Search the Community
Showing results for tags 'genetic'.
-
From the abstract (appearing in JCEM Feb 2021): PATIENT We present the case of a 10-year-old child who presented with CS at an early age due to bilateral adrenocortical hyperplasia (BAH). The patient was placed on low-dose ketoconazole (KZL), which controlled hypercortisolemia and CS-related signs. Discontinuation of KZL for even 6 weeks led to recurrent CS. CONCLUSIONS We present a pediatric patient with CS due to BAH and a germline defect in KCNJ5. Molecular investigations of this KCNJ5 variant failed to show a definite cause of her CS. However, this KCNJ5 variant differed in its function from KCNJ5 defects leading to PA. We speculate that GIRK4 (Kir3.4) may play a role in early human adrenocortical development and zonation and participate in the pathogenesis of pediatric BAH. Official: Cushing Syndrome in a Pediatric Patient With a KCNJ5 Variant and Successful Treatment With Low-dose Ketoconazole Pre-print (pdf): https://www.researchgate.net/publication/349635365_Cushing_Syndrome_in_a_Pediatric_Patient_With_a_KCNJ5_Variant_and_Successful_Treatment_With_Low-dose_Ketoconazole
- 1 reply
-
- 1
-
-
- adrenal
- hyperplasia
-
(and 2 more)
Tagged with:
-
Novel genetic associations could pave the way for early interventions and personalized treatment of an incurable condition. Scientists from the University of Bergen (Norway) and Karolinska Institutet (Sweden) have discovered the genes involved in autoimmune Addison's disease, a condition where the body's immune systems destroys the adrenal cortex leading to a life-threatening hormonal deficiency of cortisol and aldosterone. Groundbreaking study The rarity of Addison's disease has until now made scanning of the whole genome for clues to the disease's genetic origins difficult, as this method normally requires many thousands of study participants. However, by combining the world's two largest Addison's disease registries, Prof. Eystein Husebye and his team at the University of Bergen and collaborators at Karolinska Institutet in Sweden (prof. Kämpe) were able to identify strong genetic signals associated with the disease. Most of them are directly involved in the development and functioning of the human immune system including specific molecular types in the so-called HLA-region (this is what makes matching donors and recipients in organ transplants necessary) and two different types of a gene called AIRE (which stands for AutoImmune REgulator). AIRE is a key factor in shaping the immune system by removing self-reacting immune cells. Variants of AIRE, such as the ones identified in this study, could compromise this elimination of self-reacting cells, which could lead to an autoimmune attack later in life. Knowing what predisposes people to develop Addison's disease opens up the possibilities of determining the molecular repercussions of the predisposing genetic variation (currently ongoing in Prof. Husebye's lab). The fact that it is now feasible to map the genetic risk profile of an individual also means that personalised treatment aimed at stopping and even reversing the autoimmune adrenal destruction can become a feasible option in the future. ### Contact information: Professor at the University of Bergen, Eystein Husebye - Eystein.Husebye@uib.no - cell phone +47 99 40 47 88 Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system. From https://www.eurekalert.org/pub_releases/2021-02/tuob-nsi021221.php
Watch this Space!
More info coming soon
Some Helpful Links
Watch this Space!
More info coming soon
Watch this Space!
More info coming soon