Jump to content

Search the Community

Showing results for tags 'pasireotide'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Welcome!
    • Introduce Yourself
    • Guest Questions
    • Cushing's Basics
    • News Items and Research
    • Announcements
    • Questions about how these boards work?
  • Get Active!
    • Meetings, events and information
    • Fundraising Ideas
    • Cushing's Awareness Day, April 8
    • Spread the Word
    • Marathons
    • Cushing's Clothes Closet
    • Cushing's Library
    • Cushing's Store
  • Cushing's
    • Resources
    • Types of Cushing's
    • Symptoms
    • Tests
    • Treatments
  • Miscellaneous
    • Other Diseases
    • Good News / Attitude of Gratitude
    • Inspirational / Motivational
    • Quotes and Affirmations
    • Lighten Up!
    • Word Games
    • Miscellaneous Chit Chat
    • Current Events
    • Cushie Commerce
    • Internet Classes
    • Recipes

Blogs

  • MaryO'Blog
  • