Jump to content

Search the Community

Showing results for tags 'obesity'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Welcome!
    • Introduce Yourself
    • Guest Questions
    • Cushing's Basics
    • News Items and Research
    • Announcements
    • Questions about how these boards work?
  • Get Active!
    • Meetings, events and information
    • Fundraising Ideas
    • Cushing's Awareness Day, April 8
    • Spread the Word
    • Marathons
    • Cushing's Clothes Closet
    • Cushing's Library
    • Cushing's Store
  • Cushing's
    • Resources
    • Types of Cushing's
    • Symptoms
    • Tests
    • Treatments
  • Miscellaneous
    • Other Diseases
    • Good News / Attitude of Gratitude
    • Inspirational / Motivational
    • Quotes and Affirmations
    • Lighten Up!
    • Word Games
    • Miscellaneous Chit Chat
    • Current Events
    • Cushie Commerce
    • Internet Classes
    • Recipes

Blogs

  • MaryO'Blog
  • Christy Smith's Blog
  • rooon55's Blog
  • LLMart's Blog
  • regina from florida's Blog
  • terri's Blog
  • Canasa's Blog
  • Tberry's Blog
  • LisaMK's Blog
  • diane177432's Blog
  • Jen1978's Blog
  • GreenGal's Blog
  • Yada Yada Yada
  • Jinxie's Blog
  • SherryC's Blog
  • stjfs' Blog
  • kalimae7371's Blog
  • Kristy's Blog
  • kathieb1's Blog
  • Yavanna's Blog
  • Johnni's Blog
  • AutumnOMA's Blog
  • Will Power
  • dropsofjupiter's Blog
  • Lorrie's Blog
  • DebMV's Blog
  • FarWind's Blog
  • sallyt's Blog
  • dseefeldt's Blog
  • ladylena's Blog
  • steffie's Blog
  • Lori L's Blog
  • mysticalsusan1's Blog
  • cathy442's Blog
  • Kathy711's Blog
  • Shannonsmom's Blog
  • jack's Blog
  • Kandy66's Blog
  • mars72's Blog
  • singlesweetness33's Blog
  • michelletm's Blog
  • JC_Adair's Blog
  • Lisa-A's Blog
  • Jen3's Blog
  • tammi's Blog
  • Ramblin' Rose (Maggie's)
  • monicaroni77's Blog
  • monicaroni's Blog
  • Saz's Blog
  • alison
  • Thankful for the Journey
  • Judy from Pgh's Blog
  • Addiegirl's Blog
  • candlelite2000's Blog
  • Courtney likes to talk......
  • Tanya's Blog
  • smoketooash's Blog
  • meyerfamily8's Blog
  • Sheila1366's Blog
  • A Guide to Blogging...
  • Karen's Blog
  • barbj222222's Blog
  • Amdy's Blog
  • Jesh's Blog
  • pumpkin's Blog
  • Jazlady's Blog
  • Cristalrose's Blog
  • kikicee's Blog
  • bordergirl's Blog
  • Shelby's Blog
  • terry.t's Blog
  • CanadianGuy's Blog
  • Mar's Cushie Couch
  • leanne's Blog
  • honeybee30's Blog
  • cat lady's Blog
  • Denarea's Blog
  • Caroline's Blog
  • NatalieC's Blog
  • Ahnjhnsn's Blog
  • A journey around my brain!
  • wisconsin's Blog
  • sonda's Blog
  • Siobhan2007's Blog
  • mariahjo's Blog
  • garcia9's Blog
  • Jessie's Blog
  • Elise T.'s Blog
  • glandular-mass' Blog
  • Rachel Bridgewater's Blog
  • judycolby's Blog
  • CathyM's Blog
  • MelissaTX's Blog
  • nessie21's Blog
  • crzycarin's Blog
  • Drenfro's Blog
  • CathyMc's Blog
  • joanna27's Blog
  • Just my thoughts!
  • copacabana's Blog
  • msmith3033's Blog
  • EyeRishGrl's Blog
  • SaintPaul's Blog
  • joyce's Blog
  • Tara Lou's Blog
  • penybobeny's Blog
  • From Where I Sit
  • Questions..
  • jennsarad's Blog
  • looking4answers2's Blog
  • julie's blog
  • cushiemom's Blog
  • greydragon's Blog
  • AmandaL's Blog
  • KWDesigns: My Cushings Journey
  • cushieleigh's Blog
  • chelser245's Blog
  • melissa1375's Blog
  • MissClaudie's Blog
  • missclaudie92's Blog
  • EEYORETJBD's Blog
  • Courtney's Blog
  • Dawn's Blog
  • Lindsay's Blog
  • rosa's Blog
  • Marva's Blog
  • kimmy's Blog
  • Cheryl's Blog
  • MissingMe's Blog
  • FerolV's Blog
  • Audrey's (phil1088) Blog
  • sugarbakerqueen's Blog
  • KathyBair's Blog
  • Jenn's Blog
  • LisaE's Blog
  • qpdoll's Blog
  • blogs_blog_140
  • beach's Blog
  • Reillmommy is Looking for Answers...
  • natashac's Blog
  • Lisa72's Blog
  • medcats10's Blog
  • KaitlynElissa's Blog
  • shygirlxoxo's Blog
  • kerrim's Blog
  • Nicki's Blog
  • MOPPSEY's Blog
  • Betty's Blog
  • And the beat goes on...
  • Lynn's Blog
  • marionstar's Blog
  • floweroscotland's Blog
  • SleepyTimeTea's Blog
  • Shelly3's Blog
  • fatnsassy's Blog
  • gaga's Blog
  • Jewels' Blog
  • SusieQ's Blog
  • kayc6751's Blog
  • moonlight's Blog
  • Sick of Being Sick
  • Peggy's Blog
  • kouta5m's Blog
  • TerryC's Blog
  • snowii's Blog
  • azZ9's Blog
  • MaMaT333's Blog
  • missaf's Blog
  • libertybell's Blog
  • LyssaFace's Blog
  • suzypar2002's Blog
  • Mutley's Blog
  • superc's Blog
  • lisajo42's Blog
  • alaustin's Blog
  • Tina1962's Blog
  • Ill never complain a single word about anything.. If I get rid of Cushings disease.
  • puddingtoast's Blog
  • AmberC's Blog
  • annacox
  • justwaiting's Blog
  • RachaelB's Blog
  • MelanieW's Blog
  • My Blog
  • FLHeather's Blog
  • HollieK's Blog
  • Bonny777's Blog
  • KatieO's Blog
  • LilDickens' Mini World
  • MelissaG's Blog
  • KelseyMichelle's Blog
  • Synergy's Blog
  • Carolyn1435's Blog
  • Disease is ugly! Do I have to be?
  • A journey of a thousand miles begins with a single wobble
  • MichelleK's Blog
  • lenalee's Blog
  • DebGal's Blog
  • Needed Answers
  • Dannetts Blog
  • Marisa's Blog
  • Is this cushings?
  • alicia26's Blog
  • happymish's Blog
  • mileymo's Blog
  • It's a Cushie Life!
  • The Weary Zebra
  • mthrgonenuts' Blog
  • LoriW's Blog
  • WendyG's Blog
  • khmood's Blog
  • Finding Answers and Pissing Everyone Off Along the Way
  • elainewwjd's Blog
  • brie's Blog
  • dturner242's Blog
  • dturner242's Blog
  • dturner242's Blog
  • Stop the Violins
  • FerolV's Internal Blog
  • beelzebubble's Blog
  • RingetteLUVR
  • Eaglemtnlake's Blog
  • mck25's Blog
  • vicki11's Blog
  • vicki11's Blog
  • ChrissyL's Blog
  • tpatterson757's Blog
  • Falling2Grace's Blog
  • meeks089's Blog
  • JustCurious' Blog
  • Squeak's Blog
  • Kill Bill
  • So It Begins ! Cushings / Pituitary Microadenoma
  • Crystal34's Blog
  • Janice Barrett

Categories

  • Helpful Articles
    • Links
    • Research and News
    • Useful Information
  • Pages
  • Miscellaneous
    • Databases
    • Templates
    • Media

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests

Found 14 results

  1. Pseudo-Cushing’s syndrome is when symptoms are similar to those of Cushing’s syndrome, but further tests show that the syndrome is not present. Common causes include consuming too much alcohol, obesity, persistently high blood glucose levels, pregnancy, and depression.
  2. Abstract Cushing's syndrome (CS) shows diverse signs such as centripetal obesity, moon face, and buffalo hump, which can complicate the diagnosis. Facial features including eyelid edema, as an underrecognized sign, can be diagnostic clues for an excess of corticoids in a CS patient. A 49-year-old woman presented with amenorrhea and weight gain that had continued for 2 years. Her medical history was dyslipidemia, hypertension, and osteoporosis. Physical examination revealed eyelid edemas (Figure 1A), moon face, buffalo hump, abdominal purple striae, and centripetal obesity (body mass index (BMI), 30.8 kg/m2). Basal plasma adrenocorticotropin was undetectable and serum cortisol level was high (16.9 μg/dl) without circadian rhythms. Free cortisol level in a 24-h urine collection was elevated (158.7 μg/day). Overnight administration of dexamethasone (1 mg) did not reduce serum cortisol level (17.4 μg/dl). Magnetic resonance imaging suggested bilateral adenomas. We made a diagnosis of adrenal Cushing's syndrome (CS). Since 131l-adosterol scintigraphy showed specific uptake in the left adrenal gland, left adrenalectomy was laparoscopically performed. Histopathology of the tumor was compatible with adrenocortical adenoma. Three months after surgery, her BMI decreased to 25.0 kg/m2 and eyelid edemas were ameliorated (Figure 1B). FIGURE 1 Open in figure viewerPowerPoint (A) Bilateral eyelid edemas due to Cushing's syndrome are shown. (B) These findings were improved three months after surgery for left adrenal adenomas Eyelid edema, in addition to centripetal obesity, moon face, and buffalo hump, is also a significant sign of CS; however, it has scarcely been reported in countries other than Japan.1, 2 Increased capillary permeability, insufficient venous return due to muscle atrophy, and sodium retention due to mineralocorticoid actions conceivably cause edema in CS. AUTHORS’ CONTRIBUTIONS KY wrote the first draft and managed all the submission processes. KO and KH contributed to the clinical management of the patient. FO organized the writing the manuscript. ACKNOWLEDGMENT None. CONFLICT OF INTEREST The authors declare no conflicts of interest. ETHICAL APPROVAL Written informed consent was obtained from the patient to publish this case report. 1Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing's syndrome. Lancet. 2015; 386: 913- 927. CrossrefCASPubMedWeb of Science®Google Scholar 2Komiya I, Takasu N, Ohara N, et al. Forty-one cases of Cushing's syndrome: a comparison between Cushing's syndrome (adrenal adenoma) and Cushing's disease (adrenal hyperplasia). Nihon Naibunpi Gakkai Zasshi. 1992; 68: 607- 622. CASPubMedGoogle Scholar https://doi.org/10.1002/ccr3.5940 From https://onlinelibrary.wiley.com/doi/10.1002/ccr3.5940
  3. Each month, The Clinical Advisor makes one new clinical feature available ahead of print. Don’t forget to take the poll. The results will be published in the next month’s issue. A 35-year-old woman is seen in the outpatient clinic for evaluation of an incidental pituitary macroadenoma. Her medical history is significant for hypertension, diabetes, hyperlipidemia, polycystic ovary syndrome, and obesity. She initially presented to the emergency department (ED) a week ago after an episode of right visual field changes that she described as waviness in her right eye and right hemibody sensory changes without motor deficits. While in the ED, she underwent a full workup for possible stroke, which was negative. Magnetic resonance imaging (MRI) of her brain without contrast revealed a 12-mm pituitary lesion; a repeat MRI with contrast was then ordered (Figure). No serum hormonal panel was available for review from ED records. Figure. Magnetic resonance imaging of the case patient. Left image: sagittal view. Right image: coronal view with contrast. Credit: Melissa Wasilenko, MSN, RN Upon further questioning of her medical history during the clinic visit, the patient notes that a few years ago she was attempting to become pregnant and was evaluated by her gynecologist for amenorrhea. At that time, she reportedly completed an endocrine laboratory workup that showed a slightly elevated prolactin level between 30 and 40 ng/mL (normal level in nonpregnant women, <30 ng/mL). Per the patient, the minimal elevation was not enough to concern the gynecologist and no MRI was ordered at that time. Her gynecologist recommended that she lose weight. Her menses returned to normal with weight loss. With a history of disrupted menstrual cycles, infertility, and patient reported elevated prolactin level, there is high suspicion for endocrine disruption. A complete pituitary panel is ordered again to examine the current hormone function considering the recent MRI findings. This revealed a prolactin of 33.7 ng/ml, and all other hormonal levels were within normal limits. Because the patient reports multiple episodes of visual disturbances and the size of the pituitary adenoma on MRI, a neuro-ophthalmology referral is initiated for visual field testing and to determine if the pituitary macroadenoma is causing mass effect and compressing the optic nerve. The neuro-ophthalmologist found she had no visual field defect from her adenoma on visual field testing and believed that her visual disturbances were probably migraine in nature. Discussion Pituitary gland tumors are usually found incidentally on imaging studies obtained for other reasons or in workup of patients with abnormal endocrine hormone levels (both decreased and increased levels) or with symptoms of mass effect from the lesions.1 These tumors are typically benign in nature; cases with malignancy are extremely rare.1 The exact pathophysiology of pituitary adenomas remains unknown but is thought to be linked to heredity, hormonal influences, and genetic mutations.1 Pituitary tumors are commonly found in adults between the ages of 35 and 60 years of age.2,3 The estimated prevalence of pituitary adenomas varies widely by study and findings are typically based on autopsy and radiology data. Surveillance, Epidemiology, and End Results (SEER) Program data from 2004 to 2018 show an incidence rate of pituitary adenomas and pituitary incidentalomas of 4.28 ± 0.04 and 1.53 ± 0.02 per 100,000 population.4 Pituitary tumors have been found in 14.4% of unselected autopsy cases and 22.5% of radiology tests.1 The SEER data suggest that incidence rates are similar among women and men but are higher among women in early life and higher among males in later life.5 Rates of prolactinomas (prolactin-secreting tumors) and corticotropinomas (adrenocorticotropic hormone-secreting tumors; Cushing disease) are higher in women than men.6 Earlier SEER data showed a significantly higher incidence of pituitary adenomas in Black individuals compared with other racial/ethnic groups; several factors may account for this discrepancy such as the higher stroke rate in this population, which leads to a greater likelihood for brain imaging that detects incident pituitary tumors.5 Incidental findings of pituitary adenoma may be found during workup related to hormonal dysfunction (amenorrhea, galactorrhea, fertility disorders, sexual dysfunction), noticeable vision change, new-onset headaches, or imaging performed for other diagnostic purposes.7 Pituitary Types Pituitary tumor types are differentiated by location, size, and functional status. Pituitary tumors commonly arise from the anterior portion of the gland (adenohypophysis) and rarely from the posterior portion (neurohypophysis).2 Both adenohypophyseal and neurohypophyseal tumors are commonly benign and slow-growing.1 Malignant pituitary tumors account for less than 1% of pituitary lesions and are usually metastases from breast and lung cancers.3 Adenohypophyseal carcinoma is rare, with less than 140 reported cases.2 Pituitary tumors are categorized by the size1,2: Microadenomas (<10 mm) Macroadenomas (>10 mm to 40 mm) Giant adenomas (>40 mm) Pituitary adenomas are further classified as functioning (hormone-secreting) or nonfunctioning (nonsecreting).1,6 If the adenoma is functioning, hormone levels will be found in excess. If the levels are within normal limits, a nonfunctioning pituitary adenoma is suspected. Functioning Tumors Approximately 65% of all pituitary adenomas are functioning tumors.2 Functioning pituitary adenomas present in various ways depending on which hormone is involved and the level of hormone secretion. Prolactinomas are the most common type of functioning adenomas followed by growth hormone-secreting and adrenocorticotropic hormone-secreting pituitary tumors. Adenomas secreting thyrotropin and follicle-stimulating hormone are less commonly found.2 Clinical features of functional pituitary adenomas are outlined in Table 1.2.8 Table 1. Clinical Features and Laboratory Findings of Functioning Pituitary Adenomas Nonfunctioning Tumors Approximately 20% to 30% of pituitary adenomas are nonfunctional.3 These tumors may go undiagnosed for years until the mass of the tumor starts to effect surrounding structures and causing secondary symptoms such as compression of the optic chiasm causing vision impairments. Nonfunctioning pituitary adenomas and prolactinomas (functioning) are the 2 most common types of pituitary adenomas.2,3 The consulting clinician must understand the difference in pathology of these 2 types of lesions, what diagnostic test to order, how to interpret the test results, and which specialty to refer the patient to best on the initial workup findings. Initial Workup Proper baseline workup should be initiated before referring patients with incidental pituitary adenoma to a specialist. The initial workup includes imaging, blood work to determine if the pituitary adenoma is causing hormonal dysfunction, and neuro-ophthalmology referral for visual field testing to determine if the optic nerve/chiasm is impacted. Imaging The most accurate diagnostic modality of pituitary gland pathology is MRI with and without contrast. The MRI should focus on the hypothalamic-pituitary area and include contrasted imaging to evaluate the soft tissue within the intracranial structure.9 The coronal and sagittal views are the best to display the pituitary gland width and height and identify abnormalities.9 The MRI provides a detailed evaluation of the pituitary gland related to adjacent structures within the skull, which helps to detect microalterations of the pituitary gland.10 If a pituitary adenoma is an incidental finding on another imaging modality (such as a computed tomography scan or MRI without contrast), an MRI with and without contrast that focuses on the pituitary gland should be obtained. Pituitary Laboratory Panel A complete pituitary panel workup should be obtained including prolactin, thyrotropin, free thyroxine, cortisol (fasting), adrenocorticotropic hormone, insulinlike growth factor 1, growth hormone, follicle-stimulating hormone, luteinizing hormone, estradiol in women, and total testosterone in males.1 Tests should be completed in the morning while fasting for the most accurate results. For instance, normally cortisol levels drop during fasting unless there is abnormality. Table 2 below shows normal laboratory ranges for a complete pituitary panel. Serum prolactin levels can slightly increase in response to changes in sleep, meals, and exercise; emotional distress; psychiatric medications; and oral estrogens. If the initial prolactin level is borderline high (21-40 ng/mL), the test should be repeated. Normal levels are higher in women than in men. Microadenomas may cause slight elevations in prolactin level (ie, <200 ng/mL), while macroadenomas are likely to cause greater elevations (ie, >200 ng/mL).1 Patients with giant prolactinomas typically present with prolactin levels ranging from 1000 ng/mL to 100,000 ng/mL.11 Perimetry Pituitary adenomas may cause ophthalmologic manifestations ranging from impaired visual field to diplopia because of upward displacement of the optic chiasm. The optic chiasm is located above the pituitary gland and a pituitary tumor that grows superiorly can cause compression in this area.12 Optic chiasm compression from a pituitary adenoma commonly causes bitemporal hemianopsia.2 If the tumor volume is promptly reduced by surgical resection or medication (in the case of prolactinomas), initial vision changes due to compression may be reversible.12 Baseline and routine follow-up perimetry are important in patients with pituitary adenoma, as symptoms of optic chiasm compression may go unnoticed by patients as visual field deficits often develop gradually. Also, post-treatment perimetry assessments can be used to compare the initial testing to evaluate reversible visual field deficits. It is recommended that patients with pituitary adenomas (both function and nonfunctiong) receive neuro-ophthalmologic evaluations twice a year to ensure no visual changes have occurred.12 Referral to a Specialist Management of pituitary adenomas requires a multidisciplinary team of specialists including endocrinologists, neurosurgeons, and neuro-ophthalmologists. The type of adenoma governs which specialist patients with incidental adenoma should see first. Patients with functioning pituitary adenomas should be referred to an endocrinologist before a neurosurgeon. The most prevalent functioning adenomas, prolactinoma, are initially treated with dopamine agonist medications.1,6 A patient with prolactinoma would only need to see a neurosurgeon if they have a macroadenoma that is not responsive or only partially responsive to dopamine agonists therapy or is causing vision deficits related to compression of the optic chiasm.2 Patients with nonfunctioning pituitary adenomas should first be referred to a neurosurgeon to discuss surgical options versus observation. The recommended treatment for patients with nonfunctioning adenomas and clinical features of mass effect (ie, visual deficits) is surgery.1,6 If the patient is asymptomatic with no signs of visual field deficits, the neurosurgery team may recommend continued surveillance with serial imaging and serial perimetry screenings.12 The patient in the case was found to have a nonfunctioning pituitary adenoma (prolactin was 33.7 ng/mL). Neuro-ophthalmology did