Jump to content

Search the Community

Showing results for tags 'adrenal crisis'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Welcome!
    • Introduce Yourself
    • Guest Questions
    • Cushing's Basics
    • News Items and Research
    • Announcements
    • Questions about how these boards work?
  • Get Active!
    • Meetings, events and information
    • Fundraising Ideas
    • Cushing's Awareness Day, April 8
    • Spread the Word
    • Marathons
    • Cushing's Clothes Closet
    • Cushing's Library
    • Cushing's Store
  • Cushing's
    • Resources
    • Types of Cushing's
    • Symptoms
    • Tests
    • Treatments
  • Miscellaneous
    • Other Diseases
    • Good News / Attitude of Gratitude
    • Inspirational / Motivational
    • Quotes and Affirmations
    • Lighten Up!
    • Word Games
    • Miscellaneous Chit Chat
    • Current Events
    • Cushie Commerce
    • Internet Classes
    • Recipes

Blogs

  • MaryO'Blog
  • Christy Smith's Blog
  • rooon55's Blog
  • LLMart's Blog
  • regina from florida's Blog
  • terri's Blog
  • Canasa's Blog
  • Tberry's Blog
  • LisaMK's Blog
  • diane177432's Blog
  • Jen1978's Blog
  • GreenGal's Blog
  • Yada Yada Yada
  • Jinxie's Blog
  • SherryC's Blog
  • stjfs' Blog
  • kalimae7371's Blog
  • Kristy's Blog
  • kathieb1's Blog
  • Yavanna's Blog
  • Johnni's Blog
  • AutumnOMA's Blog
  • Will Power
  • dropsofjupiter's Blog
  • Lorrie's Blog
  • DebMV's Blog
  • FarWind's Blog
  • sallyt's Blog
  • dseefeldt's Blog
  • ladylena's Blog
  • steffie's Blog
  • Lori L's Blog
  • mysticalsusan1's Blog
  • cathy442's Blog
  • Kathy711's Blog
  • Shannonsmom's Blog
  • jack's Blog
  • Kandy66's Blog
  • mars72's Blog
  • singlesweetness33's Blog
  • michelletm's Blog
  • JC_Adair's Blog
  • Lisa-A's Blog
  • Jen3's Blog
  • tammi's Blog
  • Ramblin' Rose (Maggie's)
  • monicaroni77's Blog
  • monicaroni's Blog
  • Saz's Blog
  • alison
  • Thankful for the Journey
  • Judy from Pgh's Blog
  • Addiegirl's Blog
  • candlelite2000's Blog
  • Courtney likes to talk......
  • Tanya's Blog
  • smoketooash's Blog
  • meyerfamily8's Blog
  • Sheila1366's Blog
  • A Guide to Blogging...
  • Karen's Blog
  • barbj222222's Blog
  • Amdy's Blog
  • Jesh's Blog
  • pumpkin's Blog
  • Jazlady's Blog
  • Cristalrose's Blog
  • kikicee's Blog
  • bordergirl's Blog
  • Shelby's Blog
  • terry.t's Blog
  • CanadianGuy's Blog
  • Mar's Cushie Couch
  • leanne's Blog
  • honeybee30's Blog
  • cat lady's Blog
  • Denarea's Blog
  • Caroline's Blog
  • NatalieC's Blog
  • Ahnjhnsn's Blog
  • A journey around my brain!
  • wisconsin's Blog
  • sonda's Blog
  • Siobhan2007's Blog
  • mariahjo's Blog
  • garcia9's Blog
  • Jessie's Blog
  • Elise T.'s Blog
  • glandular-mass' Blog
  • Rachel Bridgewater's Blog
  • judycolby's Blog
  • CathyM's Blog
  • MelissaTX's Blog
  • nessie21's Blog
  • crzycarin's Blog
  • Drenfro's Blog
  • CathyMc's Blog
  • joanna27's Blog
  • Just my thoughts!
  • copacabana's Blog
  • msmith3033's Blog
  • EyeRishGrl's Blog
  • SaintPaul's Blog
  • joyce's Blog
  • Tara Lou's Blog
  • penybobeny's Blog
  • From Where I Sit
  • Questions..
  • jennsarad's Blog
  • looking4answers2's Blog
  • julie's blog
  • cushiemom's Blog
  • greydragon's Blog
  • AmandaL's Blog
  • KWDesigns: My Cushings Journey
  • cushieleigh's Blog
  • chelser245's Blog
  • melissa1375's Blog
  • MissClaudie's Blog
  • missclaudie92's Blog
  • EEYORETJBD's Blog
  • Courtney's Blog
  • Dawn's Blog
  • Lindsay's Blog
  • rosa's Blog
  • Marva's Blog
  • kimmy's Blog
  • Cheryl's Blog
  • MissingMe's Blog
  • FerolV's Blog
  • Audrey's (phil1088) Blog
  • sugarbakerqueen's Blog
  • KathyBair's Blog
  • Jenn's Blog
  • LisaE's Blog
  • qpdoll's Blog
  • blogs_blog_140
  • beach's Blog
  • Reillmommy is Looking for Answers...
  • natashac's Blog
  • Lisa72's Blog
  • medcats10's Blog
  • KaitlynElissa's Blog
  • shygirlxoxo's Blog
  • kerrim's Blog
  • Nicki's Blog
  • MOPPSEY's Blog
  • Betty's Blog
  • And the beat goes on...
  • Lynn's Blog
  • marionstar's Blog
  • floweroscotland's Blog
  • SleepyTimeTea's Blog
  • Shelly3's Blog
  • fatnsassy's Blog
  • gaga's Blog
  • Jewels' Blog
  • SusieQ's Blog
  • kayc6751's Blog
  • moonlight's Blog
  • Sick of Being Sick
  • Peggy's Blog
  • kouta5m's Blog
  • TerryC's Blog
  • snowii's Blog
  • azZ9's Blog
  • MaMaT333's Blog
  • missaf's Blog
  • libertybell's Blog
  • LyssaFace's Blog
  • suzypar2002's Blog
  • Mutley's Blog
  • superc's Blog
  • lisajo42's Blog
  • alaustin's Blog
  • Tina1962's Blog
  • Ill never complain a single word about anything.. If I get rid of Cushings disease.
  • puddingtoast's Blog
  • AmberC's Blog
  • annacox
  • justwaiting's Blog
  • RachaelB's Blog
  • MelanieW's Blog
  • My Blog
  • FLHeather's Blog
  • HollieK's Blog
  • Bonny777's Blog
  • KatieO's Blog
  • LilDickens' Mini World
  • MelissaG's Blog
  • KelseyMichelle's Blog
  • Synergy's Blog
  • Carolyn1435's Blog
  • Disease is ugly! Do I have to be?
  • A journey of a thousand miles begins with a single wobble
  • MichelleK's Blog
  • lenalee's Blog
  • DebGal's Blog
  • Needed Answers
  • Dannetts Blog
  • Marisa's Blog
  • Is this cushings?
  • alicia26's Blog
  • happymish's Blog
  • mileymo's Blog
  • It's a Cushie Life!
  • The Weary Zebra
  • mthrgonenuts' Blog
  • LoriW's Blog
  • WendyG's Blog
  • khmood's Blog
  • Finding Answers and Pissing Everyone Off Along the Way
  • elainewwjd's Blog
  • brie's Blog
  • dturner242's Blog
  • dturner242's Blog
  • dturner242's Blog
  • Stop the Violins
  • FerolV's Internal Blog
  • beelzebubble's Blog
  • RingetteLUVR
  • Eaglemtnlake's Blog
  • mck25's Blog
  • vicki11's Blog
  • vicki11's Blog
  • ChrissyL's Blog
  • tpatterson757's Blog
  • Falling2Grace's Blog
  • meeks089's Blog
  • JustCurious' Blog
  • Squeak's Blog
  • Kill Bill
  • So It Begins ! Cushings / Pituitary Microadenoma
  • Crystal34's Blog
  • Janice Barrett

Categories

  • Helpful Articles
    • Links
    • Research and News
    • Useful Information
  • Pages
  • Miscellaneous
    • Databases
    • Templates
    • Media

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests

Found 7 results

  1. Diurnal’s pioneering phase 2 study evaluates modified-release hydrocortisone for adrenal insufficiency Diurnal has announced that the first patient has been dosed in its phase 2 European clinical trial of modified-release hydrocortisone. It is treating people with adrenal insufficiency (AI), also known as Addison’s disease, while the trial also represents a significant marketing opportunity for the company across Europe and throughout the UK. The CHAMPAIN phase 2 study aims to evaluate the efficacy, safety and tolerability of modified-release hydrocortisone versus Plenadren in AI. It is anticipated that it will take six months to reach completion. Modified-release hydrocortisone is a preparation of hydrocortisone that has been specifically designed for patients with diseases of cortisol deficiency–such as AI–and additionally for congenital adrenal hyperplasia (CAH). It is approved for the latter disease in Europe and the UK under the commercial name Efmody. AI is a long-term endocrine disorder, which affects approximately 298,000 patients in Europe and the UK. It is caused by inadequate production of steroid hormones in the cortex of the adrenal glands. AI can result in severe fatigue and–if left untreated–adrenal crisis may be life-threatening. Martin Whitaker, CEO of Diurnal, commented: “We are pleased to have dosed our first patient in the CHAMPAIN phase 2 study for adults with AI as we seek to explore the efficacy of modified-release hydrocortisone in diseases of cortisol deficiency. “There is a high unmet need for adult patients suffering from AI across Europe with current treatment options leading to poor quality of life. We believe modified-release hydrocortisone has the potential to replicate the physiological overnight rise of cortisol in these patients and we look forward to the data readout from the CHAMPAIN study in H2 2022,” he added. From https://www.pharmatimes.com/news/first_adrenal_insufficiency_patient_dosed_in_phase_ii_study_1387551
  2. Authors Nisticò D , Bossini B, Benvenuto S, Pellegrin MC, Tornese G Received 29 October 2021 Accepted for publication 28 December 2021 Published 11 January 2022 Volume 2022:18 Pages 47—60 DOI https://doi.org/10.2147/TCRM.S294065 Checked for plagiarism Yes Review by Single anonymous peer review Peer reviewer comments 2 Editor who approved publication: Professor Garry Walsh Download Article [PDF] Daniela Nisticò,1 Benedetta Bossini,1 Simone Benvenuto,1 Maria Chiara Pellegrin,1 Gianluca Tornese2 1University of Trieste, Trieste, Italy; 2Department of Pediatrics, Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy Correspondence: Gianluca Tornese Department of Pediatrics, Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell’Istria 65/1, Trieste, 34137, Italy Tel +39 040 3785470 Email gianluca.tornese@burlo.trieste.it Abstract: Adrenal insufficiency is an insidious diagnosis that can be initially misdiagnosed as other life-threatening endocrine conditions, as well as sepsis, metabolic disorders, or cardiovascular disease. In newborns, cortisol deficiency causes delayed bile acid synthesis and transport maturation, determining prolonged cholestatic jaundice. Subclinical adrenal insufficiency is a particular challenge for a pediatric endocrinologist, representing the preclinical stage of acute adrenal insufficiency. Although often included in the extensive work-up of an unwell child, a single cortisol value is usually difficult to interpret; therefore, in most cases, a dynamic test is required for diagnosis to assess the hypothalamic-pituitary-adrenal axis. Stimulation tests using corticotropin analogs are recommended as first-line for diagnosis. All patients with adrenal insufficiency need long-term glucocorticoid replacement therapy, and oral hydrocortisone is the first-choice replacement treatment in pediatric. However, children that experience low cortisol concentrations and symptoms of cortisol insufficiency can take advantage using a modified release hydrocortisone formulation. The acute adrenal crisis is a life-threatening condition in all ages, treatment is effective if administered promptly, and it must not be delayed for any reason. Keywords: adrenal gland, primary adrenal insufficiency, central adrenal insufficiency, Addison disease, children, adrenal crisis, hydrocortisone Introduction Primary adrenal insufficiency (PAI) is a condition resulting from impaired steroid synthesis, adrenal destruction, or abnormal gland development affecting the adrenal cortex.1 Acquired primary adrenal insufficiency is termed Addison disease. Central adrenal insufficiency (CAI) is caused by an impaired production or release of adrenocorticotropic hormone (ACTH). It can originate either from a pituitary disease (secondary adrenal insufficiency) or arise from an impaired release of corticotropin-releasing hormone (CRH) from the hypothalamus (tertiary adrenal insufficiency). An underlying genetic cause should be investigated in every case of adrenal insufficiency (AI) presenting in the neonatal period or first few months of life, although AI is relatively rare at this age (1:5.000–10.000).2 Physiology of the Adrenal Gland The adrenal cortex consists of three zones: the zona glomerulosa, the zona fasciculata, and the zona reticularis, responsible for aldosterone, cortisol, and androgens synthesis, respectively.3 Aldosterone production is under the control of the renin-angiotensin system, while cortisol is regulated by the hypothalamic-pituitary-adrenal axis (HPA).4 This explains why patients affected by CAI only manifest glucocorticoid deficiency while mineralocorticoid function is spared. CRH is secreted from the hypothalamic paraventricular nucleus into the hypophyseal-portal venous system in response to light, stress, and other inputs. It binds to a specific cell-surface receptor, the melanocortin 2 receptor, stimulating the release of preformed ACTH and the de novo transcription of the precursor molecule pro-opiomelanocortin (POMC). ACTH is derived from the cleavage of POMC by proprotein convertase-1.5–9 ACTH binds to steroidogenic cells of both the zona fasciculata and reticularis, activating adrenal steroidogenesis. It also has a trophic effect on adrenal tissue; therefore, ACTH deficiency determines adrenocortical atrophy and decreases the capacity to secrete glucocorticoids. Circulating cortisol is 75% bound to corticosteroid-binding protein, 15% to albumin, and 10% free. The endogenous production rate is estimated between 6 and 10 mg/m2/day, even though it depends on