Rogers MA, Lin P, et al.: Short term use of oral corticosteroids and related harms among adults in the United States: population based cohort study. BMJ. 2017, 357:j1415. 10.1136/bmj.j1415 Del Carpio-Orantes L, Quintín Barrat-Hernández A, Salas-González A: Iatrogenic Cushing syndrome due to fallacious herbal supplements. The case of Ortiga Ajo Rey and Artri King. Med Int Mex. 2021, 37:599-602. Patel R, Sherf S, Lai NB, Yu R: Exogenous Cushing syndrome caused by a "Herbal" supplement. AACE Clin Case Rep. 2022, 8:239-42. 10.1016/j.aace.2022.08.001 Mikhail N, Kurator K, Martey E, Gaitonde A, Cabrera C, Balingit P: Iatrogenic Cushing’s syndrome caused by adulteration of a health product with dexamethasone. JSM Clin Case Rep. 2022, 3: U.S. Food and Drug Administration. Public notification: Artri King contains hidden drug ingredients. (2022). Accessed: February 25, 2023: https://www.fda.gov/drugs/medication-health-fraud/public-notification-artri-king-contains-hidden-drug-ingredients. Tucker J, Fischer T, Upjohn L, Mazzera D, Kumar M: Unapproved pharmaceutical ingredients included in dietary supplements associated with US Food and Drug Administration warnings. JAMA Netw Open. 2018, 1:e183337. 10.1001/jamanetworkopen.2018.3337 From https://www.cureus.com/articles/153927-exogenous-cushing-syndrome-and-hip-fracture-due-to-over-the-counter-supplement-artri-king#!/
  3. Abstract N-of-1 trials can serve as useful tools in managing rare disease. We describe a patient presenting with a typical clinical picture of Cushing’s Syndrome (CS). Further testing was diagnostic of ectopic Adrenocorticotropic Hormone (ACTH) secretion, but its origin remained occult. The patient was offered treatment with daily pasireotide at very low doses (300 mg bid), which resulted in clinical and biochemical control for a period of 5 years, when a pulmonary typical carcinoid was diagnosed and dissected. During the pharmacological treatment period, pasireotide was tentatively discontinued twice, with immediate flare of symptoms and biochemical markers, followed by remission after drug reinitiation. This is the first report of clinical and biochemical remission of an ectopic CS (ECS) with pasireotide used as first line treatment, in a low-grade lung carcinoid, for a prolonged period of 5 years. In conclusion, the burden of high morbidity caused by hypercortisolism can be effectively mitigated with appropriate pharmacological treatment, in patients with occult tumors. Pasireotide may lead to complete and sustained remission of hypercortisolism, until surgical therapy is feasible. The expression of SSTR2 from typical carcinoids may be critical in allowing the use of very low drug doses for achieving disease control, while minimizing the risk of adverse events. Download PDF (2083K)
  4. Abstract Introduction Hypertension is one of the most common clinical features of patients with overt and subclinical hypercortisolism. Although previous studies have shown the coexistence of autonomous cortisol and aldosterone secretion, it is unclear whether aldosterone plays a role in hypertension among patients with hypercortisolism. Therefore, we examined the associations of plasma aldosterone concentrations (PACs) with hypertension among patients with overt and subclinical hypercortisolism. Methods This single-center retrospective cohort study included patients with adrenal tumor and serum cortisol levels after 1-mg dexamethasone suppression test >1.8 µg/dL (50 nmol/L). Using multivariable regression models adjusting for baseline characteristics, we investigated the association of PACs with systolic blood pressure and postoperative improvement of hypertension after the adrenalectomy. Results Among 89 patients enrolled in this study (median age, 51 years), 21 showed clinical signs of Cushing syndrome (overt hypercortisolism) and 68 did not show clinical presentations (subclinical hypercortisolism). We found that higher PACs were significantly associated with elevated systolic blood pressure among patients with subclinical hypercortisolism (adjusted difference [95% CI] = +0.59 [0.19-0.99], P = 0.008) but not among those with overt hypercortisolism. Among 33 patients with subclinical hypercortisolism and hypertension who underwent adrenalectomy, the postoperative improvement of hypertension was significantly associated with higher PACs at baseline (adjusted risk difference [95% CI] = +1.45% [0.35-2.55], P = 0.01). Conclusion These findings indicate that aldosterone may contribute to hypertension among patients with subclinical hypercortisolism. Further multi-institutional and population-based studies are required to validate our findings and examine the clinical effectiveness of the intervention targeting aldosterone for such patients. subclinical hypercortisolism, aldosterone, hypertension, adrenalectomy Issue Section: Clinical Research Article Cortisol production in the adrenal gland is regulated by the hypothalamus-pituitary-adrenal (HPA) axis. Subclinical hypercortisolism is a status characterized by the alteration of HPA axis secretion without typical signs or symptoms of overt hypercortisolism (eg, moon face, truncal obesity, easy bruising, thin extremities, proximal myopathy, cutaneous purple striae) [1, 2]. Although overt hypercortisolism can be detected by its clinical presentations or severe complications, it is sometimes challenging for clinicians to appropriately diagnose subclinical hypercortisolism because of the absence of such clinical presentations [2]. The 1-mg overnight dexamethasone suppression test (1-mg DST) measures the response of the adrenal glands to ACTH through the HPA axis and therefore has been widely used for screening and diagnosis of subclinical hypercortisolism [1, 3]. The European Society of Endocrinology Guideline has defined a partial suppression of the HPA axis (ie, serum cortisol levels after 1-mg DST [F-DST] > 1.8 µg/dL [50 nmol/L]) without clinical signs of overt cortisol hypersecretion as “possible autonomous cortisol secretion” and recommended screening these patients for metabolic disorders including hypertension and type 2 diabetes mellitus to offer appropriate treatment of these comorbidities [4]. Hypertension is one of the most common and distinguishing clinical features in patients with subclinical hypercortisolism [2] as well as overt hypercortisolism [5]. Although hypertension can be triggered by excess cortisol levels [5, 6], it is still unclear whether even slightly elevated cortisol levels among individuals with subclinical hypercortisolism contribute to the occurrence of hypertension. This raises another potential mechanism to cause hypertension such as the coexistence of hyperaldosteronism (ie, excess aldosterone that is an essential steroid hormone for sodium reabsorption, water retention, and blood pressure control) [7]. Previous studies have reported that 10% to 20% of primary aldosteronism is accompanied by cortisol-producing adenoma [8-10], and autonomous cortisol secretion was decreased after the resection of the aldosterone-producing adenoma (a subtype of primary aldosteronism) [11]. Furthermore, a previous mass spectrometry-based analysis revealed that cortisol secretion was frequently found in patients with primary aldosteronism [12]. Although these studies have examined cortisol biosynthesis in primary aldosteronism [13], evidence about whether aldosterone plays a role in the occurrence of hypertension among people with subclinical hypercortisolism is limited. To address this knowledge gap, we performed a cohort study examining the association between aldosterone and hypertension among patients with adrenal tumor and F-DST >1.8 µg/dL, stratified by whether patients had clinical signs of Cushing syndrome or not. We first analyzed the cross-sectional association between aldosterone and blood pressure at baseline. Then, we analyzed the longitudinal association between aldosterone at baseline and the improvement rate of hypertension after the adrenalectomy. Last, to further clarify the role of aldosterone in the regulation of blood pressure in subclinical hypercortisolism, we described the difference in aldosterone response to ACTH after the adrenalectomy according to the postoperative improvement of hypertension. Materials and Methods Data Sources and Study Participants A retrospective cohort study was designed to assess the clinical characteristics (focusing on aldosterone) among patients with hypercortisolism at the Yokohama Rosai Hospital from 2008 to 2017. We enrolled 89 patients with adrenal tumor and F-DST > 1.8 µg/dL (50 nmol/L) [3, 4, 14]. We then categorized them into 2 groups: (1) overt hypercortisolism (F-DST > 5.0 µg/dL [138 nmol/L]) and having clinical signs of Cushing syndrome (moon face, central obesity, dorsocervical fat pad [buffalo hump], purple striae, thin skin, easy bruising, and proximal myopathy] [15]) and (2) subclinical hypercortisolism (not having such clinical signs). All patients with overt hypercortisolism in this study showed F-DST > 5.0 µg/dL (138 nmol/L). The study was approved by the research ethics committee of the Yokohama Rosai Hospital, and all participants provided written informed consent. Measurements Demographic characteristics were self-reported, and body mass index (BMI) was calculated using measured weight and height. Systolic blood pressure was measured in the sitting position using a standard upper arm blood pressure monitor after a 5-minute rest in a quiet place [16]. The mean of 2 measurements was recorded. If the measurement was done only once on a given occasion, the level obtained was recorded. When the patients were already taking antihypertensives at enrollment, they were asked to report their blood pressure levels at the diagnosis of hypertension (ie, systolic blood pressure before starting antihypertensives). Blood samples were collected at 8:00 AM after the patient had rested in the supine position for 30 minutes. We measured F (µg/dL, × 27.6 for nmol/L) and ACTH (pg/mL, × 0.220 for pmol/L) using chemiluminescent enzyme immunoassay and electrochemiluminescent immunoassay, respectively. Plasma aldosterone concentrations (PACs; ng/dL, × 27.7 for pmol/L) and plasma renin activities (PRAs; ng/mL/h) were measured using radioimmunoassay. Any antihypertensive drugs were replaced with calcium channel antagonists (including dihydropyridine calcium channel antagonists) and/or α blocker several weeks before the measurement of PACs and PRAs according to the clinical guideline of the Japan Endocrine Society [17]. We also measured urine aldosterone (µg/day × 2.77 for nmol/d) and urine cortisol (µg/day, × 2.76 for nmol/d) using radioimmunoassay. The tumor size was estimated using contrast-enhanced thin-section computed tomography scans of the adrenal glands. To evaluate whether the patients had autonomous cortisol secretion, we performed 1-mg DST, in which dexamethasone (1 mg) was administered at 11:00 PM, and blood samples were drawn at 8:00 AM the following morning. F and ACTH were measured in 1-mg DST. The total or partial adrenalectomy was performed in all cases with overt hypercortisolism. For patients with subclinical hypercortisolism, the adrenalectomy was recommended to those who showed F-DST > 5.0 µg/dL (138 nmol/L) accompanying metabolic disorders [3]. It was also recommended to those who were expected to improve their clinical symptoms and/or metabolic disorders by the tumor resection, which included patients with hypertension possibly resulting from autonomous aldosterone secretion as well as autonomous cortisol secretion from the adrenal gland. The adrenalectomy was conducted when patients agreed with the treatment plan through informed consent. To evaluate whether patients had autonomous aldosterone secretion, we used the screening criterion of primary aldosteronism (ie, PAC/PRA ratio; aldosterone-to-renin ratio [ARR] > 20), followed by the confirmatory tests of primary aldosteronism that included the saline infusion test, captopril challenge, and/or furosemide stimulation test [17]. For patients who were considered to receive a benefit by the adrenalectomy and who agreed with the examination, we performed the segment-selective adrenal venous sampling to assess the laterality of hyperaldosteronism [18-20]. First, blood samples were collected from the bilateral central adrenal veins before ACTH stimulation. Then, we collected samples from the superior, lateral, and inferior tributaries of the right central adrenal vein and the superior and lateral tributaries of the left central adrenal vein after ACTH stimulation. Aldosterone excess (ie, hyperaldosteronism) was considered when the effluent aldosterone concentrations were > 250 ng/dL before ACTH stimulation and 1400 ng/dL after ACTH stimulation, respectively [18-20]. We used the absolute value instead of the lateralization index because individuals included in our study had elevated cortisol concentrations given the inclusion criteria (ie, F-DST >1.8 µg/dL [50 nmol/L]). For 9 patients with subclinical hypercortisolism who showed bilateral adrenal nodules, the side of adrenalectomy was determined by the nodule size and the results of adrenal venous sampling (ie, laterality of hyperaldosteronism). The adrenalectomy was conducted when patients agreed with the treatment plan through informed consent. Immunohistochemical evaluation of aldosterone synthase cytochrome P450 (CYP11B2) was conducted for some resected nodules. To evaluate the postoperative cortisol responsiveness to ACTH, we performed an ACTH stimulation test a year after the adrenalectomy, in which blood samples were collected and PAC and F were measured 30 and 60 minutes after ACTH administration. Postoperative improvement of hypertension was defined as blood pressure <140/90 mmHg without antihypertensives or the reduction of the number of antihypertensives to maintain blood pressure <140/90 mmHg after the adrenalectomy. Statistical Analyses We describe the demographic characteristics and endocrine parameters at baseline comparing patients with overt hypercortisolism and those with subclinical hypercortisolism using the Fisher exact test for categorical variables and Mann-Whitney U test for continuous variables. Second, for each group, we investigated the association between the baseline characteristics and systolic blood pressure using ordinary least-squares regression models. The model included age, sex, BMI, serum potassium levels, estimated glomerular filtration rate, tumor size, and F and PAC at 8:00 AM. Third, we estimated the risk difference and 95% CI of the improvement rate of hypertension after the adrenalectomy according to these baseline characteristics (including systolic blood pressure) using a modified least-squares regression model with a Huber-White robust standard error [21]. Last, to evaluate whether the improvement of hypertension is related to postoperative cortisol and aldosterone secretion, we compared PAC and F responsiveness to ACTH from peripheral blood samples between patients who improved hypertension and those who did not using the Mann-Whitney U test. The longitudinal and postoperative analyses were performed among patients with subclinical hypercortisolism because only 2 cases with overt hypercortisolism failed to show the improvement of hypertension after the adrenalectomy. To assess the robustness of our findings, we conducted the following 2 sensitivity analyses. First, we replaced F at 8:00 AM with F after DST in our regression models. Second, we estimated the risk difference of the improvement rate of hypertension after the adrenalectomy according to the postoperative F and PAC levels after ACTH stimulation, adjusting for the baseline characteristics included in our main model. We also conducted several additional analyses. First, to investigate the relationship of change in PAC after adrenalectomy with the improvement rate of hypertension, we included decrease in PAC between before and after adrenalectomy instead of PAC at baseline in the model. Second, to assess the relationship between aldosterone and hypertension among patients with subclinical hypercortisolism without primary aldosteronism, we reran the analyses excluding patients who met the diagnostic criteria of primary aldosteronism. Third, to understand the overall association, we reran the analyses using all samples as a single group to assess the relationship among people with overall (ie, overt and subclinical) hypercortisolism. Last, we compared PAC and F responsiveness with ACTH during adrenal venous sampling between patients with and without postoperative improvement of hypertension. All statistical analyses were performed using Stata, version 15. Results Among the 89 enrolled patients, 21 showed clinical signs of overt Cushing syndrome and 68 did not. The flow of the study population is shown in Fig. 1. Among 21 patients with overt hypercortisolism, 19 patients had hypertension. All patients underwent adrenalectomy, and 16 patients showed improved hypertension levels after the surgery (1 patient was referred to another hospital; therefore, no information is available). Among 68 patients with subclinical hypercortisolism, 63 had hypertension. After the evaluation of autonomous aldosterone secretion as well as autonomous cortisol secretion, of 33 patients who underwent adrenalectomy, 23 (70%) showed improved hypertension levels after the adrenalectomy (10 patients in the surgery group decided not to undergo adrenalectomy). Patients with subclinical hypercortisolism who underwent adrenalectomy showed lower PRA and higher ARR than those without adrenalectomy (Supplementary Table S1) [22]. Figure 1. Open in new tabDownload slide Enrollment and follow-up of the study population after the adrenalectomy. aThe prevalence of patients with overt hypercortisolism and hypertension among this study population may be higher than in the general population and therefore needs to be carefully interpreted given that the study institute is one of the largest centers for adrenal diseases in Japan. bAll patients in this category showed autonomous cortisol secretion (ie, serum cortisol levels >5.0 µg/dL [138 nmol/L] after a 1-mg dexamethasone suppression test). cOne case underwent adrenalectomy at another hospital and therefore no information was available after the adrenalectomy. dThe adrenalectomy was performed for 33 patients who were expected to improve their clinical symptoms and/or metabolic disorders, including hypertension. This assessment was mainly based on autonomous cortisol secretion evaluated by a 1-mg dexamethasone suppression test, complicated metabolic disorders, and autonomous aldosterone secretion evaluated by adrenal venous sampling for patients who were positive for the screening and confirmatory tests of primary aldosteronism. Details in the assessment can be found in the Methods section or elsewhere [18-20]. Demographic Characteristics and Endocrine Parameters Among Patients With Overt and Subclinical Hypercortisolism The median age (interquartile range) was 51 years (46, 62 years), and 72% were female. Patients with overt hypercortisolism were relatively younger and showed a higher estimated glomerular filtration rate and larger tumor size compared with patients with subclinical hypercortisolism (Table 1). Other demographic characteristics were similar between these groups. Patients with overt hypercortisolism showed higher F with undetected low ACTH, higher F after DST, and higher urine cortisol levels compared with those with subclinical hypercortisolism who instead showed higher PAC and ARR. Among patients with subclinical hypercortisolism, 9/68 (13.2%) showed undetectable ACTH levels and 25/68 (36%) were positive for PA screening criterion (ie, ARR > 20) followed by at least 1 positive confirmatory test. Based on the results of adrenal venous sampling of these cases, 9 showed aldosterone excess in the right nodules, 6 showed aldosterone excess in the left nodules, and 7 showed aldosterone excess on both sides, respectively (3 cases did not show aldosterone excess on both sides). Immunohistochemical evaluation of CYP11B2 was examined for 6 resected adrenal glands, and all of them showed positive expression. Patients’ characteristicsa Patients with overt hypercortisolism (N = 21) Patients with subclinical hypercortisolism (N = 68) P Age, y 46 [38-52] 54 [47-63] 0.002 Female, n (%) 18 (85.7) 46 (67.7) 0.11 Body mass index, kg/m2 23.4 [20.6-26.2] 23.1 [21.7-25.1] 0.94 Systolic blood pressure, mm Hg 156 [140-182] 162 [151-191] 0.29 Diastolic blood pressure, mm Hg 98 [92-110] 100 [90-110] 0.73 Serum potassium, mEq/Lb 3.9 [3.5-4.0] 3.8 [3.6-4.0] 0.98 eGFR, mL/min/1.73 m2 86.7 [77.3-123.0] 82.1 [69.8-87.7] 0.02 Tumor size by CT scan, mm 28 [25-30] 22 [17-26] 0.001 ACTH, 8:00 AM − c 6.6 [2.4-11.8] — F, 8:00 AM 16.6 [12.5-18.8] 9.5 [7.7-12.0] <0.001 PRA, 8:00 AM 0.7 [0.4-1.3] 0.5 [0.2-1.0] 0.10 PAC, 8:00 AM 8.3 [7.2-9.8] 9.2 [7.2-16.2] 0.09 ARR, 8:00 AM 10.0 [6.4-16.7] 21.0 [9.8-46.5] 0.02 F after DST 16.5 [14.4-18.7] 5.1 [3.2-7.5] <0.001 Urine cortisol 220.0 [105.0-368.0] 49.5 [37.4-78.5] <0.001 Urine aldosterone 5.7 [3.9-10.1] 7.2 [4.8-13.1] 0.16 Conversion to SI units: ACTH, pg/mL × 0.220 for pmol; F, µg/dL × 27.6 for nmol/L; PAC, ng/dL × 27.7 for pmol/L; urine aldosterone, μg/day × 2.77 for nmol/d; Urine cortisol, μg/day × 2.76 for nmol/d. Abbreviations: ARR, aldosterone-to-renin ratio; CRH, corticotropin-releasing hormone; CT, thin-section computed tomography; DST, 1-mg dexamethasone suppression test; eGFR, estimated glomerular filtration rate; F, serum cortisol; PRA, plasma renin activity; PAC, plasma aldosterone concentration. a Data are presented as median (interquartile range) or count (proportions) unless otherwise indicated. b Serum potassium levels were controlled using potassium supplement/tablets at enrollment. c Undetected in all cases. Open in new tab Association of Demographic Characteristics and Endocrine Parameters With Systolic Blood Pressure Among patients with overt hypercortisolism, we did not find a significant association of demographic characteristics and endocrine parameters with systolic blood pressure (Table 2). However, among patients with subclinical hypercortisolism, we found that higher PACs at 8:00 AM were significantly associated with systolic blood pressure (adjusted coefficient [95% CI] = +0.59 [0.19-0.99], P = 0.008). The results did not change when we used F after DST instead of F at 8:00 AM (Supplementary Table S2) [22]. Table 2. Cross-sectional association of demographic characteristics and endocrine parameters with systolic blood pressure among patients with overt and subclinical hypercortisolism Outcome Systolic blood pressure at baseline Groups Patients with overt hypercortisolism Patients with subclinical hypercortisolism Parameters Adjusted coefficient (95% CI) P Adjusted coefficient (95% CI) P Age, y +1.73 (0.17-3.30) 0.03 +0.49 (−0.13 to 1.10) 0.12 Female −7.48 (−76.75 to 61.79) 0.81 +15.38 (−0.83 to 31.59) 0.06 Body mass index +5.47 (−2.4 to 13.33) 0.15 +1.07 (−0.49 to 2.63) 0.17 Serum potassium +11.29 (−23.42 to 45.99) 0.48 −9.61 (−26.38 to 7.15) 0.26 eGFR −0.12 (−1.00 to 0.77) 0.77 −0.44 (−0.89 to 0.01) 0.06 Tumor size −2.39 (−6.92 to 2.14) 0.26 +0.40 (−0.46 to 1.26) 0.35 F, 8:00 AMa,b +1.96 (−1.27 to 5.18) 0.20 +1.26 (−1.00 to 3.52) 0.27 PAC, 8:00 AMa −2.86 (−7.38 to 1.66) 0.18 +0.59 (0.19-0.99) 0.008 Abbreviations: DST, 1-mg dexamethasone suppression test; eGFR, estimated glomerular filtration rate; F, serum cortisol; PRA, plasma renin activity; PAC, plasma aldosterone concentration. a ACTH and PRA were not included in the main model because they have strong correlation with F and PAC, respectively (ie, multicollinearity). The results did not change when additionally adjusting for ACTH and PRA. b The results did not change when we replaced F at 8:00 AM with F after DST (Supplementary Table S2). Open in new tab Association of Demographic Characteristics and Endocrine Parameters With Hypertension Improvement After the Adrenalectomy Among Patients With Subclinical Hypercortisolism Among 33 patients with subclinical hypercortisolism and hypertension who underwent the adrenalectomy, we found that age and higher PAC were significantly associated with a higher improvement rate of hypertension after the adrenalectomy (age, adjusted risk difference [95% CI] = +2.36% [1.08-3.64], P = 0.001; PAC, adjusted risk difference [95% CI] = +1.45% [0.35-2.55], P = 0.01; Table 3). The results did not change when we used F after DST instead of F at 8:00 AM (Supplementary Table S3) [22]. Patients with improved hypertension after the surgery showed significantly lower PACs 60 minutes after a postoperative ACTH stimulation test than those without the improvement of hypertension (P = 0.05), although F and PAC/F ratio were not significantly different between these 2 groups (Table 4). The association between lower PACs after postoperative ACTH stimulation and higher improvement rate of hypertension was also found in the multivariable regression analysis adjusting for baseline characteristics (adjusted risk difference [95% CI] = −1.08% [−1.92 to −0.25], P = 0.01; Supplementary Table S4) [22]. Table 3. Longitudinal association of demographic characteristics and endocrine parameters with hypertension improvement after the adrenalectomy among patients with subclinical hypercortisolisma Outcome Hypertension improvement after the adrenalectomy Parameters Adjusted risk difference (95% CI) P Age +2.36% (1.08-3.64) 0.001 Sex (female) −11.32% (−61.37 to 38.73) 0.64 Body mass index −5.08% (−10.29 to 0.13) 0.06 Systolic blood pressure −0.67% (−1.77 to 0.43) 0.22 Serum potassium −0.06% (−31.84 to 31.71) 1.00 eGFR +0.53% (−0.36 to 1.42) 0.23 Tumor size +0.79% (−1.35 to 2.93) 0.45 F, 8:00 AMb,c −2.81% (−7.43 to 1.81) 0.22 PAC, 8:00 AMb +1.45% (0.35-2.55) 0.01 Abbreviations: eGFR, estimated glomerular filtration rate; F, serum cortisol; PRA, plasma renin activity; PAC, plasma aldosterone concentration. a Analysis was not performed for patients with overt hypercortisolism because only 2/18 cases failed to show improved hypertension after the adrenalectomy. b ACTH and PRA were not included in the main model because they have strong correlation with F and PAC, respectively (ie, multicollinearity). The results did not change when additionally adjusting for ACTH and PRA. c The results did not change when we replaced F at 8:00 AM with F after DST (Supplementary Table S3). Open in new tab Table 4. Aldosterone and cortisol response to ACTH a year after the adrenalectomy according to hypertension improvement status among patients with subclinical hypercortisolisma Outcome: hypertension improvement status after the adrenalectomy Improvement (+) (N = 23) Improvement (−) (N = 10) Parameters Median [IQR] Median [IQR] P PAC 60 min after ACTH stimulation 13.6 [10.0-16.7] 15.5 [13.7-43.1] 0.05b F 60 min after ACTH stimulation 16.9 [13.7-20.6] 18.5 [13.5-24.7] 0.61 PAC/F ratio 60 min after ACTH stimulation 0.70 [0.52-1.39] 1.27 [0.50-5.44] 0.26 Conversion to SI units: F, µg/dL × 27.6 for nmol/L; PAC, ng/dL × 27.7 for pmol/L. Abbreviations: F, serum cortisol; PAC, plasma aldosterone concentration. a Analysis was not performed for patients with overt hypercortisolism because only 2/18 cases failed to show improved hypertension after the adrenalectomy. b The association was also observed after adjusting for baseline characteristics (eg, age, sex, body mass index, systolic blood pressure, serum potassium, estimated glomerular filtration rate, tumor size) and F 60 min after ACTH stimulation a year after the adrenalectomy (Supplementary Table S4). Open in new tab Additional Analyses Decreased PAC between before and after adrenalectomy was significantly associated with hypertension improvement (Supplementary Table S5) [22]. When we restricted samples to those without primary aldosteronism, PACs at baseline tended to be associated with systolic blood pressure but the 95% CI included the null (Supplementary Table S6) [22]. Decreased PAC after adrenalectomy was associated with hypertension improvement after the adrenalectomy, whereas PAC at baseline was not associated with that outcome (Supplementary Table S7) [22]. When we analyzed the entire sample (ie, both overt and subclinical hypercortisolism), PAC at baseline was associated with systolic blood pressure at baseline (Supplementary Table S8) [22] and hypertension improvement after the adrenalectomy (Supplementary Table S9) [22]. We also found the higher median value of PAC response to ACTH during adrenal venous sampling at the remained (ie, not resected by the adrenalectomy) side of adrenal gland among patients whose hypertension did not improve compared with those whose hypertension improved after the surgery, but the difference was not statistically significant (Supplementary Table S10) [22]. Discussion In this retrospective cohort study, we found that higher aldosterone levels were associated with higher systolic blood pressure among patients with possible autonomous cortisol secretion and without clinical signs of overt Cushing syndrome (ie, subclinical hypercortisolism). In this group, higher aldosterone before the adrenalectomy was associated with the postoperative improvement of hypertension. Moreover, we found that patients with postoperative improvement of hypertension showed lower aldosterone response to ACTH after the adrenalectomy compared with those without the improvement of hypertension. Decrease in PACs after the adrenalectomy was associated with improved hypertension even among patients with subclinical hypercortisolism who did not have primary aldosteronism at baseline, whereas baseline PAC was not associated with that outcome. We found no evidence that aldosterone is associated with systolic blood pressure among patients with overt hypercortisolism. These findings indicate that elevated aldosterone may contribute to the presence of hypertension and its improvement rate after the adrenalectomy for patients with subclinical hypercortisolism. To the best of our knowledge, this is one of the first studies to assess the potential role of aldosterone in hypertension among patients with overt and subclinical hypercortisolism, during both pre- and postoperative phases. Since aldosterone- and cortisol-producing adenoma was reported in 1979 [23, 24], several studies have assessed the cortisol production in aldosterone-producing adenoma clinically and histologically [8-10, 25] and showed the correlation between the degree of glucocorticoid excess levels and metabolic markers including BMI, waist circumference, blood pressure, insulin resistance, and high-density lipoprotein [12]. Prior research suggested that aldosterone-producing adenoma might produce cortisol as well as aldosterone even when serum cortisol levels after DST is less than 1.8 µg/dL (50 nmol/L) [11]. Although these studies have focused on cortisol synthesis among patients with aldosterone-producing adenoma, little is known about aldosterone synthesis among patients with cortisol-producing adenoma. Given that patients with hypercortisolism tend to have therapy-resistant hypertension and electrolyte disorders [8], our findings may generate the hypothesis that aldosterone contributes to the incidence and severity of hypertension in patients with possible autonomous cortisol secretion; this warrants further investigation. There are several mechanisms by which cortisol excess leads to hypertension, such as regulating endothelial nitric oxide synthase expression modulated by 11β-hydroxysteroid dehydrogenases [26], activating the mineralocorticoid receptor [27] and upregulating vascular endothelin-1 [28]. Moreover, hypercortisolism impairs the production of endothelial vasodilators, including prostacyclin, prostaglandins, and kallikreins [29]. Despite these potential mechanisms, the direct effect of cortisol may not be sufficient to explain hypertension in patients with hypercortisolism, particularly subclinical hypercortisolism, and the presence of cortisol and aldosterone coproducing adenoma indicates another potential pathway to induce hypertension through aldosterone excess. Aldosterone is a steroid hormone not only promoting sodium reabsorption and volume expansion but also activating the mineralocorticoid receptor in the kidney and nonepithelial tissues (eg, adipose tissue, heart, endothelial cells, and vascular smooth muscle cells) [30]. It also induces oxidative stress, inflammation, fibrosis, vascular tone, and endothelial dysfunction [31]; therefore, aldosterone excess could induce hypertension even when it is slightly elevated [32]. A recent multiethnic study showed that aldosterone levels within the reference range were associated with subclinical atherosclerosis partially mediated through elevated blood pressure [33]. These mechanisms support our results indicating the potential contribution of aldosterone to hypertension among patients with subclinical hypercortisolism. This study had several limitations. First, we did not have information on the duration of cortisol excess and therefore the estimated effect of cortisol on hypertension in our study might have been underestimated. The duration of exposure to mild hypercortisolism may be one of the important drivers of cardiovascular and metabolic disorders including irreversible vasculature remodeling in patients with subclinical hypercortisolism [2]. Second, we did not have the genetic information of adrenal tumors including aldosterone-producing adenoma. Given the heterogeneity of aldosterone responsiveness to ACTH [34] and postoperative hypertension resolution rate across genetic mutations (eg, KCNJ5, ATP1A1, ATP2B3, CACNA1D, CTNNB1) [35], such information might affect our findings. Third, because of the nature of an observational study, we cannot rule out the unmeasured confounding. Fourth, because aldosterone and cortisol levels were measured at a single point, we may have a risk of mismeasurement. Moreover, when evaluating aldosterone levels, we used dihydropyridine calcium channel blockers to control hypertension based on the clinical guideline of primary aldosteronism in Japan; this might lower serum aldosterone levels. Fifth, because the present study was conducted at a single center, selection bias is inevitable [13]. Given that primary aldosteronism—one of the major causes of secondary hypertension—has still been underdiagnosed, partially because of insufficient recognition of clinical guidelines [36], our findings may indicate the importance of considering aldosterone when evaluating patients with subclinical hypercortisolism accompanied by hypertension. However, we need to carefully interpret the observed “prevalence” in this study because individuals potentially having subclinical hypercortisolism were likely to come to our hospital, which specializes the adrenal disorders, and thus the numbers do not reflect the prevalence in general population. The small number of resected adrenal glands with the evaluation of CYP11B2 expression in this study cohort also limits the prevalence estimation of primary aldosteronism. Finally, as we only followed up 1 year after the adrenalectomy, we could not evaluate the long-term resolution rate of hypertension. To overcome these limitations and generalize our findings, future molecular studies and multicenter longitudinal studies with sufficient individual datasets and longer follow-up are required. In conclusion, plasma aldosterone concentrations were associated with systolic blood pressure and improvement rate of hypertension after the adrenalectomy among patients with subclinical hypercortisolism—possible autonomous cortisol secretion without clinical signs of overt Cushing syndrome. Our findings underscore the importance of considering aldosterone when patients have an adrenal tumor with possible autonomous cortisol secretion complicated with hypertension. Future molecular and epidemiological studies are warranted to identify the potential role of aldosterone in hypertension among patients with subclinical hypercortisolism, clarify how often these patients also have primary aldosteronism, and examine the clinical effectiveness of the intervention targeting aldosterone for such patients. Funding K.I. was supported by the Japan Society for the Promotion of Science (JSPS; 21K20900 and 22K17392) and The Japan Endocrine Society. Study sponsors were not involved in study design, data interpretation, writing, or the decision to submit the article for publication. The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. Conflicts of Interest All of authors confirm that there is no conflict of interest in relation to this work. Data Availability Restrictions apply to the availability of some data generated or analyzed during this study to preserve patient confidentiality or because they were used under license. The corresponding author will on request detail the restrictions and any conditions under which access to some data may be provided. Abbreviations ARR aldosterone-to-renin ratio BMI body mass index DST dexamethasone suppression test F serum cortisol level HPA hypothalamus-pituitary-adrenal PAC plasma aldosterone concentration PRA plasma renin activity © The Author(s) 2022. Published by Oxford University Press on behalf of the Endocrine Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com © The Author(s) 2022. Published by Oxford University Press on behalf of the Endocrine Society. From https://academic.oup.com/jes/article/7/1/bvac167/6782230?login=false
  5. Abstract Neuroendocrine carcinomas (NEC) of the cervix are a rare disease entity and account for only 1-2% of cervical carcinomas. The small-cell variant is the most common, with a worse prognosis and a higher rate of lymphatic and hematogenous metastases when compared with other subtypes of NEC. The diagnosis is usually made when the extra-pelvic disease is already apparent. Cushing’s syndrome due to adrenocorticotropic hormone (ACTH)-secreting tumors of the cervix is exceedingly rare. To date, there have been no reported cases in the literature of Cushing’s syndrome induced by the recurrence of metastases years after the initial diagnosis. This is a case of recurrent small-cell neuroendocrine carcinoma of the cervix presenting with Cushing’s syndrome five years after her original diagnosis. We present here the workup, management, and follow-up of this patient, including multisystemic, coordinated medical care. Introduction Neuroendocrine carcinomas (NECs) are heterogenous groups of tumors derived from neuroendocrine cells. NECs of the cervix are rare and account for 1-2% of all cervical carcinomas, with the small-cell variant being the most common [1,2]. Small-cell NECs have a high rate of lymphatic and hematogenous metastasis even when the carcinoma is limited to the cervix. Patients usually present at a late stage, with the extra-pelvic disease being apparent at the time of diagnosis [2]. Among the different histologic variants of NEC of the cervix, the small-cell variant has the highest rate of recurrence [3]. Adrenocorticotropic hormone (ACTH)-secreting tumors of the cervix are rare [4]. We present a case of recurrent metastatic NEC of the cervix five years after the original diagnosis of NEC of the cervix, now presenting with Cushing’s syndrome [1,2]. Case Presentation A 39-year-old female with a history of recurrent small-cell cervical cancer presented to the emergency department (ED) of our hospital with complaints of weight gain, generalized facial edema, lightheadedness, tingling sensation of her entire face, bilateral leg edema, and abdominal distention. Her problems started a month prior to her ED visit, when she started to complain of abdominal distention. She had a computed tomography (CT) abdomen with contrast, which revealed evidence of metastatic disease, including multiple large liver lesions (Figure 1). Subsequently, she had a positron emission tomography (PET) scan, which confirmed the presence of hypermetabolic lesions in the right peritonsillar tissue, liver, right lower quadrant of the abdomen, and bilateral pulmonary nodules with lymphadenopathy in the left hilum (Figure 2). A liver biopsy was done, with the final pathology consistent with recurrent NEC of the cervix. She was started on cisplatin, etoposide, and atezolizumab by gynecologic oncology but started to develop facial swelling and progressive abdominal distention, prompting this ED consult and subsequent admission. Figure 1: Abdomial CT with contrast done one month prior showed evidence of metastatic disease including multiple large liver lesions. Figure 2: PET/CT demonstrated the presence of hypermetabolic lesions in the liver and right lower quadrant of the abdomen. She had a significant medical history of being diagnosed with cervical cancer (FIGO stage 1B2 NEC) five years prior by gynecologic oncology, at which time she underwent concurrent chemo-radiation followed by surgical assessment of her pelvic lymph nodes with robotic pelvic lymph node dissection and bilateral ovarian transposition to avoid premature menopause. She was subsequently treated with cisplatin and pelvic radiation. She had a follow-up cervical biopsy several months after chemotherapy, which showed persistent NEC, but her PET scan showed no evidence of metastatic disease. After undergoing a robotic total laparoscopic hysterectomy, the final pathology showed a persistent microscopic focus of NEC of the cervix with negative margins. She received adjuvant chemotherapy with cisplatin and etoposide for six cycles with regular follow-up pap smears and annual PET scans, with no evidence of recurrence for five years. On admission, her vital signs were: blood pressure = 129/79 mm Hg, pulse rate = 85/min, respiratory rate = 18/min, and temperature = 98.5 °F (36.9 °C). Her physical examination was notable for moon facies (a noticeable change from her pictures as recent as two months prior), supraclavicular and dorsocervical fat pads, multiple bruises on her arms, edema of her face and legs, acne of her face and neck, and hair growth of her chin area. No purple striae were seen on the abdomen. Laboratory tests revealed leukopenia and thrombocytopenia (which were attributed to her chemotherapy), recently diagnosed diabetes (occasional hyperglycemia and HbA1c 7.7%), and electrolyte imbalances (hypokalemia and hypophosphatemia) (Table 1). Sodium 142 mEq/L (135–145 mEq/L) Potassium 2.0 mEq/L (3.5–5.0 mEq/L) Chloride 98 mEq/L (98–108 mEq/L) CO2 35 mEq/L (21–32 mEq/L) Anion gap 9 mEq/L (8–16 mEq/L) BUN 14 mg/dL (7–13 mEq/L) Creatinine 1.13 mg/dL (0.6–1.1 mg/dL) Glucose 460 mg/dL (74–100 mg/dL) Calcium 7.8 mg/dL (8.5–10.1 mg/dL) Phosphorous 1.0 mg/dL (2.5–4.5 mg/dL) Albumin 2.5 mg/dL (3.1–4.5 mg/dL) AST 43 U/L (15–27 U/L) ALT 76 U/L (12–78 U/L) White blood cell count 0.6 k/cmm (4.5–10.0 k/cmm) Red blood cell count 3.55 million cells/μL (3.7–5 × 2) Hemoglobin 11.9 g/dL (12.0–16.0) Hematocrit 34.3% (35.0–47.0) Platelet 45 k/cmm (150–440 k/cmm) Table 1: Initial laboratory work showed leukopenia, thrombocytopenia, hyperglycemia, hypokalemia, and hypophosphatemia. AST: aspartate aminotransferase, CO2: carbon dioxide, BUN: blood urea nitrogen, ALT: alanine aminotransferase. Her chest X-ray showed bilateral pleural effusions. Magnetic resonance imaging (MRI) of the brain showed no evidence of pituitary masses, abnormalities, or metastatic disease in the brain. A CT of the chest showed new bilateral non-calcified lung nodules when compared to the previous PET scan, pathologic-sized left hilar adenopathy, and multiple peripherally enhancing hepatic nodules and masses (Figure 3). The adrenal glands were unremarkable. Workup for facial swelling and bilateral leg edema showed no evidence of superior vena cava (SVC) syndrome on both her chest CT and transthoracic echocardiogram. Figure 3: Contrast-enhanced chest CT showing bilateral noncalcified lung nodules. She was admitted to the intensive care unit (ICU) and started on empiric antibiotics and filgrastim for neutropenia. Replacement therapy for both hypokalemia and hypophosphatemia was given. After both electrolytes were normalized, the patient was started on basal-bolus insulin therapy. Based on her clinic presentation of excessive weight gain, new-onset hyperglycemia, hypertension with hypokalemia, and a history of NEC, suspicion of Cushing’s syndrome was high. Further workup showed elevated serum cortisol after 1 mg overnight dexamethasone suppression, elevated 24-hour urine cortisol, and elevated midnight salivary cortisol, which confirmed Cushing’s syndrome (Table 2). ACTH was also elevated, but dehydroepiandrosterone sulfate (DHEAS) was normal. Thyroid function tests showed a slightly low free thyroxine, but this was attributed to an acute illness. HgbA1C 7.7% (4.0-6.0%) ACTH 1207 pg/mL (7.2–63.3 pg/mL) 24-hour urine cortisol 7070 μg/24 hr (6–42 μg/24 hr) Salivary cortisol >1.000 μg /dL (0.025–0.600 μg/dL) Serum cortisol after 1 mg overnight dexamethasone suppression 143.0 μg/dL (3.1–16.7 μg/dL) Total testosterone 77 ng/dL (14–76 ng/dL) DHEAS 250.0 μg/dL (57.3–279.2 μg/dL) Chromogranin A 970.9 ng/mL (0.0–101.8 ng/mL) TSH 0.572 mIU/L (0.358–3.74mIU/L) Free T4 0.70 ng/dl (0.76–1.46) ng/dl Table 2: Work up showed elevated ACTH, elevated 24-hour urine cortisol, elevated salivary cortisol, and elevated serum cortisol after 1 mg overnight dexamethasone suppression test. HgbA1C: hemoglobin A1C; ACTH: adrenocorticotropic hormone; DHEAS: dehydroepiandrosterone sulfate; TSH: thyroid stimulating hormone; free T4: free thyroxine. A diagnosis of Cushing's syndrome due to metastatic small-cell neuroendocrine carcinoma of the cervix was assumed. A bilateral adrenalectomy, which is the definitive treatment of hypercortisolism when surgical removal of the source of excess ACTH is done, was not done because gynecologic oncology wanted to treat her with chemotherapy urgently due to her metastases and the nature of the disease and felt that surgery and recovery would delay the start of chemotherapy. Ketoconazole was felt to be a poor choice in the setting of liver metastases with worsening liver function tests. The patient was thus started on mifepristone 300 mg daily, as it is indicated for hypercortisolism secondary to endogenous Cushing’s syndrome with diabetes. Nephrology was consulted, and potassium supplementation was transitioned to oral potassium chloride 40 meq tablets four times a day; spironolactone 50 mg twice daily was added for the hypokalemia and hypertension, which occurred after the patient started bevacizumab. Hypokalemia is a common side effect of mifepristone therapy due to the glucocorticoid receptor blockade, which leads to cortisol's spillover effect on unopposed mineralocorticoid receptors. She was discharged home with a basal-bolus insulin regimen. Her posthospitalization course was complicated by compression fractures of her lumbar spine one week after discharge with no history of falls. An MRI of the spine showed chronic compression fractures of the T11-L3 vertebral bodies with no evidence of osseous metastatic disease. Dual-energy X-ray absorptiometry (DXA) scan interpretation demonstrated osteoporosis. Vertebral fracture assessment showed morphometric fractures in the lower thoracic and upper lumbar vertebrae. She was subsequently treated with IV administration of 5 mg of zoledronic acid. She was also readmitted multiple times after her initial admission due to the patient's developing neutropenic fever, which was treated with filgrastim and antibiotics. After starting mifepristone, her glycemic control improved to the point that insulin therapy could be subsequently discontinued. Her liver enzymes normalized, and ketoconazole was subsequently added for adjunct therapy to treat hypercortisolism, but the dose could not be optimized due to persistently elevated liver function tests. Hypokalemia management and resistant hypertension were additional challenges encountered by this patient. At her follow-up visits, she had notably lost weight with the improvement of her leg edema. She continued to follow up with a nephrologist on an outpatient basis, and her normal potassium levels were normal on 40 meq of oral potassium chloride tablets four times a day and spironolactone 150 mg twice a day. She was followed up closely by her gynecologic oncologist and was on bevacizumab, topotecan, and paclitaxel before her unfortunate demise a few months later. Discussion Cushing’s syndrome due to ectopic ACTH secretion only represents 9-18% of cases. Most primary endocrine tumors responsible for ectopic ACTH secretion are located in the chest [5]. Abdominal and retroperitoneal neuroendocrine tumors are the second- and third-most reported sites [5]. Neuroendocrine tumors of the cervix are incredibly rare [6-9]. A unique feature of this case is that the patient presented with Cushing’s syndrome due to neuroendocrine tumor metastases found five years after the primary site of the tumor was resected. For this patient, a biopsy of the liver confirmed a metastatic neuroendocrine tumor, but it is unknown if the other sites of metastases are implicated in the production of excess ACTH. The management of this disease focuses on controlling hypercortisolism, consequent hyperglycemia, and hypokalemia. Surgical excision of ACTH-secreting neuroendocrine tumors is the most effective, but in cases where that is not possible, bilateral adrenalectomy and medical treatment are the next best treatments for this disease entity [10]. For this patient, bilateral adrenalectomy was not done as gynecologic oncology wanted to treat her with chemotherapy urgently due to the metastases and nature of the disease and felt that surgery and recovery would delay the start of chemotherapy. We provided medical management for the patient’s hypercortisolism. Pharmacological therapy for hypercortisolism can be categorized into immediate-acting steroidogenesis inhibitors (metyrapone, ketoconazole, and etomidate), slow-acting cortisol-lowering drugs (mitotane), and glucocorticoid receptor antagonists (mifepristone) [5]. We initially chose mifepristone because it is indicated in patients with type 2 diabetes mellitus and could be given safely despite the patient’s worsening liver function levels [11]. As demonstrated, the management of recurrent hypokalemia proved challenging in this patient. The phenomenon is well known to be induced by ectopic ACTH. Several mechanisms contribute to this. Activation of renal tubular type 1 (mineralocorticoid) receptors by cortisol is thought to be the mechanism that applies mainly to patients with severe hypercortisolism due to ectopic ACTH secretion. Additionally, there may also be an increase in the production of renin substrate from the liver. The high serum cortisol concentrations may not be completely inactivated by 11β-hydroxysteroid dehydrogenase type 2 in the kidney and overwhelm its ability to convert cortisol to cortisone, resulting in activation of mineralocorticoid receptors resulting in potassium loss in the distal tubules [12]. Hypokalemia may also result from adrenal hypersecretion of mineralocorticoids, such as deoxycorticosterone and corticosterone. This can also be amplified by mifepristone, as it is a glucocorticoid receptor antagonist that increases circulating cortisol levels [12]. Complications such as hypokalemia, hyperglycemia, acute respiratory distress syndrome, infections, muscle wasting, hypertension, and bone fractures can occur and can arise at any time throughout the course of the disease when urine-free cortisol is fivefold or more above the upper limit of normal [5]. Ketoconazole was initially considered for medical treatment, but due to mildly elevated liver enzymes during the initial presentation, we decided to use mifepristone instead. A small cohort study showed that severe hypercortisolism and increased baseline transaminase levels could be due to cortisol-induced hepatic steatosis [13]. Later in her course, ketoconazole was added to her mifepristone therapy to decrease adrenal cortisol production. Unfortunately, her dose could not be increased due to the patient's persistently elevated liver enzymes. Recurrent pancytopenia due to chemotherapy contributed to the protracted nature of this patient’s clinical course. Due to cortisol's immunosuppressive and anti-inflammatory effects, opportunistic infections can arise [14]. Since her initial hospitalization, she has been readmitted several times due to neutropenic fever, which was treated with filgrastim and antibiotics. Conclusions Ectopic Cushing’s syndrome due to metastatic neuroendocrine small-cell carcinoma is a rare condition with a poor prognosis. The options for treatment are few and not necessarily curative. There needs to be increased awareness of this serious and rare complication. Managing the condition can be a challenge and requires a multidisciplinary team approach to improve outcomes. References Cohen JG, Kapp DS, Shin JY, et al.: Small cell carcinoma of the cervix: treatment and survival outcomes of 188 patients. Am J Obstet Gynecol. 2010, 203:347.e1-6. 10.1016/j.ajog.2010.04.019 Salvo G, Gonzalez Martin A, Gonzales NR, Frumovitz M: Updates and management algorithm for neuroendocrine tumors of the uterine cervix. Int J Gynecol Cancer. 2019, 29:986-95. 10.1136/ijgc-2019-000504 Stecklein SR, Jhingran A, Burzawa J, Ramalingam P, Klopp AH, Eifel PJ, Frumovitz M: Patterns of recurrence and survival in neuroendocrine cervical cancer. Gynecol Oncol. 2016, 143:552-7. 10.1016/j.ygyno.2016.09.011 Chen J, Macdonald OK, Gaffney DK: Incidence, mortality, and prognostic factors of small cell carcinoma of the cervix. Obstet Gynecol. 2008, 111:1394-402. 10.1097/AOG.0b013e318173570b Young J, Haissaguerre M, Viera-Pinto O, Chabre O, Baudin E, Tabarin A: Management of Endocrine Disease: Cushing's syndrome due to ectopic ACTH secretion: an expert operational opinion. Eur J Endocrinol. 2020, 182:R29-58. 10.1530/EJE-19-0877 Hashi A, Yasumizu T, Yoda I, et al.: A case of small cell carcinoma of the uterine cervix presenting Cushing's syndrome. Gynecol Oncol. 1996, 61:427-31. 10.1006/gyno.1996.0168 Iemura K, Sonoda T, Hayakawa A, et al.: Small cell carcinoma of the uterine cervix showing Cushing's syndrome caused by ectopic adrenocorticotropin hormone production. Jpn J Clin Oncol. 1991, 21:293-8. Barghouthi N, Perini J, Cheng J: Ectopic adrenocorticotropic hormone production: a case of neuroendocrine cervical small cell carcinoma presenting as Cushing syndrome. AACE Clin Case Rep. 2018, 4:e367-e369. 10.4158/ACCR-2018-0080 Di Filippo L, Vitali G, Taccagni G, Pedica F, Guaschino G, Bosi E, Martinenghi S: Cervix neuroendocrine carcinoma presenting with severe hypokalemia and Cushing's syndrome. Endocrine. 2020, 67:318-20. 10.1007/s12020-020-02202-x Ilias I, Torpy DJ, Pacak K, Mullen N, Wesley RA, Nieman LK: Cushing's syndrome due to ectopic corticotropin secretion: twenty years' experience at the National Institutes of Health. J Clin Endocrinol Metab. 2005, 90:4955-62. 10.1210/jc.2004-2527 Biller BM, Grossman AB, Stewart PM, et al.: Treatment of adrenocorticotropin-dependent Cushing's syndrome: a consensus statement. J Clin Endocrinol Metab. 2008, 93:2454-62. 10.1210/jc.2007-2734 Fleseriu M, Biller BM, Findling JW, Molitch ME, Schteingart DE, Gross 😄 Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing's syndrome. J Clin Endocrinol Metab. 2012, 97:2039-49. 10.1210/jc.2011-3350 Young J, Bertherat J, Vantyghem MC, Chabre O, Senoussi S, Chadarevian R, Castinetti F: Hepatic safety of ketoconazole in Cushing's syndrome: results of a Compassionate Use Programme in France. Eur J Endocrinol. 2018, 178:447-58. 10.1530/EJE-17-0886 Sarlis NJ, Chanock SJ, Nieman LK: Cortisolemic indices predict severe infections in Cushing syndrome due to ectopic production of adrenocorticotropin. J Clin Endocrinol Metab. 2000, 85:42-47. 10.1210/jcem.85.1.6294 From https://www.cureus.com/articles/111698-recurrent-neuroendocrine-tumor-of-the-cervix-presenting-with-ectopic-cushings-syndrome
  6. Brief Summary: This is a randomized, placebo-controlled, crossover study of SPI-62 in subjects with ACTH-dependent Cushing's syndrome. Subjects will receive each of the following 2 treatments for 12 weeks: SPI-62 and matching placebo Condition or disease Intervention/treatment Phase Cushing's Syndrome ICushing Disease Due to Increased ACTH Secretion Cortisol ExcessCortisol; Hypersecretion Cortisol Overproduction Ectopic ACTH Secretion Drug: SPI-62 Drug: Placebo Phase 2 Detailed Description: This is a multicenter, randomized, placebo-controlled, Phase 2 study to evaluate the pharmacologic effect, efficacy, and safety of SPI-62 in subjects with ACTH-dependent Cushing's syndrome. Each subject who provides consent and meets all inclusion and exclusion criteria will participate in 3 periods: a 28-day screening period (Days -35 to -8), a 7-day baseline period (Days -7 to -1), and a 24-week treatment period (Day 1 of Week 1 to Day 168 ± 3 days of Week 24). Up to 26 subjects will be enrolled with the aim that 18 subjects with Cushing's disease will complete the study. Subjects will receive each of the following 2 treatments for 12 weeks: SPI-62 and matching placebo. Study Design Go to Study Type : Interventional (Clinical Trial) Estimated Enrollment : 26 participants Allocation: Randomized Intervention Model: Crossover Assignment Intervention Model Description: Staggered parallel crossover Masking: Quadruple (Participant, Care Provider, Investigator, Outcomes Assessor) Primary Purpose: Treatment Official Title: SPI-62 as a Treatment for Adrenocorticotropic Hormone-dependent Cushing's Syndrome Actual Study Start Date : March 1, 2022 Estimated Primary Completion Date : March 15, 2023 Estimated Study Completion Date : August 15, 2023 More info at https://clinicaltrials.gov/ct2/show/record/NCT05307328
  7. Abstract Background Cushing’s syndrome (CS) is a rare condition of chronically elevated cortisol levels resulting in diverse comorbidities, many of which endure beyond successful treatment affecting the quality of life. Few data are available concerning patients’ experiences of diagnosis, care and persistent comorbidities. Objective To assess CS patients’ perspectives on the diagnostic and care journey to identify unmet therapeutic needs. Methods A 12-item questionnaire was circulated in 2019 by the World Association for Pituitary Organisations. A parallel, 13-item questionnaire assessing physician perceptions on CS patient experiences was performed. Results Three hundred twenty CS patients from 30 countries completed the questionnaire; 54% were aged 35–54 and 88% were female; 41% were in disease remission. The most burdensome symptom was obesity/weight gain (75%). For 49% of patients, time to diagnosis was over 2 years. Following treatment, 88.4% of patients reported ongoing symptoms including, fatigue (66.3%), muscle weakness (48.8%) and obesity/weight gain (41.9%). Comparisons with delay in diagnosis were significant for weight gain (P = 0.008) and decreased libido (P = 0.03). Forty physicians completed the parallel questionnaire which showed that generally, physicians poorly estimated the prevalence of comorbidities, particularly initial and persistent cognitive impairment. Only a minority of persistent comorbidities (occurrence in 1.3–66.3%; specialist treatment in 1.3–29.4%) were managed by specialists other than endocrinologists. 63% of patients were satisfied with treatment. Conclusion This study confirms the delay in diagnosing CS. The high prevalence of persistent comorbidities following remission and differences in perceptions of health between patients and physicians highlight a probable deficiency in effective multidisciplinary management for CS comorbidities. Keywords: Cushing’s syndrome; management; patient experience; patient survey; quality of life Introduction Cushing’s syndrome (CS) is a morbid endocrine condition due to prolonged exposure to high circulating cortisol levels (1, 2, 3). Hypercortisolism may cause irreversible physical and psychological changes in several tissues, leading to debilitating morbidities which persist over the long term after the resolution of excessive hormone levels, such as cardiovascular complications, metabolic and skeletal disorders, infections and neuropsychiatric disturbances (3, 4). Even patients who have been biochemically ‘cured’ for over 10 years have a residual overall higher risk of mortality, mostly from circulatory disease and diabetes (5). Moreover, people with a history of CS suffer from impaired quality of life (QoL) (6). Several studies suggest that the prevalence of persistent comorbidities is correlated with the duration of exposure to cortisol excess (7, 8). However, as the signs and symptoms of CS overlap with common diseases such as the metabolic syndrome and depression, the time taken to diagnose CS is often long, resulting in a significant number of patients with persistent sequelae and impairments in QoL (6, 9). Given the burden of the disease, ideal CS treatment would include early diagnosis, curative surgery and multidisciplinary care of comorbidities both pre- and post-cure of CS, including the psychological dimension of the patient’s disease experience (10). Few data are available about patients’ perceptions of the medical journey from first symptoms to diagnosis, treatment and follow-up. The aim of this study was, therefore, to explore CS patients’ experiences of symptoms, diagnosis, care and treatment satisfaction around the world and to compare patients’ perceptions of CS with those of physicians. Methods Patient questionnaire design A 12-item patient questionnaire was developed based on the generally understood clinical characteristics and symptomology of CS, aiming to assess patients’ experiences of symptoms, diagnosis, care and treatment satisfaction (1, 2) (Supplementary File 1, see section on supplementary materials given at the end of this article). The questionnaire was initially offered in English and made available via the SurveyMonkey online platform from March to May 2019. The survey was completed anonymously and required no specific participant identification or any details that could be used to identify individual participants. In addition to basic demographics (i.e. country of residence, sex, age and highest educational level attained), the questionnaire asked ten multiple-choice and two open questions. The survey was shared by the World Association for Pituitary Organisations (WAPO), Adrenal Net, Cushing’s Support & Research Foundation and the Pituitary Foundation, as well as being distributed to local patient associations. As a second step, the questionnaire was translated into eight additional languages (French, Dutch, Spanish, Chinese, Portuguese, Italian and German) and was recirculated by the WAPO, Adrenal Net and China Hypercortisolism Patient Alliance to the different local patient associations for distribution in November 2019. As this was a non-interventional, anonymous patient survey, distributed by the patient associations themselves, and not initiated or funded by a research or educational institution, no ethical review was required. Written consent was obtained from each respondent after full explanation of the purpose and nature of the survey. Comparative physician survey In addition, a 13-item physician questionnaire was developed to assess physicians’ perspectives on CS symptoms and comorbidities. This physician questionnaire was conducted by HRA Pharma Rare Diseases at the 2019 European Congress of Endocrinology, in Lyon, France. This anonymous questionnaire was completed by 40 qualified physicians. The responses from the patient survey were compared for context with the physicians’ estimates of the prevalence of CS symptoms and comorbidities. Although the physician questionnaire was conducted independently of the patient questionnaire, and used a different question structure, the comparison with the current patient questionnaire is included to further enrich and contextualise the patient responses. Data analysis All responses and answers were collected, coded and analysed using Microsoft Excel. Data preparation involved removing duplicate answers, or where possible analysing and reclassifying qualitative responses reported as ‘other’, based on the accompanying details to new or existing response options. Statistical methodology Complementary statistical analyses using SAS software were performed using the chi-square and Fisher tests, depending on the cell counts, to compare (i) the time between first symptoms and diagnosis and the persistence of symptoms and (ii) persistence of symptoms, with the specialities of the physicians currently treating the respondents. Frequency distribution of a particular variable was displayed and compared with the frequency distribution of the comparator variable. A significance level of 0.05 was applied. Results Demographic characteristics Three hundred twenty patients from 30 countries completed the patient questionnaire, with 27% (n  = 87) coming from the United Kingdom and 14% (n  = 44) from the United States of America. More than half (53.7%, n = 172) of the patients were aged between 35 and 54 years, and 88.4% (n  = 283) were female. The majority of patients (53.1%, n = 170) had undergraduate or postgraduate qualifications (Table 1). Table 1 Patient demographics. Sex N = 319a  Female 283 (88.4%)  Male 36 (11.3%) Age group N = 320  18–24 years 16  25–34 years 49  35–44 years 71  45–54 years 101  55–64 years 54  65–74 years 24  ≥75 years 5 Regionb N = 320  Western Europe 222  North America 60  China 16  Australasia 14  South America 5  Africa 3 Education N = 320  High school graduate/secondary education diploma 35%  Undergraduate degree 25.6%  Post-graduate degree 27.5%  Prefer not to say 10.6% Time from first symptoms to diagnosis N = 320  0–6 months 18.4%  6–12 months 15.6%  1–2 years 14.4%  2–3 years 18.4%  3–5 years 11.6%  5–10 years 8.4%  10–15 years 7.5%  15–20 years 0.9%  20+ years 1.9%  Unknown 2.8% aOne patient responded ‘non-binary’. bWestern Europe: United Kingdom (n  = 87), the Netherlands (n  = 38), France (n  = 37), Spain (n  = 12), Denmark (n  = 10), Norway (n  = 9), Germany (n  = 6), Italy (n  = 5), Ireland (n  = 4), Belgium (n  = 4), Poland (n  = 4), Sweden (n  = 2), Malta (n  = 2), Switzerland (n  = 1), Czech Republic (n  = 1); Africa: South Africa (n  = 1), Gabon (n  = 1), Zimbabwe (n  = 1); Australasia: Australia (n  = 8), New Zealand (n  = 6); South America: Colombia (n  = 2), Bolivia (n  = 1), Argentina (n  = 1), Brazil (n  = 1); North America: United States of America (n  = 44), Canada (n  = 13), Costa Rica (n  = 1), Mexico (n  = 1), Dominican Republic (n  = 1). Time to diagnosis The time to diagnosis from first reporting of CS symptoms was declared to be within 2 years for 48.4% (n  = 155) (Table 1) and was over 2 years in 48.7% (n  = 156) and over 3 years in 30.3% (n  = 97). Initial symptoms A broad range of signs and symptoms were initially noticed by patients, with weight gain, hirsutism or acne, fatigue, sleep disturbances, depressive symptoms, muscle weakness, anxiety and hypertension all being reported in over 50% of patients (Table 2). Obesity/weight gain was most commonly cited (75%, n = 240) as being burdensome. Fatigue, feelings of depression or mood problems, sleep disturbances, muscle weakness and hirsutism were also very commonly (>40%) mentioned as being burdensome. Burdensome symptoms classified as ‘other’ were rare (<1%) and included issues such as hormonal problems and dental problems. Table 2 Patient-reported symptoms (multiple answers were possible). Symptoms first noticed (%) Most burdensome perceived symptoms before diagnosis (%) Weight gain 85.0 75.0 Hirsutism/acne 76.3 42.8 Fatigue 66.3 54.1 Sleep disturbances 64.4 41.9 Skin problems 64.7 21.3 Depression/mood problems 58.8 48.1 Muscle weakness 57.8 43.4 Anxiety 54.1 39.1 Hypertension 52.5 22.2 Loss of concentration 45.0 28.4 Memory problems 41.9 30.3 Menstrual disturbances 35.6 12.5 Decreased libido 32.5 12.5 Bone problems 23.1 14.4 Infections 23.8 10.3 Glucose intolerance 17.2 8.4 Blood clot 5.3 Pain(s) 3.1 Vision problems 2.8 Headache 2.5 Cravings 1.6 Other 8.4 1.9 Person who made the initial CS diagnosis In 53.8% (n  = 172) of cases, an endocrinologist made the initial diagnosis of CS or prescribed the first screening tests, Table 3. General practitioners made 18.1% of diagnoses (n  = 58), in the remaining cases a diversity of other physicians directly or indirectly contributed to make the diagnosis, as indicated in Table 3. A small but noticeable number (5.6%, n = 18) of patients self-diagnosed and then convinced their physician to order the diagnostic tests. Table 3 Patient perception of physician specialty. Specialty Person who made the initial diagnosis or suspected Cushing’s syndrome (%) (n = 320) Physicians involved in the management of Cushing’s syndrome (%) (n = 320) Endocrinologist 53.8 97.8 General practitioner/family doctor 18.1 56.3 Self-diagnosed 5.6 – Hospital/emergency doctor 3.8 – Internist 2.5 0.9 Gynecologist 1.9 14.1 Cardiologist 1.9 13.4 Bone specialist 1.9 14.1 Dermatologist 1.6 11.6 Haematologist 0.9 3.8 Ophthalmologist 0.9 3.1 Nurse 0.9 2.5 Radiologist 0.9 0.6 Family or friend 0.9 – Psychiatrist or psycologist 0.9 23.4 Healer 0.6 2.2 Surgeon 0.6 – Oncologist 0.3 6.6 Gastroenterologist 0.3 1.3 Neurologist 0.3 4.1 Others 1.6 – Physiotherapist – 14.4 Dietician – 9.7 Neurosurgeon – 8.1 Social worker – 4.1 Ear, nose and throat specialist – 1.6 Sports physician – 1.3 Sleep specialist – 0.9 Urologist – 0.6 Orthopaedic surgeon – 0.3 Response to treatment At the time of answering the questionnaire, 55.8% (n  = 178) of patients were not in remission. 40.8% of patients (n  = 130) were in true biochemical remission (Fig. 1). This latter group was a composite including patients who responded: ‘In remission (no treatment)’ (16.3%, n = 52), ‘Received an operation to remove adrenal glands’ (22.9%, n = 73) and ‘Treated with hydrocortisone’ (1.6%, n = 5). Thirteen percent of the patients (n  = 41) were on cortisol-lowering treatment and 6.6% of the patients (n  = 21) had not had or were awaiting surgery. Following treatment for CS, 11.6% of the patients (n  = 37) reported having no further symptoms related to the condition, with 88.4% (n  = 283) still symptomatic. Of the total population (n  = 320), the most bothersome symptoms were fatigue (66.3%, n = 212), muscle weakness (48.8%, n = 156) and obesity/weight gain (41.9%, n = 134) (Table 4). View Full Size Figure 1 Patient description of their current clinical situation (n = 319). The category ‘Disease in true remission’ combines scores for ‘In remission (no treatment)’ (16.3%), ‘Received an operation to remove adrenal glands’ (22.9%) and ‘Treated with hydrocortisone’ (1.6%). One person did not complete the question. Citation: Endocrine Connections 11, 7; 10.1530/EC-22-0027 Download Figure Download figure as PowerPoint slide Table 4 Persistent symptoms. Symptom Persistent bothersome symptomsa (%) (n = 320) Treatment received for symptoms (%) (n = 320) Fatigue 66.3 15.9 Muscle weakness 48.8 17.2 Weight gain 41.9 8.4 Depression, mood problems 36.9 28.8 Poor concentration 35.9 4.1 Memory problems 33.8 5.6 Sleep problems 33.1 14.1 Anxiety 30.6 14.7 Decreased libido 25.3 4.1 Bone problems 19.1 21.9 Hypertension 18.4 29.4 Hirsutism 17.5 4.1 Skin problems 16.6 6.9 Glucose intolerance 8.8 10 Menstrual problems 9.1 4.7 Infections 7.2 4.7 Blood clot 3.8 2.2 Acne 2.8 1.3 Other 4.4 5.3 No treatment 1.3 8.1 Only hydrocortisone – 1.6 aUp to five answers were possible. Comparison of time to diagnosis and persistence of symptoms To compare the time to diagnosis and the persistence of symptoms following treatment, an analysis of a number of variables was performed comparing the group with persistent symptoms after treatment (n  = 283) with those who did not (n  = 37) in terms of time to diagnosis. Patients with a longer time to diagnosis reported significantly more frequent weight gain (P = 0.008), and more frequent reduced libido (P = 0.03) after treatment. Although not statistically significant, there was a strong trend towards patients reporting a longer time to diagnosis and a greater frequency of persistent perceived bone issues after treatment (P = 0.053), as well anxiety (P = 0.07) and depression/mood concerns (P = 0.08). Physicians involved in follow-up Once diagnosed, almost all patients (97.8%, n = 313) were managed by an endocrinologist, followed by a GP/family doctor (56.3%, n = 180). A psychiatrist/psychologist was involved in 23.4% (n  = 75), followed by a physiotherapist (14.4%, n = 46), rheumatologist (14.4%, n = 46), gynecologist (14.1%, n = 45), cardiologist (13.4%, n = 43), dermatologist (11.6%, n = 37) and a dietician (9.7%, n = 31) (Table 3). Treatment of persistent symptoms Table 4 shows the prevalence of persistent symptoms after treatment, common ongoing comorbidities included fatigue, muscle weakness and weight gain. The percentage of patients who were treated for comorbidities is also shown. Noticeable undertreatment occurred for many symptoms, for example, fatigue was a consistent symptom for 66.3% (n  = 212), whereas only 15.9% (n  = 51) were receiving ongoing care for fatigue and persistent muscle weakness was reported in 48.8% (n  = 156) with 17.2% (n  = 55) of patients being treated for this (Table 4). The high frequency of persistent symptoms suggests that patients were not followed-up by specific specialists, for example of the 212 patients with persistent fatigue, only 60 (28.2%) were seeing a psychiatrist/psychologist (Table 4). Enduring poor concentration and memory problems were relatively frequent (35.9%, 33.8%) but were rarely treated by a specialist (4.1 and 5.6%, respectively). Three-quarters of patients reported that their work life had been affected (75%, n = 240). Social life (65.3%, n = 209), family life (57.8%, n = 185), interpersonal relationships (51.6%, n = 165), and sexual life (48.8%, n = 155) had also been significantly affected by their illness. Thirty-seven percent of the patients (n  = 118) reported that their economic situation had been negatively affected. ‘Other’ responses for this question included reductions in self-esteem, self-image and self-confidence. Sixty-three percent of patients (193/305) were satisfied with their treatment and 36.7% (n  = 112) were not. Comparative analysis physician questionnaire In the complementary physician questionnaire (n  = 40), unlike the patient questionnaire where most respondents were from the United Kingdom, the United States of America, the Netherlands and France, most of the physicians surveyed were from Western Europe, although there were representatives from other parts of the world. In the physician questionnaire, 83% (n  = 33) were endocrinologists, 13% (n  = 5) internal medicine specialists and 5% (n  = 2) other disciplines. Sixty percent (n  = 24) had over 10 years clinical experience, and 93% (n  = 37) were experienced in the treatment of CS, seeing an average of 10 patients per year. Of the specialities involved in the care of CS, 96% of physicians (n  = 38) considered endocrinologists to be involved, 48% (n  = 19) included family doctors/GPs, 20% (n  = 8) cardiologists, 28% (n  = 11) psychiatrists/psychologists and 28% (n  = 11) included dieticians. These results are consistent with the patients’ perceptions, with the exception of dieticians, who only 10% of patients reported seeing (Table 3). Figure 2A compares the frequency of common symptoms that patients found to be most burdensome during the active phase of the disease, with what physicians thought were the most common symptoms. Although for methodological reasons a statistical comparison was not possible and the comparisons are approximate, these findings suggest that physicians’ perceptions of the prevalence of symptoms were different from those reported by patients. A majority of physicians (Fig. 2A) inadequately estimated (both underestimated and overestimated) the presence of depression, muscle weakness, cognitive impairment, hypertension, bone problems and glucose intolerance. Figure 2B compares the physician’s perception of the frequency of persistent symptoms with the patients’ experience of persistent symptoms. A majority of physicians differently estimated the prevalence of persistent cognitive impairment, muscle weakness, depressive symptoms and weight gain. View Full Size Figure 2 (A) Physician (n = 40) perception of patient comorbidities (left) and patient reports of the most burdensome symptoms during active CS (right). (B) Physician (n = 40) perception of CS symptoms after cure (right) and patient reports of persistent burdensome symptoms after treatment (left). Only the relevant common results from the physician and patient surveys are shown above. The physician survey included categories ‘insulin resistance’, ‘dyslipidaemia’, ‘cardiovascular complications’ and ‘psychosis’, which are not shown because these same categories were not reported in the patient survey. In the patient survey, responses for the categories: ‘anxiety’ were regrouped with ‘depressive symptoms’ and ‘memory problems’ and ‘poor concentration’ were regrouped into the ‘cognitive impairment’ category for easier comparison with the physician survey. Citation: Endocrine Connections 11, 7; 10.1530/EC-22-0027 Download Figure Download figure as PowerPoint slide Discussion This large, international CS patient survey confirms previous findings that despite complaining of multiple symptoms, there is a mean 34-month delay in diagnosis (9). In addition, despite treatment resulting in biochemical remission, patients report persistent comorbidities with associated psychological and social impacts that negatively affect the QoL (11, 12). In the present survey a majority of patients reported that they are not being managed by the appropriate specialists, suggesting an absence in multidisciplinary care that may be secondary to an underestimation of the sequelae of CS by endocrinologists. The present survey confirmed that no specific symptom initiated a diagnosis, but rather a range of burdensome symptoms occurring with similar frequency to those reported in previous surveys (1, 2), with the notable difference in that in a USA-German survey, cognitive and psychological symptoms were bothersome for 61% of US and 66% of German patients (13), whereas in the present survey 38% considered depression/mood problems burdensome. Such differences may be a result of different terms being used to describe depression or mood symptoms as well as cultural differences between populations. The distribution of time to diagnosis, with around 50% diagnosed after 2 years of symptoms and approximately 30% still undiagnosed after 3 years is of a similar magnitude to previous surveys, where 67% of patients waited at least 3 years until diagnosis (14). In the CSFR study in 2014, patients waited a median of 5 years until diagnosis (15). Even though the estimated time to diagnosis may be similar to those in previous studies – 34 months a recent meta-analysis (9) and 2 years in the ERCUSYN database (16) – there is clearly still room for improvement, especially as delayed diagnosis is associated with persistent comorbidities (9, 17, 18, 19). Physicians should consider that in patients with diabetes, hypertension and osteoporosis hypercortisolism may be hidden (20). Due to the elevated incidence of mood and cognitive dysfunction at CS diagnosis, questioning the patient whether they feel that ‘something unusual is happening’ such as mood swings and sleeping disorders may be helpful, as a not insignificant proportion of patients self-diagnose CS (15). Awareness of the clinical presentation patterns of CS should be increased among general practitioners but also in specialists other than endocrinologists. In the current survey, the low proportions of physiotherapists, neurologists, orthopaedic surgeons and psychiatrists identifying CS represent an educational opportunity to improve early diagnosis. It is for instance not widely known that venous thromboembolic events or fragility fractures can be a presenting symptom of CS (20, 21). It is encouraging that rheumatologists already recommend excluding occult endogenous hypercortisolism as a first cause of muscle weakness (22). Multidisciplinary care is recommended for the ongoing management of patients after biochemical cure, with a particular emphasis on the QoL, depressive symptoms and anxiety (11). Specialist care is recommended for specific comorbidities, for example physiotherapists are required to help revert musculoskeletal impairment and prevent further deterioration (23), and bone specialists are required to manage the individual patient fracture risk according to the patient’s age and evolution of bone status after surgery (24). In the present survey, almost all patients were treated by endocrinologists and the role of specialists treating particular comorbidities was limited despite the ongoing complaints in patients. This is particularly evident in the high prevalence of muscle weakness, which was rarely managed by physiotherapists. This failure to provide multidisciplinary care may account for why nearly 40% of CS patients were dissatisfied with their treatment. The exact number of patients with controlled hypercortisolism cannot be evaluated from the questionnaire. The degree of control of hypercortisolism remains debatable in patients treated with cortisol-lowering agents and may not be equivalent to remission following surgery (25, 26). In the present survey, the vast majority reported persistent and burdensome symptoms despite treatment, which is in line with previous reports of persistent low body satisfaction and high rates of depression and anxiety (27). When compared with longer time to diagnosis, the only comparisons that reached statistical significance were weight gain and decreased libido; whereas, there was a trend towards extended time to diagnosis and worsening of depressive symptoms and anxiety. These findings confirm the need for early diagnosis and treatment as the duration of exposure to hypercortisolism is a predictor of persistent morbidities and long-term impairments in the QoL (15). Although the parallel physician perception questionnaire was limited by small size and methodological differences in comparison to the patient survey, the results suggest that physicians’ perceptions contrast with patients’ experiences. Physicians tended to underestimate weight gain and cognitive impairment during the active phase of the disease, and underestimate the prevalence of cognitive impairment, depressive symptoms and muscle weakness following treatment. A recent survey on physician vs patient perspectives on postsurgical recovery also highlighted important differences in perceptions, suggestive of poor communication (28). However, these comparisons are limited in that physicians’ estimations may be influenced by the clinical importance of certain symptoms, whereas for patients these may or may not be particularly onerous. Nevertheless, these findings do suggest that some symptoms do not receive enough attention, possibly due to insufficient awareness of these symptoms as real clinical problems. The strength of this survey is that it includes a large and international population, whereas previous surveys tended to be carried out in individual countries. It informs the quantitative and qualitative understanding of CS patients’ experiences with their treatment journeys and highlights some important lacunae in the management of CS, as well as identifying some differences in physician and patient perceptions about the burden of CS comorbidities. A limitation in the study design was the inability of the questionnaire to clearly distinguish a subgroup who were biochemically cured and had ongoing symptoms. Indeed, remission was based on patients’ declarations instead of an objective hormone assessment, which is an unavoidable limitation of online surveys. On the other hand, the survey was precisely designed to capture patients’ perceptions about their health status, regardless of having received a diagnosis of “remission” or not from their endocrinologist. Patients who had pituitary surgery were not considered as being “in remission” in order to mitigate the impact of this limitation on the final analysis. The major limitations of this survey also include its cross-sectional design, depending upon an individual assessment at a single time point and relying on patients’ memories. The comparison of the patient and doctor cohorts was limited by having different questionnaire methodologies and the lack of matching of patients and their endocrinologists. The questionnaire results could also not be corroborated against clinical records and no matched control group was assessed. Selection basis was another potential limitation, as patients were recruited through patient associations, which may have skewed the population towards patients with a higher disease burden; moreover, patients with chronic conditions who respond to questionnaires tend to have a low QoL (15). Conclusion This international cross-sectional study confirms that symptoms experienced by patients with CS are diverse, burdensome and endure beyond treatment (20). Delays in diagnosis may contribute to persistent symptoms after treatment. Care of patients with persistent comorbidities affecting the QoL (e.g. obesity, cognitive impairment, depression and muscle weakness) could be improved through more frequent multidisciplinary collaboration with healthcare professionals outside of endocrinology. Supplementary materials This is linked to the online version of the paper at https://doi.org/10.1530/EC-22-0027. Declaration of interest A T participated in research studies, received research grants and honorarium for talks at symposia and boards from HRA Pharma Rare Diseases, Pfizer, Novartis and Recordati Rare Diseases. C A participated in research studies and received honoraria for talks at symposia and participation in advisory boards from HRA Pharma Rare Diseases. E V participated in research studies and received honoraria for talks at symposia and participation in advisory boards from HRA Pharma Rare Diseases and Recordati Rare Diseases. I C is an investigator in studies using relacorilant (Corcept Therapeutics) in patients with hypercortisolism and has received consulting fees from Corcept Therapeutics and HRA Pharma Rare Diseases. R F has received research grants from Strongbridge and Recordati Rare Diseases and honoraria for talks at symposia and for participating in advisory boards from HRA Pharma Rare Diseases, Corcept, Ipsen, Novartis and Recordati Rare Diseases. M A H and S I are employees of HRA Pharma Rare Diseases. R A F is a member of the editorial board of Endocrine Connections. He was not involved in the editorial or review process of this paper, on which he is listed as an authors. Funding This work did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector. Acknowledgements The authors would like to thank all the patients involved who responded and the World Association for Pituitary Organisations (WAPO), Adrenal Net, China Hypercortisolism Patient Alliance, the Cushing’s Support & Research Foundation (CSRF) and the Pituitary Foundation for assisting with the distribution of the patient questionnaires. The authors would also like to gratefully acknowledge the contribution of the ApotheCom communications agency for helping to conduct this survey. References 1↑ Barbot M, Zilio M, Scaroni C. Cushing’s syndrome: overview of clinical presentation, diagnostic tools and complications. Best Practice and Research: Clinical Endocrinology and Metabolism 2020 34 101380. (https://doi.org/10.1016/j.beem.2020.101380) PubMed Search Google Scholar Export Citation 2↑ Feelders RA, Newell-Price J, Pivonello R, Nieman LK, Hofland LJ, Lacroix A. Advances in the medical treatment of Cushing’s syndrome. Lancet: Diabetes and Endocrinology 2019 7 300–312. (https://doi.org/10.1016/S2213-8587(1830155-4) PubMed Search Google Scholar Export Citation 3↑ Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing’s syndrome. Lancet 2015 386 913–927. (https://doi.org/10.1016/S0140-6736(1461375-1) Crossref PubMed Search Google Scholar Export Citation 4↑ Pivonello R, De Martino MC, De Leo M, Simeoli C, Colao A. Cushing’s disease: the burden of illness. Endocrine 2017 56 10–18. (https://doi.org/10.1007/s12020-016-0984-8) Crossref PubMed Search Google Scholar Export Citation 5↑ Clayton RN, Jones PW, Reulen RC, Stewart PM, Hassan-Smith ZK, Ntali G, Karavitaki N, Dekkers OM, Pereira AM, Bolland M, et al.Mortality in patients with Cushing’s disease more than 10 years after remission: a multicentre, multinational, retrospective cohort study. Lancet: Diabetes and Endocrinology 2016 4 569–576. (https://doi.org/10.1016/S2213-8587(1630005-5) PubMed Search Google Scholar Export Citation 6↑ Feelders RA, Pulgar SJ, Kempel A, Pereira AM. The burden of Cushing’s disease: clinical and health-related quality of life aspects. European Journal of Endocrinology 2012 167 311–326. (https://doi.org/10.1530/EJE-11-1095) Crossref PubMed Search Google Scholar Export Citation 7↑ Schernthaner-Reiter MH, Siess C, Gessl A, Scheuba C, Wolfsberger S, Riss P, Knosp E, Luger A, Vila G. Factors predicting long-term comorbidities in patients with Cushing’s syndrome in remission. Endocrine 2019 64 157–168. (https://doi.org/10.1007/s12020-018-1819-6) Crossref PubMed Search Google Scholar Export Citation 8↑ Ferraù F, Korbonits M. Metabolic comorbidities in Cushing’s syndrome. European Journal of Endocrinology 2015 173 M133–M157. (https://doi.org/10.1530/EJE-15-0354) Crossref PubMed Search Google Scholar Export Citation 9↑ Rubinstein G, Osswald A, Hoster E, Losa M, Elenkova A, Zacharieva S, Machado MC, Hanzu FA, Zopp S, Ritzel K, et al.Time to diagnosis in Cushing’s syndrome: a meta-analysis based on 5367 patients. Journal of Clinical Endocrinology and Metabolism 2020 105 dgz136. (https://doi.org/10.1210/clinem/dgz136) PubMed Search Google Scholar Export Citation 10↑ Nieman LK, Biller BM, Findling JW, Murad MH, Newell-Price J, Savage MO, Tabarin A & Endocrine Society. Treatment of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. Journal of Clinical Endocrinology and Metabolism 2015 100 2807–2831. (https://doi.org/10.1210/jc.2015-1818) Crossref PubMed Search Google Scholar Export Citation 11↑ Webb SM, Santos A, Aulinas A, Resmini E, Martel L, Martínez-Momblán MA, Valassi E. Patient-centered outcomes with pituitary and parasellar disease. Neuroendocrinology 2020 110 882–888. (https://doi.org/10.1159/000506809) Crossref PubMed Search Google Scholar Export Citation 12↑ Webb SM, Santos A, Resmini E, Martínez-Momblán MA, Martel L, Valassi E. Quality of life in Cushing’s disease: a long term issue? Annales d’Endocrinologie 2018 79 132–137. (https://doi.org/10.1016/j.ando.2018.03.007) Crossref PubMed Search Google Scholar Export Citation 13↑ Kreitschmann-Andermahr I, Siegel S, Gammel C, Campbell K, Edwin L, Grzywotz A, Kuhna V, Koltowska-Häggström M, Müller O, Buchfelder M, et al.Support needs of patients with Cushing’s disease and Cushing’s syndrome: results of a survey conducted in Germany and the USA. International Journal of Endocrinology 2018 2018 9014768. (https://doi.org/10.1155/2018/9014768) PubMed Search Google Scholar Export Citation 14↑ Kreitschmann-Andermahr I, Psaras T, Tsiogka M, Starz D, Kleist B, Siegel S, Milian M, Kohlmann J, Menzel C, Führer-Sakel D, et al.From first symptoms to final diagnosis of Cushing’s disease: experiences of 176 patients. European Journal of Endocrinology 2015 172 285–289. (https://doi.org/10.1530/EJE-14-0766) Crossref PubMed Search Google Scholar Export Citation 15↑ Papoian V, Biller BM, Webb SM, Campbell KK, Hodin RA, Phitayakorn R. Patients’ perception on clinical outcome and quality of life after a diagnosis of Cushing syndrome. Endocrine Practice 2016 22 51–67. (https://doi.org/10.4158/EP15855.OR) Crossref PubMed Search Google Scholar Export Citation 16↑ Valassi E, Santos A, Yaneva M, Tóth M, Strasburger CJ, Chanson P, Wass JA, Chabre O, Pfeifer M, Feelders RA, et al.The European Registry on Cushing’s syndrome: 2-year experience. Baseline demographic and clinical characteristics. European Journal of Endocrinology 2011 165 383–392. (https://doi.org/10.1530/EJE-11-0272) Crossref PubMed Search Google Scholar Export Citation 17↑ Colao A, Pivonello R, Spiezia S, Faggiano A, Ferone D, Filippella M, Marzullo P, Cerbone G, Siciliani M, Lombardi G. Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. Journal of Clinical Endocrinology and Metabolism 1999 84 2664–2672. (https://doi.org/10.1210/jcem.84.8.5896) Search Google Scholar Export Citation 18↑ Faggiano A, Pivonello R, Spiezia S, De Martino MC, Filippella M, Di Somma C, Lombardi G, Colao A. Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during active disease and 1 year after disease remission. Journal of Clinical Endocrinology and Metabolism 2003 88 2527–2533. (https://doi.org/10.1210/jc.2002-021558) Crossref Search Google Scholar Export Citation 19↑ Lambert JK, Goldberg L, Fayngold S, Kostadinov J, Post KD, Geer EB. Predictors of mortality and long-term outcomes in treated Cushing’s disease: a study of 346 patients. Journal of Clinical Endocrinology and Metabolism 2013 98 1022–1030. (https://doi.org/10.1210/jc.2012-2893) Crossref Search Google Scholar Export Citation 20↑ Giovanelli L, Aresta C, Favero V, Bonomi M, Cangiano B, Eller-Vainicher C, Grassi G, Morelli V, Pugliese F, Falchetti A, et al.Hidden hypercortisolism: a too frequently neglected clinical condition. Journal of Endocrinological Investigation 2021 44 1581–1596. (https://doi.org/10.1007/s40618-020-01484-2) Crossref Search Google Scholar Export Citation 21↑ van der Pas R, Leebeek FW, Hofland LJ, de Herder WW, Feelders RA. Hypercoagulability in Cushing’s syndrome: prevalence, pathogenesis and treatment. Clinical Endocrinology 2013 78 481–488. (https://doi.org/10.1111/cen.12094) Crossref Search Google Scholar Export Citation 22↑ Szczęsny P, Świerkocka K, Olesińska M. Differential diagnosis of idiopathic inflammatory myopathies in adults – the first step when approaching a patient with muscle weakness. Reumatologia 2018 56 307–315. (https://doi.org/10.5114/reum.2018.79502) Crossref Search Google Scholar Export Citation 23↑ Troy KL, Mancuso ME, Butler TA, Johnson JE. Exercise early and often: effects of physical activity and exercise on women’s bone health. International Journal of Environmental Research and Public Health 2018 15 878. (https://doi.org/10.3390/ijerph15050878) Search Google Scholar Export Citation 24↑ Kanis JA, Harvey NC, McCloskey E, Bruyère O, Veronese N, Lorentzon M, Cooper C, Rizzoli R, Adib G, Al-Daghri N, et al.Algorithm for the management of patients at low, high and very high risk of osteoporotic fractures. Osteoporosis International 2020 31 1–12. (https://doi.org/10.1007/s00198-019-05176-3) Crossref Search Google Scholar Export Citation 25↑ Newell-Price J, Pivonello R, Tabarin A, Fleseriu M, Witek P, Gadelha MR, Petersenn S, Tauchmanova L, Ravichandran S, Gupta P, et al.Use of late-night salivary cortisol to monitor response to medical treatment in Cushing’s disease. European Journal of Endocrinology 2020 182 207–217. (https://doi.org/10.1530/EJE-19-0695) Crossref Search Google Scholar Export Citation 26↑ Ceccato F, Zilio M, Barbot M, Albiger N, Antonelli G, Plebani M, Watutantrige-Fernando S, Sabbadin C, Boscaro M, Scaroni C. Metyrapone treatment in Cushing’s syndrome: a real-life study. Endocrine 2018 62 701–711. (https://doi.org/10.1007/s12020-018-1675-4) Crossref Search Google Scholar Export Citation 27↑ Vermalle M, Alessandrini M, Graillon T, Paladino NC, Baumstarck K, Sebag F, Dufour H, Brue T, Castinetti F. Lack of functional remission in Cushing’s syndrome. Endocrine 2018 61 518–525. (https://doi.org/10.1007/s12020-018-1664-7) Crossref Search Google Scholar Export Citation 28↑ Acree R, Miller CM, Abel BS, Neary NM, Campbell K, Nieman LK. Patient and provider perspectives on postsurgical recovery of Cushing syndrome. Journal of the Endocrine Society 2021 5 bvab109. (https://doi.org/10.1210/jendso/bvab109) Search Google Scholar Export Citation From https://ec.bioscientifica.com/view/journals/ec/11/7/EC-22-0027.xml?body=fullhtml-41628
