Jump to content

Search the Community

Showing results for tags 'Cushings Syndrome'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Welcome!
    • Introduce Yourself
    • Guest Questions
    • Cushing's Basics
    • News Items and Research
    • Announcements
    • Questions about how these boards work?
  • Get Active!
    • Meetings, events and information
    • Fundraising Ideas
    • Cushing's Awareness Day, April 8
    • Spread the Word
    • Marathons
    • Cushing's Clothes Closet
    • Cushing's Library
    • Cushing's Store
  • Cushing's
    • Resources
    • Types of Cushing's
    • Symptoms
    • Tests
    • Treatments
  • Miscellaneous
    • Other Diseases
    • Good News / Attitude of Gratitude
    • Inspirational / Motivational
    • Quotes and Affirmations
    • Lighten Up!
    • Word Games
    • Miscellaneous Chit Chat
    • Current Events
    • Cushie Commerce
    • Internet Classes
    • Recipes

Blogs

  • MaryO'Blog
  • Christy Smith's Blog
  • rooon55's Blog
  • LLMart's Blog
  • regina from florida's Blog
  • terri's Blog
  • Canasa's Blog
  • Tberry's Blog
  • LisaMK's Blog
  • diane177432's Blog
  • Jen1978's Blog
  • GreenGal's Blog
  • Yada Yada Yada
  • Jinxie's Blog
  • SherryC's Blog
  • stjfs' Blog
  • kalimae7371's Blog
  • Kristy's Blog
  • kathieb1's Blog
  • Yavanna's Blog
  • Johnni's Blog
  • AutumnOMA's Blog
  • Will Power
  • dropsofjupiter's Blog
  • Lorrie's Blog
  • DebMV's Blog
  • FarWind's Blog
  • sallyt's Blog
  • dseefeldt's Blog
  • ladylena's Blog
  • steffie's Blog
  • Lori L's Blog
  • mysticalsusan1's Blog
  • cathy442's Blog
  • Kathy711's Blog
  • Shannonsmom's Blog
  • jack's Blog
  • Kandy66's Blog
  • mars72's Blog
  • singlesweetness33's Blog
  • michelletm's Blog
  • JC_Adair's Blog
  • Lisa-A's Blog
  • Jen3's Blog
  • tammi's Blog
  • Ramblin' Rose (Maggie's)
  • monicaroni77's Blog
  • monicaroni's Blog
  • Saz's Blog
  • alison
  • Thankful for the Journey
  • Judy from Pgh's Blog
  • Addiegirl's Blog
  • candlelite2000's Blog
  • Courtney likes to talk......
  • Tanya's Blog
  • smoketooash's Blog
  • meyerfamily8's Blog
  • Sheila1366's Blog
  • A Guide to Blogging...
  • Karen's Blog
  • barbj222222's Blog
  • Amdy's Blog
  • Jesh's Blog
  • pumpkin's Blog
  • Jazlady's Blog
  • Cristalrose's Blog
  • kikicee's Blog
  • bordergirl's Blog
  • Shelby's Blog
  • terry.t's Blog
  • CanadianGuy's Blog
  • Mar's Cushie Couch
  • leanne's Blog
  • honeybee30's Blog
  • cat lady's Blog
  • Denarea's Blog
  • Caroline's Blog
  • NatalieC's Blog
  • Ahnjhnsn's Blog
  • A journey around my brain!
  • wisconsin's Blog
  • sonda's Blog
  • Siobhan2007's Blog
  • mariahjo's Blog
  • garcia9's Blog
  • Jessie's Blog
  • Elise T.'s Blog
  • glandular-mass' Blog
  • Rachel Bridgewater's Blog
  • judycolby's Blog
  • CathyM's Blog
  • MelissaTX's Blog
  • nessie21's Blog
  • crzycarin's Blog
  • Drenfro's Blog
  • CathyMc's Blog
  • joanna27's Blog
  • Just my thoughts!
  • copacabana's Blog
  • msmith3033's Blog
  • EyeRishGrl's Blog
  • SaintPaul's Blog
  • joyce's Blog
  • Tara Lou's Blog
  • penybobeny's Blog
  • From Where I Sit
  • Questions..
  • jennsarad's Blog
  • looking4answers2's Blog
  • julie's blog
  • cushiemom's Blog
  • greydragon's Blog
  • AmandaL's Blog
  • KWDesigns: My Cushings Journey
  • cushieleigh's Blog
  • chelser245's Blog
  • melissa1375's Blog
  • MissClaudie's Blog
  • missclaudie92's Blog
  • EEYORETJBD's Blog
  • Courtney's Blog
  • Dawn's Blog
  • Lindsay's Blog
  • rosa's Blog
  • Marva's Blog
  • kimmy's Blog
  • Cheryl's Blog
  • MissingMe's Blog
  • FerolV's Blog
  • Audrey's (phil1088) Blog
  • sugarbakerqueen's Blog
  • KathyBair's Blog
  • Jenn's Blog
  • LisaE's Blog
  • qpdoll's Blog
  • blogs_blog_140
  • beach's Blog
  • Reillmommy is Looking for Answers...
  • natashac's Blog
  • Lisa72's Blog
  • medcats10's Blog
  • KaitlynElissa's Blog
  • shygirlxoxo's Blog
  • kerrim's Blog
  • Nicki's Blog
  • MOPPSEY's Blog
  • Betty's Blog
  • And the beat goes on...
  • Lynn's Blog
  • marionstar's Blog
  • floweroscotland's Blog
  • SleepyTimeTea's Blog
  • Shelly3's Blog
  • fatnsassy's Blog
  • gaga's Blog
  • Jewels' Blog
  • SusieQ's Blog
  • kayc6751's Blog
  • moonlight's Blog
  • Sick of Being Sick
  • Peggy's Blog
  • kouta5m's Blog
  • TerryC's Blog
  • snowii's Blog
  • azZ9's Blog
  • MaMaT333's Blog
  • missaf's Blog
  • libertybell's Blog
  • LyssaFace's Blog
  • suzypar2002's Blog
  • Mutley's Blog
  • superc's Blog
  • lisajo42's Blog
  • alaustin's Blog
  • Tina1962's Blog
  • Ill never complain a single word about anything.. If I get rid of Cushings disease.
  • puddingtoast's Blog
  • AmberC's Blog
  • annacox
  • justwaiting's Blog
  • RachaelB's Blog
  • MelanieW's Blog
  • My Blog
  • FLHeather's Blog
  • HollieK's Blog
  • Bonny777's Blog
  • KatieO's Blog
  • LilDickens' Mini World
  • MelissaG's Blog
  • KelseyMichelle's Blog
  • Synergy's Blog
  • Carolyn1435's Blog
  • Disease is ugly! Do I have to be?
  • A journey of a thousand miles begins with a single wobble
  • MichelleK's Blog
  • lenalee's Blog
  • DebGal's Blog
  • Needed Answers
  • Dannetts Blog
  • Marisa's Blog
  • Is this cushings?
  • alicia26's Blog
  • happymish's Blog
  • mileymo's Blog
  • It's a Cushie Life!
  • The Weary Zebra
  • mthrgonenuts' Blog
  • LoriW's Blog
  • WendyG's Blog
  • khmood's Blog
  • Finding Answers and Pissing Everyone Off Along the Way
  • elainewwjd's Blog
  • brie's Blog
  • dturner242's Blog
  • dturner242's Blog
  • dturner242's Blog
  • Stop the Violins
  • FerolV's Internal Blog
  • beelzebubble's Blog
  • RingetteLUVR
  • Eaglemtnlake's Blog
  • mck25's Blog
  • vicki11's Blog
  • vicki11's Blog
  • ChrissyL's Blog
  • tpatterson757's Blog
  • Falling2Grace's Blog
  • meeks089's Blog
  • JustCurious' Blog
  • Squeak's Blog
  • Kill Bill
  • So It Begins ! Cushings / Pituitary Microadenoma
  • Crystal34's Blog
  • Janice Barrett

Categories

  • Helpful Articles
    • Links
    • Research and News
    • Useful Information
  • Pages
  • Miscellaneous
    • Databases
    • Templates
    • Media

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests

  1. Patient: Female, 74-year-old Final Diagnosis: ACTH-dependent Cushing’s syndrome • ectopic ACTH syndrome Symptoms: Edema • general fatigue • recurrent mechanical fall Medication: — Clinical Procedure: — Specialty: Critical Care Medicine • Endocrinology and Metabolic • Family Medicine • General and Internal Medicine • Nephrology • Oncology Objective: Unusual clinical course Background: Adrenocorticotropic hormone (ACTH)-dependent Cushing’s syndrome (CS) secondary to an ectopic source is an uncommon condition, accounting for 4–5% of all cases of CS. Refractory hypokalemia can be the presenting feature in patients with ectopic ACTH syndrome (EAS), and is seen in up to 80% of cases. EAS can be rapidly progressive and life-threatening without timely diagnosis and intervention. Case Report: We present a case of a 74-year-old White woman who first presented with hypokalemia, refractory to treatment with potassium supplementation and spironolactone. She progressively developed generalized weakness, recurrent falls, bleeding peptic ulcer disease, worsening congestive heart failure, and osteoporotic fracture. A laboratory workup showed hypokalemia, hypernatremia, and primary metabolic alkalosis with respiratory acidosis. Hormonal evaluation showed elevated ACTH, DHEA-S, 24-h urinary free cortisol, and unsuppressed cortisol following an 8 mg dexamethasone suppression test, suggestive of ACTH-dependent CS. CT chest, abdomen, and pelvis, and FDG/PET CT scan showed a 1.4 cm right lung nodule and bilateral adrenal enlargement, confirming the diagnosis of EAS, with a 1.4-cm lung nodule being the likely source of ectopic ACTH secretion. Due to the patient’s advanced age, comorbid conditions, and inability to attend to further evaluation and treatment, her family decided to pursue palliative and hospice care. Conclusions: This case illustrates that EAS is a challenging condition and requires a multidisciplinary approach in diagnosis and management, which can be very difficult in resource-limited areas. In addition, a delay in diagnosis and management often results in rapid deterioration of clinical status. Keywords: Cushing Syndrome, Endocrine System, Hypokalemia Go to: Background Cushing’s syndrome (CS) has a variety of clinical manifestations resulting from excess steroid hormone production from adrenal glands (endogenous) or administration of glucocorticoids (exogenous) [1,2]. Endogenous CS is classified into 2 main categories: ACTH-dependent and ACTH-independent disease. In ACTH-dependent disease, the source of ACTH can further be subdivided into either the pituitary gland or an ectopic source [2]. Ectopic ACTH syndrome (EAS) results from excess production of ACTH from extra-pituitary sources [2] and accounts for approximately 4–5% of cases of CS [3,4]. Common clinical manifestations of CS include weight gain, central obesity, fatigue, plethoric facies, purple striae, hirsutism, irregular menses, hypertension, diabetes/glucose intolerance, anxiety, muscle weakness, bruising, and osteoporosis [2]. Hypokalemia is a less defining feature, seen in roughly 20% of cases with CS. However, it is present in up to 90% of cases with EAS [2,5], which is attributed to the mineralocorticoid action of steroid [6]. Hypercortisolism due to EAS is usually severe and rapid in onset, and excess cortisol levels can lead to severe clinical manifestations, including life-threatening infections [7]. Moreover, in most patients with EAS, the source of excess ACTH is an underlying malignancy that can further result in rapid deterioration of the overall clinical condition. Although numerous malignancies have been associated with EAS, lung neuroendocrine tumors (NETs) are the most common [2,8]. Since the treatment of choice for EAS is complete resection of the tumor, the correct localization of the source of ectopic ACTH is crucial in managing these patients. Traditional radiological investigations can localize these tumors in up to 50% of cases [9]; however, recent studies utilizing somatostatin receptor (SSTR) analogs have increased the sensitivity and specificity of tumor localization [9–11]. This case report describes a challenging case of an elderly patient with EAS who presented with refractory hypokalemia. Her clinical condition deteriorated rapidly in the absence of surgical intervention. Go to: Case Report A 74-year-old White woman was brought to the Emergency Department from her nephrologist’s office with a chief concern of persistent anasarca and recurrent hypokalemia of 1-month duration. In addition, she reported generalized weakness and recurrent mechanical falls in the preceding 3 months. Before presentation in March 2021, she had a medical history of type 2 diabetes, chronic kidney disease stage 3b, atrial fibrillation on chronic anticoagulation, heart failure with reduced ejection fraction (EF 35–40%), hypothyroidism, hypertension, and hyperlipidemia. Home medications included diltiazem, apixaban, insulin glargine, levothyroxine, simvastatin, carvedilol, glimepiride, sacubitril, valsartan, and furosemide. On presentation, she was hemodynamically stable with temperature 36.5°C, heart rate 67 beats per min, blood pressure 139/57 mmHg, respiratory rate 20 per min, and saturation 98% on 2 L oxygen supplementation. Her height was 162.6 cm, and weight was 80.88 kg, with a body mass index (BMI) of 30.6 kg/m2. A physical exam showed central obesity, bruising in extremities, generalized facial swelling mainly in the periorbital region, severe pitting edema in bilateral lower extremities, and moderate pitting edema in bilateral upper extremities. A laboratory workup revealed serum potassium 2.4 mmol/L (3.6–5.2 mmol/L), serum sodium 148 mmol/L (133–144 mmol/L), and eGFR 31.5 mL/min/1.73 m2. Arterial blood gas analysis showed pH 7.6, PaCO2 48.9 mmHg (35.0–45.0 mmHg), and serum bicarbonate 32 mmol/L (22–29 mmol/L), which was consistent with primary metabolic alkalosis, appropriately compensated by respiratory acidosis. Due to concerns of loop diuretic-induced hypokalemia, she was started on spironolactone and potassium replacement. However, potassium levels persistently remained in the low range of 2–3.5 mmol/L (3.6–5.2 mmol/L) despite confirming compliance to medications and adequate up-titration in the dose of spironolactone and potassium chloride. Hence, the workup for the secondary cause of persistent hypokalemia was pursued. Hormonal evaluation revealed plasma aldosterone concentration (PAC) <1.0 ng/dL, plasma renin activity (PRA) 0.568 ng/mL/h (0.167–5.380 ng/mL/h), 24-h urine free cortisol (UFC) 357 mg/24h (6–42 mg/24h), ACTH 174 pg/mL, and DHEA-S 353 ug/dL (20.4–186.6 ug/dL). ACTH levels on 2 repeat testings were 229 pg/mL and 342 pg/mL. The rest of the laboratory workup is summarized in Table 1. Considering elevated ACTH and 24-h UFC, a preliminary diagnosis of ACTH-dependent Cushing syndrome was made. An 8-mg dexamethasone suppression test revealed non-suppressed cortisol of 62.99 ug/dL along with dexamethasone 4050 ng/dL (1600–2850 ng/dL). A pituitary MRI was unremarkable for any focal lesion suggesting a diagnosis of ACTH-dependent Cushing’s syndrome secondary to an ectopic source. Imaging studies were then performed to determine the source. A CT scan of the chest and abdomen revealed adenomatous thickening with nodularity of bilateral adrenal glands, and a 1.4-cm nodule in the right middle lobe (Figure 1A, 1B). FDG-PET/CT showed severe bilateral enlargement of the adrenal glands with severe hyper-metabolic uptake (mSUV 9.2 and 9.1 for left and right adrenal glands, respectively) (Figure 2A). The uptake of the right lung nodule on PET/CT was 1.4 mSUV (Figure 2B). Figure 1. CT chest, abdomen, and pelvis w/o contrast showed bilateral enlargement of adrenal glands (A, red arrows) and a 1.4-cm nodule in the right middle lobe of the lung (B, blue arrow). Figure 2. Whole-body PET/CT following intravenous injection of 40 mCi FDG showed diffuse enlargement of the bilateral adrenal glands with mSUV of 9.2 on the left and 9.1 on the right adrenal gland, respectively (A, red arrows) and low-grade activity with an MSUV of 1.4 in right lung nodule (B, blue arrow). Table 1. Laboratory on initial presentation. Laboratory test Level Reference range WBCs 7.8 k/uL 3.7–10.3 k/uL RBCs 3.05 M/mL 3.