age, gender, and pubertal development. Glucocorticoids have multiple effects: they regulate immune, circulatory, and renal function, influence growth, development, energy and bone metabolism, and central nervous system activity. Several studies reported higher cortisol plasma concentrations in girls than in boys and younger children.3,4,8 Cortisol secretion follows a circadian and ultradian rhythm according to varying amplitudes of ACTH pulses. Pulses of ACTH and cortisol occur every 30–120 minutes, are highest at about the time of waking, and decline throughout the day, reaching a nadir overnight.3,8,9 This pattern can change in the presence of serious illness, major surgery, and sleep deprivation. During stressful situations, glucocorticoid secretion can increase up to 10-fold to enhance survival through increased cardiac contractility and cardiac output, sensitivity to catecholamines, work capacity of the skeletal muscles, and availability of energy stores.3 The interaction between the hypothalamus and the two endocrine glands is essential to maintain plasma cortisol homeostasis (Figure 1). Cortisol exerts double-negative feedback on the HPA axis. It acts on the hypothalamus and the corticotrophin cells of the anterior pituitary, reducing CRH and ACTH synthesis and release.6 ACTH inhibits its secretion through a feedback effect mediated at the level of the hypothalamus.3 Increased androgen production occurs in the case of cortisol biosynthesis enzymatic deficits. Figure 1 The hypothalamic–pituitary–adrenal axis. Primary Adrenal Insufficiency PAI affects 10–15 per 100,000 individuals and recognizes different classes of genetic causes (Table 1). Congenital adrenal hyperplasia (CAH) is the main cause of PAI in the neonatal period, being included among the disorders of steroidogenesis secondary to deficits in enzymes. It has an autosomal recessive transmission.1,10,11 The estimated incidence ranges between 1:10,000 and 1:20,000 births. CAH phenotype depends on disease-causing mutations and residual enzyme activity. 21-hydroxylase deficiency (21OHD) accounts for more than 90% of cases, 21-hydroxylase converts cortisol and aldosterone precursors, respectively 17-hydroxyprogesterone (17-OHP) to 11-deoxycortisol and progesterone to deoxycortisone. Less frequent forms of CAH include 11 β -hydroxylase deficiency (11BOHD, 8% of cases), 17α-hydroxylase/17–20 lyase deficiency (17OHD), 3β-hydroxysteroid dehydrogenase deficiency (3BHDS), P450 oxidoreductase deficiency (PORD).12 Steroidogenesis may also be impaired by steroidogenic acute regulatory (StAR) protein deficiency, which is involved in cholesterol transport into mitochondria, or P450 cytochrome side-chain cleavage (P450scc) deficiency, that converts cholesterol into pregnenolone.12,13 Of these conditions, 21OHD and 11BOHD only affect adrenal steroidogenesis, whereas the other deficits also impact gonadal steroid production. In classic CAH, enzyme activity can be absent (salt-wasting form) or low (1–2% enzyme activity, simple virilizing form). The salt-wasting form is the most severe and affects 75% of patients with classic 21OHD.1,10,12,14 Non-classic CAH (NCCAH) is more prevalent than the classic form, in which there is 20–50% of residual enzymatic activity. Two-thirds of NCCAH individuals are compound heterozygotes with different CYP21A2 mutations in two different alleles (classic severe mutation plus mild mutation in two different alleles or homozygous with two mild mutations). Notably, 70% of NCCAH patients carry the point mutation Val281Leu. Table 1 Causes of Primary Adrenal Insufficiency (PAI) Central Adrenal Insufficiency CAI incidence is estimated between 150 and 280 per million, and it should be suspected when mineralocorticoid function is preserved. When, rarely, isolated is due to iatrogenic HPA suppression secondary to prolonged glucocorticoid therapy or the removal of an ACTH- or cortisol-producing tumor (Cushing syndrome).15 Defects in POMC,16 characterized by red or auburn-haired children, pale skin (due to melanocyte stimulating hormone [MSH] - deficiency) and hyperphagia later in life, and in transcription factor TPIT,17 which regulates POMC synthesis in corticotrope cells, are the two leading genetic causes of isolated ACTH deficiency (Table 2). Mainly, it occurs as part of complex syndromes in which a combined multiple pituitary hormone deficiency (CMPD) is associated with craniofacial and midline defects, such as Prader-Willi syndrome, CHARGE syndrome, Pallister-Hall syndrome (anatomical pituitary abnormalities), white vanishing matter disease (progressive leukoencephalopathy).5 Individuals with an isolated pituitary deficiency, usually a growth hormone deficiency (GHD), may develop multiple pituitary hormone deficiencies over the years. Therefore, excluding a latent CAI at GHD onset and periodically monitoring of HPA axis is of utmost importance. Notably, cortisol reduction secondary to an increased basal metabolism when starting GHD or thyroxin substitutive therapy may unleash a misdiagnosed CAI. CMPD can be caused by several defective genes, such as GLI1, LHX3, LHX4, SOX2, SOX3, HESX1: in such cases, hypoglycemia or small penis with undescended testes may respectively suggest concomitant GH and gonadotropins deficits.18 Table 2 Causes of Central Adrenal Insufficiency (CAI) Clinical Manifestations of Adrenal Insufficiency AI is an insidious diagnosis presenting non-specific symptoms and may be mistaken with other life-threatening endocrine conditions (septic shock unresponsive to inotropes or recurrent sepsis, acute surgical abdomen).1,19 Children can be initially misdiagnosed as having sepsis, metabolic disorders, or cardiovascular disease, highlighting the need to consider adrenal dysfunction as a differential diagnosis for an unwell or deteriorating infant. With age-related items, clinical features depend on the type of AI (primary or central) and could manifest in an acute or chronic setting (Table 3). Table 3 Features of Isolated Adrenal Insufficiency in Pediatric Age Clinical signs of PAI are based on the deficiency of both gluco- and mineralocorticoids. Signs due to glucocorticoid deficiency are weakness, anorexia, and weight loss. Hypoglycemia with normal or low insulin levels is frequent and often severe in the pediatric population. Mineralocorticoid deficiency contributes to hyponatremia, hyperkalemia, acidosis, tachycardia, hypotension, and salt craving. The lack of glucocorticoid-negative feedback is responsible for the elevated ACTH levels. The high levels of ACTH and other POMC peptides, including the various forms of MSH, cause melanin hypersecretion, stimulating mucosal and cutaneous hyperpigmentation. Searching for an increased pigmentation may represent an essential diagnostic tool since all the other symptoms of PAI are non-specific. However, hyperpigmentation is variable, dependent on ethnic origin, and more prominent in skin exposed to sun and in extension surface of knees, elbows, and knuckles.15 In autoimmune PAI, vitiligo may be associated with hyperpigmentation. In the classic CAH simple virilizing form, salt wasting is absent due to the presence of aldosterone production. In males, diagnosis typically occurs between 3 and 4 years of age with pubarche, accelerated growth velocity, and advanced bone age at presentation.1,10,12,14 NCCAH may occur in late childhood with signs of hyperandrogenism (premature pubarche, acne, adult apocrine odor, advanced bone age) or be asymptomatic. In adolescents and adult women, conditions of androgen excess (acne, oligomenorrhea, hirsutism) may underlie an NCCAH.20,21 The clinical presentation of CAI may be more complex when caused by an underlying central nervous system disease or by CMPD. In the case of a pituitary or hypothalamic tumor, patients may present headache, vomiting, visual disturbances, short stature, delayed or precocious puberty. In the case of CMPD, manifestations vary considerably and depend on the number and severity of the associated hormonal deficiencies. In CAI, aldosterone production is spared, which means that serum electrolytes are usually normal. However, cortisol contributes to regulating free water excretion, so patients with CAI are at risk for dilutional hyponatremia, with normal serum potassium levels. Since adrenal androgen secretion is under the control of ACTH, girls with ACTH deficiency may present light pubic hair. Patients with partial and isolated ACTH defects can be “asymptomatic”, and adrenal crisis appears during stress or in case of major illness (high fever, surgery). The acute adrenal crisis is a life-threatening condition in all ages. Patients present with profound malaise, fatigue, nausea, vomiting, abdominal or flank pain, muscle pain or cramps, and dehydration, which lead to hypotension, shock, and metabolic acidosis. Hyponatremia and hyperkalemia are less common in CAI than in PAI, but possible in acute AI. Severe hypoglycemia causes weakness, pallor, sweatiness, and impaired cognitive function, including confusion, loss of consciousness, and coma. Immediate treatment is required (see below). Children and adolescents affected by autoimmune primary adrenal insufficiency develop a chronic AI, with an insidious onset and slow progress to an acute adrenal crisis over months or even years. Initial symptoms are decreased appetite, anorexia, nausea, abdominal pain, unintentional weight loss, lethargy, headache, weakness, and fatigue, with prominent pain in the joints and muscles. Due to salt loss through the urine and the subsequent reduction in blood volume, blood pressure decreases, and orthostatic hypotension develops together with salt craving. An increased risk of infection in AI patients is reported only in those exposed to glucocorticoids. However, in APECED (Autoimmune Polyendocrinopathy-Candidiasis- Ectodermal-Dystrophy) patients, there is an increased risk of candidiasis and splenic atrophy increases the likelihood for severe infections. In neonates, AI classically presents with failure to thrive and hypoglycemia, commonly severe and associated with seizures. The condition can be life-threatening and, if misdiagnosed, may result in coma and unexplained neonatal death. In newborns, cortisol deficiency causes delayed bile acid synthesis and transport maturation, determining prolonged cholestatic jaundice with persistently raised serum liver enzymes. The cholestasis can be resolved within ten weeks of correct treatment. StAR deficiency and P450scc cause salt-losing AI with female external genitalia in genetically male neonates.22 In the classic CAH salt-wasting form, the mineralocorticoid deficiency presents with the adrenal crisis at 10–20 days of life. Females show atypical genitalia with signs of virilization (clitoral enlargement, labial fusion, urogenital sinus), whereas males have normal-appearing genitalia, except for subtle signs as scrotal hyperpigmentation and enlarged phallus.1,10,12,14 Neonates with CMPD may display non-specific symptoms including hypoglycemia, lethargy, apnea, poor feeding, jaundice, seizures, hyponatremia without hyperkalemia, temperature and hemodynamic instability, recurrent sepsis, and poor weight gain. A male with hypogonadism may have undescended testes and micropenis. Infants with optic nerve hypoplasia or agenesis of the corpus callosum may present with nystagmus. Furthermore, infants with midline defects may have various neuro-psychological problems or sensorineural deafness. Genetic Disorders and Other Conditions at Increased Risk for Adrenal Insufficiency Among the cholesterol biosynthesis disorder, there is the Smith-Lemli-Opitz syndrome,23 where microcephaly, micrognathia, low-set posteriorly rotated ears, syndactyly of the second and third toes, and atypical genital may, although rarely, combine with AI; this autosomal recessive disorder is due to defective 7-dehydrocholesterol reductase so that elevated 7-dehydrocholesterol is diagnostic. In lysosomal acid lipase A deficiency,24 AI is due to calcification of the adrenal gland as a result of the accumulation of esterified lipids; in infantile form, that is Wolman disease, hepatosplenomegaly with hepatic fibrosis and malabsorption lead to death in the first year of life, if not treated with enzyme replacement therapy such as sebelipase alfa.25 Adrenal development may be impaired in X-linked congenital adrenal hypoplasia (AHC),13,26 a disorder caused by defective nuclear receptor DAX-1, presenting with salt-losing AI in infancy in approximately half of the cases, but also later in childhood or adolescence with two other key features such as hypogonadotropic hypogonadism and impaired spermatogenesis. Two syndromes combine adrenal hypoplasia with