  8. Introduction: Patients with Cushing’s syndrome (CS) represent a highly sensitive group during corona virus disease 2019 (COVID-19) pandemic. The effect of multiple comorbidities and immune system supression make the clinical picture complicated and treatment challenging. Case report: A 70-year-old female was admitted to a covid hospital with a severe form of COVID-19 pneumonia that required oxygen supplementation. Prior to her admission to the hospital she was diagnosed with adrenocorticotropic hormone (ACTH)-dependent CS, and the treatment of hypercortisolism had not been started yet. Since the patient’s condition was quickly deteriorating, and with presumend immmune system supression due to CS, we decided on treatement with intraveonus immunoglobulins (IVIg) that enabled quick onset of immunomodulatory effect. All comorbidities were treated with standard of care. The patient’s condition quickly stabilized with no direct side effects of a given treatment. Conclusion: Treatment of COVID-19 in patients with CS faces many challenges due to the complexity of comorbidity effects, immunosupression and potential interactions of available medications both for treatment of COVID-19 and CS. So far, there are no guidelines for treatment of COVID-19 in patients with active CS. It is our opinion that immunomodulating therapies like IVIg might be an effective and safe treatment modality in this particularly fragile group of patients. Introduction Dealing with corona virus disease 2019 (COVID-19) focused medical attention on several sensitive population groups. While the knowledge is still improving, some of the recognized risk factors for severe form of the disease are male sex, older age, obesity, hypertension, diabetes mellitus, and cardio-vascular disease (1). This constellation of morbidities is particularly intriguing from endocrine point of view, since they are all features of patients with Cushing’s syndrome (CS). Another relevant feature of CS is a propensity for infections due to profound immune suppression, with prevalence of 21-51%; even more so, infections are the second cause of death (31%) in CS after disease progression, and are the main cause of death (37%) in patients who died within 90 days of diagnosis (2). Immune system alterations in CS lead to depression of both innate and adaptive immune responses, favoring not only commonly acquired but also opportunistic bacterial infections, fungal infections, and severe, disseminated viral infections (3). Susceptibility to infections directly positively correlates with cortisol level, and is more frequent in ectopic ACTH secretion (EAS). Hypercortisolism hampers the first-line response to external agents and consequent activation of the adaptive response (3). Consequently, there is a decrease in total number of T-cells and B-cells, as well as a reduction in T-helper cell activation, which might favor opportunistic and intracellular infections. On the other hand, an increase in pro-inflammatory cytokine secretion, including interleukine-6 (IL-6) and tumor necrosis factor-α (TNF-α) leads to persistent, low-grade inflammation. It is important to note that immune system changes are confirmed both during the active phase and while in remission of CS (3). In view of the aforementioned data, a few topics emerge regarding patients with CS and COVID-19. Initial clinical presentation may be altered – low-grade chronic inflammation and poor immune reaction might limit febrile response in the early phase of infection, aggravating timely diagnosis (4). Increased cytokine levels may put patients with CS at increased risk of severe course and progression to acute respiratory distress syndrome (ARDS). On the other hand, the rise in cytokine levels associated with exposure to external agents is significantly hampered, probably because of persistently elevated pro-inflammatory cytokine secretion (4, 5). Patients with CS have a possibility for prolonged duration of viral infections and risk for superinfections leading to sepsis and increased mortality risk; this is especially relevant for hospitalized patients and mandates empirical prophylaxis with broad-spectrum antibiotics (6). Both COVID-19 and CS individually represent disease states of increased thromboembolic (TE) risk, requiring additional care (6). Due to very limited data, it is still not possible to address these topics with certainty and make recommendations for optimal management of these patients. Current clinical practice guidance for management of CS during COVID-19 commissioned by the European Society of Endocrinology (ESE) emphasizes prompt and optimal control of hypercortisolism and adequate treatment of all comorbidities (7). Although individual circumstances must always be considered, we need more direct clinical experience, especially regarding the actual treatment of COVID-19 in this sensitive group. So far, there are only five published case studies of patients with CS and COVID-19, with eight patients in total (8–12). In this study, we present a patient with newly diagnosed ACTH-dependent CS who was diagnosed with COVID-19 before the initiation of specific medical treatment. Case Report A 70-year-old female was admitted to our Covid hospital due to bilateral interstitial pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Six days before she was discharged from endocrinology department of another hospital where she was hospitalized due to newly diagnosed diabetes mellitus. Her personal history was unremarkable, and she was vaccinated with two doses of inactivated COVID-19 vaccine Sinopharm BBIBP. During this hospitalization Cushingoid features were noted (moon face, centripetal obesity, thin extremities with multiple hematomas, bilateral peripheral edema), as well as diabetes mellitus (HbA1c 8.7%), arterial hypertension (BP 180/100 mmHg), hypokalemia (2.0 mmol/L), mild leukocytosis (WBC 12.9x10e9/L) with neutrophilia, and mildly elevated CRP (12.3 mg/L). Hormonal functional testing confirmed ACTH-dependent Cushing’s syndrome: morning ACTH 92.6 pg/mL (reference range 10-60 pg/mL), morning serum cortisol 1239 nmol/L (reference range 131-642 nmol/L), midnight serum cortisol 1241 nmol/L, lack of cortisol suppression in overnight dexamethasone suppression test (978 nmol/L). Pituitary MRI was unremarkable other than empty sella, and CT scan of thorax normal other than left adrenal hyperplasia. Diabetes mellitus was successfully controlled with metformin, hypertension with ACE-inhibitor, Ca-channel blocker and beta-blocker, and hypokalemia with potassium supplementation along with spironolactone. Steroidogenesis inhibitors were not available in this institution, but before referral to a tertiary care hospital she was tested for SARS-CoV-2, and the test came back positive (sample was obtained by nasopharyngeal swab). Since she was asymptomatic, with normal thoracic CT scan and stabile CRP level (9.1 mg/L), she was discharged with detailed recommendations for conduct in case of progression of COVID symptoms. Next day she started feeling malaise with episodes of fever (up to 38.2°C). Symptomatic therapy was advised in an outpatient clinic (no antiviral therapy was recommended), but 5 days later respiratory symptoms ensued. During examination, the patient was weak, with dyspnea and tachypnea (RR 22/min), afebrile (36.9°C) and with oxygen saturation (SO2) of 85% measured by pulse oximeter. Chest X-ray confirmed bilateral interstitial pneumonia with parenchymal consolidation in the right lower lung lobe, so she was referred to the COVID hospital. Laboratory analyses upon admission are presented in the Supplementary Table 1. In addition to her previous testing, elevated chromogranin A (CgA) level was verified (538.8 ng/mL, reference range 11-98.1). The patient was treated with supplemental oxygen with maximal flow of 13 l/min. For the reason of previously confirmed severe endogenous hypercortisolism, glucocorticoids were not administered. Due to limited therapeutic options and presumed further clinical deterioration, we decided to treat the patient with intravenous immunoglobulins (IVIg) 30 g iv for 5 days, starting from the 2nd day of hospitalization. We did not observe any side effects of a given treatment. In parallel, the patient received broad-spectrum antibiotics (ceftazidime and levofloxacin), proton pump inhibitor, LMWH in prophylactic dose, oral and parenteral potassium supplementation along with spironolactone. She continued with her previous antihypertensive therapy with good control of blood pressure. While the patient was on oxygen supplementation, glycaemia was controlled with short acting insulin before meals. Following given treatment, we observed clinical, biochemical (Supplementary Table 1.) and radiological improvement (Supplementary Figure 1). Oxygen supplementation was gradually discontinued. With regard to D-dimer levels and risk factors for TE events due to COVID-19 and CS, we performed color Doppler scan of lower extremities veins, and CT pulmonary angiography, but there were no signs of thrombosis. During hospital stay, there were no signs of secondary infection and cotrimoxazole was not added to the current treatment. The patient was discharged with advice to continue her prior medical therapy along with increased dose of spironolactone and initiation of rivaroxaban. She was referred to the tertiary institution for the initiation of steroidogenesis inhibitor and further diagnostics. Discussion Endogenous Cushing’s syndrome is a rare disease with an incidence of 0.7-2.4 million person-years in European population-based studies (13). Significant morbidity yields a standard mortality ratio of 3.7 (95%CI 2.3–5.3), with the highest mortality during the first year after initial presentation. COVID-19 pandemic imposes additional challenge to this fragile group of patients. Due to lack of solid experience, it is still difficult to define potential clinical course and outcome of patients with CS and COVID-19. In addition, currently there are no guidelines for management of SARS-CoV-2 infection in patients with active CS. So far, only two small case series followed patients with Cushing’s disease (CD) in various disease stages (not all were active) during COVID-19 pandemic (9, 12). Small number of SARS-CoV-2 positive cases (3/22 and 2/61) is clearly biased by shortness of analyzed period (one and a half, and three and a half months). Additionally, a small number of patients was actually tested by nasopharyngeal swab for SARS-CoV-2 even in the presence of indicative symptoms, albeit mild. Nevertheless, all these limitations included, it seems that the prevalence of COVID-19 might be greater in patients with CD than in general population (12). This is accordant with studies on patients on exogenous glucocorticoid (GC) treatment. Overall, there is a growing body of evidence that patients on chronic GC therapy are at higher risk for SARS-CoV-2 infection and a severe course of disese, regardless of age and comorbidities (14). In many studies patients on high-dose GC therapy were at particularly high risk for a severe course of disease, so it is reasonable to assume that there is a dose-dependent effect (14). All patients except one with endogenous CS and COVID-19 presented in literature were hospitalized, with majority of them requiring oxygen supplementation, which classified them as serious cases of disease (8–12). Parameters of inflammation (namely CRP) were highly variable (from normal to elevated) and did not seem to reflect severity of COVID-19 consistently. Two patients had fatal outcome; one with postoperative hypocortisolism that required stress doses of hydrocortisone, and with terminal kidney failure as significant comorbidity; the other with suspected EAS who developed ARDS in contrast to normal CRP and absence of fever (9, 12). Based on reported cortisol levels in these patients, it seems that the severity of COVID-19 pneumonia depended on severity of hypercortisolism (8–12). A patient with probable EAS even developed ARDS, which adds to ongoing controversy regarding the risk of ARDS due to SARS-CoV-2 in patients with CS (3, 15). We ourselves have treated a severely obese female patient with active CD on pasireotide, who developed ARDS despite addition of high doses of methylprednisolone (unpublished data). Additional risk imposed by comorbidities cannot be underestimated (15, 16). This is particularly relevant for obesity, that not only hampers immune system (leading to increased levels of IL-1, IL-6, and TNF-α), but adipocytes represent a reservoir of SARS-CoV-2 thanks to ACE2 receptor, crucial for virus attachment (15). Majority of depicted patients with active CS were already medically treated for hypercortisolism but with various compliance (sometimes very poor), and two young patients have just started steroidogenesis inhibitors (metyrapone/ketoconazole). Infection with SARS-CoV-2 was treated by national protocols that were mostly based on supportive care. These protocols changed over time, so a few patients received antiviral therapy (favipiravir), and one young patient with suspected EAS was treated with methylprednisolone along with high doses of ketoconazole (10). Treatment was complicated with adrenal insufficiency (AI) in three patients (8, 11, 12). We have presented a patient with CS and rapid development of serious case of COVID-19 pneumonia that required hospital admission and oxygen support. She was febrile and had positive laboratory parameters of inflammation. Her CS was active, with very high cortisol levels, no prior medical treatment and with clinical suspicion of EAS (ACTH-dependent disease of short duration, severe hypercortisolism, hypokalemia, very high CgA, no visible pituitary tumor). With this in mind, and with regard to rapid progression of COVID-19 pneumonia, it was our opinion that the patient required treatment with quick onset and presumable immune system modulation. A logical approach to treatment of CS during COVID-19 pandemic includes meticulous therapy for comorbidities (namely antihypertensives, anti-diabetic drugs, low molecular weight heparin, etc.), and steroidogenesis inhibitors for treatment for hypercortisolemia (7). While some of these drugs demonstrate quick onset of action regarding normalization of cortisol level (and hence improve clinical comorbidities), rapid effects on immune system responses are not likely, which might be of great relevance in case of acute infection. Secondly, adrenolytic therapy increases a risk of AI, which can be even more perilous than CS in case of infection or other stress situations (8, 12, 15, 16). A modified “block and replace” approach may be considered, where addition of hydrocortisone could diminish the risk of AI (7). Still, there are a few potential pitfalls with this regimen as well. Some people fail to respond to high doses of adrenal-blocking agents due to genetic differences in the steroidogenic enzymes, since therapeutic responses to metyrapone and ketoconazole in patients with CS are associated with the polymorphism in the CYP17A1 gene (17). Additionally, there are not enough data about possible interactions between adrenolytic drugs (majority of them being metabolized through the CYP450/CYP3A4 pathway) and medications used to treat COVID-19, most of which are only just emerging (18). Special concerns, amplified with similar potential effects of SARS-CoV-2 itself as well as specific therapies are liver dysfunction (metyrapone, ketoconazole), hypokalemia (metyrapone, ketoconazole), QT-interval prolongation (ketoconazole, osilodrostat), gastrointestinal distress (mitotane, osilodrostat, etomidate) (18). Metyrapone may cause accumulation of androgenic precursors secondary to the blockade of cortisol synthesis, that can virtually enhance expression of transmembrane protease serine 2 (TMPRSS2), found to be essential to activate the viral spikes, induce viral spread, and pathogenesis in the infected hosts (19). Another important issue concerns biochemical estimation of disease control (and hence risk for AI), since most commercially available assays can overestimate cortisol level in patients treated with metyrapone due to cross-reactivity with the precursor 11-deoxicortisol (7, 15). Mass spectrometry is a method of choice to overcome this problem, but it is not available in many centers. Some centers advocate titration and/or temporary halting medical therapies in the treatment of patients with CS in the context of COVID-19 infection (20). Treatement was stopped in a few patients with severe COVID-19 symptoms who were then given high dose GC for a few days with no long-term complications, and with full recovery (20). There are no data about the effect of anti-viral drugs in patients with CS and COVID-19. A special concern refers to adipose tissuse, as adipose tissue is difficult for antiviral drugs to reach. It cannot be excluded that the constant release of viral replicas from the adipose tissue reservoir may interfere with COVID-19 infection treatment, delaying its resolution and favoring a worse prognosis (15). If antiviral drugs are started, it is suggested that immunocompromised patients may require prolonged therapy (18). However, the timing is difficult in practice and candidates for antivirals are limited. Since the clinical course of COVID-19 only initially depends on viral replication, immunomodulatory therapy emerged as a valuable treatment option to control the host immune response. This became apparent ever since RECOVERY trial proved efficacy of glucocortiods (21). But this therapeutic option is fairly inapplicable in patients with active CS, since glucocorticoid treatment in chronic hypercortisolism seems to enhance immune system alterations (22). In parallel with the development of new agents, it is prudent to study the efficacy of existing therapeutic options with acceptable safety profile (20). Beside glucocorticoids, inflammation blockers, intravenous immunoglobulin and convalescent plasma were used in various settings (23). Intravenous immunoglobulin (IVIg) is a blood product prepared from the serum pooled from thousands of healthy donors, containing a mixture of polyclonal IgG antibodies, mostly IgG1 and IgG2 subclasses (24, 25). Initial rationale for its use was immunodefficiency due to hypoglobulinemia. Since then it has been shown that IVIg exerts pleiotropic immunomodulating action involving both innate and adaptive immunity and it has been used in a variety of diseases (26). In previous studies on MERS (Middle East Respiratory Syndrome) and SARS (Severe Acute Respiratory Syndrome) using IVIg showed beneficial clinical effects (25). Although pathogenesis of COVID-19 has not be fully elucidated, there is a consensus that immune-mediated inflammation plays an important role in the progression of this disease, just as it did in prior coronavirus infections (27). In this context, the actual role of IVIg in COVID-19 patients might be not to boost the immune system, but through its immunomodulatory effect to suppress a hyperactive immune response that is seen in some patients (28). So far, a limited number of studies, case series and meta-analyses demonstrate a promising potential of IVIg in patients with COVID-19. The effect was demonstrated in terms of mortality, improvement of clinical symptoms, laboratory examinations, imaging and length of hospital stay, especially in patients with moderate/severe form of the disease, and with emphasis on early administration (within 3 days of admission) (24, 25, 27–31). A recent double blind, placebo-controlled, phase 3, randomized trial tested hyperimmune intravenous immunoglobulin (hIVIg) to SARS-CoV-2 derived from recovered donors with no demonstrated effect compared with standard of care, but therapy was administered in patients symptomatic up to 12 days (32). Additional clinical trials are underway, hopefully with more guidance for proper selection of patients that might benefit from this type of treatment. Conclusion To our knowledge, this is the first case of IVIg treatment in a COVID-19 patient with CS. It is our opinion that immune-modulating properties of IVIg might present an attractive treatment option, especially in those CS patients that show rapid clinical progression and positive laboratory parameters of inflammation. While we await for new therapeutic modalities for COVID-19 and while some of the modalities remain not widely available, IVIg is more accessible, safe method, which could be rescuing in carefully selected patients. Of note, we consider our patient’s vaccinal status as an unquestionable positive contributor to the favorable outcome Data Availability Statement The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation. Ethics Statement Ethical review and approval was not required for the study on human participants in accordance with the local legislation and institutional requirements. The patients/participants provided their written informed consent to participate in this study. Written informed consent was obtained from the individual(s) for the publication of any potentially identifiable images or data included in this article. Author Contributions BP, AS, JV, TG, MJ-L, JV, VS, ZG and TA-V analyzed and interpreted the patient data. BP, AP, DI, and DJ were major contributors in writing the manuscript. All authors contributed to the article and approved the submitted version. Conflict of Interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Publisher’s Note All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher. Supplementary Material The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo.2022.889928/full#supplementary-material References 1. Hu J, Wang Y. The Clinical Characteristics and Risk Factors of Severe COVID-19. Gerontology (2021) 67(3):255–66. doi: 10.1159/000513400 PubMed Abstract | CrossRef Full Text | Google Scholar 2. Valassi E, Tabarin A, Brue T, Feelders RA, Reincke M, Netea-Maier R, et al. High Mortality Within 90 Days of Diagnosis in Patients With Cushing's Syndrome: Results From the ERCUSYN Registry. Eur J Endocrinol (2019) 181(5):461–72. doi: 10.1530/EJE-19-0464 PubMed Abstract | CrossRef Full Text | Google Scholar 3. Hasenmajer V, Sbardella E, Sciarra F, Minnetti M, Isidori AM, Venneri MA. The Immune System in Cushing's Syndrome. Trends Endocrinol Metab (2020) 31(9):655–69. doi: 10.1016/j.tem.2020.04.004 PubMed Abstract | CrossRef Full Text | Google Scholar 4. Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BM, Colao A. Complications of Cushing's Syndrome: State of the Art. Lancet Diabetes Endocrinol (2016) 4(7):611–29. doi: 10.1016/S2213-8587(16)00086-3 PubMed Abstract | CrossRef Full Text | Google Scholar 5. Martins-Filho PR, Tavares CSS, Santos VS. Factors Associated With Mortality in Patients With COVID-19. A Quantitative Evidence Synthesis of Clinical and Laboratory Data. Eur J Intern Med (2020) 76:97–9. doi: 10.1016/j.ejim.2020.04.043 PubMed Abstract | CrossRef Full Text | Google Scholar 6. Pivonello R, Ferrigno R, Isidori AM, Biller BMK, Grossman AB, Colao A. COVID-19 and Cushing's Syndrome: Recommendations for a Special Population With Endogenous Glucocorticoid Excess. Lancet Diabetes Endocrinol (2020) 8(8):654–6. doi: 10.1016/S2213-8587(20)30215-1 PubMed Abstract | CrossRef Full Text | Google Scholar 7. Newell-Price J, Nieman LK, Reincke M, Tabarin A. ENDOCRINOLOGY IN THE TIME OF COVID-19: Management of Cushing's Syndrome. Eur J Endocrinol (2020) 183(1):G1–7. doi: 10.1530/EJE-20-0352 PubMed Abstract | CrossRef Full Text | Google Scholar 8. Beretta F, Dassie F, Parolin M, Boscari F, Barbot M, Busetto L, et al. Practical Considerations for the Management of Cushing's Disease and COVID-19: A Case Report. Front Endocrinol (Lausanne) (2020) 11:554. doi: 10.3389/fendo.2020.00554 PubMed Abstract | CrossRef Full Text | Google Scholar 9. Belaya Z, Golounina O, Melnichenko G, Tarbaeva N, Pashkova E, Gorokhov M, et al. Clinical Course and Outcome of Patients With ACTH-Dependent Cushing's Syndrome Infected With Novel Coronavirus Disease-19 (COVID-19): Case Presentations. Endocrine (2021) 72(1):12–9. doi: 10.1007/s12020-021-02674-5 PubMed Abstract | CrossRef Full Text | Google Scholar 10. Rehman T. Image of the Month: Diagnostic and Therapeutic Challenges in the Management of Ectopic ACTH Syndrome: A Perfect Storm of Hypercortisolism, Hyperglycaemia and COVID-19. Clin Med (Lond) (2021) 21(3):231–4. doi: 10.7861/clinmed.2021-0005 PubMed Abstract | CrossRef Full Text | Google Scholar 11. Yuno A, Kenmotsu Y, Takahashi Y, Nomoto H, Kameda H, Cho KY, et al. Successful Management of a Patient With Active Cushing's Disease Complicated With Coronavirus Disease 2019 (COVID-19) Pneumonia. Endocr J (2021) 68(4):477–84. doi: 10.1507/endocrj.EJ20-0613 PubMed Abstract | CrossRef Full Text | Google Scholar 12. Serban AL, Ferrante E, Carosi G, Indirli R, Arosio M, Mantovani G. COVID-19 in Cushing Disease: Experience of a Single Tertiary Centre in Lombardy. J Endocrinol Invest (2021) 44(6):1335–6. doi: 10.1007/s40618-020-01419-x PubMed Abstract | CrossRef Full Text | Google Scholar 13. Sharma ST, Nieman LK, Feelders RA. Cushing's Syndrome: Epidemiology and Developments in Disease Management. Clin Epidemiol (2015) 7:281–93. doi: 10.2147/CLEP.S44336 PubMed Abstract | CrossRef Full Text | Google Scholar 14. Vogel F, Reincke M. Endocrine Risk Factors for COVID-19: Endogenous and Exogenous Glucocorticoid Excess. Rev Endocr Metab Disord (2021) 23(2):233–50. doi: 10.1007/s11154-021-09670-0 PubMed Abstract | CrossRef Full Text | Google Scholar 15. Guarnotta V, Ferrigno R, Martino M, Barbot M, Isidori AM, Scaroni C, et al. Glucocorticoid Excess and COVID-19 Disease. Rev Endocr Metab Disord (2021) 22(4):703–14. doi: 10.1007/s11154-020-09598-x PubMed Abstract | CrossRef Full Text | Google Scholar 16. Chifu I, Detomas M, Dischinger U, Kimpel O, Megerle F, Hahner S, et al. Management of Patients With Glucocorticoid-Related Diseases and COVID-19. Front Endocrinol (Lausanne) (2021) 12:705214. doi: 10.3389/fendo.2021.705214 PubMed Abstract | CrossRef Full Text | Google Scholar 17. Valassi E, Aulinas A, Glad CA, Johannsson G, Ragnarsson O, Webb SM. A Polymorphism in the CYP17A1 Gene Influences the Therapeutic Response to Steroidogenesis Inhibitors in Cushing's Syndrome. Clin Endocrinol (Oxf) (2017) 87(5):433–9. doi: 10.1111/cen.13414 PubMed Abstract | CrossRef Full Text | Google Scholar 18. Berlinska A, Swiatkowska-Stodulska R, Sworczak K. Old Problem, New Concerns: Hypercortisolemia in the Time of COVID-19. Front Endocrinol (Lausanne) (2021) 12:711612. doi: 10.3389/fendo.2021.711612 PubMed Abstract | CrossRef Full Text | Google Scholar 19. Barbot M, Ceccato F, Scaroni C. Consideration on TMPRSS2 and the Risk of COVID-19 Infection in Cushing's Syndrome. Endocrine (2020) 69(2):235–6. doi: 10.1007/s12020-020-02390-6 PubMed Abstract | CrossRef Full Text | Google Scholar 20. Fleseriu M. Pituitary Disorders and COVID-19, Reimagining Care: The Pandemic A Year and Counting. Front Endocrinol (Lausanne) (2021) 12:656025. doi: 10.3389/fendo.2021.656025 PubMed Abstract | CrossRef Full Text | Google Scholar 21. Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, et al. Dexamethasone in Hospitalized Patients With Covid-19. N Engl J Med (2021) 384(8):693–704. doi: 10.1056/NEJMoa2021436 PubMed Abstract | CrossRef Full Text | Google Scholar 22. Bergquist M, Lindholm C, Strinnholm M, Hedenstierna G, Rylander C. Impairment of Neutrophilic Glucocorticoid Receptor Function in Patients Treated With Steroids for Septic Shock. Intensive Care Med Exp (2015) 3(1):59. doi: 10.1186/s40635-015-0059-9 PubMed Abstract | CrossRef Full Text | Google Scholar 23. Cao W, Li T. COVID-19: Towards Understanding of Pathogenesis. Cell Res (2020) 30(5):367–9. doi: 10.1038/s41422-020-0327-4 PubMed Abstract | CrossRef Full Text | Google Scholar 24. Tzilas V, Manali E, Papiris S, Bouros D. Intravenous Immunoglobulin for the Treatment of COVID-19: A Promising Tool. Respiration (2020) 99(12):1087–9. doi: 10.1159/000512727 PubMed Abstract | CrossRef Full Text | Google Scholar 25. Mohtadi N, Ghaysouri A, Shirazi S, Sara A, Shafiee E, Bastani E, et al. Recovery of Severely Ill COVID-19 Patients by Intravenous Immunoglobulin (IVIG) Treatment: A Case Series. Virology (2020) 548:1–5. doi: 10.1016/j.virol.2020.05.006 PubMed Abstract | CrossRef Full Text | Google Scholar 26. Schwab I, Nimmerjahn F. Intravenous Immunoglobulin Therapy: How Does IgG Modulate the Immune System? Nat Rev Immunol (2013) 13(3):176–89. doi: 10.1038/nri3401 PubMed Abstract | CrossRef Full Text | Google Scholar 27. Cao W, Liu X, Hong K, Ma Z, Zhang Y, Lin L, et al. High-Dose Intravenous Immunoglobulin in Severe Coronavirus Disease 2019: A Multicenter Retrospective Study in China. Front Immunol (2021) 12:627844. doi: 10.3389/fimmu.2021.627844 PubMed Abstract | CrossRef Full Text | Google Scholar 28. Bongomin F, Asio LG, Ssebambulidde K, Baluku JB. Adjunctive Intravenous Immunoglobulins (IVIg) for Moderate-Severe COVID-19: Emerging Therapeutic Roles. Curr Med Res Opin (2021) 37(6):903–5. doi: 10.1080/03007995.2021.1903849 PubMed Abstract | CrossRef Full Text | Google Scholar 29. Gharebaghi N, Nejadrahim R, Mousavi SJ, Sadat-Ebrahimi SR, Hajizadeh R. The Use of Intravenous Immunoglobulin Gamma for the Treatment of Severe Coronavirus Disease 2019: A Randomized Placebo-Controlled Double-Blind Clinical Trial. BMC Infect Dis (2020) 20(1):786. doi: 10.1186/s12879-020-05507-4 PubMed Abstract | CrossRef Full Text | Google Scholar 30. Ali S, Uddin SM, Shalim E, Sayeed MA, Anjum F, Saleem F, et al. Hyperimmune Anti-COVID-19 IVIG (C-IVIG) Treatment in Severe and Critical COVID-19 Patients: A Phase I/II Randomized Control Trial. EClinicalMedicine (2021) 36:100926. doi: 10.1016/j.eclinm.2021.100926 PubMed Abstract | CrossRef Full Text | Google Scholar 31. Xiang HR, Cheng X, Li Y, Luo WW, Zhang QZ, Peng WX. Efficacy of IVIG (Intravenous Immunoglobulin) for Corona Virus Disease 2019 (COVID-19): A Meta-Analysis. Int Immunopharmacol (2021) 96:107732. doi: 10.1016/j.intimp.2021.107732 PubMed Abstract | CrossRef Full Text | Google Scholar 32. Polizzotto MN, Nordwall J, Babiker AG, Phillips A, Vock DM, Eriobu N, et al. Hyperimmune Immunoglobulin for Hospitalised Patients With COVID-19 (ITAC): A Double-Blind, Placebo-Controlled, Phase 3, Randomised Trial. Lancet (2022) 399(10324):530–40. doi: 10.1016/S0140-6736(22)00101-5 PubMed Abstract | CrossRef Full Text | Google Scholar Keywords: Cushing’s syndrome, COVID-19, IVIg, hypercortisolism, immunomodulation, immunosuppression Citation: Popovic B, Radovanovic Spurnic A, Velickovic J, Plavsic A, Jecmenica-Lukic M, Glisic T, Ilic D, Jeremic D, Vratonjic J, Samardzic V, Gluvic Z and Adzic-Vukicevic T (2022) Successful Immunomodulatory Treatment of COVID-19 in a Patient With Severe ACTH-Dependent Cushing’s Syndrome: A Case Report and Review of Literature. Front. Endocrinol. 13:889928. doi: 10.3389/fendo.2022.889928 Received: 04 March 2022; Accepted: 17 May 2022; Published: 22 June 2022. Edited by: Giuseppe Reimondo, University of Turin, Italy Reviewed by: Nora Maria Elvira Albiger, Veneto Institute of Oncology (IRCCS), Italy Miguel Debono, Royal Hallamshire Hospital, United Kingdom Copyright © 2022 Popovic, Radovanovic Spurnic, Velickovic, Plavsic, Jecmenica-Lukic, Glisic, Ilic, Jeremic, Vratonjic, Samardzic, Gluvic and Adzic-Vukicevic. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. *Correspondence: Bojana Popovic, popbojana@gmail.com Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher. From https://www.frontiersin.org/articles/10.3389/fendo.2022.889928/full
