Jump to content

Search the Community

Showing results for tags 'hpa axis'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Welcome!
    • Introduce Yourself
    • Guest Questions
    • Cushing's Basics
    • News Items and Research
    • Announcements
    • Questions about how these boards work?
  • Get Active!
    • Meetings, events and information
    • Fundraising Ideas
    • Cushing's Awareness Day, April 8
    • Spread the Word
    • Marathons
    • Cushing's Clothes Closet
    • Cushing's Library
    • Cushing's Store
  • Cushing's
    • Resources
    • Types of Cushing's
    • Symptoms
    • Tests
    • Treatments
  • Miscellaneous
    • Other Diseases
    • Good News / Attitude of Gratitude
    • Inspirational / Motivational
    • Quotes and Affirmations
    • Lighten Up!
    • Word Games
    • Miscellaneous Chit Chat
    • Current Events
    • Cushie Commerce
    • Internet Classes
    • Recipes

Blogs

  • MaryO'Blog
  • Christy Smith's Blog
  • rooon55's Blog
  • LLMart's Blog
  • regina from florida's Blog
  • terri's Blog
  • Canasa's Blog
  • Tberry's Blog
  • LisaMK's Blog
  • diane177432's Blog
  • Jen1978's Blog
  • GreenGal's Blog
  • Yada Yada Yada
  • Jinxie's Blog
  • SherryC's Blog
  • stjfs' Blog
  • kalimae7371's Blog
  • Kristy's Blog
  • kathieb1's Blog
  • Yavanna's Blog
  • Johnni's Blog
  • AutumnOMA's Blog
  • Will Power
  • dropsofjupiter's Blog
  • Lorrie's Blog
  • DebMV's Blog
  • FarWind's Blog
  • sallyt's Blog
  • dseefeldt's Blog
  • ladylena's Blog
  • steffie's Blog
  • Lori L's Blog
  • mysticalsusan1's Blog
  • cathy442's Blog
  • Kathy711's Blog
  • Shannonsmom's Blog
  • jack's Blog
  • Kandy66's Blog
  • mars72's Blog
  • singlesweetness33's Blog
  • michelletm's Blog
  • JC_Adair's Blog
  • Lisa-A's Blog
  • Jen3's Blog
  • tammi's Blog
  • Ramblin' Rose (Maggie's)
  • monicaroni77's Blog
  • monicaroni's Blog
  • Saz's Blog
  • alison
  • Thankful for the Journey
  • Judy from Pgh's Blog
  • Addiegirl's Blog
  • candlelite2000's Blog
  • Courtney likes to talk......
  • Tanya's Blog
  • smoketooash's Blog
  • meyerfamily8's Blog
  • Sheila1366's Blog
  • A Guide to Blogging...
  • Karen's Blog
  • barbj222222's Blog
  • Amdy's Blog
  • Jesh's Blog
  • pumpkin's Blog
  • Jazlady's Blog
  • Cristalrose's Blog
  • kikicee's Blog
  • bordergirl's Blog
  • Shelby's Blog
  • terry.t's Blog
  • CanadianGuy's Blog
  • Mar's Cushie Couch
  • leanne's Blog
  • honeybee30's Blog
  • cat lady's Blog
  • Denarea's Blog
  • Caroline's Blog
  • NatalieC's Blog
  • Ahnjhnsn's Blog
  • A journey around my brain!
  • wisconsin's Blog
  • sonda's Blog
  • Siobhan2007's Blog
  • mariahjo's Blog
  • garcia9's Blog
  • Jessie's Blog
  • Elise T.'s Blog
  • glandular-mass' Blog
  • Rachel Bridgewater's Blog
  • judycolby's Blog
  • CathyM's Blog
  • MelissaTX's Blog
  • nessie21's Blog
  • crzycarin's Blog
  • Drenfro's Blog
  • CathyMc's Blog
  • joanna27's Blog
  • Just my thoughts!
  • copacabana's Blog
  • msmith3033's Blog
  • EyeRishGrl's Blog
  • SaintPaul's Blog
  • joyce's Blog
  • Tara Lou's Blog
  • penybobeny's Blog
  • From Where I Sit
  • Questions..