–5.2 M/mL Hemoglobin 9.6 g/dL 11.2–15.7 g/dL Hematocrit 27.3% 34–45% Platelets 98 k/mL 155–369 k/mL MCV 89.7 fl 78.2–101.8 fl MCH 31.5 pg 26.4–33.3 pg MCHC 35.2 g/dL 32.5–35.3 g/dL RDW 15.8% 10.1–16.2% Glucose 73 mg/dL 74–90 mg/dL Sodium 148 mmol/L 136–145 mmol/L Potassium 2.4 mmol/L 3.7–4.8 mmol/L Bicarbonate 32 mmol/L 22–29 mmol/L Chloride 108 mmol/L 97–107 mmol/L Calcium 7.0 mg/dL 8.9–10.2 mg/dL Magnesium 1.7 mg/dL 1.7–2.4 mg/dL Phosphorus 2.3 mg/dL 2.5–4.9 mg/dL Albumin 2.4 g/dL 3.3–4.6 g/dL Blood urea nitrogen 41 mg/dL 0–30 ng/dL Creatinine 1.60 mg/dL 0.60–1.10 mg/dL Estimated GFR 31.5 mL/min/1.73m2 >60 mL/min/1.73 m2 Aspartate transaminase 42 U/L 9–36 U/L Alanine transaminase 67 U/L 8–33 U/L Alkaline phosphatase 90 U/L 46–142 U/L Total protein 4.8 g/dL 6.3–7.9 g/dL Arterial blood gas analysis PaCO2 48.9 mmHg 35.0–45.0 mmHg PaO2 63.1 mmHg 85.0–100.0 mmHg %SAT 92.8% 93.0–97.0 HCO3 47.8 mm/L 20.0–26.0 mm/L Base excess 26.3 mm/L <2.0 mm/L pH 7.599 7.350–7.450 Adrenocorticotropic hormone (ACTH) 174, 229 and 342 pg/mL 15–65 pg/mL Urine free cortisol, 24 h 357 ug/24 hr 6–42 mg/24 hr 8: 00 AM cortisol following 8 mg dexamethasone (4×2 mg doses) previous day 62.99 mg/dL 8: 00 AM dexamethasone following 8 mg dexamethasone (4×2 mg doses) previous day 4050 ng/dL 1600–2850 ng/dL Based on unsuppressed cortisol following an 8-mg dexamethasone suppression test, negative pituitary MRI, and 1.4-cm lung nodule, we diagnosed ACTH-dependent CS secondary to an ectopic source, most likely from the 1.4-cm lung nodule. While awaiting localization studies, within 3 months of initial presentation, she had 2 hospitalizations, one in May 2021 for acute anemia secondary to bleeding peptic ulcer disease (PUD) requiring endoscopic clipping of the bleeding ulcer, and another in June 2021 for acute on chronic congestive heart failure. The patient’s overall condition continued to deteriorate, and she became progressively weak and wheelchair-bound. A 68-Ga-DOTATATE was planned to establish the source of ectopic ACTH definitively; however, she developed a left hip fracture in July 2021 and could not present for follow-up care. Therefore, she was started on Mifepristone until curative surgery. However, considering the patient’s advanced comorbid conditions, the increased burden of the patient’s health care needs on her elderly husband, and the inability of other family members to provide necessary healthcare-related support, palliative care was pursued. In August 2021, she developed a sacral decubitus ulcer and community-acquired pneumonia. However, she was still alive while receiving palliative care in a nursing home until September 2021. Go to: Discussion Ectopic ACTH syndrome (EAS) is defined as secretion of ACTH from an extra-pituitary source and is the cause of Cushing’s syndrome (CS) in approximately 4–5% of cases [3,4]. Clinical features of EAS depend on the rate and amount of ACTH production [12]. Among all forms of Cushing’s (excluding adrenal cortical carcinoma), EAS has the worst outcome, with one of the most extensive combined UK & Athens study demonstrating a 5-year survival rate of 77.6%. Compared to Cushing’s disease (CD), patients with EAS have severe and excessive production of ACTH, resulting in highly elevated cortisol levels. This leads to hypokalemia, metabolic alkalosis, worsening glycemia, hypertension, psychosis, and infections. Metabolic alkalosis and hypokalemia are the 2 most common acid-base and electrolyte abnormalities associated with glucocorticoid excess among these patients. Studies have shown that hypokalemia is seen in up to 90% of patients with EAS. Although hypertension and hypokalemia are often attributed to primary hyperaldosteronism, other causes should be sought. Under normal circumstances, the mineralocorticoid effect of cortisol is insignificant due to local conversion to cortisone by the action of 11 beta-hydroxysteroid dehydrogenase. Excessive cortisol in patients with EAS saturates the action of 11 beta-hydroxysteroid dehydrogenase and leads to the appearance of mineralocorticoid action of cortisol [6]. In our patient, the initial treatment of hypokalemia was unsatisfactory, so additional endocrine workup was pursued. Elevated urinary cortisol excretion, plasma ACTH levels, unsuppressed cortisol following 8 mg dexamethasone, and lung mass on CT scan strongly suggested that the clinical symptoms were due to EAS. Unfortunately, despite diagnosing the underlying condition contributing to the patient’s symptoms, her clinical condition rapidly deteriorated without surgical treatment. Various factors resulted in delayed diagnosis in our patient. First, the patient sought medical care only 3 months after symptom onset. Second, furosemide, a medication commonly used to treat patients with HFrEF, is a frequent culprit of hypokalemia and often is treated with adequate potassium supplementation. Third, multiple hospitalizations resulted in delays in the proper endocrine workup necessary for establishing hypercortisolism. Fourth, localization of the ectopic source requires advanced imaging studies, which are only available in a few tertiary care centers. Fifth, even after tumor localization with PET/CT scan, there is still a need for a more definitive localization study using Ga-DOTATATE scan, which has a higher specificity. However, it was unavailable in our institution and was only available in a few tertiary care centers, with the nearest center being 2.5 h away. Sixth, the impact of the COVID-19 pandemic also played a critical role in promptly providing critical care necessary to the patient. In addition to those, the social situation of our patient also played an essential role in contributing to delays in diagnosis. It is well recognized that EAS is associated with various malignancies, mostly of neuroendocrine origin. The most common location of these tumors was found to be the lung (55.3%), followed by the pancreas (8.5%), mediastinum-thymus (7.9%), adrenal glands (6.4%), and gastrointestinal tract (5.4%) [9]. Prompt surgical removal of ectopic ACTH-secreting tumors is the mainstay of therapy in patients with EAS [13]. However, localization of such tumors with conventional therapy is often challenging as the sensitivity to localize the tumor is 50–60% for conventional imaging such as CT, MRI, and FDG-PET [9]. In a study by Isidori et al, nuclear imaging improved the sensitivity of conventional radiological imaging [9]. Moreover, newer imaging technologies using somatostatin receptor (SSTR) analogs such as 68Ga-DOTATATE PET/CT further improve the ability to localize the tumor. 68Ga-DOTATATE PET/CT, approved in 2016 by the Federal Drug Administration (FDA) for imaging well-differentiated NETs, has a high sensitivity (88–93%) and specificity (88–95%) to diagnose carcinoid tumor [14]; however, a systematic review reported a significantly lower sensitivity (76.1%) of 68Ga-DOTATATE PET/CT to diagnose EAS [15]. Once localized, the optimal management of EAS is surgical re-section of the causative tumor, which is often curative. However, until curative surgery is done, patients should be medically managed. Drugs used to reduce cortisol levels include ketoconazole, mitotane, and metyrapone [16, 17]. These are oral medications and decrease cortisol synthesis by inhibiting adrenal enzymes [17]. Etomidate is the only intravenous drug that immediately reduces adrenal steroid production and can be used when acute reduction in cortisol production is desired [16]. Medical management requires frequent monitoring of cortisol levels and titration of dose to achieve low serum and urine cortisol levels. Mifepristone, an anti-progesterone at a higher dose, works as a glucocorticoid receptor antagonist and can be used to block the action of cortisol. Its use results in variable levels of ACTH and cortisol levels in patients with EAS. Hence, hormonal measurement cannot be used to judge therapeutic response, and clinical improvement is the goal of treatment [18]. Drugs inhibiting ACTH secretion by NETs such as kinase inhibitors (vandetanib, sorafenib, or sunitinib) are effective in treating EAS secondary to medullary thyroid cancer [19]. Somatostatin analogs such as octreotide and lanreotide have demonstrated short- and medium-term efficacy in a few EAS patients; however, a few patients failed to improve, necessitating the use of more effective treatment options [19,20]. Hence, they are not considered a first-line drug as monotherapy and should be used in combination with other agents, or as anti-tumoral therapy in non-excisable metastatic well-differentiated NETs [19,20]. Cabergoline, a dopamine agonist, has been used with variable therapeutic effects in a few patients [19]. In 1 patient, the use of combination therapy using Mifepristone and a long-acting octreotide significantly improved EAS [21]. In our patient, we initiated Mifepristone to reduce the burden associated with frequent biochemical monitoring and planned 68Ga-DOTATATE PET/CT to localize the tumor; however, further diagnostic and therapeutic approaches could not be further undertaken per family wishes. Go to: Conclusions EAS can present with refractory hypokalemia, especially in patients who are already at risk of developing hypokalemia. Diagnosis of EAS is often challenging and requires a multidisciplinary approach. Localization of source of EAS should be done using nuclear imaging, preferably using SSTR analogs, when available. Urgent surgical evaluation remains the mainstay of treatment following tumor localization and can result in a cure. EAS is a rapidly progressive and life-threatening situation that can be fatal if diagnosis or timely intervention is delayed. Go to: Abbreviations ACTH adrenocorticotropic hormone; CS Cushing’s syndrome; CT computed tomography; EAS ec-topic ACTH syndrome; MRI magnetic resonance imaging; FDG/PET 18-F-fluorodeoxyglucose positron emission tomography; NET neuroendocrine tumors; SSTR somatostatin receptor; EF ejection fraction; PAC plasma aldosterone concentration; PRA plasma renin activity; UFC urine free cortisol; DHEA-S dehydroepiandrosterone sulfate; 68-Ga-DOTATATE Gallium 68 (68Ga) 1,4,7,10-tetraazacyclododecane-1,4,7,10-tet-raacetic acid (DOTA)-octreotate; PUD peptic ulcer disease Go to: Footnotes Financial support: None declared Go to: References: 1. Pluta RM, Burke AE, Golub RM. JAMA patient page. Cushing syndrome and Cushing disease. JAMA. 2011;306:2742. [PubMed] [Google Scholar] 2. Melmed SKR, Rosen C, Auchus R, Goldfine A. Williams textbook of endocrinology. Elsevier; 2020. [Google Scholar] 3. Rubinstein G, Osswald A, Hoster E, et al. Time to diagnosis in Cushing’s syndrome: A meta-analysis based on 5367 patients. J Clin Endocrinol Metab. 2020;105:dgz136. [PubMed] [Google Scholar] 4. Rosset A, Greenman Y, Osher E, et al. Revisiting Cushing syndrome, milder forms are now a common occurrence: A single-center cohort of 76 subjects. Endocr Pract. 2021;27:859–65. [PubMed] [Google Scholar] 5. Fan L, Zhuang Y, Wang Y, et al. Association of hypokalemia with cortisol and ACTH levels in Cushing’s disease. Ann NY Acad Sci. 2020;1463:60–66. [PubMed] [Google Scholar] 6. Jain SH, Sadow PM, Nose V, Dluhy RG. A patient with ectopic cortisol production derived from malignant testicular masses. Nat Clin Pract Endocrinol Metab. 2008;4:695–700. [PubMed] [Google Scholar] 7. Sarlis NJ, Chanock SJ, Nieman LK. Cortisolemic indices predict severe infections in Cushing syndrome due to ectopic production of adrenocorticotropin. J Clin Endocrinol Metab. 2000;85:42–47. [PubMed] [Google Scholar] 8. Isidori AM, Kaltsas GA, Pozza C, et al. The ectopic adrenocorticotropin syndrome: Clinical features, diagnosis, management, and long-term follow-up. J Clin Endocrinol Metab. 2006;91:371–77. [PubMed] [Google Scholar] 9. Isidori AM, Sbardella E, Zatelli MC, et al. Group ABCS. Conventional and nuclear medicine imaging in ectopic Cushing’s syndrome: A systematic review. J Clin Endocrinol Metab. 2015;100:3231–44. [PMC free article] [PubMed] [Google Scholar] 10. Righi L, Volante M, Tavaglione V, et al. Somatostatin receptor tissue distribution in lung neuroendocrine tumours: A clinicopathologic and immunohistochemical study of 218 ‘clinically aggressive’ cases. Ann Oncol. 2010;21:548–55. [PubMed] [Google Scholar] 11. Ozkan ZG, Kuyumcu S, Balkose D, et al. The value of somatostatin receptor imaging with In-111 Octreotide and/or Ga-68 DOTATATE in localizing Ectopic ACTH producing tumors. Mol Imaging Radionucl Ther. 2013;22:49–55. [PMC free article] [PubMed] [Google Scholar] 12. Paun DL, Vija L, Stan E, et al. Cushing syndrome secondary to ectopic adrenocorticotropic hormone secretion from a Meckel diverticulum neuroendocrine tumor: Aase report. BMC Endocr Disord. 