intrauterine growth restriction (IUGR): in IMAGe syndrome,27 caused by CDKN1C gain-of-function mutations, IUGR and AI present with metaphyseal dysplasia and genitourinary anomalies; MIRAGE syndrome28 is instead characterized by myelodysplasia, infections, genital abnormalities, and enteropathy, as a result of gain-of-function mutations in SAMD9, with elevated mortality rates. In some other conditions, AI is due to ACTH resistance. Familial Glucocorticoid Deficiency type 1 (FGD1)13,29 and type 2 (FGD2)30 derive from defective ACTH receptor (MC2R) or its accessory protein MRAP, and both present with early glucocorticoid insufficiency (hypoglycemia, prolonged jaundice) and pronounced hyperpigmentation; there is usually an excellent response to cortisol replacement therapy, even though ACTH levels remain elevated. In Allgrove or Triple-A Syndrome,13,31 defective Aladin protein (an acronym for alacrimia-achalasia-adrenal insufficiency) leads to primary ACTH-resistant adrenal insufficiency with achalasia and absent lacrimation, often combined with neurological dysfunction, either peripheral, central, or autonomic. It is an autosome recessive condition, phenotypically characterized by microcephaly, short stature, and skin hyperpigmentation.32,33 Among metabolic disorders associated with AI, Sphingosine-1-Phosphate Lyase (SGPL1) Deficiency34 is a sphingolipidosis with various features such as steroid-resistant nephrotic syndrome, primary hypothyroidism, undescended testes, neurological impairment, lymphopenia, ichthyosis; interestingly, in cases where nephrotic syndrome develops before AI, the latter may be masked by glucocorticoid treatment. Adrenoleukodystrophy (ALD)35–37 is an X-linked recessive proximal disorder of beta-oxidation due to defective ABCD1, where the accumulation of very-long-chain fatty acids (VLCFA) affects in almost all cases adrenal gland among other tissues. Most patients present with progressive neurological impairment, but in some, AI is the only (approximately 10%) or first manifestation, so that every unexplained AI in boys should receive plasma VLCFA evaluation to diagnose ALD and reduce cerebral involvement through a low VLCFAs diet (Lorenzo’s oil) and allogeneic bone marrow transplantation. Early disease-modifying therapies have been developed. Gene therapy adds new functional copies of the ABCD1 gene in hematopoietic stem cells through a lentiviral vector reinfusing the modified cells in the patient’s bloodstream. Recent trials show encouraging results.38 In Zellweger syndrome, caused by mutations in peroxin genes (PEX), peroxisomes are absent, and disease presentation occurs in the neonatal period, with low survival rates after the first year of life. Finally, mitochondrial disorders have been described to occasionally develop AI: Pearson syndrome (sideroblastic anemia, pancreatic dysfunction), MELAS syndrome (encephalopathy with stroke-like episodes), and Kearns-Sayre syndrome (external ophthalmoplegia, heart block, retinal pigmentary changes) belong to this class.39 Autoimmune pathogenesis (Addison disease) accounts for approximately 15% of cases of primary AI in children, in contrast with adolescents and adults where it is the most common mechanism; half of these children present other glands involvement as well. Two syndromes recognize specific combinations: in Autoimmune Polyglandular Syndrome Type 1 (APS1, or APECED)40 defective autoimmune regulator AIRE causes AI, hypoparathyroidism, hypogonadism, malabsorption, chronic mucocutaneous candidiasis; APS2 usually present later in life (third-fourth decades) with AI, thyroiditis, and type 1 diabetes mellitus (T1DM). Antibodies against 21-hydroxylase enzyme are the hallmark of APS. Apart from a genetic disorder, a strong link between autoimmune conditions and autoimmune primary AI has been established, with more than 50% of patients with the latter also having one or more other autoimmune endocrine disorders; on the other hand, only a few patients with T1DM or autoimmune thyroiditis or Graves’ disease develop AI. As an example, in a study of 629 patients with T1DM, only 11 (1.7%) presented 21-hydroxylase autoantibodies, with three of them having AI.41 Nevertheless, these patients are to be considered at increased risk for a condition that is potentially fatal yet easy to diagnose and treat; that is why it is reasonable to screen for autoimmune AI at least patients with T1DM, significantly if associated with DQ8 HLA combined with DRB*0404 HLA alleles, who have been observed to develop AI in 80% of cases if also 21-hydroxylase autoantibodies positive.42 Regarding immunological disruption, the link with celiac disease is instead well established: celiac patients have an 11-fold increased risk for AI, while in a study, 6 of 76 patients with AI had celiac disease, so that mutual evaluation should be granted in these patients.43,44 Subclinical Adrenal Insufficiency Subclinical AI is a particularly insidious challenge for a pediatric endocrinologist. It represents the preclinical stage of Addison disease when 21-hydroxylase autoantibodies are already detectable but still absent from evident symptoms. 21-hydroxylase autoantibodies positivity carries a greater risk to develop overt AI in children than in adults: in a study, estimated risk was 100% in children versus 32% in adults on a medium six-year period of follow-up.45 As the adrenal crisis is a potentially lethal condition, it is essential to recognize and adequately manage subclinical AI. Although asymptomatic by definition, subclinical AI may present with non-specific symptoms such as fatigue, lethargy, gastrointestinal symptoms (nausea, vomiting, diarrhea, constipation), hypotension; physical or psychosocial stresses may sometimes exacerbate these symptoms. When symptoms lack, subclinical AI may be identified thanks to the co-occurrence with other autoimmune endocrinopathies.46 21-hydroxylase autoantibodies titer is considered a marker of autoimmune activity and correlates with disease progression.47 Other reported risk factors for the disease evolution include young age, male sex, hypoparathyroidism or candidiasis coexistence, increased renin activity, or an altered synacthen test with normal baseline cortisol and ACTH.45 ACTH elevation has been reported as the best predictor of progression to the clinical stage in 2 years (94% sensitivity and 78% specificity).48 Management of patients with subclinical AI should include serum cortisol, ACTH, renin measurement, and a synacthen test. If normal, cortisol and ACTH should be repeated in 12–18 months, while synacthen test every two years. After synacthen test results are subnormal, cortisol and ACTH should be assessed every 6–9 months if ACTH remains in range or every six months if ACTH becomes elevated.49 In the latter case, therapy with hydrocortisone should be started.19 This strategy will prevent acute crises and possibly improve the quality of life in patients reporting non-specific symptoms. Diagnosis Laboratory evaluation of a stable patient with suspected AI should start with combined early morning (between 6 and 8 AM) serum cortisol and ACTH measurements (Figure 2). Figure 2 Diagnostic algorithm for adrenal insufficiency. Although often included in the extensive work-up of an unwell child, a single cortisol value is usually challenging to interpret: circadian cortisol rhythm is highly variable and morning peak is unpredictable; morning cortisol levels in children with diagnosed AI may range up to 706 nmol/L (97th percentile); several factors, such as exogenous estrogens, may alter total serum cortisol values by influencing the free cortisol to cortisol binding globulin or albumin-bound cortisol ratio.7 Significant variability is also observed depending on the specific type of cortisol assay; therefore, it is recommended to check the reference ranges with the laboratory. Mass spectrometry analysis and the new platform methods (Roche Diagnostics Elecsys Cortisol II)50 have more specificity because it detects lower cortisol concentrations than standard immunoassays.15 Low serum cortisol with normal or low ACTH levels is compatible with CAI. In such cases, morning serum cortisol levels below 3 µg/dL (83 nmol/L) best predict AI, while greater than 13 µg/dL (365 nmol/L) values tend to exclude it.51 This is why in most cases, a dynamic test is required for diagnosis and has been introduced to assess the hypothalamic-pituitary-adrenal (HPA) axis in case of intermediate values.5 The insulin tolerance test (ITT) is considered the gold standard for CAI diagnosis as hypoglycemia results in an excellent HPA axis activation; moreover, it allows simultaneous growth hormone evaluation in patients with suspected CPHD. Serum cortisol is measured at baseline and 15, 30, 45, 60, 90, and 120 minutes after intravenous administration of 0.1 UI/Kg regular insulin; the test is valid if serum glucose is reduced by 50% or below 2.2 mmol/L (40 mg/dL).52 CAI is diagnosed for a <20 µg/dL (550 nmol/L) cortisol value at its peak.15 Hypoglycemic seizures and hypokalemia (due to glucose infusion) are the main risks of this test so that it is contraindicated in case of a history of seizures or cardiovascular disease. Glucagon stimulation test (GST, 30 µg/Kg up to 1 mg i.m. glucagon with cortisol measurements every 30 min for 180 min) allows both CAI and growth hormone deficiency evaluation as well but is characterized by frequent gastrointestinal side effects and poor specificity.8 Metyrapone is an 11-hydroxylase inhibitor, thereby decreasing cortisol synthesis and removing its negative feedback on ACTH release. Overnight metyrapone test is based on oral administration of 30 mg/Kg metyrapone at midnight, and 11-deoxycortisol measurement on the following morning: in case of CAI, its level will not reach 7 µg/dL (200 nmol/L). This test may, however, induce an adrenal crisis so that it is rarely performed. Given their safety profile and accuracy, corticotropin analogs such as tetracosactrin (Synacthen®) or cosyntropin (Cortrosyn®) are recommended as first-line stimulation tests. Nevertheless, false-negative results are probable in the case of recent or moderate ACTH deficiency, which would not have induced adrenal atrophy. The standard dose short synacthen test (SDSST) is based on a 250 µg Synacthen vial administration with serum cortisol measurement at baseline and 30 and 60 minutes after. CAI is diagnosed if peak cortisol level is <16 µg/dL (440 nmol/L), or excluded if >39 µg/dL (1076 nmol/L). However, the cut-offs for both the new platform immunoassay and mass spectrometry serum cortisol assays are 13.5 to 14.9 mcg/dL (373 to 412 nmol/L).53 The 250 µg Synacthen dose is considered a supraphysiological stimulus since it is 500 times greater than the minimum ACTH dose reported to induce a maximal cortisol response (500 ng/1.73 m2). The low dose short synacthen test (LDSST) has been introduced as a more sensitive first-line test in children greater than two years.54 The recommended dose is 1 µg55, which is contained in 1 mL of the solution obtained by diluting a 250 µg vial into 250 mL saline. Serum cortisol level is then measured at baseline and after 30 minutes, resulting in diagnose of CAI if <16 µg/dL (440 nmol/L), otherwise ruling it out if >22 µg/dL (660 nmol/L). Using these thresholds, LDSST is more precise than SDSST in children, with an area under the ROC curve of 0.99 (95% CI 0.98–1.00).56 LDSST has not been validated in acutely ill patients, pituitary acute disorders or surgery or radiation therapy, and impaired sleep-wake cycle. Patients with an indeterminate LDSST result should be furtherly studied with ITT or metyrapone test. Finally, the CRH test is based on 1 µg/Kg human CRH (Ferring®) administration and may differentiate secondary from tertiary AI, but its thresholds are still not precisely defined.57 Once CAI is diagnosed, other pituitary hormones should be assessed (prolactin, IGF1, LH, FSH, fT4, TSH), and an MRI of the pituitary region should be performed to exclude neoplastic or infiltrative processes. Primary adrenal insufficiency (PAI) should be suspected in case of low serum cortisol with elevated ACTH levels. When hypocortisolemia has been confirmed, ACTH levels >66 pmol/L or greater than twice the upper limit best predict PAI. Nevertheless, a confirmatory dynamic test is always recommended for diagnosis.19 Given the comparable accuracy between standard and low dose SST reported in these patients, SDSST is recommended as the most feasible test.58 Moreover, suspected PAI cases should receive plasma renin activity or direct renin and aldosterone assessment to evaluate mineralocorticoid deficiency. Etiologic work-up of confirmed PAI should start