  • jennsarad's Blog
  • looking4answers2's Blog
  • julie's blog
  • cushiemom's Blog
  • greydragon's Blog
  • AmandaL's Blog
  • KWDesigns: My Cushings Journey
  • cushieleigh's Blog
  • chelser245's Blog
  • melissa1375's Blog
  • MissClaudie's Blog
  • missclaudie92's Blog
  • EEYORETJBD's Blog
  • Courtney's Blog
  • Dawn's Blog
  • Lindsay's Blog
  • rosa's Blog
  • Marva's Blog
  • kimmy's Blog
  • Cheryl's Blog
  • MissingMe's Blog
  • FerolV's Blog
  • Audrey's (phil1088) Blog
  • sugarbakerqueen's Blog
  • KathyBair's Blog
  • Jenn's Blog
  • LisaE's Blog
  • qpdoll's Blog
  • blogs_blog_140
  • beach's Blog
  • Reillmommy is Looking for Answers...
  • natashac's Blog
  • Lisa72's Blog
  • medcats10's Blog
  • KaitlynElissa's Blog
  • shygirlxoxo's Blog
  • kerrim's Blog
  • Nicki's Blog
  • MOPPSEY's Blog
  • Betty's Blog
  • And the beat goes on...
  • Lynn's Blog
  • marionstar's Blog
  • floweroscotland's Blog
  • SleepyTimeTea's Blog
  • Shelly3's Blog
  • fatnsassy's Blog
  • gaga's Blog
  • Jewels' Blog
  • SusieQ's Blog
  • kayc6751's Blog
  • moonlight's Blog
  • Sick of Being Sick
  • Peggy's Blog
  • kouta5m's Blog
  • TerryC's Blog
  • snowii's Blog
  • azZ9's Blog
  • MaMaT333's Blog
  • missaf's Blog
  • libertybell's Blog
  • LyssaFace's Blog
  • suzypar2002's Blog
  • Mutley's Blog
  • superc's Blog
  • lisajo42's Blog
  • alaustin's Blog
  • Tina1962's Blog
  • Ill never complain a single word about anything.. If I get rid of Cushings disease.
  • puddingtoast's Blog
  • AmberC's Blog
  • annacox
  • justwaiting's Blog
  • RachaelB's Blog
  • MelanieW's Blog
  • My Blog
  • FLHeather's Blog
  • HollieK's Blog
  • Bonny777's Blog
  • KatieO's Blog
  • LilDickens' Mini World
  • MelissaG's Blog
  • KelseyMichelle's Blog
  • Synergy's Blog
  • Carolyn1435's Blog
  • Disease is ugly! Do I have to be?
  • A journey of a thousand miles begins with a single wobble
  • MichelleK's Blog
  • lenalee's Blog
  • DebGal's Blog
  • Needed Answers
  • Dannetts Blog
  • Marisa's Blog
  • Is this cushings?
  • alicia26's Blog
  • happymish's Blog
  • mileymo's Blog
  • It's a Cushie Life!
  • The Weary Zebra
  • mthrgonenuts' Blog
  • LoriW's Blog
  • WendyG's Blog
  • khmood's Blog
  • Finding Answers and Pissing Everyone Off Along the Way
  • elainewwjd's Blog
  • brie's Blog
  • dturner242's Blog
  • dturner242's Blog
  • dturner242's Blog
  • Stop the Violins
  • FerolV's Internal Blog
  • beelzebubble's Blog
  • RingetteLUVR
  • Eaglemtnlake's Blog
  • mck25's Blog
  • vicki11's Blog
  • vicki11's Blog
  • ChrissyL's Blog
  • tpatterson757's Blog
  • Falling2Grace's Blog
  • meeks089's Blog
  • JustCurious' Blog
  • Squeak's Blog
  • Kill Bill
  • So It Begins ! Cushings / Pituitary Microadenoma
  • Crystal34's Blog
  • Janice Barrett

Categories

  • Helpful Articles
    • Links
    • Research and News
    • Useful Information
  • Pages
  • Miscellaneous
    • Databases
    • Templates
    • Media

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests

Found 5 results

  1. The study covered in this summary was published on researchsquare.com as a preprint and has not yet been peer reviewed. Key Takeaways The hypothalamic-pituitary-adrenal (HPA) axis recovered in nearly three quarters of patients with Cushing disease (CD) within 2 years after successful trans-sphenoidal surgery (TSS), with a median recovery time of 12 months. Preoperative total triiodothyronine (TT3) level appears to be an independent predictor of central adrenal insufficiency (CAI) in CD patients with biochemical remission post surgery. Why This Matters Transient CAI typically occurs after successful TSS, requiring physiologic hydrocortisone replacement until HPA recovery. Inadequate replacement may result in glucocorticoid withdrawal symptoms, including adrenal crisis, while overreplacement could lead to glucocorticoid side effects. Findings have been inconsistent regarding recovery time in CD patients and factors predicting HPA axis recovery. The new findings could help clinicians predict HPA axis-function recovery time and adjust cortisone replacement treatment in postoperative CD patients. Study Design The retrospective study included 140 patients with biochemical remission following CD surgery at a single institution from 2014–2020. Key Results The HPA axis in 103 patients (73.6%) recovered during 2 years' postsurgical follow-up. In 57 patients (55% of this subgroup), it recovered within 12 months. Patients were considered to have recovered if they achieved central adrenal sufficiency (CAS). These patients were significantly younger and had significantly lower midnight levels of adrenocorticotrophic hormone at baseline than those with