2015;15:72. [PMC free article] [PubMed] [Google Scholar] 13. Grigoryan S, Avram AM, Turcu AF. Functional imaging in ectopic Cushing syndrome. Curr Opin Endocrinol Diabetes Obes. 2020;27:146–54. [PMC free article] [PubMed] [Google Scholar] 14. Poeppel TD, Binse I, Petersenn S, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med. 2011;52:1864–70. [PubMed] [Google Scholar] 15. Varlamov E, Hinojosa-Amaya JM, Stack M, Fleseriu M. Diagnostic utility of Gallium-68-somatostatin receptor PET/CT in ectopic ACTH-secreting tumors: A systematic literature review and single-center clinical experience. Pituitary. 2019;22:445–55. [PubMed] [Google Scholar] 16. Findling JW, Raff H. Cushing’s syndrome: Important issues in diagnosis and management. J Clin Endocrinol Metab. 2006;91:3746–53. [PubMed] [Google Scholar] 17. Diez JJ, Iglesias P. Pharmacological therapy of Cushing’s syndrome: Drugs and indications. Mini Rev Med Chem. 2007;7:467–80. [PubMed] [Google Scholar] 18. Wannachalee T, Turcu AF, Auchus RJ. Mifepristone in the treatment of the ectopic adrenocorticotropic hormone syndrome. Clin Endocrinol (Oxf) 2018;89:570–76. [PubMed] [Google Scholar] 19. Young J, Haissaguerre M, Viera-Pinto O, et al. Cushing’s syndrome due to ectopic ACTH secretion: An expert operational opinion. Eur J Endocrinol. 2020;182:R29–58. [PubMed] [Google Scholar] 20. Pedroncelli AM. Medical treatment of Cushing’s disease: Somatostatin analogues and pasireotide. Neuroendocrinology. 2010;92(Suppl. 1):120–24. [PubMed] [Google Scholar] 21. Moraitis AG, Auchus RJ. Mifepristone improves octreotide efficacy in resistant ectopic Cushing’s syndrome. Case Rep Endocrinol. 2016;2016:8453801. [PMC free article] [PubMed] [Google Scholar] Articles from The American Journal of Case Reports are provided here courtesy of International Scientific Information, Inc From https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8574168/
  2. This article is based on reporting that features expert sources. Adrenal Fatigue: Is It Real? More You may have heard of so-called 'adrenal fatigue,' supposedly caused by ongoing emotional stress. Or you might have come across adrenal support supplements sold online to treat it. But if someone suggests you have the controversial, unproven condition, seek a second opinion, experts say. And if someone tries to sell you dietary supplements or other treatments for adrenal fatigue, be safe and save your money. (GETTY IMAGES) Physicians tend to talk about 'reaching' or 'making' a medical diagnosis. However, when it comes to adrenal fatigue, endocrinologists – doctors who specialize in diseases involving hormone-secreting glands like the adrenals – sometimes use language such as 'perpetrating a diagnosis,' 'misdiagnosis,' 'made-up diagnosis,' 'a fallacy' and 'nonsense.' About 20 years ago, the term "adrenal fatigue" was coined by Dr. James Wilson, a chiropractor. Since then, certain practitioners and marketers have promoted the notion that chronic stress somehow slows or shuts down the adrenal glands, causing excessive fatigue. "The phenomenon emerged from the world of integrative medicine and naturopathic medicine," says Dr. James Findling, a professor of medicine and director of the Community Endocrinology Center and Clinics at the Medical College of Wisconsin. "It has no scientific basis, and there's no merit to it as a clinical diagnosis." An online search of medical billing code sets in the latest version of the International Classification of Diseases, or the ICD-10, does not yield a diagnostic code for 'adrenal fatigue' among the 331 diagnoses related either to fatigue or adrenal conditions or procedures. In a March 2020 position statement, the American Association of Clinical Endocrinologists and American College of Endocrinology addressed the use of adrenal supplements "to treat common nonspecific symptoms due to 'adrenal fatigue,' an entity that has not been recognized as a legitimate diagnosis." The position statement warned of known and unknown health risks of off-label use and misuse of hormones and supplements in patients without an established endocrine diagnosis, as well as unnecessary costs to patients and the overall health care system. Study after study has refuted the legitimacy of adrenal fatigue as a medical diagnosis. An August 2016 systematic review combined and analyzed data from 58 studies on adrenal fatigue including more than 10,000 participants. The conclusion in a nutshell: "Adrenal fatigue does not exist," according to review authors in the journal BMC Endocrine Disorders. Adrenal Action You have two adrenal glands in your body. These small triangular glands, one on top of each kidney, produce essential hormones such as aldosterone, cortisol and male sex hormones such as DHEA and testosterone. Cortisol helps regulate metabolism: How your body uses fat, protein and carbohydrates from food, and cortisol increases blood sugar as needed. It also plays a role in controlling blood pressure, preventing inflammation and regulating your sleep/wake cycle. As your body responds to stress, cortisol increases. This response starts with signals between two sections in the brain: The hypothalamus and the pituitary gland, which act together to release a hormone that stimulates the adrenal glands to make cortisol. This interactive unit is called the hypothalamic pituitary adrenal axis. While some health conditions really do affect the body's cortisol-making ability, adrenal fatigue isn't among them. "There's no evidence to support that adrenal fatigue is an actual medical condition," says Dr. Mary Vouyiouklis Kellis, a staff endocrinologist at Cleveland Clinic. "There's no stress connection in the sense that someone's adrenal glands will all of a sudden just stop producing cortisol because they're so inundated with emotional stress." If anything, adrenal glands are workhorses that rise to the occasion when chronic stress occurs. "The last thing in the body that's going to fatigue are your adrenal glands," says Dr. William F. Young Jr., an endocrinology clinical professor and professor of medicine in the Mayo Clinic College of Medicine at Mayo Clinic in Rochester, Minnesota. "Adrenal glands are built for stress – that's what they do. Adrenal glands don't fatigue. This is made up – it's a fallacy." The idea of adrenal glands crumbling under stress is "ridiculous," Findling agrees. "In reality, if you take a person and subject them to chronic stress, the adrenal glands don't shut down at all," Findling says. "They keep making cortisol – it's a stress hormone. In fact, the adrenal glands are just like the Energizer Bunny – they just keep going. They don't stop." Home cortisol tests that allow consumers to check their own levels can be misleading, Findling says. "Some providers who make this (adrenal fatigue) diagnosis, provide patients with testing equipment for doing saliva cortisol levels throughout the day," he says. "And then, regardless of what the results are, they perpetrate this diagnosis of adrenal fatigue." Saliva cortisol is a legitimate test that's frequently used in diagnosing Cushing's syndrome, or overactive adrenal glands, Findling notes. However, he says, a practitioner pursuing an adrenal fatigue diagnosis could game the system. "What they do is: They shape a very narrow normal range, so narrow, in fact, that no normal human subject could have all their saliva cortisol (levels) within that range throughout the course of the day," he says. "Then they convince the poor patients that they have adrenal fatigue phenomena and put them on some kind of adrenal support." Loaded Supplements How do you know what you're actually getting if you buy a dietary supplement marketed for adrenal fatigue or 'adrenal support' use? To find out, researchers purchased 12 such supplements over the counter in the U.S. Laboratory tests revealed that all supplements contained a small amount of thyroid hormone and most contained at least one steroid hormone, according to the study published in the March 2018 issue of Mayo Clinic Proceedings. "These results may highlight potential risks for hidden ingredients in unregulated supplements," the authors concluded. Supplements containing thyroid hormones or steroids can interact with a patient's prescribed medications or have other side effects. "Some people just assume they have adrenal fatigue because they looked it up online when they felt tired and they ultimately buy these over-the-counter supplements that can be very dangerous at times," Vouyiouklis Kellis says. "Some of them contain animal (ingredients), like bovine adrenal extract. That can suppress the pituitary axis. So, as a result, your body stops making its own cortisol or starts making less of it, and as a result, you can actually worsen the condition rather than make it better." Any form of steroid from outside the body, whether a prescription drug like prednisone or extract from cows' adrenal glands, "can shut off the pituitary," Vouyiouklis Kellis explains. "Because it's signaling to the pituitary like: Hey, you don't need to stimulate the adrenals to make cortisol, because this patient is taking it already. So, as a result, the body ultimately doesn't produce as much. And, so, if you rapidly withdraw that steroid or just all of a sudden decide not to take it anymore, then you can have this acute response of low cortisol." Some adrenal support products, such as herbal-only supplements, may be harmless. However, they're unlikely to relieve chronic fatigue. Fatigue: No Easy Answers If you're suffering from ongoing fatigue, it's frustrating. And you're not alone. "I have fatigue," Young Jr. says. "Go to the lobby any given day and say, 'Raise your hand if you have fatigue.' Most of the people are going to raise their hands. It's a common human symptom and people would like an easy answer for it. Usually there's not an easy answer. I think 'adrenal fatigue' is attractive because it's like: Aha, here's the answer." There aren't that many causes of endocrine-related fatigue, Young Jr. notes. "Hypothyroidism – when the thyroid gland is not working – is one." Addison's disease, or adrenal insufficiency, can also lead to fatigue among a variety of other symptoms. Established adrenal conditions – like adrenal insufficiency – need to be treated. "In adrenal insufficiency, there is an intrinsic problem in the adrenal gland's inability to produce cortisol," Vouyiouklis Kellis explains. "That can either be a primary problem in the adrenal gland or an issue with the pituitary gland not being able to stimulate the adrenal to make cortisol." Issues can arise even with necessary medications. "For example, very commonly, people are put on steroids for various reasons: allergies, ear, nose and throat problems," Vouyiouklis Kellis says. "And with the withdrawal of the steroids, they can ultimately have adrenal insufficiency, or decrease in cortisol." Opioid medications for pain also result in adrenal sufficiency, Vouyiouklis Kellis says, adding that this particular side effect is rarely discussed. People with a history of autoimmune disease can also be at higher risk for adrenal insufficiency. Common symptoms of adrenal insufficiency include: Fatigue. Weight loss. Decreased appetite. Salt cravings. Low blood pressure. Abdominal pain. Nausea, vomiting or diarrhea. Muscle weakness. Hyperpigmentation (darkening of the skin). Irritability. Medical tests for adrenal insufficiency start with blood cortisol levels, and tests for the ACTH hormone that stimulates the pituitary gland. "If the person does not have adrenal insufficiency and they're still fatigued, it's important to get to the bottom of it," Vouyiouklis Kellis says. Untreated sleep apnea often turns out to be the actual cause, she notes. "It's very important to tease out what's going on," Vouyiouklis Kellis emphasizes. "It can be multifactorial – multiple things contributing to the patient's feeling of fatigue." The blood condition anemia – a lack of healthy red blood cells – is another potential cause. "If you are fatigued, do not treat yourself," Vouyiouklis Kellis says. "Please seek a physician or a primary care provider for evaluation, because you don't want to go misdiagnosed or undiagnosed. It's very important to rule out actual causes that would be contributing to symptoms rather than ordering supplements online or seeking an alternative route like self-treating rather than being evaluated first." SOURCES The U.S. News Health team delivers accurate information about health, nutrition and fitness, as well as in-depth medical condition guides. All of our stories rely on multiple, independent sources and experts in the field, such as medical doctors and licensed nutritionists. To learn more about how we keep our content accurate and trustworthy, read our editorial guidelines. James Findling, MD Findling is a professor of medicine and director of the Community Endocrinology Center and Clinics at the Medical College of Wisconsin. Mary Vouyiouklis Kellis, MD Vouyiouklis Kellis is a staff endocrinologist at Cleveland Clinic. William F. Young Jr., MD Young Jr. is an endocrinology clinical professor and professor of medicine in the Mayo Clinic College of Medicine at Mayo Clinic in Rochester, Minnesota From https://health.usnews.com/health-care/patient-advice/articles/adrenal-fatigue-is-it-real?