from 21-hydroxylase antibodies assessment: if positive, differential diagnosis will include Addison disease and APS1 or APS2. Adrenal autoantibody negative patients should instead be screened for CAH by measuring 17-hydroxyprogesterone, ALD (if young male) by assessing VLCFA, and tuberculosis if endemic; adrenal glands imaging will complete the work-up in order to exclude infection, hemorrhage, or tumor.6 While universal newborn screening is already implemented for CAH in many countries, allowing a timely replacement therapy, basal salivary cortisol, and salivary cortisone measurements could improve CAI screening in the future: this technique is simple, cost-effective, and independent of binding proteins.15 Treatment All patients with adrenal insufficiency need long-term glucocorticoid replacement therapy. Individuals with PAI also require mineralocorticoids replacement, together with salt intake as required (Table 4). Otherwise, guidelines do not recommend androgen replacement.5,9,19 Table 4 Management of Adrenal Insufficiency (AI) Oral hydrocortisone is the first-choice replacement treatment in children due to its short half-life, rapid peak in plasma concentration, lower potency, and fewer adverse effects than prednisolone and dexamethasone.5,8 Based on endogenous production, dosing replacement regimens vary from 7.5 to 15 mg/m2/day, divided into two, three, or four doses.19 The first and largest dose should be taken at awakening, the next in the early afternoon to avoid sleep disturbances. Small and frequent dosing mimic the physiological rhythm of cortisol secretion, but high peak cortisol levels after drug assumption and prolonged periods of hypocortisolemia between doses are described.8,9 Some children experience low cortisol concentrations and symptoms of cortisol insufficiency (eg, fatigue, nausea, headache) despite modifications in dosing. This cohort of patients can take advantage of using a modified-release hydrocortisone formulation, such as Chronocort® and Plenadren®. Plenadren®, approved for adults, consists of a coating of hydrocortisone released rapidly, followed by a slow release of hydrocortisone from the tablet center. It is available as 5 and 20 mg tablets. Park et al demonstrate smoother cortisol profiles and normal growth and weight gain patterns using Plenadren® in children.59 In a few cases, the continuous subcutaneous infusion of hydrocortisone using insulin pump technology proved to be a feasible, well-tolerated and safe option for selected patients with poor response to conventional therapy.19 Monitoring glucocorticoid therapy is based on growth, weight gain, and well-being. Cortisol measurements are usually not useful, apart from cases when a discrepancy between daily doses and patient symptoms exists.15 The concomitant use of hydrocortisone and CYP3A4 inducers, such as Rifampicin, Phenytoin, Carbamazepine, requires an increased dose of glucocorticoids. Conversely, the inhibition of CYP3A4 impairs hydrocortisone metabolism.5 Mineralocorticoid replacement is unnecessary if the patient has a normal renin-angiotensin-aldosterone axis and, hence, normal aldosterone secretion, as well as in CAI. By contrast, patients with PAI and confirmed aldosterone deficiency need fludrocortisone at the dosage of 0.1–0.2 mg/day when given together with hydrocortisone, which has some mineralocorticoid activity. When using other synthetic glucocorticoids for replacement, higher fludrocortisone doses may be needed. Infants younger than one year should also be supplemented with sodium chloride due to their relatively low dietary sodium intake and relative renal resistance to mineralocorticoids. The dose is approximately 1 gram (17 mEq) daily.19 Surgery and anesthesia increase the glucocorticoid requirement during the pre-, intra-, and post-operative periods (Table 4). All children with AI should receive an intravenous dose of hydrocortisone at induction (2 mg/kg for minor or major surgery under general anesthesia). For minor procedures or sedation, the child should receive a double morning dose of hydrocortisone orally.60 Adrenal crisis is a life-threatening condition, treatment is effective if administered promptly, and it must not be delayed for any reason. Hydrocortisone should be administered as soon as possible with an intravenous bolus of 4 mg/kg followed by a continuous infusion of 2 mg/kg/day until stabilization. In the alternative, it can be administered as a bolus every four hours intravenous or intramuscular. In difficult peripheral venous access, the intramuscular route must be used as the first choice. In order to counteract hypotension, a bolus of normal saline 0.9% should be given at a dose of 20 mL/kg; it can repeat up to a total of 60 mL/kg within one hour for shock. If there is hypoglycemia, 10% dextrose at a 5 mL/kg dose should be administered.5,19,61,62 Patients with AI require additional doses of glucocorticoids in case of physiologic stress such as illness or surgical procedures to avoid an adrenal crisis. Home management of illness with a fever (> 38°C), vomiting or diarrhea, is based on the increase from two to three times the usual dose orally. If the child is unable to tolerate oral therapy, intramuscular injection of hydrocortisone should be administered (Table 4). Education for caregivers and patients (if adolescent) is crucial to prevent adrenal crisis. They should recognize signs and symptoms of adrenal crisis and should receive a steroid emergency card with the sick day rules. Prescribing doctors should provide for additional oral glucocorticoids and adequate training in hydrocortisone emergency self-injection. Abbreviations AI, adrenal insufficiency; PAI, primary adrenal insufficiency; CAI, central adrenal insufficiency; HPA, hypothalamic-pituitary-adrenal axis; CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone; POMC, pro-opiomelanocortin; CAH, congenital adrenal hyperplasia; STAR, steroidogenic acute regulatory; 21OHD, 21-hydroxylase deficiency; 11BOHD, 11-B-hydroxylase deficiency; P450scc, P450 cytochrome side-chain cleavage deficiency; 17-OHP, 17-hydroxyprogesterone; NCCAH, non-classic congenital adrenal hyperplasia; ALD, adrenoleukodystrophy; VLCFA, very long-chain fatty acids; CMPD, combined multiple pituitary hormone deficiency; GHD, growth hormone deficiency; MSH, melanocyte stimulating hormone; IUGR, intrauterine growth restriction; APS1, autoimmune polyglandular syndrome type 1; SDSST, standard dose short synacthen test; LDSST, low dose short synacthen test. Take Home Messages In neonates and infants CAH is the commonest cause of PAI, causing almost 71.8% of cases. Adrenoleukodystrophy should be considered in any male with hypoadrenalism. Unexplained hyponatremia, hyperpigmentation and the loss of pubic and axillary hair should raise the suspicion of AI. Adrenal insufficiency can present with non-specific clinical features; therefore a single cortisol measurement should be included in the biochemical work-up of an unwell child. Patients and parents should be well-trained in adrenal crisis recognition and management. Disclosure The authors report no conflicts of interest in this work. References 1. Charmandari E, Nicolaides N, Chrousos G. Adrenal insufficiency. Lancet. 2021;383(9935):2152–2167. doi:10.1016/S0140-6736(13)61684-0 2. White PC. Adrenocortical insufficiency. In: Nelson Textbook of Pediatrics. Elsevier. 2019:11575–11617. 3. White PC. Physiology of the adrenal gland. Nelson Textbook of Pediatrics. Elsevier. 2019. 4. Butler G, Kirk J. Adrenal gland disorders. In: Paediatric Endocrinology and Diabetes. Oxford University Press. 2020:274–288. 5. Patti G, Guzzeti C, Di Iorgi N, Loche S. Central adrenal insufficiency in children and adolescents. Best Pract Res Clin Endocrinol Metab. 2018;32(4):425–444. doi:10.1016/j.beem.2018.03.012 6. Martin-grace J, Dineen R, Sherlock M, Thompson CJ. Adrenal insufficiency: physiology, clinical presentation and diagnostic challenges. Clin Chim Acta. 2020;505:78–91. doi:10.1016/j.cca.2020.01.029 7. Shaunak M, Blair JC, Davies JH. How to interpret a single cortisol measurement. Arch Dis Child Educ Pract. 2020;105:347–351. doi:10.1136/archdischild-2019-318431 8. Park J, Didi M, Blair J. The diagnosis and treatment of adrenal insuf fi ciency during childhood and adolescence. Arch Dis Child. 2016;101:860–865. doi:10.1136/archdischild-2015-308799 9. Husebye ES, Pearce SH, Krone NP, Kämpe O. Adrenal insufficiency. Lancet. 2021;397:613–629. doi:10.1016/S0140-6736(21)00136-7 10. Speiser P, Azziz R, Baskin L, et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(9):4133–4160. doi:10.1210/jc.2009-2631 11. Buonocore F, McGlacken-Byrne S, Del Valle I, Achermann J. Current insights into adrenal insufficiency in the newborn and young infant. Front Pediatr. 2020;8:619041. doi:10.3389/fped.2020.619041 12. Bacila I, Elder C, Krone N. Update on adrenal steroid hormone biosynthesis and clinical implications. Arch Dis Child. 2019;104(12):1223–1228. doi:10.1136/archdischild-2017-313873 13. Buonocore F, Maharaj A, Qamar Y, et al. Genetic analysis of pediatric primary adrenal insufficiency of unknown etiology: 25 years’ experience in the UK. J Endocr Soc. 2021;5(8):1–15. doi:10.1210/jendso/bvab086 14. Balsamo A, Baronio F, Ortolano R, et al. Congenital adrenal hyperplasias presenting in the newborn and young infant. Front Pediatr. 2020;8:593315. doi:10.3389/fped.2020.593315 15. Hahner S, Ross RJ, Arlt W, et al. Adrenal insufficiency. Nat Rev Dis Prim. 2021;7(1):1–24. doi:10.1038/s41572-021-00252-7 16. Krude H, Biebermann H, Luck W, et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19:155–157. doi:10.1038/509 17. Vallette-Kasic S, Brue T, Pulichino A-M, et al. Congenital isolated adrenocorticotropin deficiency: an underestimated cause of neonatal death, explained by TPIT gene mutations. J Clin Endocrinol Metab. 2005;90:1323–1331. doi:10.1210/jc.2004-1300 18. Alatzoglou K, Dattani M. Genetic forms of hypopituitarism and their manifestation in the neonatal period. Early Hum Dev. 2009;85:705–712. doi:10.1016/j.earlhumdev.2009.08.057 19. Bornstein SR, Allolio B, Arlt W, et al. Diagnosis and treatment of primary adrenal insufficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:364–389. doi:10.1210/jc.2015-1710 20. Kurtoğlu S, Hatipoğlu N. Non-classical congenital adrenal hyperplasia in childhood. J Clin Res Pediatr Endocrinol. 2017;9(1):1–7. doi:10.4274/jcrpe.3378 21. Livadas S, Bothou C. Management of the female with non-classical congenital adrenal hyperplasia (NCCAH): a patient-oriented approach. Front Endocrinol. 2019;10:366. doi:10.3389/fendo.2019.00366 22. Miller W. Disorders in the initial steps of steroid hormone synthesis. J Steroid Biochem Mol Biol. 2017;165:18–37. doi:10.1016/j.jsbmb.2016.03.009 23. Nowaczyk M, Irons M. Smith–Lemli–Opitz syndrome: phenotype, natural history, and epidemiology. Am J Med Genet Part C Semin Med Genet. 2012;160:250–262. doi:10.1002/ajmg.c.31343 24. Anderson R, Byrum R, Coates P, Sando G. Mutations at the lysosomal acid cholesteryl ester hydrolase gene locus in Wolman disease. Proc Natl Acad Sci USA. 1994;91:2718. doi:10.1073/pnas.91.7.2718 25. Jones S, Rojas-Caro S, Quinn A. Survival in infants treated with sebelipase Alfa for lysosomal acid lipase deficiency: an open-label, multicenter, dose-escalation study. Orphanet J Rare Dis. 2017;12:25. doi:10.1186/s13023-017-0587-3 26. Muscatelli F, Strom T, Walker A, et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature. 1994;372:672–676. doi:10.1038/372672a0 27. Vilain E, Merrer M, Lecointre C, et al. IMAGe, a new clinical association of Intrauterine growth retardation, metaphyseal dysplasia, adrenal hypoplasia congenita, and Genital anomalies. J Clin Endocrinol Metab. 1999;84(12):4335–4340. doi:10.1210/jcem.84.12.6186 28. Narumi S, Amano N, Ishii T, et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet. 2016;48:792–797. doi:10.1038/ng.3569 29. Maharaj A, Maudhoo A, Chan L, et al. Isolated glucocorticoid deficiency: genetic causes and animal models. J Steroid Biochem Mol Biol. 2019;189:73–80. doi:10.1016/j.jsbmb.2019.02.012 30. Metherell L, Chapple J, Cooray S, et al. Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2. Nat Genet. 2005;37:166–170. doi:10.1038/ng1501 31. Prpic I, Huebner A, Persic M, et al. Triple A syndrome: genotype-phenotype assessment. Clin Genet. 2003;63:415. doi:10.1034/j.1399-0004.2003.00070.x 32. Kurnaz E, Duminuco P, Aycan Z, et al. Clinical and genetic characterisation of a series of patients with triple A syndrome. Eur J Pediatr. 2018;177(3):363–369. doi:10.1007/s00431-017-3068-8 33. Brett E, Auchus R. Genetic forms of adrenal insufficiency. Endocr Pract. 2015;21(4):395–399. doi:10.4158/EP14503.RA 34. Prasad R, Hadjidemetriou I, Maharaj A, et al. Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome. J Clin Invest. 2017;127:942–953. doi:10.1172/JCI90171 35. Moser H, Moser A, Smith K, et al. Adrenoleukodystrophy: phenotypic variability and implications for therapy. J Inherit Metab Dis. 1992;15:645. doi:10.1007/BF01799621 36. Bradbury A, Ream M. Recent advancements in the diagnosis and treatment of leukodystrophies. Semin Pediatr Neurol. 2021;37:100876. doi:10.1016/j.spen.2021.100876 37. Engelen M, Kemp S. X-linked adrenoleukodystrophy: pathogenesis and treatment. Curr Neurol Neurosci Rep. 2014;14(10):486. doi:10.1007/s11910-014-0486-0 38. Federico A, de Visser M. New disease modifying therapies for two genetic childhood-onset neurometabolic disorders (metachromatic leucodystrophy and adrenoleucodystrophy). Neurol Sci. 2021;42(7):2603–2606. doi:10.1007/s10072-021-05412-x 39. Artuch R, Pavía C, Playán A, et al. Multiple endocrine involvement in two pediatric patients with Kearns-Sayre syndrome. Horm Res. 1998;50:99. doi:10.1159/000023243 40. Peterson P, Pitkänen J, Sillanpää N, et al. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED): a model disease to study molecular aspects of endocrine autoimmunity. Clin Exp Immunol. 2004;135:348. doi:10.1111/j.1365-2249.2004.02384.x 41. Brewer K, Parziale VS, Eisenbarth GS, et al. Screening patients with insulin-dependent diabetes mellitus for adrenal insufficiency. New Engl J Med. 1997;337:202. doi:10.1056/NEJM199707173370314 42. Yu L, Brewer K, Gates S, et al. DRB1*04 and DQ alleles: expression of 21-hydroxylase autoantibodies and risk of progression to Addison’s disease. J Clin Endocrinol Metab. 1999;84:328. doi:10.1210/jcem.84.1.5414 43. Myhre A, Aarsetøy H, Undlien D, et al. High frequency of coeliac disease among patients with autoimmune adrenocortical failure. Scand J Gastroenterol. 2003;38:511. doi:10.1080/00365520310002544 44. Elfström P, Montgomery S, Kämpe O, et al. Risk of primary adrenal insufficiency in patients with celiac disease. J Clin Endocrinol Metab. 2007;92:3595. doi:10.1210/jc.2007-0960 45. Coco G, Dal Pra C, Presotto F, et al. Estimated risk for developing autoimmune Addison’s disease in patients with adrenal cortex autoantibodies. J Clin Endocrinol Metab. 2006;91(5):1637–1645. doi:10.1210/jc.2005-0860 46. Yamamoto YT. Latent adrenal insufficiency: concept, clues to detection, and diagnosis. Endocr Pract. 2018;24(8):746–755. doi:10.4158/EP-2018-0114 47. Laureti S, De Bellis A, Muccitelli V, et al. Levels of adrenocortical autoantibodies correlate with the degree of adrenal dysfunction in subjects with preclinical Addison’s disease. J Clin Endocrinol Metab. 1998;83:3507–3511. doi:10.1210/jcem.83.10.5149 48. Baker P, Nanduri P, Gottlieb P, et al. Predicting the onset of Addison’s disease: ACTH, renin, cortisol and 21-hydroxylase autoantibodies. Clin Endocrinol. 2012;76:617–624. doi:10.1111/j.1365-2265.2011.04276.x 49. Thuillier P, Kerlan V. Subclinical adrenal diseases: silent pheochromocytoma and subclinical Addison’s disease. Ann Endocrinol. 2012;73(Suppl 1):S45–S54. doi:10.1016/S0003-4266(12)70014-8 50. Raverot V, Richet C, Morel Y, Raverot G, Borson-Chazot F. Establishment of revised diagnostic cut-offs for adrenal laboratory investigation using the new Roche Diagnostics Elecsys® Cortisol II assay. Ann Endocrinol. 2016;77(5):620–622. doi:10.1016/j.ando.2016.05.002 51. Grossman A. The diagnosis and management of central hypoadrenalism. J Clin Endocrinol Metab. 2010;95:4855e63. doi:10.1210/jc.2010-0982 52. Petersenn S, Quabbe HJ, Schöfl C, et al. The rational use of pituitary stimulation tests. Dtsch Arztebl Int. 2010;107(25):437–443. doi:10.3238/arztebl.2010.0437 53. Kline GA, Buse J, Krause RD. Clinical implications for biochemical diagnostic thresholds of adrenal sufficiency using a highly specific cortisol immunoassay. Clin Biochem. 2017;50(9):475–480. doi:10.1016/j.clinbiochem.2017.02.008 54. Agwu JC, Spoudeas H, Hindmarsh PC, Pringle PJ, Brook CGD. Tests of adrenal insufficiency. Arch Dis Child. 1999;80(4):330–333. doi:10.1136/adc.80.4.330 55. Maghnie M, Uga E, Temporini F, et al. Evaluation of adrenal function in patients with growth hormone deficiency and hypothalamic-pituitary disorders: comparison between insulin-induced hypoglycemia, low-dose ACTH, standard ACTH and CRH stimulation tests. Eur J Endocrinol. 2005;152:735–741. doi:10.1530/eje.1.01911 56. Kazlauskaite R, Maghnie M. Pitfalls in the diagnosis of central adrenal insufficiency in children. Endocr Dev. 2010;17:96e107. 57. Chanson P, Guignat L, Goichot B, et al. Group 2: adrenal insufficiency: screening methods and confirmation of diagnosis. Ann Endocrinol. 2017;78:495e511. doi:10.1016/j.ando.2017.10.005 58. Ospina N, Al Nofal A, Bancos I, et al. ACTH stimulation tests for the diagnosis of adrenal insufficiency: systematic review and meta-analysis. J Clin Endocrinol Metab. 2016;101(2):427–434. doi:10.1210/jc.2015-1700 59. Park J, Das U, Didi M, et al. The challenges of cortisol replacement therapy in childhood: observations from a case series of children treated with modified-release hydrocortisone. Pediatr Drugs. 2018;20(6):567–573. doi:10.1007/s40272-018-0306-0 60. Woodcock T, Barker P, Daniel S, et al. Guidelines for the management of glucocorticoids during the peri-operative period for patients with adrenal insuf fi ciency Guidelines from the Association of Anaesthetists, the Royal College of Physicians and the Society for Endocrinology UK. Anaesthesia. 2020;75:654–663. doi:10.1111/anae.14963 61. Rushworth R, Torpy DJ, Falhammar H. Adrenal crisis. N Engl J Med. 2019;381(9):852–861. doi:10.1056/NEJMra1807486 62. Miller BS, Spencer SP, Geffner ME, et al. Emergency management of adrenal insufficiency in children: advocating for treatment options in outpatient and field settings. J Investig Med. 2020;68:16–25. doi:10.1136/jim-2019-000999 This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms. Download Article [PDF] From https://www.dovepress.com/pediatric-adrenal-insufficiency-challenges-and-solutions-peer-reviewed-fulltext-article-TCRM
  3. Cushing's Help Podcast: Adrenal Crisis Be sure to print this page to carry with you. Definition: Acute adrenal crisis is a life-threatening state caused by insufficient levels of cortisol, which is a hormone produced and released by the adrenal gland. Alternative Names: Adrenal crisis; Addisonian crisis; Acute adrenal insufficiency Causes, incidence, and risk factors: The two adrenal glands are located on top of the kidneys. They consist of the outer portion, called the cortex, and the inner portion, called the medulla. The cortex produces three types of hormones, all of which are called corticosteroids. Cortisol is a glucocortoid, a corticosteroid that maintains glucose (blood sugar) regulation, suppresses the immune response, and is released as part of the body's response to stress. Cortisol production is regulated by a small gland just below the brain called the pituitary gland. Cortisol is essential for life. Acute adrenal crisis is a medical emergency caused by a lack of cortisol. Patients may experience lightheadedness or dizziness, weakness, sweating, abdominal pain, nausea and vomiting, or even loss of consciousness. Adrenal crisis occurs if the adrenal gland is deteriorating (Addison's disease, primary adrenal insufficiency), if there is pituitary gland injury (secondary adrenal insufficiency), or if adrenal insufficiency is not adequately treated. Risk factors for adrenal crisis include physical stress such as infection, dehydration, trauma, or surgery, adrenal gland or pituitary gland injury, and ending treatment with steroids such as prednisone or hydrocortisone too early. Symptoms: Headache Profound weakness Fatigue Slow, sluggish movement Nausea Vomiting Low blood pressure Dehydration High fever Shaking chills Confusion or coma Darkening of the skin Rapid heart rate Joint pain Abdominal pain Unintentional weight loss Rapid respiratory rate (see tachypnea) Unusual and excessive sweating on face and/or palms Skin rash or lesions may be present Flank pain Loss of appetite Signs and tests: An ACTH (cortrosyn) stimulation test shows low cortisol. The baseline cortisol level is low. Fasting blood sugar may be low. Serum potassium is elevated ( usually primary adrenal insufficiency). Serum sodium is decreased (usually primary adrenal insufficiency). Treatment: In adrenal crisis, an intravenous or intramuscular injection of hydrocortisone (an injectable corticosteroid) must be given immediately. Supportive treatment of low blood pressure with intravenous fluids is usually necessary. Hospitalization is required for adequate treatment and monitoring. If infection is the cause of the crisis, antibiotic therapy may be needed. Expectations (prognosis): Death may occur due to overwhelming shock if early treatment is not provided. Complications: shock coma seizures Calling your health care provider: Call your health care provider if you have Addison's disease and are unable to retain usual medications because of vomiting.Go to the emergency room or call the local emergency number (such as 911) if symptoms of acute adrenal crisis develop. Prevention: People who have Addison's disease should be taught to recognize signs of potential stress that may cause an acute adrenal crisis. Most people with Addison's disease are taught to give themselves an emergency injection of hydrocortisone or increase their dose of oral prednisone in times of stress. It is important for the individual with Addison's disease to always carry a medical identification card that states the type of medication and the proper dose needed in case of an emergency. Never omit medication. If unable to retain medication due to vomiting, notify the health care provider. Health Alert: Adrenal Crisis Causes Death in Some People Who Were Treated With hGH Recently, doctors conducting the follow-up study of individuals treated with hGH looked at causes of death among recipients and found some disturbing news. Many more people have died from a treatable condition called adrenal crisis than from CJD. THIS RISK DOES NOT AFFECT EVERY RECIPIENT. IT CAN AFFECT THOSE WHO LACK OTHER HORMONES IN ADDITION TO GROWTH HORMONE. Please read on to find out if this risk applies to you. Death from adrenal crisis can be prevented. Adrenal crisis is a serious condition that can cause death in people who lack the pituitary hormone ACTH. ACTH is responsible for regulating the adrenal gland. Often, people are unaware that they lack this hormone and therefore do not know about their risk of adrenal crisis. Most people who were treated with hGH did not make enough of their own growth hormone. Some of them lacked growth hormone because they had birth defects, tumors or other diseases that cause the pituitary gland to malfunction or shut down. People with those problems frequently lack other key hormones made by the pituitary gland, such as ACTH, which directs the adrenal gland to make cortisol, a hormone necessary for life. Having too little cortisol can be fatal if not properly treated. TREATMENT WITH HGH DOES NOT CAUSE ADRENAL CRISIS, but because a number of people lacking growth hormone also lack ACTH, adrenal crisis has occurred in some people who were treated with hGH. In earlier updates we have talked about how adrenal crisis can be prevented, but people continue to die from adrenal crisis, which is brought on by lack of cortisol. These deaths can be prevented. Please talk to your doctor about whether you are at risk for adrenal crisis. Why should people treated with hGH know about adrenal crisis? Among the people who received hGH, those who had birth defects, tumors, and other diseases affecting the brain lacked hGH and often, other hormones made by the pituitary gland. A shortage of the hormones that regulate the adrenal glands can cause many health problems. It can also lead to death from adrenal crisis. This tragedy can be prevented. What are adrenal hormones? The pituitary gland makes many hormones, including growth hormone and ACTH, a hormone which signals the adrenal glands to make cortisol, a hormone needed for life. If the adrenal gland doesn't make enough cortisol, replacement medications must be taken. The most common medicines used for cortisol replacement are: Hydrocortisone Prednisone Dexamethasone What is adrenal crisis? Adrenal hormones are needed for life. The system that pumps blood through the body cannot work during times of physical stress, such as illness or injury, if there is a severe lack of cortisol (or its replacement). People who lack cortisol must take their cortisol replacement medication on a regular basis, and when they are sick or injured, they must take extra cortisol