persistent CAI. The researchers found no significant differences in gender, disease duration, maximal tumor diameter, or history of surgery between the two groups at the time of their diagnosis with CD. Both TT3 and free triiodothyronine levels were significantly lower in patients with persistent CAI vs CAS. There were no significant differences between the two groups in other laboratory parameters, surgical approach, or extended compared with nonextended resection, but more patients in the persistent CAI group underwent partial hypophysectomy. In a multiple logistic regression analysis, TT3 levels at diagnosis independently and significantly predicted HPA recovery at 2-year follow-up post surgery after adjustment for gender, age, duration at diagnosis, maximum tumor diameter, history of surgery, surgical approach (endoscopic or microscopic transsphenoidal surgery), adenomectomy range, and the minimal serum cortisol level within the first 7 postoperative days. Among the 37 patients with persistent CAI at 2 years, 23 (62%) had multiple pituitary axis dysfunctions, including hypothyroidism (19 patients), hypogonadism (19), and central diabetes insipidus (5). Limitations This retrospective study could not prove the causality of TT3 level for influencing recovery of the HPA axis. However, the number of enrolled patients was relatively large, and follow-up was regular ― factors that make the conclusion credible and representative, the authors said. Disclosures The study received no commercial funding. The authors had no disclosures. This is a summary of a preprint research study, "The Recovery Time of Hypothalamic-Pituitary-Adrenal Axis After Curative Surgery in Cushing’s Disease and Its Predictor," by researchers at Huashan Hospital Fudan University, Shanghai, China, published on Research Square and provided to you by Medscape. This study has not yet been peer reviewed. The full text of the study can be found on researchsquare.com. Abstract Objective Patients with Cushing’s disease (CD) experienced transient central adrenal insufficiency (CAI) after successful surgery. However, the reported recovery time of hypothalamic-pituitary-adrenal (HPA) axis varied and the risk factors which could affect recovery time of HPA axis had not been extensively studied. This study aimed to analyze the duration of CAI and explore the risk factors affecting HPA axis recovery in post-operative CD patients with biochemical remission. Design and methods Medical records of diagnosis with CD in Huashan Hospital were reviewed between 2014 and 2020. 140 patients with biochemical remission and regular follow-up after surgery were enrolled in this retrospective cohort study according to the criteria. Demographic details, clinical and biochemical information at baseline and each follow-up (within 2 years) were collected and analyzed. Results Overall, 103 patients (73.6%) recovered from transient CAI within 2 years follow-up and the median recovery time was 12 months [95% confidence intervals (CI): 10–14]. The age and midnight ACTH at baseline were significantly lower, while the TT3 and FT3 levels were significantly higher in patients with recovered HPA compared to patients with CAI at 2-year follow-up(p < 0.05). In persistent CAI group, more patients underwent partial hypophysectomy. TT3 at diagnosis was an independent predictor of the recovery of HPA axis, even after adjusting for gender, age, duration, surgical history, maximum tumor diameter, surgical strategy, and postoperative nadir serum cortisol level (p = 0.04, OR: 6.03, 95% CI: 1.085, 22.508). Among patients with unrecovered HPA axis at 2-year follow-up, 23 CAI patients (62%) were accompanied by multiple pituitary axis dysfunction besides HPA axis, including hypothyroidism, hypogonadism, or central diabetes insipidus. Conclusion HPA axis recovered in 73.6% of CD patients within 2 years after successful surgery, and the median recovery time was 12 months. TT3 level at diagnosis was an independent predictor of postoperative recovery of HPA axis in CD patients. Moreover, patients coexisted with other hypopituitarism at 2-year follow-up had a high probability of unrecovered HPA axis. total triiodothyronine Cushing’s disease central adrenal insufficiency Read more at