  3. An assessment of free cortisol after a dexamethasone suppression test could add value to the diagnostic workup of hypercortisolism, which can be plagued by false-positive results, according to data from a cross-sectional study. A 1 mg dexamethasone suppression test (DST) is a standard of care endocrine test for evaluation of adrenal masses and for patients suspected to have endogenous Cushing’s syndrome. Interpretation of a DST is affected by dexamethasone absorption and metabolism; several studies suggest a rate of 6% to 20% of false-positive results because of inadequate dexamethasone concentrations or differences in the proportion of cortisol bound to corticosteroid-binding globulin affecting total cortisol concentrations. Source: Adobe Stock “As the prevalence of adrenal adenomas is around 5% to 7% in adults undergoing an abdominal CT scan, it is important to accurately interpret the DST,” Irina Bancos, MD, associate professor in the division of endocrinology at Mayo Clinic in Rochester, Minnesota, told Healio. “False-positive DST results are common, around 15% of cases, and as such, additional or second-line testing is often considered by physicians, including measuring dexamethasone concentrations at the time of the DST, repeating DST or performing DST with a higher dose of dexamethasone. We hypothesized that free cortisol measurements during the DST will be more accurate than total cortisol measurements, especially among those treated with oral contraceptive therapy.” Diverse cohort analyzed Bancos and colleagues analyzed data from adult volunteers without adrenal disorders (n = 168; 47 women on oral contraceptive therapy) and participants undergoing evaluation for hypercortisolism (n = 196; 16 women on oral contraceptives). The researchers assessed levels of post-DST dexamethasone and free cortisol, using mass spectrometry, and total cortisol, via immunoassay. The primary outcome was a reference range for post-DST free cortisol levels and the diagnostic accuracy of post-DST total cortisol level. Irina Bancos “A group that presents a particular challenge are women treated with oral estrogen,” Bancos told Healio. “In these cases, total cortisol increases due to estrogen-stimulated cortisol-binding globulin production, potentially leading to false-positive DST results. We intentionally designed our study to include a large reference group of women treated with oral contraceptive therapy allowing us to develop normal ranges of post-DST total and free cortisol, and then apply these cutoffs to the clinical practice.” Researchers observed adequate dexamethasone concentrations ( 0.1 µg/dL) in 97.6% of healthy volunteers and in 96.3% of patients. Among women volunteers taking oral contraceptives, 25.5% had an abnormal post-DST total cortisol measurement, defined as a cortisol level of at least 1.8 µg/dL. Among healthy volunteers, the upper post-DST free cortisol range was 48 ng/dL in men and women not taking oral contraceptives, and 79 ng/dL for women taking oral contraceptives. Compared with post-DST free cortisol, diagnostic accuracy of post-DST total cortisol level was 87.3% (95% CI, 81.7-91.7). All false-positive results occurred among patients with a post-DST cortisol level between 1.8 µg/dL and 5 µg/dL, according to researchers. Oral contraceptive use was the only factor associated with false-positive results (21.1% vs. 4.9%; P = .02). Findings challenge guidelines Natalia Genere “We were surprised by several findings of our study,” Natalia Genere, MD, instructor in medicine in the division of endocrinology, metabolism and lipid research at Washington University School of Medicine in St. Louis, told Healio. “First, we saw that with a standardized patient instruction on DST, we found that optimal dexamethasone concentrations were reached in a higher proportion of patients than previously reported (97%), suggesting that rapid metabolism or poor absorption of dexamethasone may play a lower role in the rate of false positives. Second, we found that measurements of post-DST total cortisol in women taking oral contraceptive therapy accurately excluded [mild autonomous cortisol secretion] in three-quarters of patients, suggesting discontinuation of oral contraceptives, as suggested in prior guidelines, may not be routinely necessary.” Genere said post-DST free cortisol performed “much better” than total cortisol among women treated with oral estrogen. Stepwise approach recommended Based on the findings, the authors suggested a sequential approach to dexamethasone suppression in clinical practice. “We recommend a stepwise approach to enhance DST interpretation, with the addition of dexamethasone concentration and/or free cortisol in cases of abnormal post-DST total cortisol,” Bancos said. “We found dexamethasone concentrations are particularly helpful when post-DST total cortisol is at least 5 µg/dL and free cortisol is helpful in a patient with optimal dexamethasone concentrations and a post-DST total cortisol between 1.8 µg/dL and 5 µg/dL. We believe that DST with free cortisol is a useful addition to the repertoire of available testing for [mild autonomous cortisol secretion], and that its use reduces need for repetitive assessments and patient burden of care, especially in women treated with oral contraceptive therapy.” PERSPECTIVE BACK TO TOP Ricardo Correa, MD, EsD, FACE, FACP, CMQ In the evaluation of endogenous Cushing’s disease, the guideline algorithm recommends two of three positive tests — 24-hour free urine cortisol, late midnight salivary cortisol level and 1 mg dexamethasone suppression test, or DST — for diagnosing hypercortisolism. Of those tests, the most accurate to detect adrenal secretion of cortisol when a patient may have an adrenal incidentaloma is the 1 mg DST. The caveat with this specific test is that it is affected by dexamethasone absorption and metabolism and the proportion of cortisol bound to corticosteroid-binding globulin. Up to 20% of these tests report false-positive findings. This study by Genere and colleagues aimed to determine the normal range of free cortisol during the 1 mg DST. The researchers conducted a prospective, cross-sectional study that included volunteers without adrenal disorders and patients assessed for cortisol excess for clinical reasons. In the volunteer group, 168 volunteers were enrolled, including 47 women that were taking oral contraceptives. After excluding patients with inadequate dexamethasone levels and other outliers, the post-DST free cortisol maximum level was less than 48 ng/dL for men and women who were not taking oral contraceptive pills and less than 79 ng/dL for women taking oral contraceptive pills. In the patient group, 100% of post-DST free cortisol levels were above the upper limit of normal among those with a post-DST cortisol of at least 5 µg/dL; however, this was true for only 70.7% of those with post-DST cortisol between 1.8 µg/dL and 5 µg/dL. This study found that a post-DST free cortisol assessment is helpful in patients with a post-DST total cortisol between 1.8 µg/dL and 5 µg/dL, but was not beneficial for patients with a post-DST total cortisol of less than 1.8 µg/dL or more than 5 µg/dL. Performing free cortisol assessments in this subgroup will reduce the number of false positives. The authors recommend performing a 1 mg post-DST free cortisol analysis for this subgroup; the levels to confirm cortisol excess are at least 48 ng/dL in men and women not taking oral contraceptive pills and at least 79 ng/dL for women taking oral contraceptive pills. Furthermore, the study presents a stepwise approach algorithm that will be very useful for clinical practice. Ricardo Correa, MD, EsD, FACE, FACP, CMQ Endocrine Today Editorial Board Member Program Director of Endocrinology Fellowship and Director for Diversity University of Arizona College of Medicine-Phoenix Phoenix Veterans Affairs Medical Center Disclosures: Correa reports no relevant financial disclosures. From https://www.healio.com/news/endocrinology/20211117/free-cortisol-evaluation-useful-after-abnormal-dexamethasone-test
  4. Any condition that causes the adrenal gland to produce excessive cortisol results in the disorder Cushing's syndrome. Cushing syndrome is characterized by facial and torso obesity, high blood pressure, stretch marks on the belly, weakness, osteoporosis, and facial hair growth in females. Cushing's syndrome has many possible causes including tumors within the adrenal gland, adrenal gland stimulating hormone (ACTH) produced from cancer such as lung cancer, and ACTH excessively produced from a pituitary tumors within the brain. ACTH is normally produced by the pituitary gland (located in the center of the brain) to stimulate the adrenal glands' natural production of cortisol, especially in times of stress. When a pituitary tumor secretes excessive ACTH, the disorder resulting from this specific form of Cushing's syndrome is referred to as Cushing's disease. As an aside, it should be noted that doctors will sometimes describe certain patients with features identical to Cushing's syndrome as having 'Cushingoid' features. Typically, these features are occurring as side effects of cortisone-related medications, such as prednisone and prednisolone.
  5. Cushing’s syndrome is a rare disorder that occurs when the body is exposed to too much cortisol. Cortisol is produced by the body and is also used in corticosteroid drugs. Cushing's syndrome can occur either because cortisol is being overproduced by the body or from the use of drugs that contain cortisol (like prednisone). Cortisol is the body’s main stress hormone. Cortisol is secreted by the adrenal glands in response to the secretion of adrenocorticotropic hormone (ACTH) by the pituitary. One form of Cushing’s syndrome may be caused by an oversecretion of ACTH by the pituitary leading to an excess of cortisol. Cortisol has several functions, including the regulation of inflammation and controlling how the body uses carbohydrates, fats, and proteins. Corticosteroids such as prednisone, which are often used to treat inflammatory conditions, mimic the effects of cortisol. Stay tuned for more basic info...
  6. Rachel Acree, Caitlin M Miller, Brent S Abel, Nicola M Neary, Karen Campbell, Lynnette K Nieman Journal of the Endocrine Society, Volume 5, Issue 8, August 2021, bvab109, https://doi.org/10.1210/jendso/bvab109 Abstract Context Cushing syndrome (CS) is associated with impaired health-related quality of life (HRQOL) even after surgical cure. Objective To characterize patient and provider perspectives on recovery from CS, drivers of decreased HRQOL during recovery, and ways to improve HRQOL. Design Cross-sectional observational survey. Participants Patients (n = 341) had undergone surgery for CS and were members of the Cushing’s Support and Research Foundation. Physicians (n = 54) were Pituitary Society physician members and academicians who treated patients with CS. Results Compared with patients, physicians underestimated the time to complete recovery after surgery (12 months vs 18 months, P = 0.0104). Time to recovery did not differ by CS etiology, but patients with adrenal etiologies of CS reported a longer duration of cortisol replacement medication compared with patients with Cushing disease (12 months vs 6 months, P = 0.0025). Physicians overestimated the benefits of work (26.9% vs 65.3%, P < 0.0001), exercise (40.9% vs 77.6%, P = 0.0001), and activities (44.8% vs 75.5%, P = 0.0016) as useful coping mechanisms in the postsurgical period. Most patients considered family/friends (83.4%) and rest (74.7%) to be helpful. All physicians endorsed educating patients on recovery, but 32.4% (95% CI, 27.3-38.0) of patients denied receiving sufficient information. Some patients did not feel prepared for the postsurgical experience (32.9%; 95% CI, 27.6-38.6) and considered physicians not familiar enough with CS (16.1%; 95% CI, 12.2-20.8). Conclusion Poor communication between physicians and CS patients may contribute to dissatisfaction with the postsurgical experience. Increased information on recovery, including helpful coping mechanisms, and improved provider-physician communication may improve HRQOL during recovery. Read the entire article in the enclosed PDF. bvab109.pdf
  7. The FDA accepted for review a new drug application for the steroidogenesis inhibitor levoketoconazole for the treatment of endogenous Cushing’s syndrome, according to an industry press release. “We are pleased with the FDA’s acceptance for filing of the Recorlev new drug application,” John H. Johnson, CEO of Strongbridge Biopharma, said in the release. “We believe this decision reflects the comprehensive clinical evidence that went into the NDA submission, including the positive and statistically significant efficacy and safety results from the multinational phase 3 SONICS and LOGICS studies evaluating Recorlev as a potential treatment option for adults with endogenous Cushing’s syndrome. We are advancing our commercial readiness plans and look forward to potentially bringing a new therapeutic option to the Cushing’s syndrome community in the first quarter of 2022.” As Healio previously reported, top-line findings from the LOGICS study demonstrated that levoketoconazole (Recorlev, Strongbridge Biopharma) improved and normalized morning urinary free cortisol concentrations for adults with endogenous Cushing’s disease compared with placebo. The drug was generally well tolerated, with safety data mirroring those from the earlier phase 3 SONICS trial. Endogenous Cushing’s syndrome — caused by chronic hypercortisolism — is rare, with estimates ranging from 40 to 70 people per million affected worldwide, according to the National Institute of Diabetes and Digestive and Kidney Diseases. The FDA set a Prescription Drug User Fee Act target action date of Jan. 1, 2022, for levoketoconazole, according to the company. The FDA letter made no mention of a plan to hold an advisory committee meeting. From https://www.healio.com/news/endocrinology/20210513/fda-accepts-nda-for-novel-cushings-syndrome-treatment
  8. Thanks for being a member of Rare Patient Voice, LLC. We have an opportunity for you to take part in a Cushing Syndrome interview (NEON_4470) for Patients. Our project number for this study is NEON_4470. Project Details: Telephone interview Interview is 60-minutes long One Hundred Dollar Reward Looking for Patients diagnosed with Endogenous Cushing Syndrome Things to Note: Patient study only, Caregivers please pass the link along Unique links, please do not pass along for 2nd use Want to share this opportunity? Let us know and we can provide a new link Please use a laptop/computer ONLY. No smartphones or tablets - Preliminary questions are Mobile Friendly! Save this email to reference if you have any questions about the study! If you have any problems, email michael.taylor@rarepatientvoice.com and reference the project number. If you hit reply, you will get an auto do-not-reply email. If you are interested in this study, please click the link below to answer a few questions to see if you qualify. Study Link: Link OR if the Study Hyperlink is not clickable above, please copy/paste this URL below. https://panel.rarepatientvoice.com/newdesign/site/rarepatientvoice/surveystart.php?surveyID=9mth6d868qpc&panelMemberID=trfnbc7mvduh1gseff1h&invite=email Thanks as always for your participation! Please be aware that by entering this information you are not guaranteed that you will be selected to participate. As always, we do not share any of your contact information without your permission. Not Interested in this study? (Click link below so we do not send you any reminders for this study) Study Reminder Opt Out Link: Link We truly appreciate the time you set aside to interact with our company and don’t take it for granted. Receive a $5 gift card for referring others who may want to participate in this or future studies. Invite them to join Rare Patient Voice: https://www.rarepatientvoice.com/sign-up. They, too, receive a gift card. Our Privacy Policy Regards, Michael Taylor Project Manager Rare Patient Voice Helping Patients with Rare Diseases Voice Their Opinions Phone: + 1 609-462-5519 Email: michael.taylor@rarepatientvoice.com Websites: www.rarepatientvoice.com