replacement to prevent adrenal crisis. When there is not enough cortisol, adrenal crisis can occur and may rapidly lead to death. What are the symptoms of lack of adrenal hormones? If you don't have enough cortisol or its replacement, you may have some of these problems: feeling weak feeling tired all the time feeling sick to your stomach vomiting no appetite weight loss When someone with adrenal gland problems has weakness, nausea, or vomiting, that person needs immediate emergency treatment to prevent adrenal crisis and possible death. • Why are adrenal hormones so important? Cortisol (or its replacement) helps the body respond to stress from infection, injury, or surgery. The normal adrenal gland responds to serious illness by making up to 10 times more cortisol than it usually makes. It automatically makes as much as the body needs. If you are taking a cortisol replacement drug because your body cannot make these hormones, you must increase the cortisol replacement drugs during times of illness, injury, or surgery. Some people make enough cortisol for times when they feel well, but not enough to meet greater needs when they are ill or injured. Those people might not need cortisol replacement every day but may need to take cortisol replacement medication when their body is under stress. Adrenal crisis is extremely serious and can cause death if not treated promptly. Discuss this problem with your doctor to help decide whether you need more medication or other treatment to protect your health. • How is adrenal crisis treated? People with adrenal crisis need immediate treatment. ANY DELAY CAN CAUSE DEATH. When people with adrenal crisis are vomiting or unconscious and cannot take medicine, the hormones can be given as an injection. Getting an injection of adrenal hormones can save your life if you are in adrenal crisis. If you lack the ability to make cortisol naturally, you should carry a medical ID card and wear a Medic-Alert bracelet to tell emergency workers that you lack adrenal hormones and need treatment. This precaution can save your life if you are sick or injured. • How can I prevent adrenal crisis? • If you are always tired, feel weak, and have lost weight, ask your doctor if you might have a shortage of adrenal hormones. • If you take hydrocortisone, prednisone, or dexamethasone, learn how to increase the dose when you become ill. • If you are very ill, especially if you are vomiting and cannot take pills, seek emergency medical care immediately. Make sure you have a hydrocortisone injection with you at all times, and make sure that you and those around you (in case you're not conscious) know how and when to administer the injection. • Carry a medical ID card and wear a bracelet telling emergency workers that you have adrenal insufficiency and need cortisol. This way, they can treat you right away if you are injured. Remember: SOME PEOPLE WHO LACKED GROWTH HORMONE MAY ALSO LACK CORTISOL, A HORMONE NECESSARY FOR LIFE. LACK OF CORTISOL CAN CAUSE ADRENAL CRISIS, A PREVENTABLE CONDITION THAT CAN CAUSE DEATH IF TREATED IMPROPERLY . Deaths from adrenal crisis can be prevented if patients and their families recognize the condition and are careful to treat it right away. Adrenal crisis is a medical emergency. Know the symptoms and how to adjust your medication when you are ill. TAKING THESE PRECAUTIONS CAN SAVE YOUR LIFE. DebMV suggested that you should have a Medic Alert bracelet from medicalert.org Toll free number in the USA is: by phone 7 days a week, 24 hours a day: 888-633-4298 209-668-3333 from outside the U.S. Lorrie got this important info for us. Alternative names: adrenal crisis; Addisonian crisis; acute adrenal insufficiency Definition: An abrupt, life-threatening state caused by insufficient cortisol, a hormone produced and released by the adrenal gland. Causes, incidence, and risk factors: The two adrenal glands are located on top of the kidneys. They consist of the outer portion, called the cortex, and the inner portion, called the medulla. The cortex produces three types of hormones, which are called corticosteroids. The androgens and estrogens affect sexual development and reproduction. The glucocorticoids maintain glucose regulation, suppress the immune response, and provide for the response to stress (cortisol). The mineralocorticoids regulate sodium and potassium balance. These hormones are essential for life. Acute adrenal crisis is an emergency caused by decreased cortisol. The crisis may occur in a person with Addison's disease, or as the first sign of adrenal insufficiency. More uncommonly, it may be caused by a pituitary gland disorder. It may also be caused by sudden withdrawal of corticosteroids, removal or injury of the adrenal glands, or destruction of the pituitary gland. Risk factors are stress, trauma, surgery, or infection in a person with Addison's disease, or injury or trauma to the adrenal glands or the pituitary gland. The incidence is 4 out of 100,000 people. Prevention: People who have Addison's disease should be taught to recognize signs of potential stress that may precipitate an acute adrenal crisis (cause it to occur suddenly and unexpectedly). Most people with Addison's disease are taught to give themselves an emergency injection of hydrocortisone in times of stress. It is important for the individual with Addison's disease to always carry a medical identification card that states the type of medication and the proper dose needed in case of an emergency. Never omit medication. If unable to retain medication due to vomiting, notify the health care provider. Symptoms: headache profound weakness fatigue slow, sluggish, lethargic movement nausea vomiting low blood pressure dehydration high fever chills shaking confusion or coma darkening of the skin rapid heart rate joint pain abdominal pain unintentional weight loss rapid respiratory rate unusual and excessive sweating on face and/or palms skin rash or lesion may be present flank pain appetite, loss Signs and tests: An ACTH (cortrosyn) stimulation test shows low cortisol. The cortisol level is low. The fasting blood sugar may be low. The serum potassium is elevated. The serum sodium is decreased. This disease may also alter the results of the following tests: sodium, urine 17-hydroxycorticosteroids Treatment: In adrenal crisis, an intravenous or intramuscular injection of hydrocortisone (an injectable corticosteroid) must be given immediately. Supportive treatment of low blood pressure is usually necessary. Hospitalization is required for adequate treatment and monitoring. Low blood pressure may be treated with intravenous fluids. If infection is the cause of the crisis, antibiotic therapy is indicated. Expectations (prognosis): Death may occur due to overwhelming shock if early treatment is not provided. Complications: shock coma seizures For more personal experiences, see the message boards A Personal Experience Shauna Wrote...What adrenal crisis feels like As with most mornings, this one began with nausea. I'm used to it, so didn't think much about it. I made it to the bathroom and was feeling really awful. Decided to just go to the toilet because I had that impending feeling. Next thing I knew I was waking up, but it wasn't like a normal awakening. I remember being in a tunnel and then thinking, "Well, this isn't where I normally sleep." Then I realized of course it wasn't where I normally slept! Normally I sleep in a bed, not wedged between a wall and the toilet. (Not that I was that coherent). I was completely disoriented as to time, place, etc. I had one big yell in me and yelled "HELP". My four year old brought me the phone and my son got me a towel. I called 911 (thank God I had a 911 sticker on the phone because I really couldn't remember the number). I kept telling the dispatcher I was in adrenal crisis. Of course, that meant nothing to him. I had my son get my shot but somewhere I knew that I wasn't together enough to give myself the shot. So I puked a few more times and told my son to take my daughter upstairs so she wasn't scared when the ambulance came. I decided to rest on the floor of the bathroom. I had, at first, tried to go to the couch but I was much, much too weak. So my son directed the medics into the bathroom. They eventually carried me to the couch. I kept telling them about my shot, but couldn't remember where I had my letter from Dr. Cook. They thought I was an overdose or a psych case (they told me later). They had all my pills lined up and were asking when I took this or that one last. I finally told them to look at the friggin date on the bottle and see that they were all 3/4 full. (I was agitated, too) They put the heart monitor on me and inserted an IV and took me to the hospital. I puked one more time in the ambulance and when we arrived (though my tummy was empty). My brother and sister-in-law where there (hospital) when I arrived and my mom had arrived at my house to take care of the kids as we were leaving. Then she met us up there. Before we arrived at the hospital, my husband had faxed a copy of Dr. Cook's letter on how to treat me over (Brian was at work when this happened). So they came in and inserted another fluid bag. Then about ten minutes later (after my brother told the doctor, "I fully expect that my sister will have her shot withing the next ten minutes" - patient advocates are a good thing because I could've cared less at that point) I had my 100 mg shot of solu-medrol. I was lucky because my doctor in the ER knew about adrenal crisis. Then I had another bag and repeated tests of my bp and heartrate. It wasn't pretty - every time my bp was low, generally around 80/50, sometimes lower and my heart rate was 120+. They decided to admit me, but I fought and fought. Once I got a shot of Zofran (anti-nausea, best in the world) and my cortisone and some fluid, I was feeling decent. I look and feel like I've been through a war, but I'm alive. As to why this happened, we're not entirely sure at this point. I have one urine test that they're culturing or something. I might also have shingles, but again - that'll show up in due time (a day or two, if I have it). Or, as Dr. Cook said when I talked to him, sometimes we just don't know. I was doing so well on my meds, back up to 27.5 and feeling good. Now I'm on 40 for the next day, and 30 for a week. Frustrating. Adrenal crisis is awful. It's terrifying. And what makes me want to cry as I write this (who am I kidding, I am crying) is that I couldn't have cared less if I lived or died. I was not in my right mind, I felt so horrid. All the surgeries combined, today was the worst day I've ever had. And it was a huge wake-up call. I need to have a better medic-alert bracelet because they had no idea what "Stress dose steroids" were. I need to have a list of what to do in crisis on my fridge, in my purse and with every family member. Same with the letter from my endo on how to treat me. Because when I'm in crisis, I don't know any better. I need to have things that speak for me. Thank God for family that knows, and for good doctors. Anyway, I didn't post this to scare anyone but Adrenal Crisis is not something to take lightly. When I felt myself hurting the night before (back pain, possibly shingles though I doubt it) I should've just taken an extra 5 mgs. Would've been a heck of a lot easier than what happened today. A few funny parts of the day: My daughter had to dress herself and my mom was in a hurry to get her to daycare and come see me. So my daughter spent the day at daycare in tights, too small shorts and a turtleneck (none of which came close to matching). Oh, and black patent leather shoes. Also, the medics asked what I weighed. Out of habit, I said 222 (my highest Cushing's weight). They ALL did a double take and said no way. One guessed 140 - bless his heart. I never did get myself weighed so I don't even know. Oh, and if any of you called at about 8 am and spoke with a medic, call me back. lol I had a blocked call at 8am, and I vaguely remember the medic talking to someone but I wasn't with it enough to ask who called. lol Something I don't say enough: I love and value you all. More personal experiences. Sue sent this along: Early Crisis Intervention The following is from the June 2002 issue of Addison News. Joan Hoffman, editor/publisher, kindly sent this issue to me and I wanted to share this with you. This is a flow chart to show the pathway of events in a crisis. It is very important to intervene as early as possible. Use your injectable and head for the hospital! The rate at which these events take varies with individuals and circumstances. The chart is a variation of one found in a nursing encyclopedia.