  2. This article is based on reporting that features expert sources. Adrenal Fatigue: Is It Real? More You may have heard of so-called 'adrenal fatigue,' supposedly caused by ongoing emotional stress. Or you might have come across adrenal support supplements sold online to treat it. But if someone suggests you have the controversial, unproven condition, seek a second opinion, experts say. And if someone tries to sell you dietary supplements or other treatments for adrenal fatigue, be safe and save your money. (GETTY IMAGES) Physicians tend to talk about 'reaching' or 'making' a medical diagnosis. However, when it comes to adrenal fatigue, endocrinologists – doctors who specialize in diseases involving hormone-secreting glands like the adrenals – sometimes use language such as 'perpetrating a diagnosis,' 'misdiagnosis,' 'made-up diagnosis,' 'a fallacy' and 'nonsense.' About 20 years ago, the term "adrenal fatigue" was coined by Dr. James Wilson, a chiropractor. Since then, certain practitioners and marketers have promoted the notion that chronic stress somehow slows or shuts down the adrenal glands, causing excessive fatigue. "The phenomenon emerged from the world of integrative medicine and naturopathic medicine," says Dr. James Findling, a professor of medicine and director of the Community Endocrinology Center and Clinics at the Medical College of Wisconsin. "It has no scientific basis, and there's no merit to it as a clinical diagnosis." An online search of medical billing code sets in the latest version of the International Classification of Diseases, or the ICD-10, does not yield a diagnostic code for 'adrenal fatigue' among the 331 diagnoses related either to fatigue or adrenal conditions or procedures. In a March 2020 position statement, the American Association of Clinical Endocrinologists and American College of Endocrinology addressed the use of adrenal supplements "to treat common nonspecific symptoms due to 'adrenal fatigue,' an entity that has not been recognized as a legitimate diagnosis." The position statement warned of known and unknown health risks of off-label use and misuse of hormones and supplements in patients without an established endocrine diagnosis, as well as unnecessary costs to patients and the overall health care system. Study after study has refuted the legitimacy of adrenal fatigue as a medical diagnosis. An August 2016 systematic review combined and analyzed data from 58 studies on adrenal fatigue including more than 10,000 participants. The conclusion in a nutshell: "Adrenal fatigue does not exist," according to review authors in the journal BMC Endocrine Disorders. Adrenal Action You have two adrenal glands in your body. These small triangular glands, one on top of each kidney, produce essential hormones such as aldosterone, cortisol and male sex hormones such as DHEA and testosterone. Cortisol helps regulate metabolism: How your body uses fat, protein and carbohydrates from food, and cortisol increases blood sugar as needed. It also plays a role in controlling blood pressure, preventing inflammation and regulating your sleep/wake cycle. As your body responds to stress, cortisol increases. This response starts with signals between two sections in the brain: The hypothalamus and the pituitary gland, which act together to release a hormone that stimulates the adrenal glands to make cortisol. This interactive unit is called the hypothalamic pituitary adrenal axis. While some health conditions really do affect the body's cortisol-making ability, adrenal fatigue isn't among them. "There's no evidence to support that adrenal fatigue is an actual medical condition," says Dr. Mary Vouyiouklis Kellis, a staff endocrinologist at Cleveland Clinic. "There's no stress connection in the sense that someone's adrenal glands will all of a sudden just stop producing cortisol because they're so inundated with emotional stress." If anything, adrenal glands are workhorses that rise to the occasion when chronic stress occurs. "The last thing in the body that's going to fatigue are your adrenal glands," says Dr. William F. Young Jr., an endocrinology clinical professor and professor of medicine in the Mayo Clinic College of Medicine at Mayo Clinic in Rochester, Minnesota. "Adrenal glands are built for stress – that's what they do. Adrenal glands don't fatigue. This is made up – it's a fallacy." The idea of adrenal glands crumbling under stress is "ridiculous," Findling agrees. "In reality, if you take a person and subject them to chronic stress, the adrenal glands don't shut down at all," Findling says. "They keep making cortisol – it's a stress hormone. In fact, the adrenal glands are just like the Energizer Bunny – they just keep going. They don't stop." Home cortisol tests that allow consumers to check their own levels can be misleading, Findling says. "Some providers who make this (adrenal fatigue) diagnosis, provide patients with testing equipment for doing saliva cortisol levels throughout the day," he says. "And then, regardless of what the results are, they perpetrate this diagnosis of adrenal fatigue." Saliva cortisol is a legitimate test that's