  9. I think we always knew Cushing's and pregnancy were related... Abstract Cushing’s syndrome (CS) during pregnancy is very rare with a few cases reported in the literature. Of great interest, some cases of CS during pregnancy spontaneously resolve after delivery. Most studies suggest that aberrant luteinizing hormone (LH)/human chorionic gonadotropin (hCG) receptor (LHCGR) seems to play a critical role in the pathogenesis of CS during pregnancy. However, not all women during pregnancy are observed cortisol hypersecretion. Moreover, some cases of adrenal tumors or macronodular hyperplasia with LHCGR expressed, have no response to hCG or LH. Therefore, alternative pathogenic mechanisms are indicated. It has been recently reported that estrogen binding to estrogen receptor α (ERα) could enhance the adrenocortical adenocarcinoma (ACC) cell proliferation. Herein, we hypothesize that ERα is probably involved in CS development during pregnancy. Better understanding of the possible mechanism of ERα on cortisol production and adrenocortical tumorigenesis will contribute to the diagnosis and treatment of CS during pregnancy. Read the entire article here: https://www.sciencedirect.com/science/article/pii/S0306987720303893?via%3Dihub
  10. https://doi.org/10.1016/S2213-8587(20)30215-1 Over the past few months, COVID-19, the pandemic disease caused by severe acute respiratory syndrome coronavirus 2, has been associated with a high rate of infection and lethality, especially in patients with comorbidities such as obesity, hypertension, diabetes, and immunodeficiency syndromes.1 These cardiometabolic and immune impairments are common comorbidities of Cushing's syndrome, a condition characterised by excessive exposure to endogenous glucocorticoids. In patients with Cushing's syndrome, the increased cardiovascular risk factors, amplified by the increased thromboembolic risk, and the increased susceptibility to severe infections, are the two leading causes of death.2 In healthy individuals in the early phase of infection, at the physiological level, glucocorticoids exert immunoenhancing effects, priming danger sensor and cytokine receptor expression, thereby sensitising the immune system to external agents.3 However, over time and with sustained high concentrations, the principal effects of glucocorticoids are to produce profound immunosuppression, with depression of innate and adaptive immune responses. Therefore, chronic excessive glucocorticoids might hamper the initial response to external agents and the consequent activation of adaptive responses. Subsequently, a decrease in the number of B-lymphocytes and T-lymphocytes, as well as a reduction in T-helper cell activation might favour opportunistic and intracellular infection. As a result, an increased risk of infection is seen, with an estimated prevalence of 21–51% in patients with Cushing's syndrome.4 Therefore, despite the absence of data on the effects of COVID-19 in patients with Cushing's syndrome, one can make observations related to the compromised immune state in patients with Cushing's syndrome and provide expert advice for patients with a current or past history of Cushing's syndrome. Fever is one of the hallmarks of severe infections and is present in up to around 90% of patients with COVID-19, in addition to cough and dyspnoea.1 However, in active Cushing's syndrome, the low-grade chronic inflammation and the poor immune response might limit febrile response in the early phase of infection.2 Conversely, different symptoms might be enhanced in patients with Cushing's syndrome; for instance, dyspnoea might occur because of a combination of cardiac insufficiency or weakness of respiratory muscles.2 Therefore, during active Cushing's syndrome, physicians should seek different signs and symptoms when suspecting COVID-19, such as cough, together with dysgeusia, anosmia, and diarrhoea, and should be suspicious of any change in health status of their patients with Cushing's syndrome, rather than relying on fever and dyspnoea as typical features. The clinical course of COVID-19 might also be difficult to predict in patients with active Cushing's syndrome. Generally, patients with COVID-19 and a history of obesity, hypertension, or diabetes have a more severe course, leading to increased morbidity and mortality.1 Because these conditions are observed in most patients with active Cushing's syndrome,2 these patients might be at an increased risk of severe course, with progression to acute respiratory distress syndrome (ARDS), when developing COVID-19. However, a key element in the development of ARDS during COVID-19 is the exaggerated cellular response induced by the cytokine increase, leading to massive alveolar–capillary wall damage and a decline in gas exchange.5 Because patients with Cushing's syndrome might not mount a normal cytokine response,4 these patients might parodoxically be less prone to develop severe ARDS with COVID-19. Moreover, Cushing's syndrome and severe COVID-19 are associated with hypercoagulability, such that patients with active Cushing's syndrome might present an increased risk of thromboembolism with COVID-19. Consequently, because low molecular weight heparin seems to be associated with lower mortality and disease severity in patients with COVID-19,6 and because anticoagulation is also recommended in specific conditions in patients with active Cushing's syndrome,7 this treatment is strongly advised in hospitalised patients with Cushing's syndrome who have COVID-19. Furthermore, patients with active Cushing's syndrome are at increased risk of prolonged duration of viral infections, as well as opportunistic infections, particularly atypical bacterial and invasive fungal infections, leading to sepsis and an increased mortality risk,2 and COVID-19 patients are also at increased risk of secondary bacterial or fungal infections during hospitalisation.1 Therefore, in cases of COVID-19 during active Cushing's syndrome, prolonged antiviral treatment and empirical prophylaxis with broad-spectrum antibiotics1, 4 should be considered, especially for hospitalised patients (panel). Panel Risk factors and clinical suggestions for patients with Cushing's syndrome who have COVID-19 Reduction of febrile response and enhancement of dyspnoea Rely on different symptoms and signs suggestive of COVID-19, such as cough, dysgeusia, anosmia, and diarrhoea. Prolonged duration of viral infections and susceptibility to superimposed bacterial and fungal infections Consider prolonged antiviral and broad-spectrum antibiotic treatment. Impairment of glucose metabolism (negative prognostic factor) Optimise glycaemic control and select cortisol-lowering drugs that improve glucose metabolism. Hypertension (negative prognostic factor) Optimise blood pressure control and select cortisol-lowering drugs that improve blood pressure. Thrombosis diathesis (negative prognostic factor) Start antithrombotic prophylaxis, preferably with low-molecular-weight heparin treatment. Surgery represents the first-line treatment for all causes of Cushing's syndrome,8, 9 but during the pandemic a delay might be appropriate to reduce the hospital-associated risk of COVID-19, any post-surgical immunodepression, and thromboembolic risks.10 Because immunosuppression and thromboembolic diathesis are common Cushing's syndrome features,2, 4 during the COVID-19 pandemic, cortisol-lowering medical therapy, including the oral drugs ketoconazole, metyrapone, and the novel osilodrostat, which are usually effective within hours or days, or the parenteral drug etomidate when immediate cortisol control is required, should be temporarily used.9 Nevertheless, an expeditious definitive diagnosis and proper surgical resolution of hypercortisolism should be ensured in patients with malignant forms of Cushing's syndrome, not only to avoid disease progression risk but also for rapidly ameliorating hypercoagulability and immunospuppression;9 however, if diagnostic procedures cannot be easily secured or surgery cannot be done for limitations of hospital resources due to the pandemic, medical therapy should be preferred. Concomitantly, the optimisation of medical treatment for pre-existing comorbidities as well as the choice of cortisol-lowering drugs with potentially positive effects on obesity, hypertension, or diabates are crucial to improve the eventual clinical course of COVID-19. Once patients with Cushing's syndrome are in remission, the risk of infection is substantially decreased, but the comorbidities related to excess glucocorticoids might persist, including obesity, hypertension, and diabetes, together with thromboembolic diathesis.2 Because these are features associated with an increased death risk in patients with COVID-19,1 patients with Cushing's syndrome in remission should be considered a high-risk population and consequently adopt adequate self-protection strategies to minimise contagion risk. In conclusion, COVID-19 might have specific clinical presentation, clinical course, and clinical complications in patients who also have Cushing's syndrome during the active hypercortisolaemic phase, and therefore careful monitoring and specific consideration should be given to this special, susceptible population. Moreover, the use of medical therapy as a bridge treatment while waiting for the pandemic to abate should be considered. RP reports grants and personal fees from Novartis, Strongbridge, HRA Pharma, Ipsen, Shire, and Pfizer; grants from Corcept Therapeutics and IBSA Farmaceutici; and personal fees from Ferring and Italfarmaco. AMI reports non-financial support from Takeda and Ipsen; grants and non-financial support from Shire, Pfizer, and Corcept Therapeutics. BMKB reports grants from Novartis, Strongbridge, and Millendo; and personal fees from Novartis and Strongbridge. AC reports grants and personal fees from Novartis, Ipsen, Shire, and Pfizer; personal fees from Italfarmaco; and grants from Lilly, Merck, and Novo Nordisk. All other authors declare no competing interests. References 1 P Kakodkar, N Kaka, MN Baig A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19) Cureus, 12 (2020), Article e7560 View Record in ScopusGoogle Scholar 2 R Pivonello, AM Isidori, MC De Martino, J Newell-Price, BMK Biller, A Colao Complications of Cushing's syndrome: state of the art Lancet Diabetes Endocrinol, 4 (2016), pp. 611-629 ArticleDownload PDFView Record in ScopusGoogle Scholar 3 DW Cain, JA Cidlowski Immune regulation by glucocorticoids Nat Rev Immunol, 17 (2017), pp. 233-247 CrossRefView Record in ScopusGoogle Scholar 4 V Hasenmajer, E Sbardella, F Sciarra, M Minnetti, AM Isidori, MA Venneri The immune system in Cushing's syndrome Trends Endocrinol Metab (2020) published online May 6, 2020. DOI:10.1016/j.tem.2020.04.004 Google Scholar 5 Q Ye, B Wang, J Mao The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19 J Infect, 80 (2020), pp. 607-613 ArticleDownload PDFView Record in ScopusGoogle Scholar 6 N Tang, H Bai, X Chen, J Gong, D Li, Z Sun Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy J Thromb Haemost, 18 (2020), pp. 1094-1099 CrossRefView Record in ScopusGoogle Scholar 7 AM Isidori, M Minnetti, E Sbardella, C Graziadio, AB Grossman Mechanisms in endocrinology: the spectrum of haemostatic abnormalities in glucocorticoid excess and defect Eur J Endocrinol, 173 (2015), pp. R101-R113 View Record in ScopusGoogle Scholar 8 LK Nieman, BM Biller, JW Findling, et al.Treatment of Cushing's syndrome: an endocrine society clinical practice guideline J Clin Endocrinol Metab, 100 (2015), pp. 2807-2831 CrossRefView Record in ScopusGoogle Scholar 9 R Pivonello, M De Leo, A Cozzolino, A Colao The treatment of Cushing's disease Endocr Rev, 36 (2015), pp. 385-486 CrossRefView Record in ScopusGoogle Scholar 10 J Newell-Price, L Nieman, M Reincke, A Tabarin Endocrinology in the time of COVID-19: management of Cushing's syndrome Eur J Endocrinol (2020) published online April 1. DOI:10.1530/EJE-20-0352 Google Scholar View Abstract From https://www.thelancet.com/journals/landia/article/PIIS2213-8587(20)30215-1/fulltext
  11. Authors Ježková J, Ďurovcová V, Wenchich L, Hansíková H, Zeman J, Hána V, Marek J, Lacinová Z, Haluzík M, Kršek M Received 18 March 2019 Accepted for publication 13 June 2019 Published 19 August 2019 Volume 2019:12 Pages 1459—1471 DOI https://doi.org/10.2147/DMSO.S209095 Checked for plagiarism Yes Review by Single-blind Peer reviewers approved by Dr Melinda Thomas Peer reviewer comments 3 Editor who approved publication: Dr Antonio Brunetti Jana Ježková,1 Viktória Ďurovcová,1 Laszlo Wenchich,2,3 Hana Hansíková,3 Jiří Zeman,3Václav Hána,1 Josef Marek,1 Zdeňka Lacinová,4,5 Martin Haluzík,4,5 Michal Kršek1 1Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; 2Institute of Rheumatology, Prague, Czech Republic; 3Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; 4Institute of Medical Biochemistry and Laboratory Diagnostic, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; 5Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic Correspondence: Jana Ježková Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 1128 02 Praha 2, Prague, Czech Republic Tel +420 60 641 2613 Fax +420 22 491 9780 Email fjjezek@cmail.cz Purpose: Cushing’s syndrome is characterized by metabolic disturbances including insulin resistance. Mitochondrial dysfunction is one pathogenic factor in the development of insulin resistance in patients with obesity. We explored whether mitochondrial dysfunction correlates with insulin resistance and other metabolic complications. Patients and methods: We investigated the changes of mRNA expression of genes encoding selected subunits of oxidative phosphorylation system (OXPHOS), pyruvate dehydrogenase (PDH) and citrate synthase (CS) in subcutaneous adipose tissue (SCAT) and peripheral monocytes (PM) and mitochondrial enzyme activity in platelets of 24 patients with active Cushing’s syndrome and in 9 of them after successful treatment and 22 healthy control subjects. Results: Patients with active Cushing’s syndrome had significantly increased body mass index (BMI), homeostasis model assessment of insulin resistance (HOMA-IR) and serum lipids relative to the control group. The expression of all investigated genes for selected mitochondrial proteins was decreased in SCAT in patients with active Cushing’s syndrome and remained decreased after successful treatment. The expression of most tested genes in SCAT correlated inversely with BMI and HOMA-IR. The expression of genes encoding selected OXPHOS subunits and CS was increased in PM in patients with active Cushing’s syndrome with a tendency to decrease toward normal levels after cure. Patients with active Cushing’s syndrome showed increased enzyme activity of complex I (NQR) in platelets. Conclusion: Mitochondrial function in SCAT in patients with Cushing’s syndrome is impaired and only slightly affected by its treatment which may reflect ongoing metabolic disturbances even after successful treatment of Cushing’s syndrome. Keywords: Cushing’s syndrome, insulin resistance, mitochondrial enzyme activity, gene expression This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms. Download Article [PDF] View Full Text [Machine readable]