  9. Abstract Cushing's syndrome (CS) shows diverse signs such as centripetal obesity, moon face, and buffalo hump, which can complicate the diagnosis. Facial features including eyelid edema, as an underrecognized sign, can be diagnostic clues for an excess of corticoids in a CS patient. A 49-year-old woman presented with amenorrhea and weight gain that had continued for 2 years. Her medical history was dyslipidemia, hypertension, and osteoporosis. Physical examination revealed eyelid edemas (Figure 1A), moon face, buffalo hump, abdominal purple striae, and centripetal obesity (body mass index (BMI), 30.8 kg/m2). Basal plasma adrenocorticotropin was undetectable and serum cortisol level was high (16.9 μg/dl) without circadian rhythms. Free cortisol level in a 24-h urine collection was elevated (158.7 μg/day). Overnight administration of dexamethasone (1 mg) did not reduce serum cortisol level (17.4 μg/dl). Magnetic resonance imaging suggested bilateral adenomas. We made a diagnosis of adrenal Cushing's syndrome (CS). Since 131l-adosterol scintigraphy showed specific uptake in the left adrenal gland, left adrenalectomy was laparoscopically performed. Histopathology of the tumor was compatible with adrenocortical adenoma. Three months after surgery, her BMI decreased to 25.0 kg/m2 and eyelid edemas were ameliorated (Figure 1B). FIGURE 1 Open in figure viewerPowerPoint (A) Bilateral eyelid edemas due to Cushing's syndrome are shown. (B) These findings were improved three months after surgery for left adrenal adenomas Eyelid edema, in addition to centripetal obesity, moon face, and buffalo hump, is also a significant sign of CS; however, it has scarcely been reported in countries other than Japan.1, 2 Increased capillary permeability, insufficient venous return due to muscle atrophy, and sodium retention due to mineralocorticoid actions conceivably cause edema in CS. AUTHORS’ CONTRIBUTIONS KY wrote the first draft and managed all the submission processes. KO and KH contributed to the clinical management of the patient. FO organized the writing the manuscript. ACKNOWLEDGMENT None. CONFLICT OF INTEREST The authors declare no conflicts of interest. ETHICAL APPROVAL Written informed consent was obtained from the patient to publish this case report. 1Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing's syndrome. Lancet. 2015; 386: 913- 927. CrossrefCASPubMedWeb of Science®Google Scholar 2Komiya I, Takasu N, Ohara N, et al. Forty-one cases of Cushing's syndrome: a comparison between Cushing's syndrome (adrenal adenoma) and Cushing's disease (adrenal hyperplasia). Nihon Naibunpi Gakkai Zasshi. 1992; 68: 607- 622. CASPubMedGoogle Scholar https://doi.org/10.1002/ccr3.5940 From https://onlinelibrary.wiley.com/doi/10.1002/ccr3.5940
  10. Background: In Cushing’s syndrome (CS), chronic glucocorticoid excess (GC) and disrupted circadian rhythm lead to insulin resistance (IR), diabetes mellitus, dyslipidaemia and cardiovascular comorbidities. As undifferentiated, self-renewing progenitors of adipocytes, mesenchymal stem cells (MSCs) may display the detrimental effects of excess GC, thus revealing a promising model to study the molecular mechanisms underlying the metabolic complications of CS. Methods: MSCs isolated from the abdominal skin of healthy subjects were treated thrice daily with GCs according to two different regimens: lower, circadian-decreasing (Lower, Decreasing Exposure, LDE) versus persistently higher doses (Higher, Constant Exposure, HCE), aimed at mimicking either the physiological condition or CS, respectively. Subsequently, MSCs were stimulated with insulin and glucose thrice daily, resembling food uptake and both glucose uptake/GLUT-4 translocation and the expression of LIPE, ATGL, IL-6 and TNF-α genes were analyzed at predefined timepoints over three days. Results: LDE to GCs did not impair glucose uptake by MSCs, whereas HCE significantly decreased glucose uptake by MSCs only when prolonged. Persistent signs of IR occurred after 30 hours of HCE to GCs. Compared to LDE, MSCs experiencing HCE to GCs showed a downregulation of lipolysis-related genes in the acute period, followed by overexpression once IR was established. Conclusions: Preserving circadian GC rhythmicity is crucial to prevent the occurrence of metabolic alterations. Similar to mature adipocytes, MSCs suffer from IR and impaired lipolysis due to chronic GC excess: MSCs could represent a reliable model to track the mechanisms involved in GC-induced IR throughout cellular differentiation. Introduction Glucocorticoids (GCs) regulate a variety of physiological processes, such as metabolism, immune response, cardiovascular activity and brain function (1, 2). Chronic excess and dysregulation of GCs induces Cushing’s syndrome (CS), a complex clinical condition characterized by multisystem morbidities such as central obesity, hypertension, type 2 diabetes mellitus, insulin resistance (IR), dyslipidaemia, fatty liver, hypercoagulability, myopathy and osteoporosis (3–5). In patients with CS, GC secretion does not follow the circadian rhythm and consistently high serum GC levels are observed throughout the day (6, 7). IR, defined as the reduced ability of insulin to control the breakdown of glucose in target organs, represents the common thread among obesity, metabolic syndrome and type 2 diabetes mellitus (8). GCs induce IR, but the mechanisms are complex and not completely understood. Under physiological conditions, the binding of insulin to its receptor on the cell surface induces the autophosphorylation of tyrosine in the insulin receptor substrate (IRS)-1 subunit with a consequent complex cascade of intracellular signals that leads to the inhibition of glycogen synthase kinase 3, the inhibition of apoptosis and the translocation of glucose transporter 4 (GLUT4) to the cell membrane with consequent glucose uptake (9, 10). Several studies have shown how chronic exposure to high levels of GCs reduces IRS-1 phosphorylation and protein expression, resulting in a lack of GLUT4 translocation and a reduction in glucose uptake in adipose tissue (11). In addition, the chronic excess of GCs increases lipoprotein activity and expression with subsequent release of circulating fatty acids, which, in turn, induce the phosphorylation of serine in IRS-1, thus compromising the mechanisms that lead to glucose transport into the cell (12). In recent years, the involvement of mesenchymal stem cells (MSCs) in the onset of different pathologies has been addressed, and for some of them, MSCs have been identified as the real target for lasting therapeutic approaches (13, 14). MSCs are undifferentiated cells inside many tissues that are able to self-renew and differentiate into adipocytes, osteocytes and chondrocytes (15). Adipose tissue, muscle tissue and bone are compromised in CS, so the involvement of MSCs in CS complications has been hypothesized; this was confirmed by our previous work reporting that MSCs isolated from the skin of patients affected by CS showed an altered wound healing process that is recognized as a clinical manifestation of CS (16). In this scenario, it is tempting to speculate that the detrimental effects of excess GC could also affect MSCs, which may represent a promising cellular model to study the mechanisms leading to IR. The choice to use MSCs as a model is particularly interesting, since MSCs are the progenitors of mature adipocytes that may inherit and spread dysregulated mechanisms already present in MSCs. Here, MSCs isolated from the abdominal skin of healthy subjects were treated in vitro with two different GC regimens, mimicking circadian cortisol rhythm and chronic hypercortisolism. Subsequently, cells were stimulated with insulin and glucose three times/day, resembling the normal uptake of food, and both glucose uptake and the expression of selected genes were analyzed to clarify the mechanisms underlying the development of IR and the occurrence of altered carbohydrate and lipid metabolism under chronic exposure to high levels of GCs. Materials and Methods Sample Collection Seven abdominal skin samples were collected from healthy subjects (four males and three females age matched 42.3 ± 3.4) undergoing abdominoplasty at the Clinic of Plastic and Reconstructive Surgery, Università Politecnica delle Marche. Patients gave their informed consent; the study was approved by the Università Politecnica delle Marche Ethical Committee and conducted in accordance with the Declaration of Helsinki. The main demographical and clinical characteristics of enrolled patients are summarized in Table 1. TABLE 1 Table 1 Demographical and functional characteristics of enrolled patients. Isolation and Characterization of MSCs Cells were isolated from abdominal skin and then cultured with a Mesenchymal Stem Cell Growth Medium bullet kit (MSCGM, Lonza Group® Ltd) as previously described (16) and characterized according to the criteria by Dominici (15). Plastic adherence, immunophenotype and multipotency were tested as already described (17–19). After the Oil Red staining, a semiquantitative analysis was carried out by dissolving the staining with 100% isopropanol and the absorbance was measured at 510nm in a microplate reader (Thermo Scientific Multiskan GO Microplate Spectrophotometer, Milano, Italy). In addition, the expression of PPAR-γ (peroxisome proliferator-activated receptor gamma) and C/EBP-α (CCAAT/enhancer-binding protein alpha) was tested by Real time PCR to confirm the adipocytes differentiation. Undifferentiated MSCs were used as control (C-MSCs). Briefly, after 21 days of culture in adipocytes differentiation medium, 2.5x105 cells from the 7 patients were collected; cDNA synthesis and qRT–PCR were carried out as previously described (20). The primer sequences are summarized in Table 2. mRNA expression was calculated by the 2−ΔΔCt method (21), where ΔCt=Ct (gene of interest)—Ct (control gene) and Δ (ΔCt)=ΔCt (differentiated MSCs)—ΔCt (undifferentiated MSCs). Genes were amplified in triplicate with the housekeeping genes RPLP0 (Ribosomal Protein Lateral Stalk Subunit P0) and GAPDH (Glyceraldehyde-3-Phosphate Dehydrogenase) for data normalization. Of the two, GAPDH was the most stable and was used for subsequent normalization. The values of the relative expression of the genes are mean ± SD of three independent experiments. TABLE 2 Table 2 Primer sequences. Experimental Design: In Vitro Reproduction of Both Circadian Rhythm and Chronic Excess GCs and Food Uptake Cells were treated with two different GC regimens: some were given lower, circadian-decreasing GC doses (Lower and Decreasing Exposure, LDE), some were exposed to persistently higher GC doses (Higher and Constant Exposure, HCE), to mimic in vitro either the preserved circadian rhythm or its pathologic abolishment in CS, as shown in Figure 1A and described in detail below. LDE cells were first exposed (8:00 a.m.-9:50 a.m.) to 500 nM hydrocortisone (MedChemExpress, MCE, Monmouth Junction, NJ, USA) and then to decreasing concentrations by replacing the medium with a fresh medium containing 250 nM hydrocortisone (9:50 a.m.-01:50 p.m.) and 100 nM (01:50 p.m.-05:50 p.m. and 05:50 p.m.-08:00 a.m.) of hydrocortisone (22). To mimic CS, HCE cells were exposed to 500 nM hydrocortisone for 24/24 hours. The 500 nM hydrocortisone medium was replaced with fresh medium at the same time as the physiological condition medium was changed. FIGURE 1 Figure 1 (A) In vitro reproduction of preserved versus abolished GC circadian rhythm. (B). Daily experimental design. Cells were starved and exposed three times/day to 10 mM glucose with or without prestimulation with 1 μM insulin (Sigma–Aldrich, Milano, Italy) to resemble daily food uptake. Protocol is resumed in Figure 1B. Cells derived from each single patient were divided into six experimental groups (Exp): 1) Exp 1, GLU: Cells exposed to glucose; 2) Exp 2, INS+GLU: Cells stimulated with insulin before glucose exposure; 3) Exp 3, LDE+GLU: LDE cells treated with glucose; 4) Exp 4, HCE+GLU: HCE cells treated with glucose; 5) Exp 5, LDE+INS+GLU: LDE cells stimulated with insulin before glucose exposure; 6) Exp 6, HCE+INS+GLU: HCE cells stimulated with insulin before glucose exposure. In detail, cells were seeded in DMEM/F-12+10% FBS (Corning, NY, USA). After 24 hours, the medium was changed, and the cells were starved overnight with Advanced DMEM/F-12 w/o glucose (Lonza) with 0.5% FBS. At 8:00 a.m., starvation medium was replaced with a new medium containing hydrocortisone 500 nM for 30 minutes in groups exposed to GCs. After washing, the cells were glucose starved with KRPH buffer (20 mM HEPES, 5 mM KH2PO4, 1 mM MgSO4, 1 mM CaCl2, 136 mM NaCl and 4.7 mM KCl, pH 7.4) containing 2% BSA (Sigma–Aldrich) and hydrocortisone for 40 minutes. Cells from Exp 2, 5 and 6 were then stimulated with 1 μM insulin (Sigma–Aldrich) for 20 minutes. Finally, 10 mM glucose was added, and the time sampling was after 20 minutes. The same protocol starting with starvation for 2 hours in DMEM/F-12 w/o glucose was repeated two times during the day, and the hydrocortisone concentration in the medium of LDE and HCE cells varied accordingly. To evaluate the long-term impact on metabolism and IR, the experiment was performed for three days with repeated sampling times after glucose administration: T1, T2 and T3 at 9:50 a.m., 1:50 p.m., 5:50 p.m. of the first day; T4, T5 and T6 at 9:50 a.m., 1:50 p.m., 5:50 p.m. of the second day; T7 at 1:50 p.m. of the third day (Figure 1A). The entire experiment (Exp 1-6, from T1 to T7) was repeated thrice, and data are reported as mean± standard deviation (SD) over the three independent experiments. XTT Assay To evaluate whether repeated starvation steps and treatments would affect cell viability and consequently influence the measurement of glucose uptake, an XTT assay (Sigma–Aldrich) was initially performed. A total of 3x103 cells/well belonging to Exp 1, 2, 4 and 6 derived from the 7 patients were plated in a 96-well plate and treated as previously described. Another experimental group was included as a control, consisting of cells continuously cultured in starvation medium (STARVED CTRL). The XTT assay was performed at the end of each day (T3, T6 and T7 sampling times) following the manufacturer’s instructions. The experiment was repeated thrice, and data are reported as mean ± SD over the three independent experiments. MSCs Responsiveness to Insulin To evaluate whether MSCs were responsive to insulin, glucose uptake and the cellular localization of GLUT4 were first evaluated in MSCs not treated with GCs (Exp 1 and 2) from T1 to T6. For the glucose uptake assay, 3x103 cells/well were plated in a 96-well plate and treated according to the above protocol; after insulin stimulation, 10 mM of 2-deoxyglucose (2-DG) was added for 20 minutes, and a colorimetric assay was performed following the manufacturer’s instructions. The readings were at 420 nm in a microplate reader (Thermo Scientific Multiskan GO Microplate Spectrophotometer, Milano, Italy). For the cellular distribution of GLUT4, 1.5x104 cells (Exp 1 and 2 derived from the 7 patients) were seeded in triplicate on coverslips and treated as indicated before until T5 sampling time. Cells were then washed, fixed with 4% PFA and permeabilized for 30 min. Subsequently, cells were incubated with anti-GLUT4 antibody (Santa Cruz Biotechnology, USA) followed by treatment for 30 min with a goat anti-mouse FITC-conjugated antibody (23). Finally, coverslips were mounted on glass slides in Vectashield (Vectorlabs, CA, USA), and confocal imaging was performed using a Zeiss LSM510/Axiovert 200 M microscope with an objective lens at 20× magnification (24). Line scans were acquired excluding nuclear regions, and GLUT4 immunofluorescence was analyzed as described elsewhere. Effects of Different GC Regimens on Glucose Uptake and GLUT4 Translocation After having proven that MSCs could function as a cellular model, since they were responsive to insulin, the potential effects of both GC regimens on glucose uptake were evaluated. Glucose uptake was measured in the experimental groups treated with GCs (Exp 3, 4, 5 and 6 derived from the 7 patients), and GLUT4 translocation was evaluated in cells from Exp 4 and 6 as described above. Expression of Genes Involved in the Development of IR The expression of selected genes, such as LIPE, ATGL, IL-6 and TNF-α (coding for hormone-sensitive Lipase E, Adipose TriGlyceride Lipase, InterLeukin-6 and Tumour Necrosis Factor-α, respectively), was evaluated to clarify the mechanisms involved in the development of IR in MSCs (25–28). A total of 2.5x105 cells/well belonging to Exp 5 and 6 from the 7 patients were seeded in triplicates in a 6-well plate and treated following the experimental design. Pellets were collected at T2 and T7, which were chosen as sampling times representing acute and chronic exposure to GCs. RNA extraction, cDNA synthesis and qRT–PCR were carried out as previously described (20). The primer sequences are summarized in Table 2. mRNA expression was calculated by the 2−ΔΔCt method (21), where ΔCt=Ct (gene of interest)—Ct (control gene) and Δ (ΔCt)=ΔCt (HCE+INS+GLU)—ΔCt (LDE+INS+GLU). All selected genes were amplified in triplicate with the housekeeping genes RPLP0 and GAPDH for data normalization. Of the two, GAPDH was the most stable and was used for subsequent normalization. The values of the relative expression of the genes are mean ± SD of three independent experiments. Statistical Analysis For statistical analysis, GraphPad Prism 6 Software was used. All data are expressed as the mean ± standard deviation (SD). For parametric analysis all groups were first tested for normal distribution by the Shapiro–Wilk test (29) and comparison between 2 groups were performed by unpaired Student’s t test. For two-sample comparisons, significance was calculated by unpaired t-Student’s test while the ordinary one-way ANOVA test was used for multiple comparison (Tukey’s multiple comparisons test). Significance was set at p value < 0.05. Results MSCs Isolation and Characterization From Abdominal Skin MSCs isolated from abdominal skin appeared homogeneous with a fibroblastoid morphology and showed adherence to plastic. According to Dominici’s criteria (17), cells were positive for CD73, CD90 and CD105, and negative for HLA-DR, CD14, CD19, CD34 and CD45. Cells were also able to differentiate towards osteogenic, chondrogenic and adipogenic lineages. After 7 days of osteogenic differentiation, cells showed alkaline phosphatase activity (Figure 2A), and after 14 days, cells were strongly positive for alizarin red staining (Figure 2B). Chondrogenic differentiation was achieved after 30 days, as shown by safranin-O staining (Figure 2C). MSCs differentiation into adipocytes occurred after 21 days, as evidenced by the presence of lipid vacuoles after oil red staining (Figure 2D). Its quantification confirmed as the amount of lipid vacuoles was higher in differentiated cells than in control cells (C-MSCs; Figure 2E). The expression of PPAR-γ and C/EBP-α was tested after 21 days of culture in differentiating medium and it was higher in differentiated than in undifferentiated MSCs (Figures 2F, G). FIGURE 2 Figure 2 Multilineage differentiation of MSCs from abdominal skin. Representative images of MSCs derived from the seven patients and differentiated towards osteogenic lineage as assessed by ALP reaction (A, Scale bar 100μm) and Alizarin red staining (B, Scale bar 100μm); chondrogenic lineage as indicated by Safranin-O staining (C, Scale bar 100 μm); adipocyte lineage as confirmed by Oil red staining (D, Scale bar 100μm); (E) Oil Red staining quantification. Data are expressed as mean ± SD of the absorbance read for undifferentiated and differentiated cells (C-MSCs and DIFF-MSCs respectively). (F, G) Expression of PPAR-γ and C/EBP-α by RT-PCR in differentiated vs undifferentiated MSCs towards adipogenic lineage. Data are expressed as mean ± SD (over three independent experiments) of the X-fold (2−ΔΔCt method) of differentiated MSCs compared to undifferentiated MSCs, arbitrarily expressed as 1, where ΔCt=Ct (gene of interest)—Ct (control gene) and Δ (ΔCt)=ΔCt (DIFF-MSCs)—ΔCt (C-MSCs). Unpaired t-Student’s test; ***p<0.001, ****p<0.0001. Cell Viability by XTT Assay Figure 3 shows that the viability of the STARVED CTRL (cells continuously cultured in starvation medium) was significantly increased compared to that of the HCE cells at T3 but not thereafter. Although repeated interventions caused a proliferation block earlier than starvation alone, the different treatments did not interfere with vitality, and further analyses on glucose uptake were unaffected by different cell mortality during the experiment. FIGURE 3 Figure 3 XTT test. The bars indicate cells’ viability at T3, T6 and T7 sampling times. One-way ANOVA; **p < 0.01 vs STARVED CTRL inside each time sampling. STARVED CTRL: cells continuously cultured in starvation medium; GLU: Cells exposed to glucose; INS+GLU: Cells stimulated with insulin before glucose exposure; HCE+GLU: HCE (Higher and Constant Exposure) cells treated with glucose; HCE+INS+GLU: HCE cells stimulated with insulin before glucose exposure. Data are expressed as mean ± SD of the absorbance read for MSCs derived from each single patient over three independent experiments. MSCs Responsiveness to Insulin As shown in Figure 4, stimulation with insulin significantly increased glucose uptake at T1, T2, T4 and T5, whereas at T3 and T6, the level of glucose uptake did not differ significantly between insulin-treated (Exp2, INS+GLU) and nontreated (Exp1, GLU) cells. FIGURE 4 Figure 4 Responsiveness of MSCs to insulin. The bars show the glucose uptake expressed in pM at T1, T2, T3, T4, T5 and T6 in insulin-stimulated or non-stimulated MSCs. Unpaired t-Student’s test; *p < 0.05, **p < 0.01. GLU: Cells exposed to glucose; INS+GLU: Cells stimulated with insulin before glucose exposure. Data are expressed as mean ± SD of the readings for MSCs derived from each single patient over three independent experiments. Notably, in the absence of insulin, GLUT4 was more localized in the perinuclear area of the cells (Figures 5A, E). Insulin stimulation enhanced GLUT4 translocation towards the plasma membrane (Figures 5B, F). FIGURE 5 Figure 5 GLUT4 translocation. Representative confocal images of GLUT4 in MSCs derived from the seven patients and stimulated (B, D) or not (A, C) with insulin and exposed to 500nM of GCs (C, D). The graphs (E–H) show the fluorescence ratio between the edge and the centre of the cell; yellow arrows indicate the portion of cell subjected to analysis. GLU: Cells exposed to glucose; INS+GLU: Cells stimulated with insulin before glucose exposure; HCE+GLU: HCE (Higher and Constant Exposure) cells treated with glucose; HCE+INS+GLU: HCE cells stimulated with insulin before glucose exposure. Effects of LDE and HCE on GCs on Glucose Uptake and GLUT4 Translocation In LDE cells, insulin induced a significant increase in glucose uptake at all sampling times (Figure 6). Conversely, GC administration did not interfere with glucose uptake by HCE cells in the acute period (T1, T2) but led to a significant decrease in glucose uptake when prolonged (T3, T5, T6, T7). Accordingly, GLUT4 translocation was inhibited irrespective of insulin stimulation (Figures 5C, G and D, H) in HCE cells. FIGURE 6 Figure 6 Glucose uptake in MSCs undergoing a LDE or a HCE to GCs. The bars represent the glucose uptake expressed in pM at T1 (9:50 a.m. first day, A), T2 (1:50 p.m. first day, B), T3 (5:50 p.m. first day, C), T4 (9:50 a.m. second day, D), T5 (1:50 p.m. second day, E), T6 (5:50 p.m. second day, F) and T7(1:50 p.m. third day, G) in MSCs undergoing a LDE or a HCE to GCs and stimulated or not with insulin. One-way ANOVA; *p < 0.05,**p < 0,01,***p < 0,001. LDE+GLU: LDE (Lower and Decreasing Exposure) cells treated with glucose; HCE+GLU: HCE (higher and Constant Exposure) cells treated with glucose; LDE+INS+GLU: LDE cells stimulated with insulin before glucose exposure; HCE+INS+GLU: HCE cells stimulated with insulin before glucose exposure. Data are expressed as mean ± SD of the readings for MSCs derived from each single patient over three independent experiments. Effect on Lipolysis and Development of IR: Gene Expression A downregulation of both genes involved in the breakdown of triglycerides to fatty acids (LIPE and ATGL) was found at T2, whereas at T7, their expression was significantly increased in HCE cells compared to LDE cells. At T7, HCE cells showed a significant increase in the expression of both IL-6 and TNF-α genes, whereas at T2, only the expression of TNF-α was lower than that of LDE cells (Figure 7). FIGURE 7 Figure 7 Gene expression in MSCs undergoing a LDE or a HCE to GCs. The bars display the expression of genes referred specifically to the development of IR: (A): LIPE, (B): ATGL, (C): IL-6 and (D): TNF-α at T2 and T7 sampling times. LDE+GLU+INS: LDE (Lower and Decreasing Exposure) cells stimulated with insulin before glucose exposure; HCE+GLU +INS: HCE (higher and Constant Exposure) cells stimulated with insulin before glucose exposure. Data are expressed as mean ± SD (over three independent experiments) of the X-fold (2−ΔΔCt method) of HCE+INS+GLU compared to LDE+INS+GLU arbitrarily expressed as 1, where ΔCt=Ct (gene of interest)—Ct (control gene) and Δ (ΔCt)=ΔCt (HCE+INS+GLU)—ΔCt (LDE+INS+GLU). Unpaired t-Student’s test; *p < 0.05,**p < 0.01,***p < 0.001;****p < 0.0001. Discussion The clinical presentation of CS is well established, but the mechanisms underlying the onset of some of its complications, IR above all, have not yet been fully understood and may involve tissue-specific players. As progenitors of specialized cellular lines that are directly implicated in the progression of chronic GC excess-induced damage (such as adipocytes, skeletal muscle cells and osteocytes), MSCs are of particular interest: in a previous study, we showed that MSCs derived from the skin of patients with CS displayed dysregulated inflammatory markers and altered expression of genes related to wound healing, demonstrating not only how they could be a useful cellular model to study this event but also their potential contribution to the development of CS manifestations (16). With this premise, we hypothesized that MSCs exposed to excess GC encounter altered glucose uptake mechanisms, which are then inherited and consolidated by their derived, specialized cells. Our work aimed to explore and compare the effects of two different GC regimens (LDE- Lower and Decreasing Exposure- and HCE- Higher and Constant Exposure) on glucose and lipid metabolism in MSCs. First, MSCs were isolated from abdominal skin and characterized by confirming their undifferentiated state (15). To faithfully reproduce the circadian variations in GC concentrations and food intake, cells were treated by following an articulated protocol (Figure 1). It is well established that insulin stimulation promotes glucose uptake via GLUT4 translocation (30–32) in adipocytes and skeletal muscle cells, but the same mechanism has not yet been demonstrated for MSCs. Therefore, the responsiveness of MSCs to insulin, as well as the involvement of GLUT4 in glucose uptake, were addressed before evaluating the effects of GCs. We demonstrated that the exposure of MCSs to insulin increased their glucose uptake and insulin-induced GLUT4 translocation with mechanisms that are similar to those described for adipocytes and muscle cells by confocal imaging. In contrast to what was previously reported for adipocytes (33, 34), GLUT4 expression before insulin stimulation occurred in the cytoplasmic, perinuclear and nuclear compartments in a nonvacuolized pattern. The same localization was observed by Tonack et al. in mouse embryonic stem cells (35). As in adipocytes, the protein translocated on the cell surface, favoring glucose uptake after insulin stimulation. These results opened the second part of the research aimed at evaluating the IR-inducing effects of GCs on MSCs. MSCs were exposed to two different GC regimens: in LDE cells, insulin stimulation always caused an increase in glucose uptake, confirming that insulin sensitivity of MSCs is not altered when cortisol circadian rhythm is preserved; conversely, in HCE cells, an impaired response to insulin was observed, as demonstrated by their decreased glucose uptake. These observations were also confirmed by confocal data, showing how excess GC blocked the insulin-induced translocation of GLUT4 from the intracellular compartment to the cell surface. Of note, a reduction in glucose uptake was not detected in earlier sampling times (T1, T2) but later (T3, T5, T6, T7). These results, taken together with the lack of GLUT4 translocation, suggest that IR develops over time. The development of IR following chronic exposure to GCs has been widely demonstrated in differentiated cells such as adipocytes, hepatocytes, muscle and endothelial cells (36–38), but to our knowledge, this has never been observed in human stem cells before. Our results are in line with those by Gathercole et al. (12), who reported increased insulin-stimulated glucose uptake in a human immortalized subcutaneous adipocyte line (Chub-S7) after acute exposure to dexamethasone, as well as to hydrocortisone (up to 48 hours, in a dose- and time-dependent manner for the latter), thus proposing that the development of GC-induced obesity was promoted by enhanced adipocyte differentiation. However, it must be noted that although Chub-S7 are not fully differentiated adipocytes, they cannot be considered MSCs. In our study, MSCs showed transient signs of IR at T3. In our opinion, this finding represents a physiologic phenomenon and is in line with previous findings in healthy volunteers who were administered hydrocortisone at two different time points and whose endogenous cortisol production was suppressed by metyrapone and nutrient intake was controlled by means of a continuous glucose infusion (39😞 subjects receiving hydrocortisone in the evening showed a more pronounced delayed hyperglycaemic effect than those taking hydrocortisone in the morning (39). Persistent signs of IR in our MSCs appeared even earlier (from T5, after 30 hours of HCE to GCs) than Gathercole’s Chub-S7 (12😞 the ability of MSCs to develop early documentable and conceptually plausible alterations, which can be tracked even once differentiated, further confirms that they are a reliable model for physiopathology studies. The relationship between insulin and lipolysis is bidirectional: inhibition of lipolysis is mainly due to insulin (24), but different mechanisms have been identified where increased lipolysis is involved in the impairment of insulin sensitivity (25, 40). Boden et al. (41) reported that increasing circulating nonesterified fatty acid (NEFA) levels by lipid infusion induced transient IR. To obtain a clearer picture of the possible mechanisms involved in the development of IR in MSCs, we analyzed the expression of LIPE and ATGL genes at different timepoints. We found that HCE cells showed an initial reduction (T2), followed by a significant increase (T7), in the expression of LIPE and ATGL genes compared to LDE cells. The results from previous works on this topic are partially conflicting: Slavin (42) and Villena (43) found upregulated expression of the LIPE and ATGL genes, respectively, after a short treatment with GCs, but studies examining the effects of prolonged GC administration suggested that the acute induction of systemic lipolysis by GCs was not sustained over time (44). However, in these in vitro studies, cells were never treated with insulin, whose counterregulatory effect on lipolysis could not be highlighted. Notably, diabetic patients with CS show an increased activation of lipolysis due to IR (44). Our results fully reflect this scenario, showing that the lipolytic effects are even more marked once insulin levels fail to compensate for associated IR. LIPE and ATGL gene expression was downregulated at T2, when IR had not yet been reached; at T7, when chronic exposure to high GC levels compromised insulin sensitivity, both lipolysis-related enzymes were overexpressed. Of note, increased expression of LIPE and ATGL genes in the presence of IR was also reported by Sumuano et al. in mature adipocytes (37). Given its ability to decrease the tyrosine kinase activity of the insulin receptor, TNF-α is an important mediator of IR in obesity and type 2 diabetes mellitus (26). IL-6 is notably associated with IR by both sustaining low-grade chronic inflammation (45) and impairing the phosphorylation of insulin receptor and IRS-1 (27). In agreement with these statements, TNF-α and IL-6 expression was lower before IR induction (T2) and higher after prolonged exposure (T7) in HCE cells than in LDE cells, further confirming the importance of preserved circadian GC rhythmicity to prevent the occurrence of metabolic alterations. Conclusions MSCs derived from skin could be a good human model for studying the toxic effects of GCs. Like mature adipocytes, they are responsive to insulin stimulation that promotes glucose uptake via GLUT4 translocation, and their chronic exposure to excessive levels of GCs induces the development of IR. For differentiated cells, impaired lipolysis is observed in MSCs once IR has arisen. Furthermore, MSCs could be a promising model to track the mechanisms involved in GC-induced IR throughout cellular differentiation. Functional analyses will be necessary to elucidate the mechanisms behind these first descriptive results and overcame the actual weakness of this research. In addition, co-cultures with MSCs and mature adipocytes will be performed to investigate the crosstalk between these two cell types. Data Availability Statement The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author. Ethics Statement The studies involving human participants were reviewed and approved by Università Politecnica delle Marche Ethical Committee. The patients/participants provided their written informed consent to participate in this study. Author Contributions Conceptualization, MO and GA. Methodology, MDV and MM. Formal analysis, MDV, VL, and CL. Data curation, GDB and GG. Writing—original draft preparation, MO and MDV. Writing—review and editing, MO, GA, and MM. Supervision, MO and GA. All authors have read and agreed to the published version of the manuscript. Funding This work was supported by 2017HRTZYA_005 project grant. Conflict of Interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Publisher’s Note All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher. References 1. Russell G, Lightman S. The Human Stress Response. Nat Rev Endocrinol (2019) 15(9):525–34. doi: 10.1038/s41574-019-0228-0 PubMed Abstract | CrossRef Full Text | Google Scholar 2. Chung S, Son GH, Kim K. Circadian Rhythm of Adrenal Glucocorticoid: Its Regulation and Clinical Implications. Biochim Biophys Acta (2011) 1812(5):581–91. doi: 10.1016/j.bbadis.2011.02.003 PubMed Abstract | CrossRef Full Text | Google Scholar 3. Arnaldi G, Mancini T, Tirabassi G, Trementino L, Boscaro M. Advances in the Epidemiology, Pathogenesis, and Management of Cushing’s Syndrome Complications. J Endocrinol Invest (2012) 35(4):434–48. doi: 10.1007/BF03345431 PubMed Abstract | CrossRef Full Text | Google Scholar 4. Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, et al. the Diagnosis of Cushing’s Syndrome: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab (2008) 93(5):1526–40. doi: 10.1210/jc.2008-012 PubMed Abstract | CrossRef Full Text | Google Scholar 5. Arnaldi G, Scandali VM, Trementino L, Cardinaletti M, Appolloni G, Boscaro M. Pathophysiology of Dyslipidemia in Cushing’s Syndrome. Neuroendocrinology (2010) 92(Suppl 1):86–90. doi: 10.1159/000314213 PubMed Abstract | CrossRef Full Text | Google Scholar 6. Arnaldi G, Angeli A, Atkinson AB, Bertagna X, Cavagnini F, Chrousos GP, et al. Diagnosis and Complications of Cushing’s Syndrome: A Consensus Statement. J Clin Endocrinol Metab (2003) 88(12):5593–602. doi: 10.1210/jc.2003-030871 PubMed Abstract | CrossRef Full Text | Google Scholar 7. Carroll T, Raff H, Findling JW. Late-Night Salivary Cortisol Measurement in the Diagnosis of Cushing’s Syndrome. Nat Clin Pract Endocrinol Metab (2008) 4(6):344–50. doi: 10.1038/ncpendmet0837 PubMed Abstract | CrossRef Full Text | Google Scholar 8. Geer EB, Islam J, Buettner C. Mechanisms of Glucocorticoid-Induced Insulin Resistance: Focus on Adipose Tissue Function and Lipid Metabolism. Endocrinol Metab Clin North Am (2014) 43(1):75–102. doi: 10.1016/j.ecl.2013.10.005 PubMed Abstract | CrossRef Full Text | Google Scholar 9. Watson RT, Kanzaki M, Pessin JE. Regulated Membrane Trafficking of the Insulin-Responsive Glucose Transporter 4 in Adipocytes. Endocr Rev (2004) 25(2):177–204. doi: 10.1210/er.2003-0011 PubMed Abstract | CrossRef Full Text | Google Scholar 10. Sakoda H, Ogihara T, Anai M, Funaki M, Inukai K, Katagiri H, et al. Dexamethasone-Induced Insulin Resistance in 3T3-L1 Adipocytes is Due to Inhibition of Glucose Transport Rather Than Insulin Signal Transduction. Diabetes (2000) 49(10):1700–8. doi: 10.2337/diabetes.49.10.1700 PubMed Abstract | CrossRef Full Text | Google Scholar 11. Le Marchand-Brustel Y, Gual P, Grémeaux T, Gonzalez T, Barrès R, Tanti JF. Fatty Acid-Induced Insulin Resistance: Role of Insulin Receptor Substrate 1 Serine Phosphorylation in the Retroregulation of Insulin Signalling. Biochem Soc Trans (2003) 31(Pt 6):1152–6. doi: 10.1042/bst0311152 PubMed Abstract | CrossRef Full Text | Google Scholar 12. Gathercole LL, Bujalska IJ, Stewart PM, Tomlinson JW. Glucocorticoid Modulation of Insulin Signaling in Human Subcutaneous Adipose Tissue. J Clin Endocrinol Metab (2007) 92(11):4332–9. doi: 10.1210/jc.2007-1399 PubMed Abstract | CrossRef Full Text | Google Scholar 13. Campanati A, Orciani M, Sorgentoni G, Consales V, Offidani A, Di Primio R. Pathogenetic Characteristics of Mesenchymal Stem Cells in Hidradenitis Suppurativa. JAMA Dermatol (2018) 154(10):1184–90. doi: 10.1001/jamadermatol.2018.2516 PubMed Abstract | CrossRef Full Text | Google Scholar 14. Orciani M, Caffarini M, Lazzarini R, Delli Carpini G, Tsiroglou D, Di Primio R, et al. Mesenchymal Stem Cells From Cervix and Age: New Insights Into CIN Regression Rate. Oxid Med Cell Longev (2018) 2018:154578. doi: 10.1155/2018/1545784 CrossRef Full Text | Google Scholar 15. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy (2006) 8(4):315–7. doi: 10.1080/14653240600855905 PubMed Abstract | CrossRef Full Text | Google Scholar 16. Caffarini M, Armeni T, Pellegrino P, Cianfruglia L, Martino M, Offidani A, et al. Cushing Syndrome: The Role of Mscs in Wound Healing, Immunosuppression, Comorbidities, and Antioxidant Imbalance. Front Cell Dev Biol (2019) 9:227. doi: 10.3389/fcell.2019.00227 CrossRef Full Text | Google Scholar 17. Campanati A, Orciani M, Lazzarini R, Ganzetti G, Consales V, Sorgentoni G, et al. TNF-α Inhibitors Reduce the Pathological Th1 -Th17/Th2 Imbalance in Cutaneous Mesenchymal Stem Cells of Psoriasis Patients. Exp Dermatol (2017) 26(4):319–24. doi: 10.1111/exd.13139 PubMed Abstract | CrossRef Full Text | Google Scholar 18. Campanati A, Orciani M, Sorgentoni G, Consales V, Mattioli Belmonte M, Di Primio R, et al. Indirect Co-Cultures of Healthy Mesenchymal Stem Cells Restore the Physiological Phenotypical Profile of Psoriatic Mesenchymal Stem Cells. Clin Exp Immunol (2018) 193(2):234–40. doi: 10.1111/cei.13141 PubMed Abstract | CrossRef Full Text | Google Scholar 19. Orciani M, Caffarini M, Biagini A, Lucarini G, Delli Carpini G, Berretta A, et al. Chronic Inflammation May Enhance Leiomyoma Development by the Involvement of Progenitor. Cells Stem Cells Int (2018) 13(2018):1716246. doi: 10.1155/2018/1716246 CrossRef Full Text | Google Scholar 20. Lazzarini R, Olivieri F, Ferretti C, Mattioli-Belmonte M, Di Primio R, Orciani M. Mrnas and Mirnas Profiling of Mesenchymal Stem Cells Derived From Amniotic Fluid and Skin: The Double Face of the Coin. Cell Tissue Res (2014) 355(1):121–30. doi: 10.1007/s00441-013-1725-4 PubMed Abstract | CrossRef Full Text | Google Scholar 21. Bonifazi M, Di Vincenzo M, Caffarini M, Mei F, Salati M, Zuccatosta L, et al. How the Pathological Microenvironment Affects the Behavior of Mesenchymal Stem Cells in the Idiopathic Pulmonary Fibrosis. Int J Mol Sci (2020) 21(21):8140. doi: 10.3390/ijms21218140 CrossRef Full Text | Google Scholar 22. Debono M, Ghobadi C, Rostami-Hodjegan A, Huatan H, Campbell MJ, Newell-Price J, et al. Modified-Release Hydrocortisone to Provide Circadian Cortisol Profiles. J Clin Endocrinol Metab (2009) 94(5):1548–54. doi: 10.1210/jc.2008-2380 PubMed Abstract | CrossRef Full Text | Google Scholar 23. Magi S, Nasti AA, Gratteri S, Castaldo P, Bompadre S, Amoroso S, et al. Gram-Negative Endotoxin Lipopolysaccharide Induces Cardiac Hypertrophy: Detrimental Role of Na(+)-Ca(2+) Exchanger. Eur J Pharmacol (2015) 746:31–40. doi: 10.1016/j.ejphar.2014.10.054 PubMed Abstract | CrossRef Full Text | Google Scholar 24. Yaradanakul A, Feng S, Shen C, Lariccia V, Lin MJ, Yang J, et al. Dual Control of Cardiac Na+ Ca2+ Exchange by PIP(2): Electrophysiological Analysis of Direct and Indirect Mechanisms. J Physiol (2007) 582(Pt 3):991–1010. doi: 10.1113/jphysiol.2007.132712 PubMed Abstract | CrossRef Full Text | Google Scholar 25. Weinstein SP, Paquin T, Pritsker A, Haber RS. Glucocorticoid-Induced Insulin Resistance: Dexamethasone Inhibits the Activation of Glucose Transport in Rat Skeletal Muscle by Both Insulin- and non-Insulin-Related Stimuli. Diabetes (1995) 44(4):441–5. doi: 10.2337/diab.44.4.441 PubMed Abstract | CrossRef Full Text | Google Scholar 26. Morigny P, Houssier M, Mouisel E, Langin D. Adipocyte Lipolysis and Insulin Resistance. Biochimie (2016) 125:259–66. doi: 10.1016/j.biochi.2015.10.024 PubMed Abstract | CrossRef Full Text | Google Scholar 27. Macfarlane DP, Forbes S, Walker BR. Glucocorticoids and Fatty Acid Metabolism in Humans: Fuelling Fat Redistribution in the Metabolic Syndrome. J Endocrinol (2008) 197(2):189–204. doi: 10.1677/JOE-08-0054 PubMed Abstract | CrossRef Full Text | Google Scholar 28. Kim JH, Bachmann RA, Chen J. Interleukin-6 and Insulin Resistance. Vitam Horm (2009) 80:613–33. doi: 10.1016/S0083-6729(08)00621-3 PubMed Abstract | CrossRef Full Text | Google Scholar 29. Ghasemi A, Zahediasl S. Normality Tests for Statistical Analysis: A Guide for non-Statisticians. Int J Endocrinol Metab (2012) 10(2):486–9. doi: 10.5812/ijem.3505 PubMed Abstract | CrossRef Full Text | Google Scholar 30. Deshmukh AS. Insulin-Stimulated Glucose Uptake in Healthy and Insulin-Resistant Skeletal Muscle. Horm Mol Biol Clin Investig (2016) 26(1):13–24. doi: 10.1515/hmbci-2015-0041 PubMed Abstract | CrossRef Full Text | Google Scholar 31. Honka MJ, Latva-Rasku A, Bucci M, Virtanen KA, Hannukainen JC, Kalliokoski KK, et al. Insulin-Stimulated Glucose Uptake in Skeletal Muscle, Adipose Tissue and Liver: A Positron Emission Tomography Study. Eur J Endocrinol (2018) 178(5):523–31. doi: 10.1530/EJE-17-0882 PubMed Abstract | CrossRef Full Text | Google Scholar 32. Satoh T. Molecular Mechanisms for the Regulation of Insulin-Stimulated Glucose Uptake by Small Guanosine Triphosphatases in Skeletal Muscle and Adipocytes. Int J Mol Sci (2014) 15(10):18677–92. doi: 10.3390/ijms151018677 PubMed Abstract | CrossRef Full Text | Google Scholar 33. Kandror KV, Pilch PF. The Sugar Is Sirved: Sorting Glut4 and its Fellow Travelers. Traffic (2011) 12(6):665–71. doi: 10.1111/j.1600-0854.2011.01175.x PubMed Abstract | CrossRef Full Text | Google Scholar 34. Bogan JS. Regulation of Glucose Transporter Translocation in Health and Diabetes. Annu Rev Biochem (2012) 81:507–32. doi: 10.1146/annurev-biochem-060109-094246 PubMed Abstract | CrossRef Full Text | Google Scholar 35. Tonack S, Fischer B, Navarrete Santos A. Expression of the Insulin-Responsive Glucose Transporter Isoform 4 in Blastocysts of C57/BL6 Mice. Anat Embryol (Berl) (2004) 208(3):225–30. doi: 10.1007/s00429-004-0388-z PubMed Abstract | CrossRef Full Text | Google Scholar 36. Beaupere C, Liboz A, Fève B, Blondeau B, Guillemain G. Molecular Mechanisms of Glucocorticoid-Induced Insulin Resistance. Int J Mol Sci (2021) 22(2):623. doi: 10.3390/ijms22020623 CrossRef Full Text | Google Scholar 37. Ayala-Sumuano JT, Velez-delValle C, Beltrán-Langarica A, Marsch-Moreno M, Hernandez-Mosqueira C, Kuri-Harcuch W. Glucocorticoid Paradoxically Recruits Adipose Progenitors and Impairs Lipid Homeostasis and Glucose Transport in Mature Adipocytes. Sci Rep (2013) 3:2573. doi: 10.1038/srep02573 PubMed Abstract | CrossRef Full Text | Google Scholar 38. Samuel VT, Shulman GI. Mechanisms for Insulin Resistance: Common Threads and Missing Links. Cell (2012) 148(5):852–71. doi: 10.1016/j.cell.2012.02.017 PubMed Abstract | CrossRef Full Text | Google Scholar 39. Plat L, Leproult R, L’Hermite-Baleriaux M, Fery F, Mockel J, Polonsky KS, et al. Metabolic Effects of Short-Term Elevations of Plasma Cortisol are More Pronounced in the Evening Than in the Morning. J Clin Endocrinol Metab (1999) 84(9):3082–92. doi: 10.1210/jcem.84.9.5978 PubMed Abstract | CrossRef Full Text | Google Scholar 40. Ertunc ME, Sikkeland J, Fenaroli F, Griffiths G, Daniels MP, Cao H, et al. Secretion of Fatty Acid Binding Protein Ap2 From Adipocytes Through a Nonclassical Pathway in Response to Adipocyte Lipase Activity. J Lipid Res (2015) 56(2):423–34. doi: 10.1194/jlr.M055798 PubMed Abstract | CrossRef Full Text | Google Scholar 41. Boden G, Chen X, Rosner J, Barton M. Effects of a 48-H Fat Infusion on Insulin Secretion and Glucose Utilization. Diabetes (1995) 44(10):1239–42. doi: 10.2337/diab.44.10.1239 PubMed Abstract | CrossRef Full Text | Google Scholar 42. Slavin BG, Ong JM, Kern PA. Hormonal Regulation of Hormonesensitive Lipase Activity and Mrna Levels in Isolated Rat Adipocytes. J Lip Res (1994) 35(9):1535–41. doi: 10.1016/S0022-2275(20)41151-4 CrossRef Full Text | Google Scholar 43. Villena JA, Roy S, Sarkadi-Nagy E, Kim KH, Sul HS. Desnutrin, an Adipocyte Gene Encoding a Novel Patatin Domain-Containing Protein, is Induced by Fasting and Glucocorticoids: Ectopic Expression of Desnutrin Increases Triglyceride Hydrolysis. J Biol Chem (2004) 279(45):47066–75. doi: 10.1074/jbc.M403855200 PubMed Abstract | CrossRef Full Text | Google Scholar 44. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF. Spiegelman. BM IRS-1-Mediated Inhibition of Insulin Receptor Tyrosine Kinase Activity in TNF-Alpha- and Obesity-Induced Insulin Resistance. Science (1996) 271(5249):665–8. doi: 10.1126/science.271.5249.665 PubMed Abstract | CrossRef Full Text | Google Scholar 45. Rehman K, Akash MSH, Liaqat A, Kamal S, Qadir MI, Rasul A. Role of Interleukin-6 in Development of Insulin Resistance and Type 2 Diabetes Mellitus. Crit Rev Eukaryot Gene Expr (2017) 27(3):229–36. doi: 10.1615/CritRevEukaryotGeneExpr.2017019712 PubMed Abstract | CrossRef Full Text | Google Scholar Keywords: glucocorticoids, MSCs, lipolysis, glucose uptake, insulin resistance Citation: Di Vincenzo M, Martino M, Lariccia V, Giancola G, Licini C, Di Benedetto G, Arnaldi G and Orciani M (2022) Mesenchymal Stem Cells Exposed to Persistently High Glucocorticoid Levels Develop Insulin-Resistance and Altered Lipolysis: A Promising In Vitro Model to Study Cushing’s Syndrome. Front. Endocrinol. 13:816229. doi: 10.3389/fendo.2022.816229 Received: 16 November 2021; Accepted: 20 January 2022;Published: 24 February 2022. Edited by: Pierre De Meyts, Université Catholique de Louvain, Belgium Reviewed by: Jacqueline Beaudry, University of Toronto, CanadaMałgorzata Małodobra-Mazur, Wroclaw Medical University, Poland Copyright © 2022 Di Vincenzo, Martino, Lariccia, Giancola, Licini, Di Benedetto, Arnaldi and Orciani. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. *Correspondence: Giorgio Arnaldi, g.arnaldi@univpm.it †These authors have contributed equally to this work and share first authorship ‡These authors have contributed equally to this work and share last authorship Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher. From https://www.frontiersin.org/articles/10.3389/fendo.2022.816229/full
  11. This article was originally published here Microvasc Res. 2022 Jan 21:104323. doi: 10.1016/j.mvr.2022.104323. Online ahead of print. ABSTRACT PURPOSE: Macrovascular alterations are prominent in Cushing’s syndrome (CS). Microvascular abnormalities are yet to be established. This cross-sectional observational study aimed to evaluate microvascular changes in nailfold capillaries and their association with disease status and carotid intima-media thickness (CIMT) as a marker of atherosclerosis. METHODS: A total of 70 patients with CS [46 (65.7%) ACTH-dependent pituitary adenoma and 24 (34.3%) adrenocortical adenomas] and 100 healthy controls were enrolled. The microvascular structure was evaluated using nailfold video-capillaroscopy (NVC). RESULTS: The median number of capillaries was less [10 mm (IQR: 2, min-max:7-14) vs. 11 mm (IQR: 2, min-max:9-19) (p < 0.001)], the median limb diameter and capillary width were wider in the CS group than in the controls (p = 0.016 and p = 0.002, respectively). Microhemorrhages within limited areas were more frequent in the CS group than in the controls (p = 0.046). Observed capillary changes were similar among the patients with CS with remission or active disease. CIMT levels were higher in the CS group than in the controls and similar in subjects with active disease and remission. Univariate logistic regression analyses revealed that the number of capillaries and capillary widths were associated with body mass index (BMI), the presence of type 2 diabetes mellitus, HbA1c, and CIMT. CONCLUSION: Morphologic alterations present similarly in nailfold capillaries in subjects with CS regardless of disease status, resembling changes in chronic atherosclerotic diseases. Microvascular changes in nailfold capillaries measured using NVC can be used as a marker in the assessment of cardiovascular risk in patients with CS. PMID:35074338 | DOI:10.1016/j.mvr.2022.104323 From https://www.docwirenews.com/abstracts/rheumatology-abstracts/capillary-microarchitectural-changes-in-cushings-syndrome/
  12. Patient: Female, 74-year-old Final Diagnosis: ACTH-dependent Cushing’s syndrome • ectopic ACTH syndrome Symptoms: Edema • general fatigue • recurrent mechanical fall Medication: — Clinical Procedure: — Specialty: Critical Care Medicine • Endocrinology and Metabolic • Family Medicine • General and Internal Medicine • Nephrology • Oncology Objective: Unusual clinical course Background: Adrenocorticotropic hormone (ACTH)-dependent Cushing’s syndrome (CS) secondary to an ectopic source is an uncommon condition, accounting for 4–5% of all cases of CS. Refractory hypokalemia can be the presenting feature in patients with ectopic ACTH syndrome (EAS), and is seen in up to 80% of cases. EAS can be rapidly progressive and life-threatening without timely diagnosis and intervention. Case Report: We present a case of a 74-year-old White woman who first presented with hypokalemia, refractory to treatment with potassium supplementation and spironolactone. She progressively developed generalized weakness, recurrent falls, bleeding peptic ulcer disease, worsening congestive heart failure, and osteoporotic fracture. A laboratory workup showed hypokalemia, hypernatremia, and primary metabolic alkalosis with respiratory acidosis. Hormonal evaluation showed elevated ACTH, DHEA-S, 24-h urinary free cortisol, and unsuppressed cortisol following an 8 mg dexamethasone suppression test, suggestive of ACTH-dependent CS. CT chest, abdomen, and pelvis, and FDG/PET CT scan showed a 1.4 cm right lung nodule and bilateral adrenal enlargement, confirming the diagnosis of EAS, with a 1.4-cm lung nodule being the likely source of ectopic ACTH secretion. Due to the patient’s advanced age, comorbid conditions, and inability to attend to further evaluation and treatment, her family decided to pursue palliative and hospice care. Conclusions: This case illustrates that EAS is a challenging condition and requires a multidisciplinary approach in diagnosis and management, which can be very difficult in resource-limited areas. In addition, a delay in diagnosis and management often results in rapid deterioration of clinical status. Keywords: Cushing Syndrome, Endocrine System, Hypokalemia Go to: Background Cushing’s syndrome (CS) has a variety of clinical manifestations resulting from excess steroid hormone production from adrenal glands (endogenous) or administration of glucocorticoids (exogenous) [1,2]. Endogenous CS is classified into 2 main categories: ACTH-dependent and ACTH-independent disease. In ACTH-dependent disease, the source of ACTH can further be subdivided into either the pituitary gland or an ectopic source [2]. Ectopic ACTH syndrome (EAS) results from excess production of ACTH from extra-pituitary sources [2] and accounts for approximately 4–5% of cases of CS [3,4]. Common clinical manifestations of CS include weight gain, central obesity, fatigue, plethoric facies, purple striae, hirsutism, irregular menses, hypertension, diabetes/glucose intolerance, anxiety, muscle weakness, bruising, and osteoporosis [2]. Hypokalemia is a less defining feature, seen in roughly 20% of cases with CS. However, it is present in up to 90% of cases with EAS [2,5], which is attributed to the mineralocorticoid action of steroid [6]. Hypercortisolism due to EAS is usually severe and rapid in onset, and excess cortisol levels can lead to severe clinical manifestations, including life-threatening infections [7]. Moreover, in most patients with EAS, the source of excess ACTH is an underlying malignancy that can further result in rapid deterioration of the overall clinical condition. Although numerous malignancies have been associated with EAS, lung neuroendocrine tumors (NETs) are the most common [2,8]. Since the treatment of choice for EAS is complete resection of the tumor, the correct localization of the source of ectopic ACTH is crucial in managing these patients. Traditional radiological investigations can localize these tumors in up to 50% of cases [9]; however, recent studies utilizing somatostatin receptor (SSTR) analogs have increased the sensitivity and specificity of tumor localization [9–11]. This case report describes a challenging case of an elderly patient with EAS who presented with refractory hypokalemia. Her clinical condition deteriorated rapidly in the absence of surgical intervention. Go to: Case Report A 74-year-old White woman was brought to the Emergency Department from her nephrologist’s office with a chief concern of persistent anasarca and recurrent hypokalemia of 1-month duration. In addition, she reported generalized weakness and recurrent mechanical falls in the preceding 3 months. Before presentation in March 2021, she had a medical history of type 2 diabetes, chronic kidney disease stage 3b, atrial fibrillation on chronic anticoagulation, heart failure with reduced ejection fraction (EF 35–40%), hypothyroidism, hypertension, and hyperlipidemia. Home medications included diltiazem, apixaban, insulin glargine, levothyroxine, simvastatin, carvedilol, glimepiride, sacubitril, valsartan, and furosemide. On presentation, she was hemodynamically stable with temperature 36.5°C, heart rate 67 beats per min, blood pressure 139/57 mmHg, respiratory rate 20 per min, and saturation 98% on 2 L oxygen supplementation. Her height was 162.6 cm, and weight was 80.88 kg, with a body mass index (BMI) of 30.6 kg/m2. A physical exam showed central obesity, bruising in extremities, generalized facial swelling mainly in the periorbital region, severe pitting edema in bilateral lower extremities, and moderate pitting edema in bilateral upper extremities. A laboratory workup revealed serum potassium 2.4 mmol/L (3.6–5.2 mmol/L), serum sodium 148 mmol/L (133–144 mmol/L), and eGFR 31.5 mL/min/1.73 m2. Arterial blood gas analysis showed pH 7.6, PaCO2 48.9 mmHg (35.0–45.0 mmHg), and serum bicarbonate 32 mmol/L (22–29 mmol/L), which was consistent with primary metabolic alkalosis, appropriately compensated by respiratory acidosis. Due to concerns of loop diuretic-induced hypokalemia, she was started on spironolactone and potassium replacement. However, potassium levels persistently remained in the low range of 2–3.5 mmol/L (3.6–5.2 mmol/L) despite confirming compliance to medications and adequate up-titration in the dose of spironolactone and potassium chloride. Hence, the workup for the secondary cause of persistent hypokalemia was pursued. Hormonal evaluation revealed plasma aldosterone concentration (PAC) <1.0 ng/dL, plasma renin activity (PRA) 0.568 ng/mL/h (0.167–5.380 ng/mL/h), 24-h urine free cortisol (UFC) 357 mg/24h (6–42 mg/24h), ACTH 174 pg/mL, and DHEA-S 353 ug/dL (20.4–186.6 ug/dL). ACTH levels on 2 repeat testings were 229 pg/mL and 342 pg/mL. The rest of the laboratory workup is summarized in Table 1. Considering elevated ACTH and 24-h UFC, a preliminary diagnosis of ACTH-dependent Cushing syndrome was made. An 8-mg dexamethasone suppression test revealed non-suppressed cortisol of 62.99 ug/dL along with dexamethasone 4050 ng/dL (1600–2850 ng/dL). A pituitary MRI was unremarkable for any focal lesion suggesting a diagnosis of ACTH-dependent Cushing’s syndrome secondary to an ectopic source. Imaging studies were then performed to determine the source. A CT scan of the chest and abdomen revealed adenomatous thickening with nodularity of bilateral adrenal glands, and a 1.4-cm nodule in the right middle lobe (Figure 1A, 1B). FDG-PET/CT showed severe bilateral enlargement of the adrenal glands with severe hyper-metabolic uptake (mSUV 9.2 and 9.1 for left and right adrenal glands, respectively) (Figure 2A). The uptake of the right lung nodule on PET/CT was 1.4 mSUV (Figure 2B). Figure 1. CT chest, abdomen, and pelvis w/o contrast showed bilateral enlargement of adrenal glands (A, red arrows) and a 1.4-cm nodule in the right middle lobe of the lung (B, blue arrow). Figure 2. Whole-body PET/CT following intravenous injection of 40 mCi FDG showed diffuse enlargement of the bilateral adrenal glands with mSUV of 9.2 on the left and 9.1 on the right adrenal gland, respectively (A, red arrows) and low-grade activity with an MSUV of 1.4 in right lung nodule (B, blue arrow). Table 1. Laboratory on initial presentation. Laboratory test Level Reference range WBCs 7.8 k/uL 3.7–10.3 k/uL RBCs 3.05 M/mL 3.–5.2 M/mL Hemoglobin 9.6 g/dL 11.2–15.7 g/dL Hematocrit 27.3% 34–45% Platelets 98 k/mL 155–369 k/mL MCV 89.7 fl 78.2–101.8 fl MCH 31.5 pg 26.4–33.3 pg MCHC 35.2 g/dL 32.5–35.3 g/dL RDW 15.8% 10.1–16.2% Glucose 73 mg/dL 74–90 mg/dL Sodium 148 mmol/L 136–145 mmol/L Potassium 2.4 mmol/L 3.7–4.8 mmol/L Bicarbonate 32 mmol/L 22–29 mmol/L Chloride 108 mmol/L 97–107 mmol/L Calcium 7.0 mg/dL 8.9–10.2 mg/dL Magnesium 1.7 mg/dL 1.7–2.4 mg/dL Phosphorus 2.3 mg/dL 2.5–4.9 mg/dL Albumin 2.4 g/dL 3.3–4.6 g/dL Blood urea nitrogen 41 mg/dL 0–30 ng/dL Creatinine 1.60 mg/dL 0.60–1.10 mg/dL Estimated GFR 31.5 mL/min/1.73m2 >60 mL/min/1.73 m2 Aspartate transaminase 42 U/L 9–36 U/L Alanine transaminase 67 U/L 8–33 U/L Alkaline phosphatase 90 U/L 46–142 U/L Total protein 4.8 g/dL 6.3–7.9 g/dL Arterial blood gas analysis PaCO2 48.9 mmHg 35.0–45.0 mmHg PaO2 63.1 mmHg 85.0–100.0 mmHg %SAT 92.8% 93.0–97.0 HCO3 47.8 mm/L 20.0–26.0 mm/L Base excess 26.3 mm/L <2.0 mm/L pH 7.599 7.350–7.450 Adrenocorticotropic hormone (ACTH) 174, 229 and 342 pg/mL 15–65 pg/mL Urine free cortisol, 24 h 357 ug/24 hr 6–42 mg/24 hr 8: 00 AM cortisol following 8 mg dexamethasone (4×2 mg doses) previous day 62.99 mg/dL 8: 00 AM dexamethasone following 8 mg dexamethasone (4×2 mg doses) previous day 4050 ng/dL 1600–2850 ng/dL Based on unsuppressed cortisol following an 8-mg dexamethasone suppression test, negative pituitary MRI, and 1.4-cm lung nodule, we diagnosed ACTH-dependent CS secondary to an ectopic source, most likely from the 1.4-cm lung nodule. While awaiting localization studies, within 3 months of initial presentation, she had 2 hospitalizations, one in May 2021 for acute anemia secondary to bleeding peptic ulcer disease (PUD) requiring endoscopic clipping of the bleeding ulcer, and another in June 2021 for acute on chronic congestive heart failure. The patient’s overall condition continued to deteriorate, and she became progressively weak and wheelchair-bound. A 68-Ga-DOTATATE was planned to establish the source of ectopic ACTH definitively; however, she developed a left hip fracture in July 2021 and could not present for follow-up care. Therefore, she was started on Mifepristone until curative surgery. However, considering the patient’s advanced comorbid conditions, the increased burden of the patient’s health care needs on her elderly husband, and the inability of other family members to provide necessary healthcare-related support, palliative care was pursued. In August 2021, she developed a sacral decubitus ulcer and community-acquired pneumonia. However, she was still alive while receiving palliative care in a nursing home until September 2021. Go to: Discussion Ectopic ACTH syndrome (EAS) is defined as secretion of ACTH from an extra-pituitary source and is the cause of Cushing’s syndrome (CS) in approximately 4–5% of cases [3,4]. Clinical features of EAS depend on the rate and amount of ACTH production [12]. Among all forms of Cushing’s (excluding adrenal cortical carcinoma), EAS has the worst outcome, with one of the most extensive combined UK & Athens study demonstrating a 5-year survival rate of 77.6%. Compared to Cushing’s disease (CD), patients with EAS have severe and excessive production of ACTH, resulting in highly elevated cortisol levels. This leads to hypokalemia, metabolic alkalosis, worsening glycemia, hypertension, psychosis, and infections. Metabolic alkalosis and hypokalemia are the 2 most common acid-base and electrolyte abnormalities associated with glucocorticoid excess among these patients. Studies have shown that hypokalemia is seen in up to 90% of patients with EAS. Although hypertension and hypokalemia are often attributed to primary hyperaldosteronism, other causes should be sought. Under normal circumstances, the mineralocorticoid effect of cortisol is insignificant due to local conversion to cortisone by the action of 11 beta-hydroxysteroid dehydrogenase. Excessive cortisol in patients with EAS saturates the action of 11 beta-hydroxysteroid dehydrogenase and leads to the appearance of mineralocorticoid action of cortisol [6]. In our patient, the initial treatment of hypokalemia was unsatisfactory, so additional endocrine workup was pursued. Elevated urinary cortisol excretion, plasma ACTH levels, unsuppressed cortisol following 8 mg dexamethasone, and lung mass on CT scan strongly suggested that the clinical symptoms were due to EAS. Unfortunately, despite diagnosing the underlying condition contributing to the patient’s symptoms, her clinical condition rapidly deteriorated without surgical treatment. Various factors resulted in delayed diagnosis in our patient. First, the patient sought medical care only 3 months after symptom onset. Second, furosemide, a medication commonly used to treat patients with HFrEF, is a frequent culprit of hypokalemia and often is treated with adequate potassium supplementation. Third, multiple hospitalizations resulted in delays in the proper endocrine workup necessary for establishing hypercortisolism. Fourth, localization of the ectopic source requires advanced imaging studies, which are only available in a few tertiary care centers. Fifth, even after tumor localization with PET/CT scan, there is still a need for a more definitive localization study using Ga-DOTATATE scan, which has a higher specificity. However, it was unavailable in our institution and was only available in a few tertiary care centers, with the nearest center being 2.5 h away. Sixth, the impact of the COVID-19 pandemic also played a critical role in promptly providing critical care necessary to the patient. In addition to those, the social situation of our patient also played an essential role in contributing to delays in diagnosis. It is well recognized that EAS is associated with various malignancies, mostly of neuroendocrine origin. The most common location of these tumors was found to be the lung (55.3%), followed by the pancreas (8.5%), mediastinum-thymus (7.9%), adrenal glands (6.4%), and gastrointestinal tract (5.4%) [9]. Prompt surgical removal of ectopic ACTH-secreting tumors is the mainstay of therapy in patients with EAS [13]. However, localization of such tumors with conventional therapy is often challenging as the sensitivity to localize the tumor is 50–60% for conventional imaging such as CT, MRI, and FDG-PET [9]. In a study by Isidori et al, nuclear imaging improved the sensitivity of conventional radiological imaging [9]. Moreover, newer imaging technologies using somatostatin receptor (SSTR) analogs such as 68Ga-DOTATATE PET/CT further improve the ability to localize the tumor. 