frequently used in diagnosing Cushing's syndrome, or overactive adrenal glands, Findling notes. However, he says, a practitioner pursuing an adrenal fatigue diagnosis could game the system. "What they do is: They shape a very narrow normal range, so narrow, in fact, that no normal human subject could have all their saliva cortisol (levels) within that range throughout the course of the day," he says. "Then they convince the poor patients that they have adrenal fatigue phenomena and put them on some kind of adrenal support." Loaded Supplements How do you know what you're actually getting if you buy a dietary supplement marketed for adrenal fatigue or 'adrenal support' use? To find out, researchers purchased 12 such supplements over the counter in the U.S. Laboratory tests revealed that all supplements contained a small amount of thyroid hormone and most contained at least one steroid hormone, according to the study published in the March 2018 issue of Mayo Clinic Proceedings. "These results may highlight potential risks for hidden ingredients in unregulated supplements," the authors concluded. Supplements containing thyroid hormones or steroids can interact with a patient's prescribed medications or have other side effects. "Some people just assume they have adrenal fatigue because they looked it up online when they felt tired and they ultimately buy these over-the-counter supplements that can be very dangerous at times," Vouyiouklis Kellis says. "Some of them contain animal (ingredients), like bovine adrenal extract. That can suppress the pituitary axis. So, as a result, your body stops making its own cortisol or starts making less of it, and as a result, you can actually worsen the condition rather than make it better." Any form of steroid from outside the body, whether a prescription drug like prednisone or extract from cows' adrenal glands, "can shut off the pituitary," Vouyiouklis Kellis explains. "Because it's signaling to the pituitary like: Hey, you don't need to stimulate the adrenals to make cortisol, because this patient is taking it already. So, as a result, the body ultimately doesn't produce as much. And, so, if you rapidly withdraw that steroid or just all of a sudden decide not to take it anymore, then you can have this acute response of low cortisol." Some adrenal support products, such as herbal-only supplements, may be harmless. However, they're unlikely to relieve chronic fatigue. Fatigue: No Easy Answers If you're suffering from ongoing fatigue, it's frustrating. And you're not alone. "I have fatigue," Young Jr. says. "Go to the lobby any given day and say, 'Raise your hand if you have fatigue.' Most of the people are going to raise their hands. It's a common human symptom and people would like an easy answer for it. Usually there's not an easy answer. I think 'adrenal fatigue' is attractive because it's like: Aha, here's the answer." There aren't that many causes of endocrine-related fatigue, Young Jr. notes. "Hypothyroidism – when the thyroid gland is not working – is one." Addison's disease, or adrenal insufficiency, can also lead to fatigue among a variety of other symptoms. Established adrenal conditions – like adrenal insufficiency – need to be treated. "In adrenal insufficiency, there is an intrinsic problem in the adrenal gland's inability to produce cortisol," Vouyiouklis Kellis explains. "That can either be a primary problem in the adrenal gland or an issue with the pituitary gland not being able to stimulate the adrenal to make cortisol." Issues can arise even with necessary medications. "For example, very commonly, people are put on steroids for various reasons: allergies, ear, nose and throat problems," Vouyiouklis Kellis says. "And with the withdrawal of the steroids, they can ultimately have adrenal insufficiency, or decrease in cortisol." Opioid medications for pain also result in adrenal sufficiency, Vouyiouklis Kellis says, adding that this particular side effect is rarely discussed. People with a history of autoimmune disease can also be at higher risk for adrenal insufficiency. Common symptoms of adrenal insufficiency include: Fatigue. Weight loss. Decreased appetite. Salt cravings. Low blood pressure. Abdominal pain. Nausea, vomiting or diarrhea. Muscle weakness. Hyperpigmentation (darkening of the skin). Irritability. Medical tests for adrenal insufficiency start with blood cortisol levels, and tests for the ACTH hormone that stimulates the pituitary gland. "If the person does not have adrenal insufficiency and they're still fatigued, it's important to get to the bottom of it," Vouyiouklis Kellis says. Untreated sleep apnea often turns out to be the actual cause, she notes. "It's very