  4. Adults with adrenal insufficiency who are adequately treated and trained display the same incidence of COVID-19-suggestive symptoms and disease severity as controls, according to a presenter. “Adrenal insufficiency is supposed to be associated with an increased risk for infections and complications,” Giulia Carosi, a doctoral student in the department of experimental medicine at Sapienza University of Rome, said during a presentation at the virtual European Congress of Endocrinology Annual Meeting. “Our aim was to evaluate the incidence of COVID symptoms and related complications in this group.” In a retrospective, case-control study, Carosi and colleagues evaluated the incidence of COVID-19 symptoms and complications among 279 adults with primary or secondary adrenal insufficiency (mean age, 57 years; 49.8% women) and 112 adults with benign pituitary nonfunctioning lesions without hormonal alterations, who served as controls (mean age, 58 years; 52.7% women). All participants lived in the Lombardy region of northern Italy. Participants completed a standardized questionnaire by phone on COVID-19-suggestive symptoms, such as fever, cough, myalgia, fatigue, dyspnea, gastrointestinal symptoms, conjunctivitis, loss of smell, loss of taste, upper respiratory tract symptoms, thoracic pain, headaches and ear pain. Patients with primary or secondary adrenal insufficiency were previously trained to modify their glucocorticoid replacement therapy when appropriate. From February through April, the prevalence of participants reporting at least one symptom of viral infection was similar between the adrenal insufficiency group and controls (24% vs. 22.3%; P = .788). Researchers observed “highly suggestive” symptoms among 12.5% of participants in both groups. No participant required hospitalization and no adrenal crisis was reported. Replacement therapy was correctly increased for about 30% of symptomatic participants with adrenal insufficiency. Carosi noted that few nasopharyngeal swabs were performed (n = 12), limiting conclusions on the exact infection rate (positive result in 0.7% among participants with adrenal insufficiency and 0% of controls; P = .515). “We can conclude that hypoadrenal patients who have regular follow-up and trained about risks for infection and sick day rules seem to present the same incidence of COVID-19 symptoms and the same disease severity as controls,” Carosi said. As Healio previously reported, there is no evidence that COVID-19 has a more severe course among individuals with primary and secondary adrenal insufficiency; however, those with adrenal insufficiency are at increased risk for respiratory and viral infections, and patients experiencing major inflammation and fever are at risk for life-threatening adrenal crisis. In a position statement issued by the American Association of Clinical Endocrinologists in March, researchers wrote that people with adrenal insufficiency or uncontrolled Cushing’s syndrome should continue to take their medications as prescribed and ensure they have appropriate supplies for oral and injectable steroids at home, with a 90-day preparation recommended. In the event of acute illness, those with adrenal insufficiency are instructed to increase their hydrocortisone dose per instructions and call their health care provider for more details. Standard “sick day” rules for increasing oral glucocorticoids or injectables would also apply, according to the statement. From https://www.healio.com/news/endocrinology/20200910/no-increased-covid19-risk-with-adequately-treated-adrenal-insufficiency
  5. Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the viral strain that has caused the coronavirus disease 2019 (COVID-19) pandemic, has presented healthcare systems around the world with an unprecedented challenge. In locations with significant rates of viral transmission, social distancing measures and enforced ‘lockdowns’ are the new ‘norm’ as governments try to prevent healthcare services from being overwhelmed. However, with these measures have come important challenges for the delivery of existing services for other diseases and conditions. The clinical care of patients with pituitary disorders typically involves a multidisciplinary team, working in concert to deliver timely, often complex, disease investigation and management, including pituitary surgery. COVID-19 has brought about major disruption to such services, limiting access to care and opportunities for testing (both laboratory and radiological), and dramatically reducing the ability to safely undertake transsphenoidal surgery. In the absence of clinical trials to guide management of patients with pituitary disease during the COVID-19 pandemic, herein the Professional Education Committee of the Pituitary Society proposes guidance for continued safe management and care of this population. Introduction In many centers worldwide, the evaluation and treatment of pituitary disorders has already been substantially impacted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the viral strain that has caused the coronavirus disease 2019 (COVID-19) pandemic. With reduced access to routine clinical services, patients with suspected or confirmed pituitary disease face the prospect of delays in diagnosis and implementation of effective treatment plans. Furthermore, patients undergoing surgery may be at increased risk from COVID-19, whilst the risk of infection to healthcare providers during pituitary surgery is of particular concern. Herein, we discuss several clinical scenarios where clinical care can be adjusted temporarily without compromising patient outcomes. For this expert guidance, The Pituitary Society Professional Education Committee, which includes neuroendocrinologists and neurosurgeons from four continents, held an online video conference call with subsequent discussions conducted through email communications. The suggestions are not evidence-based due to the novelty and timing of the pandemic; furthermore, re-evaluation every few months in light of emerging data, is recommended. The approach will also likely vary from country to country depending on the risk of viral infection, local rules for “lockdown”, and the capabilities of individual health care systems. Pituitary surgery challenges during the COVID-19 pandemic The significant challenges to pituitary surgery presented by COVID-19 can be considered in terms of the phase of the pandemic, the patient, the surgeon, and the healthcare institution (Table 1). Table 1 Pituitary surgery challenges and recommendations during COVID-19 pandemic Full size table The World Health Organization (WHO) recognizes several phases of a pandemic wave [1]. When the pandemic is in progress (WHO pandemic phase descriptions; Phase 6) [2] there is a high prevalence of active cases. In the immediate post-peak period, the pandemic activity appears to wane, but active cases remain, and additional waves may follow. Previous pandemics have had many such waves, each separated by several months (www.cdc.gov). The corollary is that there will remain a significant possibility of patients and surgeons contracting COVID-19 until a vaccine is developed or herd immunity is achieved by other means. The patient requiring pituitary surgery may be especially vulnerable to COVID-19 due to age and/or comorbidities. This is particularly true of patients with functioning pituitary adenomas such as those with Cushing’s disease (CD), where cortisol excess results in immunosuppression, hypercoagulability, diabetes mellitus and hypertension, and acromegaly which is also frequently complicated by diabetes mellitus and hypertension. Moreover, the risk for patients undergoing surgery that develop COVID-19 in the perioperative period appears to be very high. In a retrospective analysis of 34 patients who underwent elective—non pituitary—surgeries during the incubation period of COVID-19, 15 (44.1%) patients required admission to the intensive care unit, and 7 (20.5%) died [3]. Although this study included cases of variable technical difficulty, complexity and risk—from excision of breast lump to total hip replacement—we would suggest that patients undergoing pituitary surgery that develop COVID-19 are likely to be at similar or greater risk. These risks must be balanced carefully against the natural history of pituitary disease and, in particular, whether undue delay may result in irreversible morbidity such as visual loss in patients with pituitary apoplexy. The surgeon remains in direct contact with the patient throughout their operation and is therefore at risk of contracting COVID-19 if the patient has an active infection. Iorio-Morin et al. [4] suggest that surgeons performing transsphenoidal pituitary surgery (TSS) may be at the greatest risk, because such surgery is performed under general anesthesia, requiring intubation and extubation, exposes the colonized nasal mucosa, and usually involves sphenoid drilling, which can result in aerosolization of contaminated tissues. The healthcare institution will invariably divert resources from elective services to support the care of patients with COVID-19, with a knock-on effect on the capacity to manage patients with pituitary disease (Table 1). Bernstein et al. [5] suggest that surgery is particularly affected in such reorganization, because of both the need for redeployment of anesthesiologists able to manage patient airways, and availability of protective physical resources such as masks, gowns, and gloves (personal protective equipment; PPE). Furthermore, in areas with high number of infections, several operating rooms (OR)s were converted into intensive care units (ICU) to treat patients with COVID-19, thus limiting patients’ access to elective surgery even more. Recommendations for pituitary surgery When the viral risk is decreasing in a specific geographic area, we would advocate a stepwise, but flexible normalization of activity, addressing each of the aforementioned factors. Burke et al. [6] proposed a staged volume limiting approach to scheduling surgical cases depending on the number of community cases and inpatients with COVID-19, and staffing shortages. In extreme cases, where significant assistance is required from outside institutions, only emergent cases can proceed. Until further data become available, all patients undergoing pituitary surgery should undergo screening for COVID-19, until a vaccine is developed or herd immunity is achieved by other means. At the least, we recommend screening patients for cough, fever, or other recognized symptoms of infection with SARS-CoV-2, and taking swab samples for testing if there is any clinical suspicion. Depending on the level of COVID-19 activity in the community, and available resources, a more exhaustive strategy may be appropriate, including isolation of patients for up to 2 weeks before surgery, paired swabs and/or serological tests for all patients irrespective of symptoms, and routine chest X-ray or chest computed tomography (CT), depending on local guidance. In patients with COVID-19 in whom surgery is indicated, in general we recommend delaying surgery if possible, ideally until patients no longer have symptoms and have a negative swab test result. The nature of the patient’s pituitary disease is an important consideration, and we propose stratifying cases as emergent, urgent, or elective. We recommend that patients continue to be operated on in an emergent fashion if they present with pituitary apoplexy, acute severe visual loss, or other significant mass effect, or if there is concern regarding malignant pathology. Selected patients with slowly progressive visual loss, functioning tumors with aggressive clinical features, and those with an unclear diagnosis, may also benefit from urgent (but not emergent) surgery, with decisions made on a case-by-case basis. Patients with incidental and asymptomatic tumors, known nonfunctioning adenomas [7] or functioning tumors, which are well controlled with medical therapy, can be scheduled as elective cases. In most cases, TSS remains the safest, most effective, and most efficient approach to pituitary tumors. In a series of 9 consecutive patients without COVID-19 undergoing pituitary and skull base surgery during the pandemic, Kolias et al. [8] reported that none of the patients or staff contracted COVID-19 following adoption of a standardized risk-mitigation strategy. In the rare instances where a patient with COVID-19 requires emergent surgery that cannot be deferred, alternative transcranial approaches may be considered (avoiding nasal mucosa). To replace high-speed drilling, the use of non-powered tools such as rongeurs and chisels has been recommended. If this is not possible large suction tubes can be used to aspirate as much particulate matter as possible [9]. In such cases, the availability and use of PPE, and in particular filtering facepiece (FFP3) respirators, is mandated. Depending on the level of COVID-19 activity in the community, and the availability and effectiveness of testing, PPE may be appropriate in all cases. At an institutional level, there must remain flexibility in anticipation of further waves of COVID-19. This necessitates a reduction in capacity, particularly in available ICU beds, that must be recognized when scheduling challenging surgical cases. In the long term, resumption of full elective workloads depends on wider national and international factors, including widespread testing, and widespread immunity through vaccination or other means. Pituitary diseases diagnosis and management Acromegaly Acromegaly, a condition that arises from growth hormone (GH) excess, generally occurs as a result of autonomous GH secretion from a somatotroph pituitary adenoma [10, 11], is associated with substantial morbidity and excess mortality, which can be mitigated by prompt and adequate treatment [12]. Diagnosis is often delayed because of the low prevalence of the disease, the frequently non-specific nature of presenting symptoms, and the typically subtle progression of clinical features [10, 11]. During the COVID-19 pandemic many outpatient clinics have closed or limited work hours. Patients are often reluctant to seek care out of fear of possible exposure to the coronavirus. Therefore, even longer diagnostic delays are anticipated. In addition, patients who present with vision loss and larger tumors encroaching upon the optic apparatus are at risk for experiencing persistent visual compromise unless the optic chiasm and nerves are promptly decompressed. To improve patient access to care and minimize potentially deleterious delays in diagnosis and treatment, clinicians may conduct virtual visits (VV) using secure, internet-based electronic medical record platforms. A detailed history can be obtained and a limited physical examination is possible, including inspection of the face, skin and extremities. Diagnosis Establishing the diagnosis of acromegaly requires testing of serum insulin-like growth factor-I (IGF-I) levels [11] (Box 1). Access to accurate IGF-I assays is critical in light of the substantial analytical and post-analytical problems that have plagued several IGF-I immunoassays. While the oral glucose tolerance test (OGTT) is considered the diagnostic “gold standard”, this test is not essential in many patients, including those with a clear-cut clinical picture and an unequivocally elevated serum IGF-I level. Deferring the lengthy (2-h) OGTT may minimize the risk of potential exposure to infectious agents. Given the over-representation of macroadenomas in patients with acromegaly, pituitary imaging is indicated, preferably by a pituitary-specific magnetic resonance imaging (MRI) protocol, although CT may be performed to rule out a large tumor if MRI is not feasible. Obtaining imaging at satellite sites detached from major hospitals may also decrease the risk of infection exposure. Management Transsphenoidal pituitary surgery remains the treatment of choice for most patients with acromegaly [10, 11], and patients with visual compromise as a result of a pituitary adenoma compressing the optic apparatus should still undergo pituitary surgery promptly. Other patients could be treated medically until the pandemic subsides. Medical treatment options are somatostatin receptor ligands (SRLs), octreotide long-acting release (LAR), lanreotide depot and pasireotide LAR, pegvisomant and cabergoline (used off-label) [13]. Medical therapies can be effective