68Ga-DOTATATE PET/CT, approved in 2016 by the Federal Drug Administration (FDA) for imaging well-differentiated NETs, has a high sensitivity (88–93%) and specificity (88–95%) to diagnose carcinoid tumor [14]; however, a systematic review reported a significantly lower sensitivity (76.1%) of 68Ga-DOTATATE PET/CT to diagnose EAS [15]. Once localized, the optimal management of EAS is surgical re-section of the causative tumor, which is often curative. However, until curative surgery is done, patients should be medically managed. Drugs used to reduce cortisol levels include ketoconazole, mitotane, and metyrapone [16, 17]. These are oral medications and decrease cortisol synthesis by inhibiting adrenal enzymes [17]. Etomidate is the only intravenous drug that immediately reduces adrenal steroid production and can be used when acute reduction in cortisol production is desired [16]. Medical management requires frequent monitoring of cortisol levels and titration of dose to achieve low serum and urine cortisol levels. Mifepristone, an anti-progesterone at a higher dose, works as a glucocorticoid receptor antagonist and can be used to block the action of cortisol. Its use results in variable levels of ACTH and cortisol levels in patients with EAS. Hence, hormonal measurement cannot be used to judge therapeutic response, and clinical improvement is the goal of treatment [18]. Drugs inhibiting ACTH secretion by NETs such as kinase inhibitors (vandetanib, sorafenib, or sunitinib) are effective in treating EAS secondary to medullary thyroid cancer [19]. Somatostatin analogs such as octreotide and lanreotide have demonstrated short- and medium-term efficacy in a few EAS patients; however, a few patients failed to improve, necessitating the use of more effective treatment options [19,20]. Hence, they are not considered a first-line drug as monotherapy and should be used in combination with other agents, or as anti-tumoral therapy in non-excisable metastatic well-differentiated NETs [19,20]. Cabergoline, a dopamine agonist, has been used with variable therapeutic effects in a few patients [19]. In 1 patient, the use of combination therapy using Mifepristone and a long-acting octreotide significantly improved EAS [21]. In our patient, we initiated Mifepristone to reduce the burden associated with frequent biochemical monitoring and planned 68Ga-DOTATATE PET/CT to localize the tumor; however, further diagnostic and therapeutic approaches could not be further undertaken per family wishes. Go to: Conclusions EAS can present with refractory hypokalemia, especially in patients who are already at risk of developing hypokalemia. Diagnosis of EAS is often challenging and requires a multidisciplinary approach. Localization of source of EAS should be done using nuclear imaging, preferably using SSTR analogs, when available. Urgent surgical evaluation remains the mainstay of treatment following tumor localization and can result in a cure. EAS is a rapidly progressive and life-threatening situation that can be fatal if diagnosis or timely intervention is delayed. Go to: Abbreviations ACTH adrenocorticotropic hormone; CS Cushing’s syndrome; CT computed tomography; EAS ec-topic ACTH syndrome; MRI magnetic resonance imaging; FDG/PET 18-F-fluorodeoxyglucose positron emission tomography; NET neuroendocrine tumors; SSTR somatostatin receptor; EF ejection fraction; PAC plasma aldosterone concentration; PRA plasma renin activity; UFC urine free cortisol; DHEA-S dehydroepiandrosterone sulfate; 68-Ga-DOTATATE Gallium 68 (68Ga) 1,4,7,10-tetraazacyclododecane-1,4,7,10-tet-raacetic acid (DOTA)-octreotate; PUD peptic ulcer disease Go to: Footnotes Financial support: None declared Go to: References: 1. Pluta RM, Burke AE, Golub RM. JAMA patient page. Cushing syndrome and Cushing disease. JAMA. 2011;306:2742. [PubMed] [Google Scholar] 2. Melmed SKR, Rosen C, Auchus R, Goldfine A. Williams textbook of endocrinology. Elsevier; 2020. [Google Scholar] 3. Rubinstein G, Osswald A, Hoster E, et al. Time to diagnosis in Cushing’s syndrome: A meta-analysis based on 5367 patients. J Clin Endocrinol Metab. 2020;105:dgz136. [PubMed] [Google Scholar] 4. Rosset A, Greenman Y, Osher E, et al. Revisiting Cushing syndrome, milder forms are now a common occurrence: A single-center cohort of 76 subjects. Endocr Pract. 2021;27:859–65. [PubMed] [Google Scholar] 5. Fan L, Zhuang Y, Wang Y, et al. Association of hypokalemia with cortisol and ACTH levels in Cushing’s disease. Ann NY Acad Sci. 2020;1463:60–66. [PubMed] [Google Scholar] 6. Jain SH, Sadow PM, Nose V, Dluhy RG. A patient with ectopic cortisol production derived from malignant testicular masses. Nat Clin Pract Endocrinol Metab. 2008;4:695–700. [PubMed] [Google Scholar] 7. Sarlis NJ, Chanock SJ, Nieman LK. Cortisolemic indices predict severe infections in Cushing syndrome due to ectopic production of adrenocorticotropin. J Clin Endocrinol Metab. 2000;85:42–47. [PubMed] [Google Scholar] 8. Isidori AM, Kaltsas GA, Pozza C, et al. The ectopic adrenocorticotropin syndrome: Clinical features, diagnosis, management, and long-term follow-up. J Clin Endocrinol Metab. 2006;91:371–77. [PubMed] [Google Scholar] 9. Isidori AM, Sbardella E, Zatelli MC, et al. Group ABCS. Conventional and nuclear medicine imaging in ectopic Cushing’s syndrome: A systematic review. J Clin Endocrinol Metab. 2015;100:3231–44. [PMC free article] [PubMed] [Google Scholar] 10. Righi L, Volante M, Tavaglione V, et al. Somatostatin receptor tissue distribution in lung neuroendocrine tumours: A clinicopathologic and immunohistochemical study of 218 ‘clinically aggressive’ cases. Ann Oncol. 2010;21:548–55. [PubMed] [Google Scholar] 11. Ozkan ZG, Kuyumcu S, Balkose D, et al. The value of somatostatin receptor imaging with In-111 Octreotide and/or Ga-68 DOTATATE in localizing Ectopic ACTH producing tumors. Mol Imaging Radionucl Ther. 2013;22:49–55. [PMC free article] [PubMed] [Google Scholar] 12. Paun DL, Vija L, Stan E, et al. Cushing syndrome secondary to ectopic adrenocorticotropic hormone secretion from a Meckel diverticulum neuroendocrine tumor: Aase report. BMC Endocr Disord. 2015;15:72. [PMC free article] [PubMed] [Google Scholar] 13. Grigoryan S, Avram AM, Turcu AF. Functional imaging in ectopic Cushing syndrome. Curr Opin Endocrinol Diabetes Obes. 2020;27:146–54. [PMC free article] [PubMed] [Google Scholar] 14. Poeppel TD, Binse I, Petersenn S, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med. 2011;52:1864–70. [PubMed] [Google Scholar] 15. Varlamov E, Hinojosa-Amaya JM, Stack M, Fleseriu M. Diagnostic utility of Gallium-68-somatostatin receptor PET/CT in ectopic ACTH-secreting tumors: A systematic literature review and single-center clinical experience. Pituitary. 2019;22:445–55. [PubMed] [Google Scholar] 16. Findling JW, Raff H. Cushing’s syndrome: Important issues in diagnosis and management. J Clin Endocrinol Metab. 2006;91:3746–53. [PubMed] [Google Scholar] 17. Diez JJ, Iglesias P. Pharmacological therapy of Cushing’s syndrome: Drugs and indications. Mini Rev Med Chem. 2007;7:467–80. [PubMed] [Google Scholar] 18. Wannachalee T, Turcu AF, Auchus RJ. Mifepristone in the treatment of the ectopic adrenocorticotropic hormone syndrome. Clin Endocrinol (Oxf) 2018;89:570–76. [PubMed] [Google Scholar] 19. Young J, Haissaguerre M, Viera-Pinto O, et al. Cushing’s syndrome due to ectopic ACTH secretion: An expert operational opinion. Eur J Endocrinol. 2020;182:R29–58. [PubMed] [Google Scholar] 20. Pedroncelli AM. Medical treatment of Cushing’s disease: Somatostatin analogues and pasireotide. Neuroendocrinology. 2010;92(Suppl. 1):120–24. [PubMed] [Google Scholar] 21. Moraitis AG, Auchus RJ. Mifepristone improves octreotide efficacy in resistant ectopic Cushing’s syndrome. Case Rep Endocrinol. 2016;2016:8453801. [PMC free article] [PubMed] [Google Scholar] Articles from The American Journal of Case Reports are provided here courtesy of International Scientific Information, Inc From https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8574168/
  13. This article is based on reporting that features expert sources. Adrenal Fatigue: Is It Real? More You may have heard of so-called 'adrenal fatigue,' supposedly caused by ongoing emotional stress. Or you might have come across adrenal support supplements sold online to treat it. But if someone suggests you have the controversial, unproven condition, seek a second opinion, experts say. And if someone tries to sell you dietary supplements or other treatments for adrenal fatigue, be safe and save your money. (GETTY IMAGES) Physicians tend to talk about 'reaching' or 'making' a medical diagnosis. However, when it comes to adrenal fatigue, endocrinologists – doctors who specialize in diseases involving hormone-secreting glands like the adrenals – sometimes use language such as 'perpetrating a diagnosis,' 'misdiagnosis,' 'made-up diagnosis,' 'a fallacy' and 'nonsense.' About 20 years ago, the term "adrenal fatigue" was coined by Dr. James Wilson, a chiropractor. Since then, certain practitioners and marketers have promoted the notion that chronic stress somehow slows or shuts down the adrenal glands, causing excessive fatigue. "The phenomenon emerged from the world of integrative medicine and naturopathic medicine," says Dr. James Findling, a professor of medicine and director of the Community Endocrinology Center and Clinics at the Medical College of Wisconsin. "It has no scientific basis, and there's no merit to it as a clinical diagnosis." An online search of medical billing code sets in the latest version of the International Classification of Diseases, or the ICD-10, does not yield a diagnostic code for 'adrenal fatigue' among the 331 diagnoses related either to fatigue or adrenal conditions or procedures. In a March 2020 position statement, the American Association of Clinical Endocrinologists and American College of Endocrinology addressed the use of adrenal supplements "to treat common nonspecific symptoms due to 'adrenal fatigue,' an entity that has not been recognized as a legitimate diagnosis." The position statement warned of known and unknown health risks of off-label use and misuse of hormones and supplements in patients without an established endocrine diagnosis, as well as unnecessary costs to patients and the overall health care system. Study after study has refuted the legitimacy of adrenal fatigue as a medical diagnosis. An August 2016 systematic review combined and analyzed data from 58 studies on adrenal fatigue including more than 10,000 participants. The conclusion in a nutshell: "Adrenal fatigue does not exist," according to review authors in the journal BMC Endocrine Disorders. Adrenal Action You have two adrenal glands in your body. These small triangular glands, one on top of each kidney, produce essential hormones such as aldosterone, cortisol and male sex hormones such as DHEA and testosterone. Cortisol helps regulate metabolism: How your body uses fat, protein and carbohydrates from food, and cortisol increases blood sugar as needed. It also plays a role in controlling blood pressure, preventing inflammation and regulating your sleep/wake cycle. As your body responds to stress, cortisol increases. This response starts with signals between two sections in the brain: The hypothalamus and the pituitary gland, which act together to release a hormone that stimulates the adrenal glands to make cortisol. This interactive unit is called the hypothalamic pituitary adrenal axis. While some health conditions really do affect the body's cortisol-making ability, adrenal fatigue isn't among them. "There's no evidence to support that adrenal fatigue is an actual medical condition," says Dr. Mary Vouyiouklis Kellis, a staff endocrinologist at Cleveland Clinic. "There's no stress connection in the sense that someone's adrenal glands will all of a sudden just stop producing cortisol because they're so inundated with emotional stress." If anything, adrenal glands are workhorses that rise to the occasion when chronic stress occurs. "The last thing in the body that's going to fatigue are your adrenal glands," says Dr. William F. Young Jr., an endocrinology clinical professor and professor of medicine in the Mayo Clinic College of Medicine at Mayo Clinic in Rochester, Minnesota. "Adrenal glands are built for stress – that's what they do. Adrenal glands don't fatigue. This is made up – it's a fallacy." The idea of adrenal glands crumbling under stress is "ridiculous," Findling agrees. "In reality, if you take a person and subject them to chronic stress, the adrenal glands don't shut down at all," Findling says. "They keep making cortisol – it's a stress hormone. In fact, the adrenal glands are just like the Energizer Bunny – they just keep going. They don't stop." Home cortisol tests that allow consumers to check their own levels can be misleading, Findling says. "Some providers who make this (adrenal fatigue) diagnosis, provide patients with testing equipment for doing saliva cortisol levels throughout the day," he says. "And then, regardless of what the results are, they perpetrate this diagnosis of adrenal fatigue." Saliva cortisol is a legitimate test that's frequently used in diagnosing Cushing's syndrome, or overactive adrenal glands, Findling notes. However, he says, a practitioner pursuing an adrenal fatigue diagnosis could game the system. "What they do is: They shape a very narrow normal range, so narrow, in fact, that no normal human subject could have all their saliva cortisol (levels) within that range throughout the course of the day," he says. "Then they convince the poor patients that they have adrenal fatigue phenomena and put them on some kind of adrenal support." Loaded Supplements How do you know what you're actually getting if you buy a dietary supplement marketed for adrenal fatigue or 'adrenal support' use? To find out, researchers purchased 12 such supplements over the counter in the U.S. Laboratory tests revealed that all supplements contained a small amount of thyroid hormone and most contained at least one steroid hormone, according to the study published in the March 2018 issue of Mayo Clinic Proceedings. "These results may highlight potential risks for hidden ingredients in unregulated supplements," the authors concluded. Supplements containing thyroid hormones or steroids can interact with a patient's prescribed medications or have other side effects. "Some people just assume they have adrenal fatigue because they looked it up online when they felt tired and they ultimately buy these over-the-counter supplements that can be very dangerous at times," Vouyiouklis Kellis says. "Some of them contain animal (ingredients), like bovine adrenal extract. That can suppress the pituitary axis. So, as a result, your body stops making its own cortisol or starts making less of it, and as a result, you can actually worsen the condition rather than make it better." Any form of steroid from outside the body, whether a prescription drug like prednisone or extract from cows' adrenal glands, "can shut off the pituitary," Vouyiouklis Kellis explains. "Because it's signaling to the pituitary like: Hey, you don't need to stimulate the adrenals to make cortisol, because this patient is taking it already. So, as a result, the body ultimately doesn't produce as much. And, so, if you rapidly withdraw that steroid or just all of a sudden decide not to take it anymore, then you can have this acute response of low cortisol." Some adrenal support products, such as herbal-only supplements, may be harmless. However, they're unlikely to relieve chronic fatigue. Fatigue: No Easy Answers If you're suffering from ongoing fatigue, it's frustrating. And you're not alone. "I have fatigue," Young Jr. says. "Go to the lobby any given day and say, 'Raise your hand if you have fatigue.' Most of the people are going to raise their hands. It's a common human symptom and people would like an easy answer for it. Usually there's not an easy answer. I think 'adrenal fatigue' is attractive because it's like: Aha, here's the answer." There aren't that many causes of endocrine-related fatigue, Young Jr. notes. "Hypothyroidism – when the thyroid gland is not working – is one." Addison's disease, or adrenal insufficiency, can also lead to fatigue among a variety of other symptoms. Established adrenal conditions – like adrenal insufficiency – need to be treated. "In adrenal insufficiency, there is an intrinsic problem in the adrenal gland's inability to produce cortisol," Vouyiouklis Kellis explains. "That can either be a primary problem in the adrenal gland or an issue with the pituitary gland not being able to stimulate the adrenal to make cortisol." Issues can arise even with necessary medications. "For example, very commonly, people are put on steroids for various reasons: allergies, ear, nose and throat problems," Vouyiouklis Kellis says. "And with the withdrawal of the steroids, they can ultimately have adrenal insufficiency, or decrease in cortisol." Opioid medications for pain also result in adrenal sufficiency, Vouyiouklis Kellis says, adding that this particular side effect is rarely discussed. People with a history of autoimmune disease can also be at higher risk for adrenal insufficiency. Common symptoms of adrenal insufficiency include: Fatigue. Weight loss. Decreased appetite. Salt cravings. Low blood pressure. Abdominal pain. Nausea, vomiting or diarrhea. Muscle weakness. Hyperpigmentation (darkening of the skin). Irritability. Medical tests for adrenal insufficiency start with blood cortisol levels, and tests for the ACTH hormone that stimulates the pituitary gland. "If the person does not have adrenal insufficiency and they're still fatigued, it's important to get to the bottom of it," Vouyiouklis Kellis says. Untreated sleep apnea often turns out to be the actual cause, she notes. "It's very important to tease out what's going on," Vouyiouklis Kellis emphasizes. "It can be multifactorial – multiple things contributing to the patient's feeling of fatigue." The blood condition anemia – a lack of healthy red blood cells – is another potential cause. "If you are fatigued, do not treat yourself," Vouyiouklis Kellis says. "Please seek a physician or a primary care provider for evaluation, because you don't want to go misdiagnosed or undiagnosed. It's very important to rule out actual causes that would be contributing to symptoms rather than ordering supplements online or seeking an alternative route like self-treating rather than being evaluated first." SOURCES The U.S. News Health team delivers accurate information about health, nutrition and fitness, as well as in-depth medical condition guides. All of our stories rely on multiple, independent sources and experts in the field, such as medical doctors and licensed nutritionists. To learn more about how we keep our content accurate and trustworthy, read our editorial guidelines. James Findling, MD Findling is a professor of medicine and director of the Community Endocrinology Center and Clinics at the Medical College of Wisconsin. Mary Vouyiouklis Kellis, MD Vouyiouklis Kellis is a staff endocrinologist at Cleveland Clinic. William F. Young Jr., MD Young Jr. is an endocrinology clinical professor and professor of medicine in the Mayo Clinic College of Medicine at Mayo Clinic in Rochester, Minnesota From https://health.usnews.com/health-care/patient-advice/articles/adrenal-fatigue-is-it-real?
  14. An assessment of free cortisol after a dexamethasone suppression test could add value to the diagnostic workup of hypercortisolism, which can be plagued by false-positive results, according to data from a cross-sectional study. A 1 mg dexamethasone suppression test (DST) is a standard of care endocrine test for evaluation of adrenal masses and for patients suspected to have endogenous Cushing’s syndrome. Interpretation of a DST is affected by dexamethasone absorption and metabolism; several studies suggest a rate of 6% to 20% of false-positive results because of inadequate dexamethasone concentrations or differences in the proportion of cortisol bound to corticosteroid-binding globulin affecting total cortisol concentrations. Source: Adobe Stock “As the prevalence of adrenal adenomas is around 5% to 7% in adults undergoing an abdominal CT scan, it is important to accurately interpret the DST,” Irina Bancos, MD, associate professor in the division of endocrinology at Mayo Clinic in Rochester, Minnesota, told Healio. “False-positive DST results are common, around 15% of cases, and as such, additional or second-line testing is often considered by physicians, including measuring dexamethasone concentrations at the time of the DST, repeating DST or performing DST with a higher dose of dexamethasone. We hypothesized that free cortisol measurements during the DST will be more accurate than total cortisol measurements, especially among those treated with oral contraceptive therapy.” Diverse cohort analyzed Bancos and colleagues analyzed data from adult volunteers without adrenal disorders (n = 168; 47 women on oral contraceptive therapy) and participants undergoing evaluation for hypercortisolism (n = 196; 16 women on oral contraceptives). The researchers assessed levels of post-DST dexamethasone and free cortisol, using mass spectrometry, and total cortisol, via immunoassay. The primary outcome was a reference range for post-DST free cortisol levels and the diagnostic accuracy of post-DST total cortisol level. Irina Bancos “A group that presents a particular challenge are women treated with oral estrogen,” Bancos told Healio. “In these cases, total cortisol increases due to estrogen-stimulated cortisol-binding globulin production, potentially leading to false-positive DST results. We intentionally designed our study to include a large reference group of women treated with oral contraceptive therapy allowing us to develop normal ranges of post-DST total and free cortisol, and then apply these cutoffs to the clinical practice.” Researchers observed adequate dexamethasone concentrations ( 0.1 µg/dL) in 97.6% of healthy volunteers and in 96.3% of patients. Among women volunteers taking oral contraceptives, 25.5% had an abnormal post-DST total cortisol measurement, defined as a cortisol level of at least 1.8 µg/dL. Among healthy volunteers, the upper post-DST free cortisol range was 48 ng/dL in men and women not taking oral contraceptives, and 79 ng/dL for women taking oral contraceptives. Compared with post-DST free cortisol, diagnostic accuracy of post-DST total cortisol level was 87.3% (95% CI, 81.7-91.7). All false-positive results occurred among patients with a post-DST cortisol level between 1.8 µg/dL and 5 µg/dL, according to researchers. Oral contraceptive use was the only factor associated with false-positive results (21.1% vs. 4.9%; P = .02). Findings challenge guidelines Natalia Genere “We were surprised by several findings of our study,” Natalia Genere, MD, instructor in medicine in the division of endocrinology, metabolism and lipid research at Washington University School of Medicine in St. Louis, told Healio. “First, we saw that with a standardized patient instruction on DST, we found that optimal dexamethasone concentrations were reached in a higher proportion of patients than previously reported (97%), suggesting that rapid metabolism or poor absorption of dexamethasone may play a lower role in the rate of false positives. Second, we found that measurements of post-DST total cortisol in women taking oral contraceptive therapy accurately excluded [mild autonomous cortisol secretion] in three-quarters of patients, suggesting discontinuation of oral contraceptives, as suggested in prior guidelines, may not be routinely necessary.” Genere said post-DST free cortisol performed “much better” than total cortisol among women treated with oral estrogen. Stepwise approach recommended Based on the findings, the authors suggested a sequential approach to dexamethasone suppression in clinical practice. “We recommend a stepwise approach to enhance DST interpretation, with the addition of dexamethasone concentration and/or free cortisol in cases of abnormal post-DST total cortisol,” Bancos said. “We found dexamethasone concentrations are particularly helpful when post-DST total cortisol is at least 5 µg/dL and free cortisol is helpful in a patient with optimal dexamethasone concentrations and a post-DST total cortisol between 1.8 µg/dL and 5 µg/dL. We believe that DST with free cortisol is a useful addition to the repertoire of available testing for [mild autonomous cortisol secretion], and that its use reduces need for repetitive assessments and patient burden of care, especially in women treated with oral contraceptive therapy.” PERSPECTIVE BACK TO TOP Ricardo Correa, MD, EsD, FACE, FACP, CMQ In the evaluation of endogenous Cushing’s disease, the guideline algorithm recommends two of three positive tests — 24-hour free urine cortisol, late midnight salivary cortisol level and 1 mg dexamethasone suppression test, or DST — for diagnosing hypercortisolism. Of those tests, the most accurate to detect adrenal secretion of cortisol when a patient may have an adrenal incidentaloma is the 1 mg DST. The caveat with this specific test is that it is affected by dexamethasone absorption and metabolism and the proportion of cortisol bound to corticosteroid-binding globulin. Up to 20% of these tests report false-positive findings. This study by Genere and colleagues aimed to determine the normal range of free cortisol during the 1 mg DST. The researchers conducted a prospective, cross-sectional study that included volunteers without adrenal disorders and patients assessed for cortisol excess for clinical reasons. In the volunteer group, 168 volunteers were enrolled, including 47 women that were taking oral contraceptives. After excluding patients with inadequate dexamethasone levels and other outliers, the post-DST free cortisol maximum level was less than 48 ng/dL for men and women who were not taking oral contraceptive pills and less than 79 ng/dL for women taking oral contraceptive pills. In the patient group, 100% of post-DST free cortisol levels were above the upper limit of normal among those with a post-DST cortisol of at least 5 µg/dL; however, this was true for only 70.7% of those with post-DST cortisol between 1.8 µg/dL and 5 µg/dL. This study found that a post-DST free cortisol assessment is helpful in patients with a post-DST total cortisol between 1.8 µg/dL and 5 µg/dL, but was not beneficial for patients with a post-DST total cortisol of less than 1.8 µg/dL or more than 5 µg/dL. Performing free cortisol assessments in this subgroup will reduce the number of false positives. The authors recommend performing a 1 mg post-DST free cortisol analysis for this subgroup; the levels to confirm cortisol excess are at least 48 ng/dL in men and women not taking oral contraceptive pills and at least 79 ng/dL for women taking oral contraceptive pills. Furthermore, the study presents a stepwise approach algorithm that will be very useful for clinical practice. Ricardo Correa, MD, EsD, FACE, FACP, CMQ Endocrine Today Editorial Board Member Program Director of Endocrinology Fellowship and Director for Diversity University of Arizona College of Medicine-Phoenix Phoenix Veterans Affairs Medical Center Disclosures: Correa reports no relevant financial disclosures. From https://www.healio.com/news/endocrinology/20211117/free-cortisol-evaluation-useful-after-abnormal-dexamethasone-test
  15. Any condition that causes the adrenal gland to produce excessive cortisol results in the disorder Cushing's syndrome. Cushing syndrome is characterized by facial and torso obesity, high blood pressure, stretch marks on the belly, weakness, osteoporosis, and facial hair growth in females. Cushing's syndrome has many possible causes including tumors within the adrenal gland, adrenal gland stimulating hormone (ACTH) produced from cancer such as lung cancer, and ACTH excessively produced from a pituitary tumors within the brain. ACTH is normally produced by the pituitary gland (located in the center of the brain) to stimulate the adrenal glands' natural production of cortisol, especially in times of stress. When a pituitary tumor secretes excessive ACTH, the disorder resulting from this specific form of Cushing's syndrome is referred to as Cushing's disease. As an aside, it should be noted that doctors will sometimes describe certain patients with features identical to Cushing's syndrome as having 'Cushingoid' features. Typically, these features are occurring as side effects of cortisone-related medications, such as prednisone and prednisolone.
  16. Cushing’s syndrome is a rare disorder that occurs when the body is exposed to too much cortisol. Cortisol is produced by the body and is also used in corticosteroid drugs. Cushing's syndrome can occur either because cortisol is being overproduced by the body or from the use of drugs that contain cortisol (like prednisone). Cortisol is the body’s main stress hormone. Cortisol is secreted by the adrenal glands in response to the secretion of adrenocorticotropic hormone (ACTH) by the pituitary. One form of Cushing’s syndrome may be caused by an oversecretion of ACTH by the pituitary leading to an excess of cortisol. Cortisol has several functions, including the regulation of inflammation and controlling how the body uses carbohydrates, fats, and proteins. Corticosteroids such as prednisone, which are often used to treat inflammatory conditions, mimic the effects of cortisol. Stay tuned for more basic info...