important to tease out what's going on," Vouyiouklis Kellis emphasizes. "It can be multifactorial – multiple things contributing to the patient's feeling of fatigue." The blood condition anemia – a lack of healthy red blood cells – is another potential cause. "If you are fatigued, do not treat yourself," Vouyiouklis Kellis says. "Please seek a physician or a primary care provider for evaluation, because you don't want to go misdiagnosed or undiagnosed. It's very important to rule out actual causes that would be contributing to symptoms rather than ordering supplements online or seeking an alternative route like self-treating rather than being evaluated first." SOURCES The U.S. News Health team delivers accurate information about health, nutrition and fitness, as well as in-depth medical condition guides. All of our stories rely on multiple, independent sources and experts in the field, such as medical doctors and licensed nutritionists. To learn more about how we keep our content accurate and trustworthy, read our editorial guidelines. James Findling, MD Findling is a professor of medicine and director of the Community Endocrinology Center and Clinics at the Medical College of Wisconsin. Mary Vouyiouklis Kellis, MD Vouyiouklis Kellis is a staff endocrinologist at Cleveland Clinic. William F. Young Jr., MD Young Jr. is an endocrinology clinical professor and professor of medicine in the Mayo Clinic College of Medicine at Mayo Clinic in Rochester, Minnesota From https://health.usnews.com/health-care/patient-advice/articles/adrenal-fatigue-is-it-real?
  3. Central hypothyroidism is prevalent in about 1 in 2 adults with Cushing’s syndrome, and thyroid function can be restored after curative surgery for most patients, according to study findings. “Our study findings have confirmed and greatly extended previous smaller studies that suggested a link between hypercortisolism and thyroid dysfunction but were inconclusive due to smaller sample size and short follow-up,” Skand Shekhar, MD, an endocrinologist and clinical investigator in the reproductive physiology and pathophysiology group at the National Institute of Environmental Health Sciences, NIH, told Healio. “Due to our large sample and longer follow-up, we firmly established a significant negative correlation between hypercortisolemia measures — serum and urinary cortisol, serum adrenocorticotropic hormone — and thyroid hormones triiodothyronine, free thyroxine and thyrotropin.” Shekhar and colleagues conducted a retrospective review of two groups of adults aged 18 to 60 years with Cushing’s syndrome. The first group was evaluated at the NIH Clinical Center from 2005 to 2018 (n = 68; mean age, 43.8 years; 62% white), and the second group was evaluated from 1985 to 1994 (n = 55; mean age, 37.2 years; 89% white). The first cohort was followed for 6 to 12 months to observe the pattern of thyroid hormone changes after surgical cure of adrenocorticotropic hormone-dependent Cushing’s syndrome. The second group underwent diurnal thyroid-stimulating hormone evaluation before treatment and during remission for some cases. Urinary free cortisol and morning thyroid hormone levels were collected for all participants. In the second group, researchers evaluated diurnal patterns of TSH concentrations with hourly measurements from 3 to 7 p.m. and midnight to 4 p.m. In the first group, adrenocorticotropic hormone and serum cortisol were measured. In the first cohort, seven participants were receiving levothyroxine for previously diagnosed primary or central hypothyroidism. Of the remaining 61 adults, 32 had untreated central hypothyroidism. Thirteen participants had free T4 at the lower limit of normal, and 19 had subnormal levels. There were 29 adults with subnormal levels of T3 and seven with subnormal TSH. Before surgery, 36 participants in the first group had central hypothyroidism. Six months after surgery, central hypothyroidism remained for 10 participants. After 12 months, the number of adults with central hypothyroidism dropped to six. Preoperative T3 and TSH levels were negatively associated with morning and midnight cortisol, adrenocorticotropic hormone and urinary free cortisol. In post hoc analysis, a baseline urinary free cortisol of more than 1,000 g per day was adversely associated with baseline and 6-month T3 and free T4 levels. In the second group, there were 51 participants not on thyroid-modifying drugs who had a thyroid function test 6 or 12 months after surgery. Before surgery, free T4 levels were subnormal in 17 participants, T3 levels were subnormal in 22, and TSH levels were in the lower half of the reference range or below in all but one participant. After surgery, two participants had below normal free T4, one had subnormal T3, and TSH levels were in the lower half of the reference range or below in 23 of 48 participants. Before surgery, there was no difference in mean TSH between daytime and nighttime. A mean 8 months after surgery, the second group had a normal nocturnal TSH surge from 1.3 mIU/L during the day to 2.17 mIU/L at night (P = .01). The nocturnal TSH increase persisted as long as 3 years in participants who had follow-up evaluations. “We found a very high prevalence of thyroid hormone deficiency that appears to start at the level of the hypothalamus-pituitary gland and extend to the tissue level,” Shekhar said. “Some of these patients may experience thyroid hormone deficiency symptoms, such as fatigue, depression, cold intolerance, weight gain, etc, as a result of systematic and tissue-level thyroid hormone deficiency. We also noted a strong correlation between hypothyroidism and hypogonadism, which implies that hypothyroid patients are also likely to suffer adverse reproductive effects. Thus, it is imperative to perform thorough thyroid hormone assessment in patients with Cushing’s syndrome, and thyroid hormone supplementation should be considered for these patients unless cure of Cushing’s syndrome is imminent.” Researchers said providers should routinely screen for hypothyroidism in adults with Cushing’s syndrome. Even after thyroid function is restored, regular follow-up should also be conducted. Further research is needed to investigate thyroid dysfunction in iatrogenic Cushing’s syndrome and the impact of these findings on euthyroid sick syndrome, Shekhar said. For more information: Skand Shekhar, MD, can be reached at skand.shekhar@nih.gov. From https://www.healio.com/news/endocrinology/20210208/thyroid-dysfunction-highly-prevalent-in-cushings-syndrome
  4. Recovery of the hypothalamus-pituitary-adrenal (HPA) axis can occur as late as 12 months after transsphenoidal adenomectomy (TSA), according to study results published in The Journal of Clinical Endocrinology & Metabolism. These findings emphasize the need to periodically assess these patients to avoid unnecessary hydrocortisone replacement. The primary treatment for most pituitary lesions is TSA. After pituitary surgery, the recovery of pituitary hormone deficits may be delayed; limited data are available regarding the postsurgical recovery of hormonal axes or predictors of recovery. The goal of this study was to assess HPA axis dysfunction and predictive markers of recovery following TSA, as well as time to recovery, to identify subgroups of patients who may be more likely to recover. This single-center observational retrospective study enrolled 109 patients in the United Kingdom (71 men; mean age, 56 years; range, 17 to 82 years) who underwent TSA between February 2015 and September 2018 and had ≥1 reevaluation of the HPA axis with the short Synacthen (cosyntropin) test. The primary outcome was recovery of HPA axis function 6 weeks, 3 months, 6 months, and 9 to 12 months after TSA. In 23 patients (21.1%), there was no evidence of pituitary hormone deficit before TSA. In 44 patients (40.4%), there was 1 hormone deficiency and in 25 patients (22.9%), preoperative evaluation showed >1 hormone deficiency. Of the 23 patients with abnormal HPA function before surgery, 8 patients (34.8%) had recovered 6 weeks after the surgery. Patients who recovered were younger (mean age, 50±14 vs 70±9 years; P =.008) compared with patients who did not respond. Of the 15 remaining patients, 2 (13.3%) recovered at 3 months and 3 (20%) recovered at 9 to 12 months. With regard to HPA function in the entire cohort 6 weeks after surgery, 32 patients (29.4%) did not pass the short Synacthen test. Of this group, 5 patients (15.6%) recovered at 3 months, 4 (12.5%) at 6 months, and 2 (6.2%) recovered 9 to 12 months after the surgery. Predictors of future adrenal recovery at 6 weeks included having preoperative 30-minute cortisol >430 nmol/L (P <.001) and a day 8 postoperative cortisol >160 nmol/L (P =.001). With these cutoffs, 80% of patients with preoperative 30-minute cortisol >430 nmol/L (odds ratio [OR], 7.556; 95% CI, 2.847-20.055) and 80% of patients with day 8 postoperative cortisol >160 nmol/L (OR, 9.00; 95% CI, 2.455-32.989) passed the short Synacthen test at 6 weeks postsurgery. In addition, a 6-week baseline short Synacthen test cortisol level above or below 180 nmol/L (P <.001) predicted adrenal recovery at that time point. None of the patients with all 3 variables below the aforementioned cutoffs recovered HPA axis within 1 year. On the other hand, 91.8% of patients with all 3 variables above those cutoffs had normal adrenal function at 