not find any visual field defect upon initial assessment; the patient decided to continue observation with serial imaging (MRI) and serial neuro-ophthalmology assessments. Serial imaging with MRI brain revealed slow but real progression of the pituitary macroadenoma (12 mm initially; 13 mm 6 months later; and 14 mm 1 year from initial MRI findings). Although the patient still did not have any visual field defects per the neuro-ophthalmology reassessments, the documented growth on MRI over a short period of time was enough to make the patient more amendable to surgical resection. The patient underwent trans-sphenoidal resection of the pituitary lesion approximately 16 months after discovery of the tumor. Conclusion A thorough workup including laboratory testing, imaging, and vision field testing is the foundation of an effective referral process for pituitary adenomas and guides which specialist is consulted first. If patients are referred before initial workup is completed, delays in care, unnecessary specialty visits, and increased overall health care costs may occur. Melissa Wasilenko, MSN, RN, is a registered nurse at Lyerly Neurosurgery in Jacksonville, Florida. She is currently pursuing a doctorate in nursing practice with a focus in family medicine at the University of North Florida in Jacksonville. References 1. Russ S, Anastasopoulou C, Shafiq I. Pituitary adenoma. 2021 Jul 18. In: StatPearls. StatPearls Publishing; 2022 Jan–. Updated July 18, 2021. 2. Greenberg MS. Tumors of non-neural origin. In: Handbook of Neurosurgery, 9th ed. Thieme Medical Publishers: 2019; 1655-1755 3. Yeung M, Tahir F. The pathology of the pituitary, parathyroids, thyroid and adrenal glands. Surgery. 2020;38(12):747-757. 4. Watanabe G, Choi SY, Adamson DC. Pituitary incidentalomas in the United States: a national database estimate. World Neurosurg. 2021:S1878-8750(21)01780-0. doi:10.1016/j.wneu.2021.11.079 5. McDowell BD, Wallace RB, Carnahan RM, Chrischilles EA, Lynch CF, Schlechte JA. Demographic differences in incidence for pituitary adenoma. Pituitary. 2011;14(1):23-30. doi:10.1007/s11102-010-0253-4 6. Molitch ME. Diagnosis and treatment of pituitary adenomas: a review. JAMA. 2017;317(5):516-524. doi:10.1001/jama.2016.19699 7. Yao S, Lin P, Vera M, et al. Hormone levels are related to functional compensation in prolactinomas: a resting-state fMRI study. J Neurol Sci. 2020;411:116720. doi:10.1016/j.jns.2020.116720 8. Beck-Peccoz P, Persani L, Lania A. Thyrotropin-secreting pituitary adenoma. In: Feingold KR, Anawalt B, Boyce A, et al, ed. Endotext. MDText.com, Inc.; 2019. 9. Yadav P, Singhal S, Chauhan S, Harit S. MRI evaluation of size and shape of normal pituitary gland: age and sex related changes. J Clin Diagnostic Research. 2017;11(12):1-4. doi:10.7860/JCDR/2017/31034.10933 10. Varrassi M, Cobianchi Bellisari F, Bruno F, et al. High-resolution magnetic resonance imaging at 3T of pituitary gland: advantages and pitfalls. Gland Surg. 2019;8(Suppl 3):S208-S215. doi:10.21037/gs.2019.06.08 11. Shimon I. Giant prolactinomas. Neuroendocrinology. 2019;109(1):51-56. doi:10.1159/000495184 12. Vié AL, Raverot G. Modern neuro-ophthalmological evaluation of patients with pituitary disorders. Best Pract Res Clin Endocrinol Metab. 2019;33(2):101279. doi:10.1016/j.beem.2019.05.003 From the March/April 2022 Issue of Clinical Advisor
  4. What You Need to Know COVID-19 Vaccine booster shots are available for the following Pfizer-BioNTech vaccine recipients who completed their initial series at least 6 months ago and are: 65 years and older Age 18+ who live in long-term care settings Age 18+ who have underlying medical conditions Age 18+ who work in high-risk settings Age 18+ who live in high-risk settings Those "underlying medical conditions" include diabetes and obesity.
  5. As of September 1, 2021, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the virus responsible for the coronavirus disease 2019 (COVID-19), has infected over 219 million and caused the deaths of over 4.5 million worldwide. Although COVID-19 has been traditionally associated with its ability to cause varied symptoms resembling acute respiratory distress syndrome (ARDS), emerging scientific evidence has demonstrated that SARS-CoV-2 causes much more damage beyond its effects on the upper respiratory tract. To this end, in a recent study published in Reviews in Endocrine and Metabolic Disorders, the researchers discuss the extra-pulmonary manifestations of COVID-19. Risk factors for severe COVID-19 It is now a well-known fact that the likelihood of people falling severely ill or dying from COVID-19 is increases if these individuals are obese, or have certain comorbidities like diabetes mellitus (DM), vitamin D deficiency, and vertebral fractures (VFs). Any abnormality in the pituitary gland may lead to metabolic disorders, impaired immunity, and a host of other conditions that also make the body susceptible to infections. Since such conditions are common in patients with COVID-19 as well, it has been hypothesized that there might be a relationship between COVID-19 and pituitary gland disorders. On the other hand, researchers have also observed that COVID-19 causes increased severity of pituitary-related disorders, and even pituitary apoplexy, which is a condition defined as internal bleeding or impaired blood supply in the pituitary gland. A group of Italian researchers has reviewed this bidirectional relationship between the pituitary gland abnormalities and COVID-19 in their study recently published in Reviews in Endocrine and Metabolic Disorders. The link between pituitary gland abnormalities and COVID19 The pituitary gland releases hormones that regulate and control some of the most important functions of the body like growth, metabolism, energy levels, bone health, mood swings, vision, reproduction, and immunity, to name a few. The inability of the pituitary gland to release one or more of these hormones is known as ‘hypopituitarism.’ Factors responsible for hypopituitarism include traumatic brain injury, pituitary adenomas (tumors), genetic mutations, as well as infiltrative and infectious diseases. Hypopituitarism can lead to severe cases of DM, growth hormone deficiency (GHD), abnormal lipid profile, obesity, arterial hypertension, and immune dysfunctions. Interestingly, similar consequences of COVID-19 have also been reported. SARS-CoV-2 infects the human body by binding to a special class of receptors known as the angiotensin-converting enzyme 2 (ACE2) receptors. These receptors are located in the endothelial linings of most organs like the brain, heart, lungs, kidneys, intestine, liver, and pancreas, among others. The main function of the ACE2 receptors is binding to specific target molecules to maintain the renin-angiotensin system that is crucial for regulating dilation of blood vessels, as well as maintain blood glucose levels, the immune system, and homeostasis. Therefore, SARS-CoV-2 binding to these ACE2 receptors facilitates the entry of this virus into all the organs that have these receptors, thus leading to the ability of SARS-CoV-2 to cause widespread damage in the body. Upon entry into the pancreas, for example, SARS-CoV-2 can inhibit ß-cells function, which worsens hyperglycemia and increases the risk for acute diabetic complications. Similarly, the presence of ACE2 receptors in brain tissues may cause invasion into the pituitary gland and lead to pituitary apoplexy. The entry of SARS-CoV-2 into the brain can also cause neurological damage in infected patients, which may account for some of the common neurological complaints of COVID-19 including headaches, confusion, dysgeusia, anosmia, nausea, and vomiting. Study