in providing symptomatic relief, control GH excess or action, and potentially reduce tumor size (except pegvisomant, which does not have direct antiproliferative effects). Preoperative medical therapy has been reported to improve surgical outcomes in some, but not all studies. Pasireotide, which potentially can induce QTc prolongation, should be used with caution in patients who are taking, either as prophylaxis or treatment, medications for COVID-19 (azithromycin, hydroxychloroquine), which can also have an effect on QTc interval. Furthermore, as hyperglycemia is very frequent in patients treated with pasireotide and needs close monitoring at start of the treatment, this treatment should be reserved for truly resistant cases, with large tumors and who cannot have surgery yet. Notably, lanreotide depot, cabergoline or pegvisomant can be administered by the patient or a family member and therefore an in-person visit to a clinic is not required. If SRLs that require health care professional administration are required, raising the dose may allow the interval between injections to be extended beyond 4 weeks while maintaining disease control. Virtual visits can be implemented to monitor the patient’s course and response to medical therapy during the pandemic. Careful management of comorbidities associated with acromegaly remains an essential part of patient care [14, 15]. Prolactinomas Hyperprolactinemia may be physiological in origin or arise because of an underlying pathophysiologic cause, medication use or laboratory artifact. Therefore, an initial evaluation for hyperprolactinemia should include a comprehensive medication history, a thorough evaluation for secondary causes, including primary hypothyroidism, and a careful assessment for clinical features of hyperprolactinemia, including hypogonadism and galactorrhea. Unless a secondary cause of hyperprolactinemia can be established definitively, further investigation is indicated to evaluate the etiology of hyperprolactinemia. Diagnosis The diagnosis of a lactotroph adenoma can be inferred in most patients based on the presence of a pituitary adenoma and an elevated prolactin level, which is typically proportionate in magnitude to adenoma size. Pituitary imaging (MRI or CT) is therefore a key step in the investigation of hyperprolactinemia. Evaluation for hypopituitarism is also necessary. Management Although observation and routine follow-up with serial prolactin levels and imaging is acceptable for patients who are asymptomatic and who have a microadenoma, most patients diagnosed with a prolactinoma will require treatment. Dopamine-agonists (DA) can normalize prolactin levels and lead to reduction in size of the lactotroph adenoma [16]. In patients who have a microadenoma and who are not seeking fertility, hormone-replacement therapy may also be appropriate if serum prolactin is routinely followed and imaging performed as necessary. Medical therapy can be managed effectively and efficiently via VVs coupled with laboratory/imaging studies as needed. However, in all patients in whom a DA will be initiated, it is critical that a comprehensive psychiatric history is obtained prior to commencing treatment. Patients may not readily volunteer their psychiatric history and may not appreciate the relevance of such information. For example, until specifically questioned about their psychiatric history, the patient described in the illustrative case (Box 2) did not report a history of severe depression, suicide attempt and prolonged psychiatric hospitalization 8 months prior to presentation with hyperprolactinemia. At the time of the visit, he was not taking any psychiatric medications and was not under the care of a mental health team. Given this patient’s significant psychiatric history, lack of ongoing psychiatric care, and the well-recognized adverse effects of DA therapy, including increased impulsivity, depression and psychosis [17], a DA was not initiated. Counseling on potential DA side-effects is crucial, as they may also present in individuals with no prior psychiatric history [17]. Furthermore, during the COVID-19 pandemic when there is reduced access to routine medical and mental health care, patients who develop symptoms of severe depression may not have ready access to mental health services, or may not seek care. Therefore, it is particularly important to make patients aware of these potential side effects and the critical importance of reporting them. In the small number of patients for whom medical therapy is not possible and where surveillance is not appropriate (e.g., macroprolactinoma with visual loss) the risks and benefits of surgical intervention will need to be carefully weighed. Cushing’s disease Left untreated, CD has significant morbidity and mortality, and delays in diagnosis (from a few months to even years) are common. Clinical presentation is also very variable with some patients having subtle symptoms while others present with more striking/classical features. Severe hypercortisolemia induces immunosuppression, which may place patients with untreated CD at particular risk from COVID-19. New patients referred for endocrinology evaluation with clinical suspicion of Cushing’s Diagnosis Screening for, and confirmation of Cushing’s syndrome (CS) and, furthermore, localization for CD is laborious and requires serial visits and testing procedures [18, 19]. If initial laboratory abnormalities are consistent with hypercortisolemia, a VV should allow for an estimate of the severity of clinical presentation and facilitate planning for further testing and treatment. Careful questioning for potential causes of exogenous CS (including, but not limited to, history of high-dose oral corticosteroids, intraarticular injections or topical preparations) is an important first step. Subsequently, establishing the likelihood and pretest probability of CS is more important than ever now, when testing may be delayed. While presentation varies significantly between patients, some features, although not all highly sensitive, are more specific, e.g. easy bruising, facial plethora, large wide > 1 cm violaceous striae, proximal weakness and hypokalemia. Diagnosis of CS is often challenging even under normal circumstances, however, a diagnosis by VV is more nuanced and difficult. Conversely, if a patient has a high likelihood of CS, we recommend limited laboratory evaluation (urinary free cortisol (UFC), adrenocorticotropic hormone (ACTH), liver panel, basic metabolic panel), preferably at a smaller local laboratory rather than a Pituitary Center, to reduce viral risk exposure. Salivary cortisol samples could represent a hazard for laboratory staff and they are prohibited in some countries [18, 19]. In the US, laboratories have continued to process salivary cortisol samples and salivary cortisol has higher sensitivity compared with UFC and has the convenience of mailing multiple specimens at a time, without travel [18, 19]. Though usually we strongly recommend sequential laboratory testing under normal circumstances, limiting trips to a laboratory is preferred during COVID-19. If preliminary assessment confirms ACTH-dependent CS [18, 19] and no visual symptoms are reported, imaging may be delayed. However, in the presence of any visual symptoms, and recognizing the challenges of undertaking a formal visual field assessment, proceeding directly with MRI or CT (shorter exam time and easier machine access) imaging, will allow confirmation or exclusion of a large pituitary adenoma compressing the optic chiasm. If the latter is confirmed, the patient will need to be evaluated by a neurosurgeon. In contrast, a small pituitary adenoma may not be visible on CT, but in such cases MRI may be deferred for a few months until COVID-19 restrictions limiting access to care are lifted. Another VV will help to decide, in conjunction with patient’s preference, the best next step, which in cases of more severe clinical Cushing’s, and in the absence of a large pituitary adenoma, would be medical therapy. The magnitude of 24 h-UFC elevation could also represent a criterion for primary therapy, since higher values have been associated with increased risk of infection. In parallel, it is also important to address comorbidities including diabetes mellitus, hypertension and hyperlipidemia. In light of the increased risk of venous thromboembolism, in discussion with primary care providers, plans for regular mobilization/exercise as permitted (including at home when orders to stay in are in place) and/or prophylactic low weight molecular heparin should be considered. Management First line medical therapy options vary, depending on country availability, regulatory approval and patient comorbidities. Ideally, an oral medication, which is easier to administer is preferred; options include ketoconazole, osilodrostat or metyrapone [20, 21]. Cabergoline therapy, which has lesser efficacy [20, 21] compared with adrenal steroidogenesis inhibitors, can be also attempted in very mild cases. The initial laboratory profile should be reviewed to exclude significant abnormalities of renal and/or liver function prior to commencing treatment. Starting doses of all medications should be the lowest possible to avoid adrenal insufficiency (AI) and up titration should be slow, with VVs weekly if possible. All patients with CS on any type of medical therapy should have prescribed glucocorticoids (GC) both in oral and injectable forms available at home and information regarding AI should be provided during a VV when starting therapy for CS. Down titration of other medications for diabetes and hypertension may also be needed over time. Pasireotide (both subcutaneous and LAR preparations) would be a second line option, reflecting higher risk of significant hyperglycemia that would require treatment [22]. If the clinical features of CS are mild and longstanding, with no acute deterioration, another possibility is to aggressively treat the associated comorbidities for a few months; depending on local circumstances, this may actually be less risky for the patient by avoiding the risk of AI/crisis and the need for an emergency department (ED) visit and/or admission. For patients with Cushing’s disease with endocrinology chronic care Patients in remission after surgery with adrenal insufficiency on glucocorticoid replacement These patients are likely to remain at slightly higher risk of COVID-19 infection due to immunosuppression from previous hypercortisolemia. Furthermore, GC doses should be adjusted to prevent adrenal crisis and visits to an ED. Lower GC daily doses (10–15 mg hydrocortisone/day) are now frequently used for replacement and virtual and/or phone visits are encouraged to evaluate an appropriate regimen and sufficient supplies of medication and injectable GC (at home) should be prescribed. Patients with potential symptoms of under replacement may require an increase in daily dose, while balancing any risk of GC over replacement and possible consequent immunosuppression. Patients in non-remission treated with medical therapy (dependent on country availability) Doses may need to be adjusted to reduce the risk of AI/crisis and reduce the need for serial laboratory work. Monthly or bimonthly VVs are appropriate for clinical evaluation and up titration should be slower than usual. Patients with CD on medical therapy need to have at home prescriptions for oral and injectable GC and instruction on AI surveillance. Patients should also be advised, that if they develop a fever, to stop Cushing’s medication for few days; if they develop AI symptoms, GC administration will be required. In some countries, block and replace regimens are also employed to avoid risk of AI. Of note, for mifepristone, a glucocorticoid receptor (GR) antagonist, patients will require much higher doses of GC to reverse the blockade (1 mg of dexamethasone approximately per 400 mg of mifepristone) and for several days, as drug metabolites also have GR antagonist effects. Furthermore, for all patients who have made dose changes or discontinued medications for Cushing’s, it is essential to follow very closely and consider adjustments in the doses of concomitant medications, especially insulin, other antidiabetic and antihypertensive medications, and potassium supplements. If patients have history of radiotherapy and are still on medications for CD, a VV every few months should be performed to determine if anti-Cushing’s treatment can be slowly down-titrated (to avoid AI). A morning serum cortisol would be ideal to rule out AI off medications, however, if laboratory testing cannot be undertaken safely, clinical evaluation by serial VVs can be helpful. While head-to-head data will never be available, in COVID-19 hotspots, given the higher risk of infection with laboratory testing or face to face visits, mild hypercortisolemia might be “better” than adrenal crisis, especially in the short term! Patients with CD have increased rates of depression, anxiety and can have decreased quality of life (QoL) even when in long-term remission, thus in the challenging circumstances of the current pandemic it is it even more important to focus on psychological evaluation during virtual endocrinology visits, with referral to virtual counseling as needed. From https://link.springer.com/article/10.1007/s11102-020-01059-7?utm_source=newsletter_370
  6. The use of an insulin pump to deliver continuous pulsatile cortisol may be a viable treatment option in patients with severe adrenal insufficiency who are unresponsive to oral corticosteroids, according to study results presented at the 28th Annual Congress of the American Association of Clinical Endocrinologists, held April 24 to 28, 2019, in Los Angeles, California. According to the investigators, increasing oral steroid doses may be required to prevent adrenal crisis in patients with adrenal insufficiency. However, in light of the associated side effects of long-term use of steroids, an alternative treatment method is needed. Insulin pumps, typically used to treat patients with diabetes, can be used to deliver steroids and may provide symptom control, prevent adrenal crisis, and lower required corticosteroid dose. The current study enrolled patients with adrenal insufficiency who could not absorb oral corticosteroid treatment or were not responding to treatment. Of 118 patients with adrenal insufficiency, 6 patients were switched to pump treatment. The results indicated that the use of cortisol pumps was associated with a 78.5% risk reduction for adrenal crisis compared with oral corticosteroids. As hydrocortisone dose was gradually tapered using the cortisol pump, there was a mean dose reduction of 62.77 mg compared with oral corticosteroid therapy. The researchers noted that in addition to reducing the number of adrenal crises, use of a cortisol pump was found to be associated with better symptom control and quality of life. “Continuous pulsatile cortisol replacement via pump is an option for management of severe adrenal insufficiency in patients unresponsive to oral therapy,” concluded the researchers. Reference Khalil A, Ahmed F, Alzohaili O. Insulin pump for adrenal insufficiency, a novel approach to the use of insulin pumps to deliver corticosteroids in patients with poor cortisol absorption. Presented at: American Association of Clinical Endocrinologists 28th Annual Scientific & Clinical Congress; April 24-28, 2019; Los Angeles, CA. From https://www.endocrinologyadvisor.com/home/conference-highlights/aace-2019/cortisol-pumps-may-be-viable-option-to-reduce-adrenal-crisis-in-severe-adrenal-insufficiency/
  7. The New Jersey Department of Health passed a waiver in October of last year that allows ambulances to carry Solu-Cortef, for the purposes of treating an adrenal crisis. As a result, New Jersey ambulances can be better prepared to treat adrenal insufficiency. This news was brought to NADF by Karen Fountain of the CARES Foundation, who has been helping push state health directors to accept protocols to help treat adrenal insufficient patients during an emergency. Adrenal insufficient people in New Jersey should contact their local EMS to make them aware of the waiver, and encourage them to carry Solu-Cortef in their ambulances. The hope is that other states, and eventually the entire coun- try and beyond, will start having their ambulances carry the needed medication to treat adrenal crisis. http://www.nadf.us
×
×
  • Create New...