6 weeks (OR, 12.200; 95% CI, 5.268-28.255). In addition to the retrospective design, the study had other limitations, including the potential for selection bias, a heterogeneous patient cohort, and no data beyond 12 months after the surgery. “[T]hese data offer the opportunity for patients who may have been given life-long replacement, to safely come off therapy and therefore avoid unnecessary glucocorticoid exposure,” wrote the researchers. Reference Pofi R, Gunatilake S, Macgregor V, et al. Recovery of the hypothalamo-pituitary-adrenal axis following transsphenoidal adenomectomy for non-ACTH secreting macroadenomas [published online June 21, 2019]. J Clin Endocrinol Metab. doi:10.1210/jc.2019-00406 From https://www.endocrinologyadvisor.com/home/topics/adrenal/recovery-of-hpa-axis-can-occur-late-after-transsphenoidal-adenomectomy/
  5. All patients who undergo removal of one adrenal gland due to Cushing’s syndrome (CS) or adrenal incidentaloma (AI, adrenal tumors discovered incidentally) should receive a steroid substitutive therapy, a new study shows. The study, “Predictability of hypoadrenalism occurrence and duration after adrenalectomy for ACTH‐independent hypercortisolism,” was published in the Journal of Endocrinological Investigation. CS is a rare disease, but subclinical hypercortisolism, an asymptomatic condition characterized by mild cortisol excess, has a much higher prevalence. In fact, subclinical hypercortisolism, is present in up to 20 percent of patients with AI. The hypothalamic-pituitary-adrenal axis (HPA axis) is composed of the hypothalamus, which releases corticotropin-releasing hormone (CRH) that acts on the pituitary to release adrenocorticotropic hormone (ACTH), that in turn acts on the adrenal gland to release cortisol. To avoid excess cortisol production, high cortisol levels tell the hypothalamus and the pituitary to stop producing CRH and ACTH, respectively. Therefore, as CS and AI are characterized by high levels of cortisol, there is suppression of the HPA axis. As the adrenal gland is responsible for the production of cortisol, patients might need steroid substitutive therapy after surgical removal of AI. Indeed, because of HPA axis suppression, some patients have low cortisol levels after such surgeries – clinically known as post-surgical hypocortisolism (PSH), which can be damaging to the patient. While some researchers suggest that steroid replacement therapy should be given only to some patients, others recommend it should be given to all who undergo adrenalectomy (surgical removal of the adrenal gland). Some studies have shown that the severity of hypercortisolism, as well as the degree of HPA axis suppression and treatment with ketoconazole pre-surgery in CS patients, are associated with a longer duration of PSH. Until now, however, there have been only a few studies to guide in predicting the occurrence and duration of PSH. Therefore, researchers conducted a study to determine whether HPA axis activity, determined by levels of ACTH and cortisol, could predict the occurrence and duration of PSH in patients who undergo an adrenalectomy. Researchers studied 80 patients who underwent adrenalectomy for either CS or AI. Prior to the surgery, researchers measured levels of ACTH, urinary free cortisol (UFC), and serum cortisol after 1 mg dexamethasone suppression test (1 mg-DST). After the surgery, all patients were placed on steroid replacement therapy and PSH was determined after two months. For those with PSH, levels of cortisol were determined every six months for at least four years. Results showed that PSH occurred in 82.4 percent of CS patients and 46 percent of AI patients. PSH lasted for longer than 18 months in 50 percent of CS and 30 percent of AI patients. Furthermore, it lasted longer than 36 months for 35.7 percent of CS patients. In all patients, PSH was predicted by pre-surgery cortisol levels after the 1 mg-DST, but with less than 70 percent accuracy. In AI patients, a shorter-than-12-month duration of PSH was not predicted by any HPA parameter, but was significantly predicted by an absence of pre-surgery diagnosis of subclinical hypercortisolism. So, this study did not find any parameters that could significantly predict with high sensitivity and specificity the development or duration of PSH in all patients undergoing adrenalectomy. Consequently, the authors concluded that “the PSH occurrence and its duration are hardly predictable before surgery. All patients undergoing unilateral adrenalectomy should receive a steroid substitutive therapy.” From https://cushieblog.com/2017/12/14/patients-undergoing-adrenalectomy-should-receive-steroid-substitutive-therapy/
×
×
  • Create New...