findings Hypopituitarism leading to metabolic syndrome has been scientifically linked to higher mortality in COVID-19 patients. In fact, the presence of a single metabolic syndrome component has been observed to double the risk of death by COVID-19. This risk was even higher among patients with DM and hypertension. There was also an increased incidence of VFs in COVID-19 patients with hypopituitarism. Hence, patients with DM, obesity, hypertension, and chronic inflammatory disease, are all at an increased risk of poor outcomes and death in COVID-19. Arterial hypertension is a common finding in adults with GHD, which is another consequence of hypopituitarism. Hypopituitarism also causes adrenal insufficiency, a condition that is primarily managed with glucocorticoids and hormonal replacement therapies. Notably, patients with COVID-19 are often treated for prolonged periods with high-dose exogenous glucocorticoids, which is a class of steroids that suppress some activities of the immune system. This treatment approach may result in suppression of the hypothalamic-pituitary–adrenal axis that can lead to adrenal insufficiency. Hypogonadism is another aspect of pituitary insufficiency that predisposes patients, especially males, to COVID-19. Evidence shows that males with hypogonadism were more frequently affected by metabolic syndrome. Pituitary apoplexy, albeit rare, has also been linked to COVID-19, especially in patients with pituitary adenomas and those who are being treated with anticoagulant therapy. This may be because the pituitary gland becomes overstimulated during an infectious disease, which may increase pituitary blood demand and lead to sudden infarction precipitating acute apoplexy. This phenomenon has also been shown in patients suffering from infectious diseases that cause hemorrhagic fevers. Taken together, pituitary apoplexy complicates treatment and management procedures in COVID-19 patients. Despite the use of steroids in COVID-19 patients, there have been no contraindications for vaccination in such patients. However, those on extensive hormonal therapies need constant monitoring for best results. Implications The pituitary gland acts like a double-edged sword for COVID-19. On one end, hypopituitarism predisposes patients to metabolic disorders like DM, obesity, and VFs, all of which are known risk factors for COVID-19. On the other hand, COVID-19 may cause direct or indirect damage to the pituitary glands by entering the brain and inducing unfavorable vascular events – though evidence on this remains lesser in comparison to that of hypopituitarism. Ultimately, the researchers of the current study conclude that managing patients with hormonal insufficiencies optimally with steroids is likely to improve outcomes in severe COVID-19. Journal reference: Frara, S., Loli, P., Allora, A., et al. (2021). COVID-19 and hypopituitarism. Reviews in Endocrine and Metabolic Disorders. doi:10.1007/s11154-021-09672-y. https://rd.springer.com/article/10.1007/s11154-021-09672-y#citeas. From https://www.news-medical.net/news/20210905/Hypopituitarism-and-COVID-19-e28093-exploring-a-possible-bidirectional-relationship.aspx
  6. John P H Wilding 1 Affiliations expand PMID: 32061161 DOI: 10.1530/EJE-20-0099 Abstract Endocrine disorders such as Cushing's syndrome and hypothyroidism may cause weight gain and exacerbate metabolic dysfunction in obesity. Other forms of endocrine dysfunction, particularly gonadal dysfunction (predominantly testosterone deficiency in men and polycystic ovarian syndrome in women), and abnormalities of the hypothalamic-pituitary-adrenal axis, the growth hormone-IGF-1 system and vitamin D deficiency are common in obesity. As a result, endocrinologists may be referred people with obesity for endocrine testing and asked to consider treatment with various hormones. A recent systematic review and associated guidance from the European Society of Endocrinology provide a useful evidence summary and clear guidelines on endocrine testing and treatment in people with obesity. With the exception of screening for hypothyroidism, most endocrine testing is not recommended in the absence of clinical features of endocrine syndromes in obesity, and likewise hormone treatment is rarely needed. These guidelines should help reduce unnecessary endocrine testing in those referred for assessment of obesity and encourage clinicians to support patients with their attempts at weight loss, which if successful has a good chance of correcting any endocrine dysfunction. Similar articles Classical endocrine diseases causing obesity. Weaver JU.Front Horm Res. 2008;36:212-228. doi: 10.1159/000115367.PMID: 18230905 Review. Is obesity an endocrine condition? Stocks AE.Aust Fam Physician. 1977 Feb;6(2):109-16.PMID: 558747 FPIN’s clinical inquiries. Secondary causes of obesity. Allen G, Safranek S.Am Fam Physician. 2011 Apr 15;83(8):972-3.PMID: 21524038 No abstract available. [Role of the endocrine system in the pathogenesis of non-alcoholic fatty liver disease]. Hagymási K, Reismann P, Rácz K, Tulassay Z.Orv Hetil. 2009 Nov 29;150(48):2173-81. doi: 10.1556/OH.2009.28749.PMID: 19923096 Review. Hungarian. Obesity and endocrine disease. Kokkoris P, Pi-Sunyer FX.Endocrinol Metab Clin North Am. 2003 Dec;32(4):895-914. doi: 10.1016/s0889-8529(03)00078-1.PMID: 14711067 Review. From https://pubmed.ncbi.nlm.nih.gov/32061161/
  7. Abstract Cushing's syndrome is a rare entity in children. Adrenal tumour is the common cause of this syndrome in young children, whereas, iatrogenic causes are more common among older children. We report a 4 year old male child diagnosed with Cushing syndrome due to a right adrenal adenoma; the child presented with obesity and increase distribution of body hair. After thorough investigation and control of hypertension and dyselectrolytemia, right adrenalectomy was performed. The patient had good clinical recovery with weight loss and biochemical resolution of Cushing's syndrome. 1. Introduction Cushing's syndrome (CS) is rarely encountered in children. The overall incidence of Cushing syndrome is approximately 2–5 new cases per million people per year. Only approximately 10% of the new cases each year occur in children [1]. Unlike in adults, a male-to-female predominance have been observed in infants and young toddlers [[1], [2], [3]]. Although iatrogenic causes are common in children above seven years of age, adrenal causes (adenoma, carcinoma or hyperplasia) are common in children of younger age [4]. We report a 4 year old boy diagnosed with Cushing syndrome caused by a right adrenal adenoma, who had presented with obesity and increase distribution of body hair. Right adrenalectomy was performed and clinical stabilization resulted in weight loss and biochemical resolution of Cushing's syndrome. (see Fig. 5) 2. Case report A 4 years old boy presented with complaints of excessive weight gain of 5 months duration and increase frequency of micturition and appearance of body hair for 4 months. There was no history of any other illness, medication or steroid intake. The child was first born at term by normal vaginal delivery and birth weight of 3 kg. Physical examination revealed a chubby boy with moon face, buffalo hump, protruding abdomen, increase body hair and appearance of coarse pubic hair (Fig. 1). His intelligent quotient (IQ) was appropriate for his age and sex. His younger sibling was in good health and other family members did not have any metabolic or similar problems. Download : Download high-res image (710KB) Download : Download full-size image Fig. 1. The child with moon face, protruded abdomen and coarse body hair. The patient's body length was 92cm (between -2SD to -3SD), weight 20kg (between 1 SD and 2 SD), weight for height >3SD, and BMI was 23.6 (BMI for age >3 SD). His blood pressure on right arm in lying position was 138/76 mm Hg (above 99th percentile for height and age). Investigations: Morning 8am serum cortisol level - 27.3 μg/dl (normal: 6–23 μg/dl). with a concurrent plasma ACTH level of < 5 pg/ml (n value < 46 pg/ml). His serum cortisol following low dose dexamethasone suppression test (1mg dexamethasone at 11pm) at 8 am next morning was 22.1 μug/dl and his 24 hours urine catecholamine fraction was within normal limit. HB % -- 10.3 gm/dl; LDDST -- 25 μg/dl; FBS -- 106 mg/dl. Serum Na+ - 140.6mmol/l; K+ - 2.83mmol/l; Ca+ - 8.7 mg/dl. S. Creatinine −0.3 mg/dl. Ultrasonography of abdomen revealed a heterogenous predominantly hypoechoic right supra renal mass. Contrast enhanced CT abdomen revealed well defined soft tissue density lesion (size −5.2 cm × 5.2 cm x 5.7cm) in right adrenal gland with calcifications and fat attenuations showing mild attenuation on post contrast study (Fig. 2). Download : Download high-res image (703KB) Download : Download full-size image Fig. 2. CECT shows right adrenal mass with calcification and mild attenuation on post-contrast study. The child was started on oral amlodipine 2.5mg 12hourly; after 5days blood pressure became normal. For hypokalemia oral potassium was given @20 meq 8 hourly and serum potassium value became normal after 4 days. Right laparoscopic adrenalectomy was planned. but due to intra operative technical problems it was converted to an open adrenalectomy with right subcostal incision. A lobulated mass of size 9 cm × 5 cm x 4 cm with intact capsule was excised. The tumour weighed 230 gm. There was no adhesion with adjacent organs, three regional nodes were enlarged but without any tumour tissue. Inferior vena cava was spared. Histopathology report was consistent with adrenal adenoma (Fig. 3) (see Fig. 4). Download : Download high-res image (427KB) Download : Download full-size image Fig. 3. Cut section of tumour shows fleshy mass with fatty tissue. Download : Download high-res image (618KB) Download : Download full-size image Fig. 4. Microphotograph (100 × 10) showing intact capsule and adrenal tumour cells, which are larger in size with nuclear pleomorphism, inconspicuous nucleoli, cytoplasm of the tumour cells are abundant, eosinophilic and vacuolated. Download : Download high-res image (593KB) Download : Download full-size image Fig. 5. Physical appearance 4 months after adrenalectomy. Post operative management: during post operative period hypokalemia and flaxuating blood sugar level was managed with oral potassium and oral glucose supplement. patient developed mild cough and respiratory distress on post op day 2, it was managed with salbutamol nebulization and respiratory physio therapy. Patient developed minor ssi and discharged on 10 th post operative day with oral prednisolone supplementation. Follow up: the patient was followed up 2week after discharge and then every monthly, the oral prednisolone was gradually tapered and completely withdrawn on 2nd month after surgery.The patient experienced no post-surgical complications. After 4 months of surgery he reduces 6 kgs of his body weight with BMI of 16.5 (between median and 1SD) & BP 100/74 mm hg (within normal range), the moon face, buffalo hump, central obesity disappeared, morning 8am serum cortisol level was found within normal range 14 μg/dl (n value 6–23 μg/dl). 3. Discussion Cushing's syndrome is caused by prolonged exposure to supraphysiological levels of circulating glucocorticoids, which may be endogenously or exogenously derived. During infancy, CS is usually associated with McCune-Albright syndrome; adrenocortical tumours most commonly occur in children under four years of age and Cushing's disease (ACTH dependent) is the commonest cause of CS after five years of age [5]. Primary adrenocortical tumours (ACTs) account for only 0.3–0.4% of all childhood neoplasms. Almost a third of these tumours manifests as Cushing syndrome and over 70% of the unilateral tumours in young children are often malignant [2,3,6,7]. There seems to be a bimodal incidence of these tumours, with one peak at under 5 years of age and the second one in the fourth or fifth decades of life. ACTs may be associated with other syndromes, such as, Li-Fraumeni syndrome, Beckwith-wiedemann syndrome, isolated hemihypertrophy, or even a germline point mutation of P53 tumour suppressor gene as reported in a series from Brazil [8]. In comparison to adult CS, growth failure with associated weight gain is one of the most reliable indicators of hypercortisolaemia in pediatric CS. The parents often fail to notice facial changes and growth failure and hence the diagnosis is often delayed. In one study, the mean time from appearing symptoms to diagnosis in 33 children with Cushing's disease was 2.5 years [5]. More recently the comparison of height and BMI SDS measurements provided a sensitive diagnostic discriminator in pediatric patients with CD and those with simple obesity [9]. In the present case, the parents observed noticeable changes in his face and presence of body hair, which made them to bring the child to medical attention. A review of 254 children on the International Pediatric Adrenocortical Tumour Registry identified virilization as the most common manifestation [10]. About 10% of the tumours can be non-functional at presentation, and approximately one third of pediatric patients present with hypertension. Majority of patients (192/254) in the Registry had localized disease and metastatic disease was found in less than 5% of cases. Older children with CS or mixed androgen and cortisol secreting adrenocortical tumours had a worse prognosis compared to younger children [10]. The present case had mild hypertension as well as dyselectrolytemia at presentation, which could be controlled with medication. He had a single adenoma confined to the adrenal gland and there was no evidence of malignancy. After surgical excision of the tumour and the right adrenal gland, the patient made rapid improvement in clinical condition and has been on follow up for last 7 months. 4. Conclusion Pediatric adrenocortical tumours (ACTs) are most commonly encountered in females and in children less than four years. But our case being an 4-year-old boy forms a rare presentation of endogenous Cushing's syndrome due to adrenal adenoma. Cushing's syndrome in this child was controlled after right adrenalectomy. Patient consent Informed written consent was taken. Funding No funding or grant support. Authorship All authors attest that they meet the current ICMJE criteria for authorship. Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. References [1] M.A. Magiakou, G. Mastorakos, E.H. Oldfield, et al. Cushing's syndrome in children and adolescents. Presentation, diagnosis, and therapy N Engl J Med, 331 (10) (1994), pp. 629-636 [PubMed: 8052272] [2] C. Tsigos, G.P. Chrousos Differential diagnosis and management of Cushing's syndrome Annu Rev Med, 47 (1996), pp. 443-461 [PubMed: 8712794] [3] D.N. Orth Cushing's syndrome N Engl J Med, 332 (12) (1995), pp. 791-803 [PubMed: 7862184] [4] C.J. Migeon, R. Lanes (fifth ed.)F. Lifshitz (Ed.), “Adrenal cortex: hypo and hyper_x0002_function,” in Pediatric Endocrinology, vol. 8, Informa Healthcare, London, UK (2007), p. 214 [5] L.F. Chan, H.L. Storr, A.B. Grossman, M.O. Savage Pediatric Cushing's syndrome: clinical features, diagnosis, and treatment Arq Bras Endocrinol Metabol, 51 (8) (2007), pp. 1261-1271, 10.1590/S0004-273 [6] C.A. Stratakis, L.S. Kirschner Clinical and genetic analysis of primary bilateral adrenal diseases(micro- and macronodular disease) leading to Cushing syndrome Horm Metab Res, 30 (6–7) (1998), pp. 456-463 [PubMed: 9694579] [7] W.L. Miller, J.J. Townsend, M.M. Grumbach, S.L. Kaplan An infant with Cushing's disease due to anadrenocorticotropin-producing pituitary adenoma J Clin Endocrinol Metabol, 48 (6) (1979), pp. 1017-1025 [8] R.C. Ribeiro, F. Sandrini, B. Figueiredo, G.P. Zambetti, E. Michalkiewicz, A.R. Lafferty, et al. An inherited P53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma Proc Natl Acad Sci U S A, 98 (16) (2001), pp. 9330-9335 [9] J.E. Greening, H.L. Storr, S.A. McKenzie, K.M. Davies, L. Martin, A.B. Grossman, et al. Linear growth and body mass index in pediatric patients with Cushing's disease or simple obesity J Endocrinol Invest, 29 (10) (2006), pp. 885-887 [10] E. Michalkiewicz, R. Sandrini, B. Figueiredo, E.C. Miranda, E. Caran, A.G. Oliveira-Filho, et al. Clinical and outcome characteristics of children with adrenocortical tumors: a report from the international pediatric adrenocortical tumor Registry J Clin Oncol, 22 (5) (2004), pp. 838-845 From https://www.sciencedirect.com/science/article/pii/S2213576620303833