  12. by Kristen Monaco, Staff Writer, MedPage Today LOS ANGELES -- An investigational therapy improved quality of life and reduced disease symptoms for patients with endogenous Cushing's syndrome, according to new findings from the phase III SONICS study. Patients taking oral levoketoconazole twice daily had significant reductions in mean scores for acne (-1.8), peripheral edema (-0.4), and hirsutism (-2.6), all secondary endpoints of the pivotal trial (P<0.03 for all), reported Maria Fleseriu, MD, of Oregon Health and Science University in Portland. "We're looking forward to see the results of further studies and to add this therapy to the landscape of Cushing's," Fleseriu said here during a presentation of the findings at AACE 2019, the annual meeting of the American Association of Clinical Endocrinologists. "We have a newer medication and still we cannot make a dent in the outcomes of Cushing's, especially for patient-reported outcomes." Free testosterone levels significantly decreased in women taking levoketoconazole (a ketoconazole stereoisomer and potent steroidogenesis inhibitor), from an average of 0.32 ng/dL down to 0.12 ng/dL (0.011 to 0.004 nmol/L, P<0.0001). Men had a non-significant increase: 5.1 ng/dL up to 5.8 ng/dL (0.177 to 0.202 nmol/L). There were no significant changes from baseline to the end of maintenance for other secondary endpoints in the analysis: moon facies, facial plethora, striae, bruising, supraclavicular fat, irregular menstruation, and dysmenorrhea. However, significant improvements after 6 months of therapy were seen in patient-reported quality of life compared with baseline (mean 10.6 change on the Cushing QOL questionnaire) as well as a significant reduction in depressive symptoms (mean -4.3 change on the Beck Depression Inventory II). The open-label, multicenter SONICS (Study of Levoketoconazole in Cushing's Syndrome) trial included 94 adult men and women with a confirmed diagnosis of Cushing's syndrome and elevated 24-hour mean urinary free cortisol (mUFC) levels at least 1.5 times the upper limit of normal. In the dose-titration phase of the study (weeks 2 to 21), patients were titrated up to a max dose of 600 mg levoketoconazole twice daily until mUFC normalization. A 6-month maintenance phase followed with no dose increases, but decreases were allowed if adverse events emerged. An additional 6-month extended evaluation phase followed thereafter. The study met it's previously reported primary endpoint, with 30% of patients achieving normalized mUFC levels after 6 months of maintenance therapy without a dose increase (95% CI 21%-40%, P=0.0154). Levoketoconazole was well tolerated, with only 12.8% of patients discontinuing treatment due to adverse events. The most commonly reported adverse events were nausea (31.9%), headache (27.7%), peripheral edema (19.1%), hypertension (17%), and fatigue (16%), some of which were expected due to steroid withdrawal, Fleseriu said. Serious adverse events were reported in 14 patients, including prolonged QTc interval in two patients, elevated liver function in one patient, and adrenal insufficiency in another, events similar to those seen with ketoconazole (Nizoral) therapy. Fleseriu explained that drug-drug interaction is a problem in Cushing's, as all of the available medications prolong QT interval. She noted that in SONICS, QT prolongation with levoketoconazole was observed in few patients. It's still a "concern," said Fleseriu, especially for patients on other drugs that prolong QT. Although not yet approved, levoketoconazole has received orphan drug designation from the FDA and the European Medicines Agency for endogenous Cushing's syndrome. The tentative brand name is Recorlev. The study was supported by Strongbridge Biopharma. Fleseriu reported relationships with Strongbridge, Millendo Therapeutics, and Novartis. Co-authors also disclosed relevant relationships with industry. Primary Source American Association of Clinical Endocrinologists Source Reference: Fleseriu M, et al "Levoketoconazole in the treatment of endogenous Cushing's syndrome: Improvements in clinical signs and symptoms, patient-reported outcomes, and associated biochemical markers in the phase 3 SONICS study" AACE 2019; Poster 369. From https://www.medpagetoday.com/meetingcoverage/aace/79465
  13. A simple test that measures free cortisol levels in saliva at midnight — called a midnight salivary cortisol test — showed good diagnostic performance for Cushing’s syndrome among a Chinese population, according to a recent study. The test was better than the standard urine free cortisol levels and may be an alternative for people with end-stage kidney disease, in whom measuring cortisol in urine is challenging. The study, “Midnight salivary cortisol for the diagnosis of Cushing’s syndrome in a Chinese population,” was published in Singapore Medical Journal. Cushing’s syndrome, defined by excess cortisol levels, is normally diagnosed by measuring the amount of cortisol in bodily fluids. Traditionally, urine free cortisol has been the test of choice, but this method is subject to complications ranging from improper collection to metabolic differences, and its use is limited in people with poor kidney function. Midnight salivary cortisol is a test that takes into account the normal fluctuation of cortisol levels in bodily fluids. Cortisol peaks in the morning and declines throughout the day, reaching its lowest levels at midnight. In Cushing’s patients, however, this variation ceases to exist and cortisol remains elevated throughout the day. Midnight salivary cortisol was first proposed in the 1980s as a noninvasive way to measure cortisol levels, but its efficacy and cutoff value for Cushing’s disease in the Chinese population remained unclear. Researchers examined midnight salivary cortisol, urine free cortisol, and midnight serum cortisol in Chinese patients suspected of having Cushing’s syndrome and in healthy volunteers. These measurements were then combined with imaging studies to make a diagnosis. Overall, the study included 29 patients with Cushing’s disease, and 19 patients with Cushing’s syndrome — 15 caused by an adrenal mass and four caused by an ACTH-producing tumor outside the pituitary. Also, 13 patients excluded from the suspected Cushing’s group were used as controls and 21 healthy volunteers were considered the “normal” group. The team found that the mean midnight salivary cortisol was significantly higher in the Cushing’s group compared to both control and normal subjects. Urine free cortisol and midnight serum cortisol were also significantly higher than those found in the control group, but not the normal group. The optimal cutoff value of midnight salivary cortisol for diagnosing Cushing’s was 1.7 ng/mL, which had a sensitivity of 98% — only 2% are false negatives — and a specificity of 100% — no false positives. While midnight salivary cortisol levels correlated with urine free cortisol and midnight serum cortisol — suggesting that all of them can be useful diagnostic markers for Cushing’s — the accuracy of midnight salivary cortisol was better than the other two measures. Notably, in one patient with a benign adrenal mass and impaired kidney function, urine free cortisol failed to reach the necessary threshold for a Cushing’s diagnosis, but midnight salivary and serum cortisol levels both confirmed the diagnosis, highlighting how midnight salivary cortisol could be a preferable diagnostic method over urine free cortisol. “MSC is a simple and non-invasive tool that does not require hospitalization. Our results confirmed the accuracy and reliability of [midnight salivary cortisol] as a diagnostic test for [Cushing’s syndrome] for the Chinese population,” the investigators said. The team also noted that its study is limited: the sample size was quite small, and Cushing’s patients tended to be older than controls, which may have skewed the results. Larger studies will be needed to validate these results in the future. From https://cushingsdiseasenews.com/2019/01/10/midnight-salivary-cortisol-test-helps-diagnose-cushings-chinese-study-shows/
  14. Patients with subclinical hypercortisolism, i.e., without symptoms of cortisol overproduction, and adrenal incidentalomas recover their hypothalamic-pituitary-adrenal (HPA) axis function after surgery faster than those with Cushing’s syndrome (CS), according to a study. Moreover, the researchers found that an HPA function analysis conducted immediately after the surgical removal of adrenal incidentalomas — adrenal tumors discovered by chance in imaging tests — could identify patients in need of glucocorticoid replacement before discharge. Using this approach, they found that most subclinical patients did not require treatment with hydrocortisone, a glucocorticoid taken to compensate for low levels of cortisol in the body, after surgery. The study, “Alterations in hypothalamic-pituitary-adrenal function immediately after resection of adrenal adenomas in patients with Cushing’s syndrome and others with incidentalomas and subclinical hypercortisolism,” was published in Endocrine. The HPA axis is the body’s central stress response system. The hypothalamus releases corticotropin-releasing hormone (CRH) that acts on the pituitary gland to release adrenocorticotropic hormone (ACTH), leading the adrenal gland to produce cortisol. As the body’s defense mechanism to avoid excessive cortisol secretion, high cortisol levels alert the hypothalamus to stop producing CRH and the pituitary gland to stop making ACTH. Therefore, in diseases associated with chronically elevated cortisol levels, such as Cushing’s syndrome and adrenal incidentalomas, there’s suppression of the HPA axis. After an adrenalectomy, which is the surgical removal of one or both adrenal glands, patients often have low cortisol levels (hypocortisolism) and require glucocorticoid replacement therapy. “Most studies addressing the peri-operative management of patients with adrenal hypercortisolism have reported that irrespective of how mild the hypercortisolism was, such patients were given glucocorticoids before, during and after adrenalectomy,” the researchers wrote. Evidence also shows that, after surgery, glucocorticoid therapy is administered for months before attempting to test for recovery of HPA function. For the past 30 years, researchers at the University Hospitals Cleveland Medical Center have withheld glucocorticoid therapy in the postoperative management of patients with ACTH-secreting pituitary adenomas until there’s proof of hypocortisolism. “The approach offered us the opportunity to examine peri-operative hormonal alterations and demonstrate their importance in predicting need for replacement therapy, as well as future recurrences,” they said. In this prospective observational study, the investigators extended their approach to patients with subclinical hypercortisolism. “The primary goal of the study was to examine rapid alteration in HPA function in patients with presumably suppressed axis and appreciate the modulating impact of surgical stress in that setting,” they wrote. Collected data was used to decide whether to start glucocorticoid therapy. The analysis included 14 patients with Cushing’s syndrome and 19 individuals with subclinical hypercortisolism and an adrenal incidentaloma. All participants had undergone surgical removal of a cortisol-secreting adrenal tumor. “None of the patients received exogenous glucocorticoids during the year preceding their evaluation nor were they taking medications or had other illnesses that could influence HPA function or serum cortisol measurements,” the researchers noted. Glucocorticoid therapy was not administered before or during surgery. To evaluate HPA function, the clinical team took blood samples before and at one, two, four, six, and eight hours after the adrenalectomy to determine levels of plasma ACTH, serum cortisol, and dehydroepiandrosterone sulfate (DHEA-S) — a hormone produced by the adrenal glands. Pre-surgery assessment of both groups showed that patients with an incidentaloma plus subclinical hypercortisolism had larger adrenal masses, higher ACTH, and DHEA-S levels, but less serum cortisol after adrenal function suppression testing with dexamethasone. Dexamethasone is a man-made version of cortisol that, in a normal setting, makes the body produce less cortisol. But in patients with a suppressed HPA axis, cortisol levels remain high. After the adrenalectomy, the ACTH concentrations in both groups of patients increased. This was found to be negatively correlated with pre-operative dexamethasone-suppressed cortisol levels. Investigators reported that “serum DHEA-S levels in patients with Cushing’s syndrome declined further after adrenalectomy and were undetectable by the 8th postoperative hour,” while incidentaloma patients’ DHEA-S concentrations remained unchanged for the eight-hour postoperative period. Eight hours after surgery, all Cushing’s syndrome patients had serum cortisol levels of less than 2 ug/dL, indicating suppressed HPA function. As a result, all of these patients required glucocorticoid therapy for several months to make up for HPA axis suppression. “The decline in serum cortisol levels was slower and less steep [in the incidentaloma group] when compared to that observed in patients with Cushing’s syndrome. At the 6th–8th postoperative hours only 5/19 patients [26%] with subclinical hypercortisolism had serum cortisol levels at ≤3ug/dL and these 5 were started on hydrocortisone therapy,” the researchers wrote. Replacement therapy in the subclinical hypercortisolism group was continued for up to four weeks. Results suggest that patients with an incidentaloma plus subclinical hypercortisolism did not have an entirely suppressed HPA axis, as they were able to recover its function much faster than the CS group after surgical stress. From https://cushingsdiseasenews.com/2018/10/11/most-subclinical-cushings-patients-dont-need-glucocorticoids-post-surgery-study/?utm_source=Cushing%27s+Disease+News&utm_campaign=a881a1593b-RSS_WEEKLY_EMAIL_CAMPAIGN&utm_medium=email&utm_term=0_ad0d802c5b-a881a1593b-72451321
  15. A patient with depression developed Cushing’s syndrome (CS) because of a rare ACTH-secreting small cell cancer of the prostate, a case study reports. The case report, “An unusual cause of depression in an older man: Cushing’s syndrome resulting from metastatic small cell cancer of the prostate,” was published in the “Lesson of the Month” section of Clinical Medicine. Ectopic CS is a condition caused by an adrenocorticotropic hormone (ACTH)-secreting tumor outside the pituitary or adrenal glands. The excess ACTH then acts on the adrenal glands, causing them to produce too much cortisol. Small cell cancer is more common in older men, those in their 60s or 70s. Sources of ectopic ACTH synthesis arising in the pelvis are rare; nonetheless, ACTH overproduction has been linked to tumors in the gonads and genitourinary organs, including the prostate. Still, evidence suggests there are less than 30 published cases reporting ectopic CS caused by prostate cancer. Researchers from the Southern Adelaide Local Health Network and the Royal Adelaide Hospital in Australia described the case of an 84-year-old man who complained of fatigue, back pain, and lack of appetite. Blood tests revealed mildly elevated prostate-specific antigen (PSA) and creatinine levels, which could indicate the presence of prostate cancer and impaired kidney function, respectively. The patient had a history of locally invasive prostate cancer even though he didn’t experience any symptoms of this disease. Ultrasound examination showed an enlarged prostate plus obstructed ureters — the tubes that carry urine from the kidney to the bladder. To remove the obstruction, doctors inserted a thin tube into both ureters and restored urine flow. After the procedure, the man had low levels of calcium, a depressed mood, and back pain, all of which compromised his recovery. Imaging of his back showed no obvious reason for his complaints, and he was discharged. Eight days later, the patient went to the emergency room of a large public hospital because of back pain radiating to his left buttock. The man also had mild proximal weakness on both sides. He was thinner, and had low levels of calcium, high blood pressure and serum bicarbonate levels, plus elevated blood sugar. In addition, his depression was much worse. A psychiatrist prescribed him an antidepressant called mirtazapine, and regular follow-up showed that his mood did improve with therapy. A computed tomography (CT) scan revealed a 10.5 cm tumor on the prostate and metastasis on the lungs and liver. Further testing showed high serum cortisol and ACTH levels, consistent with a diagnosis of Cushing’s syndrome. But researchers could not identify the ACTH source, and three weeks later, the patient died of a generalized bacterial infection, despite treatment with broad-spectrum antibiotics. An autopsy revealed that the cancer had spread to the pelvic sidewalls and to one of the adrenal glands. Tissue analysis revealed that the patient had two types of cancer: acinar adenocarcinoma and small cell neuroendocrine carcinoma — which could explain the excess ACTH. Cause of death was bronchopneumonia, a severe inflammation of the lungs, triggered by an invasive fungal infection. Investigators believe there are things to be learned from this case, saying, “Neither the visceral metastases nor aggressive growth of the pelvic mass noted on imaging were typical of prostatic adenocarcinoma. [Plus], an incomplete diagnosis at death was the precipitant for a post-mortem examination. The autopsy findings were beneficial to the patient’s family and treating team. The case was discussed at a regular teaching meeting at a large tertiary hospital and, thus, was beneficial to a wide medical audience.” Although a rare cause of ectopic ACTH synthesis, small cell prostate cancer should be considered in men presenting with Cushing’s syndrome, especially in those with a “mystery” source of ACTH overproduction. “This case highlights the importance of multidisciplinary evaluation of clinical cases both [before and after death], and is a fine example of how autopsy findings can be used to benefit a wide audience,” the researchers concluded. https://cushingsdiseasenews.com/2018/10/16/rare-prostate-cancer-prostate-associated-cushings-syndrome-case-report/