  17. Rachel Acree, Caitlin M Miller, Brent S Abel, Nicola M Neary, Karen Campbell, Lynnette K Nieman Journal of the Endocrine Society, Volume 5, Issue 8, August 2021, bvab109, https://doi.org/10.1210/jendso/bvab109 Abstract Context Cushing syndrome (CS) is associated with impaired health-related quality of life (HRQOL) even after surgical cure. Objective To characterize patient and provider perspectives on recovery from CS, drivers of decreased HRQOL during recovery, and ways to improve HRQOL. Design Cross-sectional observational survey. Participants Patients (n = 341) had undergone surgery for CS and were members of the Cushing’s Support and Research Foundation. Physicians (n = 54) were Pituitary Society physician members and academicians who treated patients with CS. Results Compared with patients, physicians underestimated the time to complete recovery after surgery (12 months vs 18 months, P = 0.0104). Time to recovery did not differ by CS etiology, but patients with adrenal etiologies of CS reported a longer duration of cortisol replacement medication compared with patients with Cushing disease (12 months vs 6 months, P = 0.0025). Physicians overestimated the benefits of work (26.9% vs 65.3%, P < 0.0001), exercise (40.9% vs 77.6%, P = 0.0001), and activities (44.8% vs 75.5%, P = 0.0016) as useful coping mechanisms in the postsurgical period. Most patients considered family/friends (83.4%) and rest (74.7%) to be helpful. All physicians endorsed educating patients on recovery, but 32.4% (95% CI, 27.3-38.0) of patients denied receiving sufficient information. Some patients did not feel prepared for the postsurgical experience (32.9%; 95% CI, 27.6-38.6) and considered physicians not familiar enough with CS (16.1%; 95% CI, 12.2-20.8). Conclusion Poor communication between physicians and CS patients may contribute to dissatisfaction with the postsurgical experience. Increased information on recovery, including helpful coping mechanisms, and improved provider-physician communication may improve HRQOL during recovery. Read the entire article in the enclosed PDF. bvab109.pdf
  18. The FDA accepted for review a new drug application for the steroidogenesis inhibitor levoketoconazole for the treatment of endogenous Cushing’s syndrome, according to an industry press release. “We are pleased with the FDA’s acceptance for filing of the Recorlev new drug application,” John H. Johnson, CEO of Strongbridge Biopharma, said in the release. “We believe this decision reflects the comprehensive clinical evidence that went into the NDA submission, including the positive and statistically significant efficacy and safety results from the multinational phase 3 SONICS and LOGICS studies evaluating Recorlev as a potential treatment option for adults with endogenous Cushing’s syndrome. We are advancing our commercial readiness plans and look forward to potentially bringing a new therapeutic option to the Cushing’s syndrome community in the first quarter of 2022.” As Healio previously reported, top-line findings from the LOGICS study demonstrated that levoketoconazole (Recorlev, Strongbridge Biopharma) improved and normalized morning urinary free cortisol concentrations for adults with endogenous Cushing’s disease compared with placebo. The drug was generally well tolerated, with safety data mirroring those from the earlier phase 3 SONICS trial. Endogenous Cushing’s syndrome — caused by chronic hypercortisolism — is rare, with estimates ranging from 40 to 70 people per million affected worldwide, according to the National Institute of Diabetes and Digestive and Kidney Diseases. The FDA set a Prescription Drug User Fee Act target action date of Jan. 1, 2022, for levoketoconazole, according to the company. The FDA letter made no mention of a plan to hold an advisory committee meeting. From https://www.healio.com/news/endocrinology/20210513/fda-accepts-nda-for-novel-cushings-syndrome-treatment
  19. Thanks for being a member of Rare Patient Voice, LLC. We have an opportunity for you to take part in a Cushing Syndrome interview (NEON_4470) for Patients. Our project number for this study is NEON_4470. Project Details: Telephone interview Interview is 60-minutes long One Hundred Dollar Reward Looking for Patients diagnosed with Endogenous Cushing Syndrome Things to Note: Patient study only, Caregivers please pass the link along Unique links, please do not pass along for 2nd use Want to share this opportunity? Let us know and we can provide a new link Please use a laptop/computer ONLY. No smartphones or tablets - Preliminary questions are Mobile Friendly! Save this email to reference if you have any questions about the study! If you have any problems, email michael.taylor@rarepatientvoice.com and reference the project number. If you hit reply, you will get an auto do-not-reply email. If you are interested in this study, please click the link below to answer a few questions to see if you qualify. Study Link: Link OR if the Study Hyperlink is not clickable above, please copy/paste this URL below. https://panel.rarepatientvoice.com/newdesign/site/rarepatientvoice/surveystart.php?surveyID=9mth6d868qpc&panelMemberID=trfnbc7mvduh1gseff1h&invite=email Thanks as always for your participation! Please be aware that by entering this information you are not guaranteed that you will be selected to participate. As always, we do not share any of your contact information without your permission. Not Interested in this study? (Click link below so we do not send you any reminders for this study) Study Reminder Opt Out Link: Link We truly appreciate the time you set aside to interact with our company and don’t take it for granted. Receive a $5 gift card for referring others who may want to participate in this or future studies. Invite them to join Rare Patient Voice: https://www.rarepatientvoice.com/sign-up. They, too, receive a gift card. Our Privacy Policy Regards, Michael Taylor Project Manager Rare Patient Voice Helping Patients with Rare Diseases Voice Their Opinions Phone: + 1 609-462-5519 Email: michael.taylor@rarepatientvoice.com Websites: www.rarepatientvoice.com
  20. I think we always knew Cushing's and pregnancy were related... Abstract Cushing’s syndrome (CS) during pregnancy is very rare with a few cases reported in the literature. Of great interest, some cases of CS during pregnancy spontaneously resolve after delivery. Most studies suggest that aberrant luteinizing hormone (LH)/human chorionic gonadotropin (hCG) receptor (LHCGR) seems to play a critical role in the pathogenesis of CS during pregnancy. However, not all women during pregnancy are observed cortisol hypersecretion. Moreover, some cases of adrenal tumors or macronodular hyperplasia with LHCGR expressed, have no response to hCG or LH. Therefore, alternative pathogenic mechanisms are indicated. It has been recently reported that estrogen binding to estrogen receptor α (ERα) could enhance the adrenocortical adenocarcinoma (ACC) cell proliferation. Herein, we hypothesize that ERα is probably involved in CS development during pregnancy. Better understanding of the possible mechanism of ERα on cortisol production and adrenocortical tumorigenesis will contribute to the diagnosis and treatment of CS during pregnancy. Read the entire article here: https://www.sciencedirect.com/science/article/pii/S0306987720303893?via%3Dihub
  21. https://doi.org/10.1016/S2213-8587(20)30215-1 Over the past few months, COVID-19, the pandemic disease caused by severe acute respiratory syndrome coronavirus 2, has been associated with a high rate of infection and lethality, especially in patients with comorbidities such as obesity, hypertension, diabetes, and immunodeficiency syndromes.1 These cardiometabolic and immune impairments are common comorbidities of Cushing's syndrome, a condition characterised by excessive exposure to endogenous glucocorticoids. In patients with Cushing's syndrome, the increased cardiovascular risk factors, amplified by the increased thromboembolic risk, and the increased susceptibility to severe infections, are the two leading causes of death.2 In healthy individuals in the early phase of infection, at the physiological level, glucocorticoids exert immunoenhancing effects, priming danger sensor and cytokine receptor expression, thereby sensitising the immune system to external agents.3 However, over time and with sustained high concentrations, the principal effects of glucocorticoids are to produce profound immunosuppression, with depression of innate and adaptive immune responses. Therefore, chronic excessive glucocorticoids might hamper the initial response to external agents and the consequent activation of adaptive responses. Subsequently, a decrease in the number of B-lymphocytes and T-lymphocytes, as well as a reduction in T-helper cell activation might favour opportunistic and intracellular infection. As a result, an increased risk of infection is seen, with an estimated prevalence of 21–51% in patients with Cushing's syndrome.4 Therefore, despite the absence of data on the effects of COVID-19 in patients with Cushing's syndrome, one can make observations related to the compromised immune state in patients with Cushing's syndrome and provide expert advice for patients with a current or past history of Cushing's syndrome. Fever is one of the hallmarks of severe infections and is present in up to around 90% of patients with COVID-19, in addition to cough and dyspnoea.1 However, in active Cushing's syndrome, the low-grade chronic inflammation and the poor immune response might limit febrile response in the early phase of infection.2 Conversely, different symptoms might be enhanced in patients with Cushing's syndrome; for instance, dyspnoea might occur because of a combination of cardiac insufficiency or weakness of respiratory muscles.2 Therefore, during active Cushing's syndrome, physicians should seek different signs and symptoms when suspecting COVID-19, such as cough, together with dysgeusia, anosmia, and diarrhoea, and should be suspicious of any change in health status of their patients with Cushing's syndrome, rather than relying on fever and dyspnoea as typical features. The clinical course of COVID-19 might also be difficult to predict in patients with active Cushing's syndrome. Generally, patients with COVID-19 and a history of obesity, hypertension, or diabetes have a more severe course, leading to increased morbidity and mortality.1 Because these conditions are observed in most patients with active Cushing's syndrome,2 these patients might be at an increased risk of severe course, with progression to acute respiratory distress syndrome (ARDS), when developing COVID-19. However, a key element in the development of ARDS during COVID-19 is the exaggerated cellular response induced by the cytokine increase, leading to massive alveolar–capillary wall damage and a decline in gas exchange.5 Because patients with Cushing's syndrome might not mount a normal cytokine response,4 these patients might parodoxically be less prone to develop severe ARDS with COVID-19. Moreover, Cushing's syndrome and severe COVID-19 are associated with hypercoagulability, such that patients with active Cushing's syndrome might present an increased risk of thromboembolism with COVID-19. Consequently, because low molecular weight heparin seems to be associated with lower mortality and disease severity in patients with COVID-19,6 and because anticoagulation is also recommended in specific conditions in patients with active Cushing's syndrome,7 this treatment is strongly advised in hospitalised patients with Cushing's syndrome who have COVID-19. Furthermore, patients with active Cushing's syndrome are at increased risk of prolonged duration of viral infections, as well as opportunistic infections, particularly atypical bacterial and invasive fungal infections, leading to sepsis and an increased mortality risk,2 and COVID-19 patients are also at increased risk of secondary bacterial or fungal infections during hospitalisation.1 Therefore, in cases of COVID-19 during active Cushing's syndrome, prolonged antiviral treatment and empirical prophylaxis with broad-spectrum antibiotics1, 4 should be considered, especially for hospitalised patients (panel). Panel Risk factors and clinical suggestions for patients with Cushing's syndrome who have COVID-19 Reduction of febrile response and enhancement of dyspnoea Rely on different symptoms and signs suggestive of COVID-19, such as cough, dysgeusia, anosmia, and diarrhoea. Prolonged duration of viral infections and susceptibility to superimposed bacterial and fungal infections Consider prolonged antiviral and broad-spectrum antibiotic treatment. Impairment of glucose metabolism (negative prognostic factor) Optimise glycaemic control and select cortisol-lowering drugs that improve glucose metabolism. Hypertension (negative prognostic factor) Optimise blood pressure control and select cortisol-lowering drugs that improve blood pressure. Thrombosis diathesis (negative prognostic factor) Start antithrombotic prophylaxis, preferably with low-molecular-weight heparin treatment. Surgery represents the first-line treatment for all causes of Cushing's syndrome,8, 9 but during the pandemic a delay might be appropriate to reduce the hospital-associated risk of COVID-19, any post-surgical immunodepression, and thromboembolic risks.10 Because immunosuppression and thromboembolic diathesis are common Cushing's syndrome features,2, 4 during the COVID-19 pandemic, cortisol-lowering medical therapy, including the oral drugs ketoconazole, metyrapone, and the novel osilodrostat, which are usually effective within hours or days, or the parenteral drug etomidate when immediate cortisol control is required, should be temporarily used.9 Nevertheless, an expeditious definitive diagnosis and proper surgical resolution of hypercortisolism should be ensured in patients with malignant forms of Cushing's syndrome, not only to avoid disease progression risk but also for rapidly ameliorating hypercoagulability and immunospuppression;9 however, if diagnostic procedures cannot be easily secured or surgery cannot be done for limitations of hospital resources due to the pandemic, medical therapy should be preferred. Concomitantly, the optimisation of medical treatment for pre-existing comorbidities as well as the choice of cortisol-lowering drugs with potentially positive effects on obesity, hypertension, or diabates are crucial to improve the eventual clinical course of COVID-19. Once patients with Cushing's syndrome are in remission, the risk of infection is substantially decreased, but the comorbidities related to excess glucocorticoids might persist, including obesity, hypertension, and diabetes, together with thromboembolic diathesis.2 Because these are features associated with an increased death risk in patients with COVID-19,1 patients with Cushing's syndrome in remission should be considered a high-risk population and consequently adopt adequate self-protection strategies to minimise contagion risk. In conclusion, COVID-19 might have specific clinical presentation, clinical course, and clinical complications in patients who also have Cushing's syndrome during the active hypercortisolaemic phase, and therefore careful monitoring and specific consideration should be given to this special, susceptible population. Moreover, the use of medical therapy as a bridge treatment while waiting for the pandemic to abate should be considered. RP reports grants and personal fees from Novartis, Strongbridge, HRA Pharma, Ipsen, Shire, and Pfizer; grants from Corcept Therapeutics and IBSA Farmaceutici; and personal fees from Ferring and Italfarmaco. AMI reports non-financial support from Takeda and Ipsen; grants and non-financial support from Shire, Pfizer, and Corcept Therapeutics. BMKB reports grants from Novartis, Strongbridge, and Millendo; and personal fees from Novartis and Strongbridge. AC reports grants and personal fees from Novartis, Ipsen, Shire, and Pfizer; personal fees from Italfarmaco; and grants from Lilly, Merck, and Novo Nordisk. All other authors declare no competing interests. References 1 P Kakodkar, N Kaka, MN Baig A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19) Cureus, 12 (2020), Article e7560 View Record in ScopusGoogle Scholar 2 R Pivonello, AM Isidori, MC De Martino, J Newell-Price, BMK Biller, A Colao Complications of Cushing's syndrome: state of the art Lancet Diabetes Endocrinol, 4 (2016), pp. 611-629 ArticleDownload PDFView Record in ScopusGoogle Scholar 3 DW Cain, JA Cidlowski Immune regulation by glucocorticoids Nat Rev Immunol, 17 (2017), pp. 233-247 CrossRefView Record in ScopusGoogle Scholar 4 V Hasenmajer, E Sbardella, F Sciarra, M Minnetti, AM Isidori, MA Venneri The immune system in Cushing's syndrome Trends Endocrinol Metab (2020) published online May 6, 2020. DOI:10.1016/j.tem.2020.04.004 Google Scholar 5 Q Ye, B Wang, J Mao The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19 J Infect, 80 (2020), pp. 607-613 ArticleDownload PDFView Record in ScopusGoogle Scholar 6 N Tang, H Bai, X Chen, J Gong, D Li, Z Sun Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy J Thromb Haemost, 18 (2020), pp. 1094-1099 CrossRefView Record in ScopusGoogle Scholar 7 AM Isidori, M Minnetti, E Sbardella, C Graziadio, AB Grossman Mechanisms in endocrinology: the spectrum of haemostatic abnormalities in glucocorticoid excess and defect Eur J Endocrinol, 173 (2015), pp. R101-R113 View Record in ScopusGoogle Scholar 8 LK Nieman, BM Biller, JW Findling, et al.Treatment of Cushing's syndrome: an endocrine society clinical practice guideline J Clin Endocrinol Metab, 100 (2015), pp. 2807-2831 CrossRefView Record in ScopusGoogle Scholar 9 R Pivonello, M De Leo, A Cozzolino, A Colao The treatment of Cushing's disease Endocr Rev, 36 (2015), pp. 385-486 CrossRefView Record in ScopusGoogle Scholar 10 J Newell-Price, L Nieman, M Reincke, A Tabarin Endocrinology in the time of COVID-19: management of Cushing's syndrome Eur J Endocrinol (2020) published online April 1. DOI:10.1530/EJE-20-0352 Google Scholar View Abstract From https://www.thelancet.com/journals/landia/article/PIIS2213-8587(20)30215-1/fulltext
  22. Authors Ježková J, Ďurovcová V, Wenchich L, Hansíková H, Zeman J, Hána V, Marek J, Lacinová Z, Haluzík M, Kršek M Received 18 March 2019 Accepted for publication 13 June 2019 Published 19 August 2019 Volume 2019:12 Pages 1459—1471 DOI https://doi.org/10.2147/DMSO.S209095 Checked for plagiarism Yes Review by Single-blind Peer reviewers approved by Dr Melinda Thomas Peer reviewer comments 3 Editor who approved publication: Dr Antonio Brunetti Jana Ježková,1 Viktória Ďurovcová,1 Laszlo Wenchich,2,3 Hana Hansíková,3 Jiří Zeman,3Václav Hána,1 Josef Marek,1 Zdeňka Lacinová,4,5 Martin Haluzík,4,5 Michal Kršek1 1Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; 2Institute of Rheumatology, Prague, Czech Republic; 3Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; 4Institute of Medical Biochemistry and Laboratory Diagnostic, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; 5Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic Correspondence: Jana Ježková Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 1128 02 Praha 2, Prague, Czech Republic Tel +420 60 641 2613 Fax +420 22 491 9780 Email fjjezek@cmail.cz Purpose: Cushing’s syndrome is characterized by metabolic disturbances including insulin resistance. Mitochondrial dysfunction is one pathogenic factor in the development of insulin resistance in patients with obesity. We explored whether mitochondrial dysfunction correlates with insulin resistance and other metabolic complications. Patients and methods: We investigated the changes of mRNA expression of genes encoding selected subunits of oxidative phosphorylation system (OXPHOS), pyruvate dehydrogenase (PDH) and citrate synthase (CS) in subcutaneous adipose tissue (SCAT) and peripheral monocytes (PM) and mitochondrial enzyme activity in platelets of 24 patients with active Cushing’s syndrome and in 9 of them after successful treatment and 22 healthy control subjects. Results: Patients with active Cushing’s syndrome had significantly increased body mass index (BMI), homeostasis model assessment of insulin resistance (HOMA-IR) and serum lipids relative to the control group. The expression of all investigated genes for selected mitochondrial proteins was decreased in SCAT in patients with active Cushing’s syndrome and remained decreased after successful treatment. The expression of most tested genes in SCAT correlated inversely with BMI and HOMA-IR. The expression of genes encoding selected OXPHOS subunits and CS was increased in PM in patients with active Cushing’s syndrome with a tendency to decrease toward normal levels after cure. Patients with active Cushing’s syndrome showed increased enzyme activity of complex I (NQR) in platelets. Conclusion: Mitochondrial function in SCAT in patients with Cushing’s syndrome is impaired and only slightly affected by its treatment which may reflect ongoing metabolic disturbances even after successful treatment of Cushing’s syndrome. Keywords: Cushing’s syndrome, insulin resistance, mitochondrial enzyme activity, gene expression This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms. Download Article [PDF] View Full Text [Machine readable]
  23. by Kristen Monaco, Staff Writer, MedPage Today LOS ANGELES -- An investigational therapy improved quality of life and reduced disease symptoms for patients with endogenous Cushing's syndrome, according to new findings from the phase III SONICS study. Patients taking oral levoketoconazole twice daily had significant reductions in mean scores for acne (-1.8), peripheral edema (-0.4), and hirsutism (-2.6), all secondary endpoints of the pivotal trial (P<0.03 for all), reported Maria Fleseriu, MD, of Oregon Health and Science University in Portland. "We're looking forward to see the results of further studies and to add this therapy to the landscape of Cushing's," Fleseriu said here during a presentation of the findings at AACE 2019, the annual meeting of the American Association of Clinical Endocrinologists. "We have a newer medication and still we cannot make a dent in the outcomes of Cushing's, especially for patient-reported outcomes." Free testosterone levels significantly decreased in women taking levoketoconazole (a ketoconazole stereoisomer and potent steroidogenesis inhibitor), from an average of 0.32 ng/dL down to 0.12 ng/dL (0.011 to 0.004 nmol/L, P<0.0001). Men had a non-significant increase: 5.1 ng/dL up to 5.8 ng/dL (0.177 to 0.202 nmol/L). There were no significant changes from baseline to the end of maintenance for other secondary endpoints in the analysis: moon facies, facial plethora, striae, bruising, supraclavicular fat, irregular menstruation, and dysmenorrhea. However, significant improvements after 6 months of therapy were seen in patient-reported quality of life compared with baseline (mean 10.6 change on the Cushing QOL questionnaire) as well as a significant reduction in depressive symptoms (mean -4.3 change on the Beck Depression Inventory II). The open-label, multicenter SONICS (Study of Levoketoconazole in Cushing's Syndrome) trial included 94 adult men and women with a confirmed diagnosis of Cushing's syndrome and elevated 24-hour mean urinary free cortisol (mUFC) levels at least 1.5 times the upper limit of normal. In the dose-titration phase of the study (weeks 2 to 21), patients were titrated up to a max dose of 600 mg levoketoconazole twice daily until mUFC normalization. A 6-month maintenance phase followed with no dose increases, but decreases were allowed if adverse events emerged. An additional 6-month extended evaluation phase followed thereafter. The study met it's previously reported primary endpoint, with 30% of patients achieving normalized mUFC levels after 6 months of maintenance therapy without a dose increase (95% CI 21%-40%, P=0.0154). Levoketoconazole was well tolerated, with only 12.8% of patients discontinuing treatment due to adverse events. The most commonly reported adverse events were nausea (31.9%), headache (27.7%), peripheral edema (19.1%), hypertension (17%), and fatigue (16%), some of which were expected due to steroid withdrawal, Fleseriu said. Serious adverse events were reported in 14 patients, including prolonged QTc interval in two patients, elevated liver function in one patient, and adrenal insufficiency in another, events similar to those seen with ketoconazole (Nizoral) therapy. Fleseriu explained that drug-drug interaction is a problem in Cushing's, as all of the available medications prolong QT interval. She noted that in SONICS, QT prolongation with levoketoconazole was observed in few patients. It's still a "concern," said Fleseriu, especially for patients on other drugs that prolong QT. Although not yet approved, levoketoconazole has received orphan drug designation from the FDA and the European Medicines Agency for endogenous Cushing's syndrome. The tentative brand name is Recorlev. The study was supported by Strongbridge Biopharma. Fleseriu reported relationships with Strongbridge, Millendo Therapeutics, and Novartis. Co-authors also disclosed relevant relationships with industry. Primary Source American Association of Clinical Endocrinologists Source Reference: Fleseriu M, et al "Levoketoconazole in the treatment of endogenous Cushing's syndrome: Improvements in clinical signs and symptoms, patient-reported outcomes, and associated biochemical markers in the phase 3 SONICS study" AACE 2019; Poster 369. From https://www.medpagetoday.com/meetingcoverage/aace/79465
  24. A simple test that measures free cortisol levels in saliva at midnight — called a midnight salivary cortisol test — showed good diagnostic performance for Cushing’s syndrome among a Chinese population, according to a recent study. The test was better than the standard urine free cortisol levels and may be an alternative for people with end-stage kidney disease, in whom measuring cortisol in urine is challenging. The study, “Midnight salivary cortisol for the diagnosis of Cushing’s syndrome in a Chinese population,” was published in Singapore Medical Journal. Cushing’s syndrome, defined by excess cortisol levels, is normally diagnosed by measuring the amount of cortisol in bodily fluids. Traditionally, urine free cortisol has been the test of choice, but this method is subject to complications ranging from improper collection to metabolic differences, and its use is limited in people with poor kidney function. Midnight salivary cortisol is a test that takes into account the normal fluctuation of cortisol levels in bodily fluids. Cortisol peaks in the morning and declines throughout the day, reaching its lowest levels at midnight. In Cushing’s patients, however, this variation ceases to exist and cortisol remains elevated throughout the day. Midnight salivary cortisol was first proposed in the 1980s as a noninvasive way to measure cortisol levels, but its efficacy and cutoff value for Cushing’s disease in the Chinese population remained unclear. Researchers examined midnight salivary cortisol, urine free cortisol, and midnight serum cortisol in Chinese patients suspected of having Cushing’s syndrome and in healthy volunteers. These measurements were then combined with imaging studies to make a diagnosis. Overall, the study included 29 patients with Cushing’s disease, and 19 patients with Cushing’s syndrome — 15 caused by an adrenal mass and four caused by an ACTH-producing tumor outside the pituitary. Also, 13 patients excluded from the suspected Cushing’s group were used as controls and 21 healthy volunteers were considered the “normal” group. The team found that the mean midnight salivary cortisol was significantly higher in the Cushing’s group compared to both control and normal subjects. Urine free cortisol and midnight serum cortisol were also significantly higher than those found in the control group, but not the normal group. The optimal cutoff value of midnight salivary cortisol for diagnosing Cushing’s was 1.7 ng/mL, which had a sensitivity of 98% — only 2% are false negatives — and a specificity of 100% — no false positives. While midnight salivary cortisol levels correlated with urine free cortisol and midnight serum cortisol — suggesting that all of them can be useful diagnostic markers for Cushing’s — the accuracy of midnight salivary cortisol was better than the other two measures. Notably, in one patient with a benign adrenal mass and impaired kidney function, urine free cortisol failed to reach the necessary threshold for a Cushing’s diagnosis, but midnight salivary and serum cortisol levels both confirmed the diagnosis, highlighting how midnight salivary cortisol could be a preferable diagnostic method over urine free cortisol. “MSC is a simple and non-invasive tool that does not require hospitalization. Our results confirmed the accuracy and reliability of [midnight salivary cortisol] as a diagnostic test for [Cushing’s syndrome] for the Chinese population,” the investigators said. The team also noted that its study is limited: the sample size was quite small, and Cushing’s patients tended to be older than controls, which may have skewed the results. Larger studies will be needed to validate these results in the future. From https://cushingsdiseasenews.com/2019/01/10/midnight-salivary-cortisol-test-helps-diagnose-cushings-chinese-study-shows/
  25. Patients with subclinical hypercortisolism, i.e., without symptoms of cortisol overproduction, and adrenal incidentalomas recover their hypothalamic-pituitary-adrenal (HPA) axis function after surgery faster than those with Cushing’s syndrome (CS), according to a study. Moreover, the researchers found that an HPA function analysis conducted immediately after the surgical removal of adrenal incidentalomas — adrenal tumors discovered by chance in imaging tests — could identify patients in need of glucocorticoid replacement before discharge. Using this approach, they found that most subclinical patients did not require treatment with hydrocortisone, a glucocorticoid taken to compensate for low levels of cortisol in the body, after surgery. The study, “Alterations in hypothalamic-pituitary-adrenal function immediately after resection of adrenal adenomas in patients with Cushing’s syndrome and others with incidentalomas and subclinical hypercortisolism,” was published in Endocrine. The HPA axis is the body’s central stress response system. The hypothalamus releases corticotropin-releasing hormone (CRH) that acts on the pituitary gland to release adrenocorticotropic hormone (ACTH), leading the adrenal gland to produce cortisol. As the body’s defense mechanism to avoid excessive cortisol secretion, high cortisol levels alert the hypothalamus to stop producing CRH and the pituitary gland to stop making ACTH. Therefore, in diseases associated with chronically elevated cortisol levels, such as Cushing’s syndrome and adrenal incidentalomas, there’s suppression of the HPA axis. After an adrenalectomy, which is the surgical removal of one or both adrenal glands, patients often have low cortisol levels (hypocortisolism) and require glucocorticoid replacement therapy. “Most studies addressing the peri-operative management of patients with adrenal hypercortisolism have reported that irrespective of how mild the hypercortisolism was, such patients were given glucocorticoids before, during and after adrenalectomy,” the researchers wrote. Evidence also shows that, after surgery, glucocorticoid therapy is administered for months before attempting to test for recovery of HPA function. For the past 30 years, researchers at the University Hospitals Cleveland Medical Center have withheld glucocorticoid therapy in the postoperative management of patients with ACTH-secreting pituitary adenomas until there’s proof of hypocortisolism. “The approach offered us the opportunity to examine peri-operative hormonal alterations and demonstrate their importance in predicting need for replacement therapy, as well as future recurrences,” they said. In this prospective observational study, the investigators extended their approach to patients with subclinical hypercortisolism. “The primary goal of the study was to examine rapid alteration in HPA function in patients with presumably suppressed axis and appreciate the modulating impact of surgical stress in that setting,” they wrote. Collected data was used to decide whether to start glucocorticoid therapy. The analysis included 14 patients with Cushing’s syndrome and 19 individuals with subclinical hypercortisolism and an adrenal incidentaloma. All participants had undergone surgical removal of a cortisol-secreting adrenal tumor. “None of the patients received exogenous glucocorticoids during the year preceding their evaluation nor were they taking medications or had other illnesses that could influence HPA function or serum cortisol measurements,” the researchers noted. Glucocorticoid therapy was not administered before or during surgery. To evaluate HPA function, the clinical team took blood samples before and at one, two, four, six, and eight hours after the adrenalectomy to determine levels of plasma ACTH, serum cortisol, and dehydroepiandrosterone sulfate (DHEA-S) — a hormone produced by the adrenal glands. Pre-surgery assessment of both groups showed that patients with an incidentaloma plus subclinical hypercortisolism had larger adrenal masses, higher ACTH, and DHEA-S levels, but less serum cortisol after adrenal function suppression testing with dexamethasone. Dexamethasone is a man-made version of cortisol that, in a normal setting, makes the body produce less cortisol. But in patients with a suppressed HPA axis, cortisol levels remain high. After the adrenalectomy, the ACTH concentrations in both groups of patients increased. This was found to be negatively correlated with pre-operative dexamethasone-suppressed cortisol levels. Investigators reported that “serum DHEA-S levels in patients with Cushing’s syndrome declined further after adrenalectomy and were undetectable by the 8th postoperative hour,” while incidentaloma patients’ DHEA-S concentrations remained unchanged for the eight-hour postoperative period. Eight hours after surgery, all Cushing’s syndrome patients had serum cortisol levels of less than 2 ug/dL, indicating suppressed HPA function. As a result, all of these patients required glucocorticoid therapy for several months to make up for HPA axis suppression. “The decline in serum cortisol levels was slower and less steep [in the incidentaloma group] when compared to that observed in patients with Cushing’s syndrome. At the 6th–8th postoperative hours only 5/19 patients [26%] with subclinical hypercortisolism had serum cortisol levels at ≤3ug/dL and these 5 were started on hydrocortisone therapy,” the researchers wrote. Replacement therapy in the subclinical hypercortisolism group was continued for up to four weeks. Results suggest that patients with an incidentaloma plus subclinical hypercortisolism did not have an entirely suppressed HPA axis, as they were able to recover its function much faster than the CS group after surgical stress. From https://cushingsdiseasenews.com/2018/10/11/most-subclinical-cushings-patients-dont-need-glucocorticoids-post-surgery-study/?utm_source=Cushing%27s+Disease+News&utm_campaign=a881a1593b-RSS_WEEKLY_EMAIL_CAMPAIGN&utm_medium=email&utm_term=0_ad0d802c5b-a881a1593b-72451321
×
×
  • Create New...