  8. Sethi A, et al. Clin Endocrinol. 2019;doi:10.1111/CEN.14146. January 5, 2020 Obesity is common at diagnosis of pituitary adenoma in childhood and may persist despite successful treatment, according to findings published in Clinical Endocrinology. “The importance of childhood and adolescent obesity on noncommunicable disease in adult life is well recognized, and in this new cohort of patients, we report that obesity is common at presentation of pituitary adenoma in childhood and that successful treatment is not necessarily associated with weight loss,” Aashish Sethi, MD, MBBS, a pediatric endocrinologist in the department of endocrinology at Alder Hey Children’s Hospital in Liverpool, United Kingdom, and colleagues wrote. “We have reported obesity, and obesity-related morbidity in a mixed cohort of children and young adults previously, but [to] our knowledge, this is the first time this observation has been reported in a purely pediatric cohort.” In a retrospective study, Sethi and colleagues analyzed clinical and radiological data from 24 white children from Alder Hey Children’s Hospital followed for a median of 3.3 years between 2000 and 2019 (17 girls; mean age at diagnosis, 15 years). Researchers assessed treatment modality (medical, surgical or radiation therapy), pituitary hormone deficiencies and BMI, as well as results of any genetic testing. Within the cohort, 13 girls had prolactinomas (mean age, 15 years), including 10 macroadenomas between 11 mm and 35 mm in size. Children presented with menstrual disorders (91%), headache (46%), galactorrhea (46%) and obesity (38%). Nine children were treated with cabergoline alone, three also required surgery, and two were treated with the dopamine agonist cabergoline, surgery and radiotherapy. Five children had Cushing’s disease (mean age, 14 years; two girls), including one macroadenoma. Those with Cushing’s disease presented with obesity (100%), short stature (60%) and headache (40%). Transsphenoidal resection resulted in biochemical cure; however, two patients experienced relapse 3 and 6 years after surgery, respectively, requiring radiotherapy. One patient also required bilateral adrenalectomy. Six children had a nonfunctioning pituitary adenoma (mean age, 16 years; two girls), including two macroadenomas. These children presented with obesity (67%), visual field defects (50%) and headache (50%). Four required surgical resections, with two experiencing disease recurrence after surgery and requiring radiotherapy. During the most recent follow-up exam, 13 children (54.1%) had obesity, including 11 who had obesity at diagnosis. “The persistence of obesity following successful treatment, in patients with normal pituitary function, suggests that mechanisms other than pituitary hormone excess or deficiency may be important,” the researchers wrote. “It further signifies that obesity should be a part of active management in cases of pituitary adenoma from diagnosis.” – by Regina Schaffer Disclosures: The authors report no relevant financial disclosures. From https://www.healio.com/endocrinology/adrenal/news/online/%7Bde3fd83b-e8e0-4bea-a6c2-99eb896356ab%7D/long-term-obesity-persists-despite-pituitary-adenoma-treatment-in-childhood
  9. On December 12th, I am speaking at a sold-out event. I am telling half a funny story and posting it on YouTube. If people want to hear the rest they have to visit my website which is all about Cushing's. Everyday, I see people with Cushing's that don't know they have it. I want to reach these people and the general public to make them aware of our disease. I need a title for this video and am looking for your suggestions. The story is similar to the Abbott and Costello routine of Who's on first and What's on second. So far, I thought of: Is it obesity or Cushing's Disease? What would you suggest as an attention getter? When I post this video, I need your support to view it and go to my website to hear the rest of the story. If you could share the video and ask family and friends to do the same I would appreciate that. Wouldn't it be great if this went viral. So many people would learn about Cushings. WE can make this happen if we involve enough people. Lets go for it. Thanks again. Looking forward to those new titles..
  10. NotSoCushie

    awareness

    On Dec 12th, I am speaking at a sold-out event and telling half of a funny story, then posting it on YouTube, To hear the rest of the story people have to go to my website which is all about Cushing's disease. Every day I see people who I am certain have Cushing's but don't know it. I want to reach these people and the general public. What title can I use for my video? I need your help with this. The story is much like Abbott and Costello's Who's on second, what's on third routine. But there has to be a connection to cushing's. So far, I have: Is it obesity or Cushing's disease? When I get the title and post the video, I need the support of everyone here to view it and go to my website. If you could share and get family and friends to do the same that would be greatly appreciated. Wouldn't it be great if the video went viral and so many people would learn about Cushing's? We can make this happen if I get your support. Thanks everyone. Keep working on a better tite for me. Can't wait to see your suggestions. Thanks again. jan
  11. I am looking for some place like The Mayo clinic or Endocrinologists that would be interested in setting up a dietary study with their Cushing's patients, I am having great success with my specialized diet in lessening the symptoms of cushing's and want to help others get a better quality of life while living with this disease. The first picture is me with Cushing's in 2013 before surgery. the next two pictures are me now with a cushing's recurrence while on my specialized diet. For 3 years I used my body as a science experiment with foods. I don't have a moon face, I have not gained any weight, my girth is much less and my energy and strength are much better than the first time I had Cushing's. The only difference is my diet. For 2 years my endo refused to test me for cushing's again because I did not look the way I should. I had to get other doctors to do the first and secong level tests then I brought those results to my endo and asked him to do the dex suppression test. All tests confirmed Cushing's recurrence. He still won't believe me that my diet has anything to do with the way I look or feel. I am the proof, but he still wont beieve me. What will it take for people to listen to us and believe us????