  16. I think I knew this already but it's still hard to read in print Functional remission did not occur in most patients with Cushing syndrome who were considered to be in biochemical and clinical remission, according to a study published in Endocrine. This was evidenced by their quality of life, which remained impaired in all domains. The term “functional remission” is a psychiatric concept that is defined as an “association of clinical remission and a recovery of social, professional, and personal levels of functioning.” In this observational study, investigators sought to determine the specific weight of psychological (anxiety and mood, coping, self-esteem) determinants of quality of life in patients with Cushing syndrome who were considered to be in clinical remission. The cohort included 63 patients with hypercortisolism currently in remission who completed self-administered questionnaires that included quality of life (WHOQoL-BREF and Cushing QoL), depression, anxiety, self-esteem, body image, and coping scales. At a median of 3 years since remission, participants had a significantly lower quality of life and body satisfaction score compared with the general population and patients with chronic diseases. Of the cohort, 39 patients (61.9%) reported having low or very low self-esteem, while 16 (25.4%) had high or very high self-esteem. Depression and anxiety were seen in nearly half of the patients and they were more depressed than the general population. In addition, 42.9% of patients still needed working arrangements, while 19% had a disability or cessation of work. Investigators wrote, “This impaired quality of life is strongly correlated to neurocognitive damage, and especially depression, a condition that is frequently confounded with the poor general condition owing to the decreased levels of cortisol. A psychiatric consultation should thus be systematically advised, and [selective serotonin reuptake inhibitor] therapy should be discussed.” Reference Vermalle M, Alessandrini M, Graillon T, et al. Lack of functional remission in Cushing's Syndrome [published online July 17, 2018]. Endocrine. doi:10.1007/s12020-018-1664-7 From https://www.endocrinologyadvisor.com/general-endocrinology/functional-remission-quality-of-life-cushings-syndrome/article/788501/
  17. Metyrapone treatments helped patients with Cushing syndrome reach normal, urinary-free cortisol levels in the short-term and also had long-term benefits, according to a study published in Endocrine. This observational, longitudinal study evaluated the effects of the 11β -hydroxylase inhibitor metyrapone on adult patients with Cushing syndrome. Urinary-free cortisol and late-night salivary cortisol levels were evaluated in 31 patients who were already treated with metyrapone to monitor cortisol normalization and rhythm. The average length of metyrapone treatment was 9 months, and 6 patients had 24 months of treatment. After 1 month of treatment, the mean urinary-free cortisol was reduced from baseline by 67% and mean late-night salivary cortisol level decreased by 57%. Analyzing only patients with severe hypercortisolism, after 1 month of treatment, the mean urinary-free cortisol decreased by 86% and the mean late-night salivary cortisol level decreased 80%. After 3 months, normalization of the mean urinary-free cortisol was established in 68% of patients. Mean late-night salivary cortisol levels took longer to decrease, especially in severe and very severe hypercortisolism, which could take 6 months to drop. Treatment was more successful at normalizing cortisol excretion (70%) than cortisol rhythm (37%). Nausea, abdominal pain, and dizziness were the most common adverse events, but no severe adverse event was reported. Future research is needed to evaluate a larger cohort with randomized dosages and stricter inclusion criteria to evaluate metyrapone's effects on cortisol further. Study researchers conclude that metyrapone was successful and safe in lowering urinary-free cortisol after just 1 month of treatment and controlling long-term levels in patients with Cushing syndrome. This study was supported by Novartis. Reference Ceccato F, Zilio M, Barbot M, et al. Metyrapone treatment in Cushing's syndrome: a real-life study [published online July 16, 2018]. Endocrine. doi: 10.1007/s12020-018-1675-4 From https://www.endocrinologyadvisor.com/general-endocrinology/metyrapone-cushing-syndrome/article/786716/
  18. Thomas “Tommy” F. Zachman, of Windsor, formerly of Toledo, Ohio, died suddenly and unexpectedly at University Hospital in Denver on June 3, 2010, complications of Cushing’s Syndrome. Read more at https://cushingsbios.com/2015/06/03/in-memory-thomas-f-zachman-1950-2010-2/
  19. Children with Cushing’s syndrome are at risk of developing new autoimmune and related disorders after being cured of the disease, a new study shows. The study, “Incidence of Autoimmune and Related Disorders After Resolution of Endogenous Cushing Syndrome in Children,” was published in Hormone and Metabolic Research. Patients with Cushing’s syndrome have excess levels of the hormone cortisol, a corticosteroid that inhibits the effects of the immune system. As a result, these patients are protected from autoimmune and related diseases. But it is not known if the risk rises after their disease is resolved. To address this, researchers at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) examined 127 children with Cushing’s syndrome at the National Institutes of Health from 1997 until 2017. Among the participants, 77.5 percent had a pituitary tumor causing the disease, 21.7 percent had ACTH-independent disease, and one patient had ectopic Cushing’s syndrome. All patients underwent surgery to treat their symptoms. After a mean follow-up of 31.2 months, 7.8 percent of patients developed a new autoimmune or related disorder. Researchers found no significant differences in age at diagnosis, gender, cortisol levels, and urinary-free cortisol at diagnosis, when comparing those who developed autoimmune disorders with those who didn’t. However, those who developed an immune disorder had a significantly shorter symptom duration of Cushing’s syndrome. This suggests that increased cortisol levels, even for a short period of time, may contribute to more reactivity of the immune system after treatment. The new disorder was diagnosed, on average, 9.8 months after Cushing’s treatment. The disorders reported were celiac disease, psoriasis, Hashimoto thyroiditis, Graves disease, optic nerve inflammation, skin hypopigmentation/vitiligo, allergic rhinitis/asthma, and nerve cell damage of unknown origin responsive to glucocorticoids. “Although the size of our cohort did not allow for comparison of the frequency with the general population, it seems that there was a higher frequency of optic neuritis than expected,” the researchers stated. It is still unclear why autoimmune disorders tend to develop after Cushing’s resolution, but the researchers hypothesized it could be a consequence of the impact of glucocorticoids on the immune system. Overall, the study shows that children with Cushing’s syndrome are at risk for autoimmune and related disorders after their condition is managed. “The presentation of new autoimmune diseases or recurrence of previously known autoimmune conditions should be considered when concerning symptoms arise,” the researchers stated. Additional studies are warranted to further explore this link and improve care of this specific population. From https://cushingsdiseasenews.com/2018/03/06/after-cushings-cured-autoimmune-disease-risk-looms-study/
  20. Measuring cortisol levels in saliva multiple times a day is a convenient and useful way to determine the best course of treatment for patients with Cushing’s syndrome, a preliminary study shows. The research, “Multiple Salivary Cortisol Measurements Are a Useful Tool to Optimize Metyrapone Treatment in Patients with Cushing’s Syndromes Treatment: Case Presentations,” appeared in the journal Frontiers of Endocrinology. Prompt and effective treatment for hypercortisolism — the excessive amount of cortisol in the blood — is essential to lowering the risk of Cushing’s-associated conditions, including infections, cardiovascular disease, and stroke. Steroid hormone inhibitors, such as HRA Pharma’s Metopirone (metyrapone), have been used significantly in Cushing’s syndrome patients. These therapies not only suppress cortisol levels, but also avoid adrenal insufficiency (where not enough cortisol is produced) and restore the circadian rhythm, which is disrupted in Cushing’s patients. However, effective medical treatment requires monitoring cortisol activity throughout the day. Salivary measurements of cortisol are a well-known method for diagnosing and predicting the risk of recurrence of Cushing’s syndrome. The method is convenient for patients and can be done in outpatient clinics. However, the medical field lacks data on whether measuring cortisol in saliva works for regulating treatment. Researchers analyzed the effectiveness of salivary cortisol measurements for determining the best dosage and treatment timing of Cushing’s patients with Metopirone. The study included six patients, three with cortisol-secreting masses in the adrenal glands and and three with ACTH (or adrenocorticotropin)-secreting adenomas in the pituitary glands, taking Metopirone. Investigators collected samples before and during treatment to assess morning serum cortisol and urinary free cortisol (UFC). Patients also had salivary cortisol assessments five times throughout the day. Saliva samples were collected at 6 a.m. (wake-up time), 8 a.m. (before breakfast), noon (before lunch), 6 p.m. (before dinner), and 10 p.m. (before sleep). Other studies have used UFC assessments to monitor treatment. However, the inability of this parameter to reflect changes in diurnal cortisol requires alternative approaches. Results showed that although UFC was normalized in five out of six patients, multiple salivary cortisol measurements showed an impaired diurnal cortisol rhythm in these patients. Whereas patients with cortisol-secreting adrenocortical adenoma showed elevated cortisol levels throughout the day, those with ACTH-secreting pituitary adenoma revealed increased levels mainly in the morning. This finding indicates that “the significance of elevated morning cortisol levels is different depending on the disease etiology,” the researchers wrote. In a prospective case study to better assess the effectiveness of performing multiple salivary cortisol assessments, the research team analyzed one of the participants who had excessive cortisol production that was not controlled with four daily doses of Metoripone (a daily total of 2,250 mg). Results revealed that cortisol levels increased before each dosage. After the patient’s treatment regimen was changed to a 2,500 mg dose divided into five daily administrations, researchers observed a significant improvement in the diurnal cortisol pattern, as well as in UFC levels. Subsequent analysis revealed that performing multiple salivary cortisol measurements helps with a more precise assessment of excess cortisol than analyzing UFC levels, or performing a unique midnight salivary cortisol collection, the researchers said. Although more studies are required, the results “suggest that multiple salivary cortisol measurements can be a useful tool to visualize the diurnal cortisol rhythm and to determine the dose and timing of metyrapone [Metopirone] during the treatment in patients with [Cushing’s syndrome],” the researchers wrote. Future studies should include a larger sample size, evaluate changes over a longer term, use a standardized protocol for treatment dosing and timing, and evaluate changes in a patient’s quality of life, the investigators said. From https://cushingsdiseasenews.com/2018/02/15/multiple-saliva-cortisol-checks-cushings-metyrapone-study/
  21. Addison’s disease: Hyperpigmentation is a classic symptom of Addison’s disease, an endocrine disorder in which the adrenal glands fails to produce steroid hormone. The disease causes darkening of the skin in certain areas. Cushing’s syndrome: The abnormal amount of cortisol in the human body causes a condition known as the Cushing’s syndrome. And one of the symptoms of the disorder is hyperpigmentation of the skin. Adapted from http://www.thehealthsite.com/diseases-conditions/health-conditions-that-can-cause-hyperpigmentation/
  22. Ectopic Cushing’s syndrome can be challenging to diagnose, especially when it comes identifying the problem source. But appropriate hormone management protocols, used in combination with advanced imaging methods, may help physicians identify ectopic ACTH-producing tumors. The findings in a case report of a young man with ectopic Cushing’s syndrome were published in the International Journal of Surgery Case Reports, under the title “Case report: Ectopic Cushing’s syndrome in a young male with hidden lung carcinoid tumor.” Cushing’s syndrome is caused by high amounts of glucocoticosteroids in the blood. The most common cause is a malfunction of the glands that produce these hormones. In some cases, however, the disease may be caused by tumors elsewhere in the body that have the ability to produce adrenocorticotropic hormone (ACTH). In half of all Cushing’s patients, ectopic ACTH is produced by small lung cell carcinomas or lung carcinoids (a type of slow-growing lung cancer). But some tumors in the thymus and pancreas also have been found to produce ACTH. Researchers at Damascus University Hospital in Syria presented the case of a 26-year-old man who had ectopic Cushing’s syndrome due to lung carcinoids. The patient presented with increased appetite and rapid weight gain for more than a year. These were associated with headache, fatigue, proximal muscle weakness, and easy bruising. He had no family history of hormonal disorder. Based on the initial physical and symptom evaluation, the clinical team suspected Cushing’s syndrome. Blood analysis revealed high levels of cortisol and ACTH hormones, which supported the diagnosis. Administration of dexamethasone, a treatment used to inhibit the production of glucocoticosteroids by the pituitary gland, reduced cortisol levels within normal range, but not ACTH levels. This led to the diagnosis of ectopic Cushing’s syndrome. The next step was to identify the tumor causing the syndrome. The team conducted imaging studies of the brain, chest, and abdomen, but found no tumor. Because ectopic ACTH is commonly produced by lung cancers, the team then analyzed the patient’s lungs. Again, they failed to detect a tumor. The patient was discharged with prescription of 200 mg of Nizoral (ketoconazole) once-daily, calcium, and vitamin D. After three months of treatment, he remained stable, with no evidence of symptom improvement. At this point, the team decided to surgically remove both adrenal glands in an attempt to reduce the hormone levels. Treatment with prednisolone 5 mg and fludrocortisone 0.1 mg once daily was initiated, along with calcium and vitamin D. Eighteen months later, the patient’s condition worsened and he required hospitalization. Imaging tests targeting the neck, chest, and abdomen were conducted again. This time, physicians detected a 2 cm mass in the middle lobe of the right lung, which was removed surgically. Detailed analysis of the small tumor confirmed that it was the source of the excessive ACTH. “ACTH secreting tumors can be very hard to detect,” the researchers stated. “Initial failed localization is common in ectopic ACTH syndrome and it is usually due to carcinoid.” Cases where the ectopic ACTH production is caused by a carcinoid tumor can be challenging to diagnose because tumors are small and relatively slow-growing. Imaging data is often hard to analyze and the tumors can be confused with pulmonary vessels, the researchers explained. “In such cases we should first aim to lower blood cortisol medically or through bilateral adrenalectomy to avoid Cushing’s complications,” which should then “be followed up through imaging studies (CT, MRI, scintigraphy or PET) to detect the tumor and resect it, which is the definitive treatment of these patients,” the researchers concluded. From https://cushingsdiseasenews.com/2017/12/12/case-report-ectopic-acth-producing-lung-tumors-can-hard-detect/
  23. The effects of obesity on the diagnosis of Cushing’s syndrome and strategies to alter the traditional approaches have been addressed in a new review study. The study, “Diagnosis and Differential Diagnosis of Cushing’s Syndrome,” appeared in The New England Journal of Medicine. The author was Dr. Lynn D. Loriaux, MD and PhD, and a professor of medicine at the Division of Endocrinology, Diabetes and Clinical Nutrition at the School of Medicine, Oregon Health & Science University (OHSU), in Portland, Oregon. Traditionally, exams of patients with glucocorticoid excess focused on the presence of changes in anabolism (the chemical synthesis of molecules). Given the increase in obesity in the general population, changes in anabolism can no longer distinguish Cushing’s syndrome from metabolic syndrome. However, analyses of anti-anabolic changes of cortisol – including osteopenia (lower bone density), thin skin, and ecchymoses (injury that causes subcutaneous bleeding) – are an effective way to make this distinction. The worldwide prevalence of metabolic syndrome in obese people is estimated at about 10%. Conversely, the incidence of undiagnosed Cushing’s syndrome is about 75 cases per 1 million people. Cushing’s and metabolic syndrome share significant clinical similarities, including obesity, hypertension, and type 2 diabetes. Therefore, “making the diagnosis is the least certain aspect in the care of patients with [Cushing’s],” Loriaux wrote. Regarding a physical examination, patients with osteoporosis, reduced skin thickness in the middle finger, and three or more ecchymoses larger than 1 cm in diameter and not associated with trauma are more likely to have Cushing’s. Researchers estimate the probability of people with all three of these symptoms having Cushing’s syndrome is 95%. Measuring 24-hour urinary-free cortisol levels allows the assessment of excess glucocorticoid effects, typical of Cushing’s syndrome. The test, which should be done with the most stringent techniques available, averages the augmented secretion of cortisol in the morning and the diminished secretion in the afternoon and at night. Dexamethasone suppression is one of the currently used screening tests for Cushing’s syndrome. Patients with obesity and depression should not show decreased plasma cortisol levels when dexamethasone is suppressed. However, given its low estimated predictive value (the proportion of positive results that are “true positives”), “this test should not influence what the physician does next and should no longer be used” to screen for Cushing’s, the author wrote. Some patients may show evidence of Cushing’s syndrome at a physical examination, but low urinary free cortisol excretion. This may be due to glucocorticoids being administered to the patient. In this case, the glucocorticoid must be identified and discontinued. Periodic Cushing’s assessments that measure urinary free cortisol should be performed. The opposite can also occur: no clinical symptoms of Cushing’s, but elevated urinary free cortisol excretion and detectable plasma levels of the hormone corticotropin. In these patients, the source of corticotropin secretion, which can be a tumor or the syndrome of generalized glucocorticoid resistance, must be determined. The disease process can be corticotropin-dependent or independent, depending on whether the hormone is detectable. Corticotropin in Cushing’s syndrome can come from the pituitary gland (eutopic) or elsewhere in the body (ectopic). Loriaux recommends that the source of corticotropin secretion be determined before considering surgery. Up to 40% of patients with pituitary adenomas have nonfunctioning tumors (the tumor does not produce any hormones) and the corticotropin source is elsewhere. If misdiagnosed, patients will likely undergo an unnecessary surgery, with a mortality rate of 1%. Patients with an ectopic source of corticotropin should undergo imaging studies in the chest, followed by abdominal and pelvic organs. If these tests fail to detect the source, patients should undergo either the blockade of cortisol synthesis or an adrenalectomy (removal of adrenal glands). However, corticotropin-independent Cushing’s is usually caused by a benign adrenal tumor that uniquely secretes cortisol. “Such tumors can be treated successfully with laparoscopic adrenalectomy,” Loriaux wrote. If the tumor secretes more than one hormone, it is likely malignant. Surgical to remove the tumor and any detectable metastases should be conducted. Overall, “the treatment for all causes of [Cushing’s syndrome], other than exogenous glucocorticoids, is surgical, and neurosurgeons, endocrine surgeons, and cancer surgeons are needed,” Loriaux wrote in the study. “This level of multidisciplinary medical expertise is usually found only at academic medical centers. Thus, most, if not all, patients with [Cushing’s syndrome] should be referred to such a center for treatment.” From https://cushingsdiseasenews.com/2017/10/24/diagnosing-cushings-syndrome-amid-challenge-of-obesity-and-strategies-to-improve-methods/
  24. By Tori Rodriguez, MA, LPC In the early 20th century, the term "pluriglandular syndrome" was coined by Harvey Cushing to describe the disorder that results from chronic tissue exposure to excessive levels of glucocorticoids.1 Now called Cushing's syndrome, the condition affects an estimated 10-15 million people annually, most often women and individuals between the ages of 20 and 50 years.2 Risk factors and common comorbidities include hypertension, obesity, osteoporosis, uncontrolled diabetes, depression, and anxiety.3 Presentation The clinical presentation of the disorder is heterogenous and varies by sex, age, and disease severity. Common signs and symptoms include central adiposity, roundness of the face or extra fat around the neck, thin skin, impaired short-term memory and concentration, irritability, hirsutism in women, fatigue, and menstrual irregularity.4 Because each of these features may be observed in a wide range of other conditions, it may be difficult to diagnose cases that are not severe. "It can be challenging to differentiate the milder forms from pseudo-Cushing's states," which are characterized by altered cortisol production and many of the same clinical features as Cushing's syndrome, according to Roberto Salvatori, MD, the medical director of the Johns Hopkins Pituitary Center, Baltimore, Maryland. These may include alcoholism, obesity, eating disorders, and depression. "Because Cushing's can cause depression, for example, it is sometimes difficult to determine which came first," he says. In these states, however, hypercortisolism is believed to be driven by increased secretion of hypothalamic corticotropin-releasing hormone, which is suppressed in Cushing's syndrome.5 Causes and Diagnosis If Cushing's syndrome is suspected on the basis of the patient's physical appearance, the diagnostic workup should include a thorough medical history, physical exam, and 1 or more of the following tests to establish hypercortisolism: the 24-hour urinary cortisol test, the low-dose dexamethasone suppression test, or the late-night salivary cortisol test. "We sometimes use 2 or 3 of these tests since 1 may not accurately reflect cortisol production in a particular patient," Dr Salvatori notes. The next step is to determine the source of the hypercortisolism, which may involve the high-dose dexamethasone suppression test, magnetic resonance imaging, or petrosal sinus sampling.2 Medication is the most common cause of Cushing's syndrome. These iatrogenic or exogenous cases typically result from corticosteroids administered for conditions such as asthma, allergies, and autoimmune disorders.6 More rarely, the disorder can be caused by the use of medroxyprogesterone. In these cases, corticosteroids should be reduced or discontinued under medical care, if possible. Endogenous Cushing's syndrome results from the presence of benign or malignant tumors on the adrenal or pituitary glands or elsewhere in the body. These tumors can interfere with the adrenal glands' production of cortisol that is usually prompted by the adrenocorticotropic hormone (ACTH) released by the pituitary gland.6 There are 3 different mechanisms by which the process can occur. Pituitary adenomas, which account for approximately 70% of endogenous cases of Cushing's syndrome, secrete ACTH and stimulate additional cortisol production. Because of the large proportion of cases this condition represents, it is specifically referred to as Cushing's disease. It is more common in women than men (with a ratio of 3 to 4:1), although in pediatric patients, it occurs more frequently in boys vs girls.5 Adrenal tumors (adenomas, malignant tumors, or micronodular hyperplasia) produce cortisol in their own tissue in addition to the amount produced by the adrenal glands. These tumors, which cause approximately 15% of endogenous Cushing's syndrome cases, are more common in children vs adults and in women vs men. Benign or malignant tumors elsewhere in the body, most often the lungs, thyroid, thymus, and pancreas, secrete ACTH and trigger the excessive release of cortisol. An estimated 15% of endogenous cases are attributed to these types of tumors. Treatment Surgery is the first-line treatment for Cushing's syndrome. "We first want to try to figure out the cause of the disorder," Dr Salvatori says. "Ideally, treatment involves surgery to remove the tumor that is causing it." When surgery is unsuccessful, contraindicated, or delayed, other treatment options include radiation or medications that inhibit cortisol, modulate the release of ACTH, or inhibit steroidogenesis.5 Bilateral adrenalectomy may be indicated for patients who do not respond to medication or other surgery. If surgical resection of the tumor is successful, then "all of the comorbidities reverse, but if it is unsuccessful or must be delayed, you would treat each comorbidity" with the appropriate medication; for example, antihypertensives for high blood pressure and antidiabetic medications for diabetes, Dr Salvatori advises. In severe cases, prophylactic antibiotics may be indicated for the prevention of severe infections such as pneumonia. It is also important to inquire about and address psychiatric symptoms related to Cushing's syndrome, even in patients who are in remission. It has been proposed that the chronic hypercortisolism and dysfunction of the HPA axis may "lead to structural and functional changes in the central nervous system, developing brain atrophy, particularly in the hippocampus, which may determine the high prevalence of psychiatric disorders, such as affective and anxiety disorders or cognitive dysfunctions," according to a recently published paper on the topic.7 Patients should be screened with self-report questionnaires such as the Beck Depression Inventory and the Hospital Anxiety and Depression Scale, and management of psychiatric symptoms may include patient education, psychotropic medications, and referral to a mental health professional. Future Directions Several trials are currently planned or underway, including a phase 2 randomized, double-blind, placebo-controlled study of an oral medication called ATR-101 by Millendo Therapeutics, Inc. (ClinicalTrials.gov identifier: NCT03053271). In addition to the need for novel medical therapies, refined imaging techniques could improve surgical success rates in patients with Cushing's disease in particular, according to Dr Salvatori. "A significant portion of these patients have tumors too small to be detected by MRI, and the development of more sensitive MRI could improve detection and provide a surgical target" for neurosurgeons treating the patients, he says. Summary Milder cases of Cushing's syndrome present diagnostic challenges are a result overlapping features with various other conditions. Diagnosis may require careful observation as well as biochemical and imaging tests. RELATED ARTICLES New Research Highlights Possible Genetic Cause of Cushing's Disease Endocrine Society Releases Guidelines on Treatment of Cushing's Syndrome Pediatric Endocrine Society Provides Guidance for Growth Hormone Use in Pediatric Patients References Loriaux DL. Diagnosis and differential diagnosis of Cushing's syndrome. N Engl J Med. 2017;376:1451-1459. doi:10.1056/NEJMra1505550 American Association of Neurological Surgeons. Cushing's syndrome/disease. http://www.aans.org/Patients/Neurosurgical-Conditions-and-Treatments/Cushings-Disease. Accessed August 1, 2017. León-Justel A, Madrazo-Atutxa A, Alvarez-Rios AI, et al. A probabilistic model for cushing's syndrome screening in at-risk populations: a prospective multicenter study. J Clin Endocrinol Metab. 2016;101:3747-3754. doi:10.1210/jc.2016-1673 The Pituitary Society. Cushing's syndrome and disease–symptoms. https://pituitarysociety.org/patient-education/pituitary-disorders/cushings/symptoms-of-cushings-disease-and-cushings-syndrome. Accessed August 1, 2017. Sharma ST, Nieman LK, Feelders RA. Cushing's syndrome: epidemiology and developments in disease management. Clin Epidemiol. 2015;7:281-293. doi:10.2147/CLEP.S44336 National Institutes of Health: Eunice Kennedy Shriver National Institute of Child Health and Human Development. What causes Cushing's syndrome?https://www.nichd.nih.gov/health/topics/cushing/conditioninfo/pages/causes.aspx. Accessed August 1, 2017. Santos A, Resmini E, Pascual JC, Crespo I, Webb SM. Psychiatric symptoms in patients with Cushing's syndrome: prevalence, diagnosis and management. Drugs. 2017;77:829-842. doi:10.1007/s40265-017-0735-z From http://www.endocrinologyadvisor.com/adrenal/cushings-syndrome-diagnosis-treatment/article/682302/
  25. Diagnosing Cushing’s syndrome can take 24 hours of complicated and repeated analysis of blood and urine, brain imaging, and tissue samples from sinuses. But that may soon be in the past: National Institutes of Health (NIH) researchers have found that measuring cortisol levels in hair samples can do the same job faster. Patients with Cushing’s syndrome have a high level of cortisol, perhaps from a tumor of the pituitary or adrenal glands, or as a side effect from medications. In the study, 36 participants—30 with Cushing’s syndrome, six without—provided hair samples divided into three equal segments. The researchers found that the segments closest to the scalp had the most cortisol (96.6 ± 267.7 pg/mg for Cushing’s syndrome patients versus 14.1 ± 9.2 pg/mg in control patients). Those segments’ cortisol content correlated most closely with the majority of the initial biochemical tests, including in blood taken at night (when cortisol levels normally drop). The study was small; Cushing’s syndrome is rare, and it’s hard to recruit large numbers of patients. Still, the researchers believe it is the largest of its kind to compare hair cortisol levels to diagnostic tests in Cushing’s patients. “Our results are encouraging,” said Mihail Zilbermint, MD, the study’s senior author and an endocrinologist at NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development. “We are hopeful that hair analysis may ultimately prove useful as a less-invasive screening test for Cushing’s syndrome or in helping to confirm the diagnosis.” The authors suggest the test is also a convenient alternative with the “unique ability” for retrospective evaluation of hypercortisolemia over months. Download PDF From https://www.ptcommunity.com/journal/article/full/2017/4/271/research-briefs-april-2017
×
×
  • Create New...