  12. Are adrenal incidentalomas, which are found by chance on imaging, really harmless? In this paper, the authors looked at 32 studies, including 4121 patients with benign non-functioning adrenal tumours (NFATs) or adenomas that cause mild autonomous cortisol excess (MACE). Only 2.5% of the tumours grew to a clinically significant extent over a mean follow-up period of 50 months, and no one developed adrenal cancer. Of those patients with NFAT or MACE, 99.9% didn’t develop clinically significant hormone (cortisol) excess. This was a group (especially those with MACE) with a high prevalence of hypertension, diabetes, and obesity. This could be because adrenal adenomas promote cardiometabolic problems, or vice versa, or maybe this group with multimorbidities is more likely be investigated. Adrenal incidentalomas are already found in around 1 in 20 abdominal CT scans, and this rate is likely to increase as imaging improves. So it’s good news that this study supports existing recommendations, which say that follow-up imaging in the 90% of incidentalomas that are smaller than 4 cm diameter is unnecessary. From https://blogs.bmj.com/bmj/2019/07/03/ann-robinsons-journal-review-3-july-2019/
  13. Journal of Clinical Endocrinology and Metabolism — Lee IT, et al. | February 07, 2019 Using immunohistochemistry, researchers determined whether adipose tissue (AT) inflammation in humans is associated with chronic endogenous glucocorticoid (GC) exposure due to Cushing’s disease (CD). Abdominal subcutaneous AT samples were evaluated for macrophage infiltration and mRNA expression of pro-inflammatory cytokines in 10 patients with active CD and 10 age, gender and BMI- matched healthy subjects. The presence of AT macrophages, a hallmark of AT inflammation, increases chronic exposure to GCs due to CD. AT inflammation can, therefore, be the source of systemic inflammation in these patients, which in turn can contribute to obesity, insulin resistance and cardiovascular disease. In patients with CD, PCR showed no differences in mRNA expression of any analyzed markers. Read the full article on Journal of Clinical Endocrinology and Metabolism
  14. The effects of obesity on the diagnosis of Cushing’s syndrome and strategies to alter the traditional approaches have been addressed in a new review study. The study, “Diagnosis and Differential Diagnosis of Cushing’s Syndrome,” appeared in The New England Journal of Medicine. The author was Dr. Lynn D. Loriaux, MD and PhD, and a professor of medicine at the Division of Endocrinology, Diabetes and Clinical Nutrition at the School of Medicine, Oregon Health & Science University (OHSU), in Portland, Oregon. Traditionally, exams of patients with glucocorticoid excess focused on the presence of changes in anabolism (the chemical synthesis of molecules). Given the increase in obesity in the general population, changes in anabolism can no longer distinguish Cushing’s syndrome from metabolic syndrome. However, analyses of anti-anabolic changes of cortisol – including osteopenia (lower bone density), thin skin, and ecchymoses (injury that causes subcutaneous bleeding) – are an effective way to make this distinction. The worldwide prevalence of metabolic syndrome in obese people is estimated at about 10%. Conversely, the incidence of undiagnosed Cushing’s syndrome is about 75 cases per 1 million people. Cushing’s and metabolic syndrome share significant clinical similarities, including obesity, hypertension, and type 2 diabetes. Therefore, “making the diagnosis is the least certain aspect in the care of patients with [Cushing’s],” Loriaux wrote. Regarding a physical examination, patients with osteoporosis, reduced skin thickness in the middle finger, and three or more ecchymoses larger than 1 cm in diameter and not associated with trauma are more likely to have Cushing’s. Researchers estimate the probability of people with all three of these symptoms having Cushing’s syndrome is 95%. Measuring 24-hour urinary-free cortisol levels allows the assessment of excess glucocorticoid effects, typical of Cushing’s syndrome. The test, which should be done with the most stringent techniques available, averages the augmented secretion of cortisol in the morning and the diminished secretion in the afternoon and at night. Dexamethasone suppression is one of the currently used screening tests for Cushing’s syndrome. Patients with obesity and depression should not show decreased plasma cortisol levels when dexamethasone is suppressed. However, given its low estimated predictive value (the proportion of positive results that are “true positives”), “this test should not influence what the physician does next and should no longer be used” to screen for Cushing’s, the author wrote. Some patients may show evidence of Cushing’s syndrome at a physical examination, but low urinary free cortisol excretion. This may be due to glucocorticoids being administered to the patient. In this case, the glucocorticoid must be identified and discontinued. Periodic Cushing’s assessments that measure urinary free cortisol should be performed. The opposite can also occur: no clinical symptoms of Cushing’s, but elevated urinary free cortisol excretion and detectable plasma levels of the hormone corticotropin. In these patients, the source of corticotropin secretion, which can be a tumor or the syndrome of generalized glucocorticoid resistance, must be determined. The disease process can be corticotropin-dependent or independent, depending on whether the hormone is detectable. Corticotropin in Cushing’s syndrome can come from the pituitary gland (eutopic) or elsewhere in the body (ectopic). Loriaux recommends that the source of corticotropin secretion be determined before considering surgery. Up to 40% of patients with pituitary adenomas have nonfunctioning tumors (the tumor does not produce any hormones) and the corticotropin source is elsewhere. If misdiagnosed, patients will likely undergo an unnecessary surgery, with a mortality rate of 1%. Patients with an ectopic source of corticotropin should undergo imaging studies in the chest, followed by abdominal and pelvic organs. If these tests fail to detect the source, patients should undergo either the blockade of cortisol synthesis or an adrenalectomy (removal of adrenal glands). However, corticotropin-independent Cushing’s is usually caused by a benign adrenal tumor that uniquely secretes cortisol. “Such tumors can be treated successfully with laparoscopic adrenalectomy,” Loriaux wrote. If the tumor secretes more than one hormone, it is likely malignant. Surgical to remove the tumor and any detectable metastases should be conducted. Overall, “the treatment for all causes of [Cushing’s syndrome], other than exogenous glucocorticoids, is surgical, and neurosurgeons, endocrine surgeons, and cancer surgeons are needed,” Loriaux wrote in the study. “This level of multidisciplinary medical expertise is usually found only at academic medical centers. Thus, most, if not all, patients with [Cushing’s syndrome] should be referred to such a center for treatment.” From https://cushingsdiseasenews.com/2017/10/24/diagnosing-cushings-syndrome-amid-challenge-of-obesity-and-strategies-to-improve-methods/
×
×
  • Create New...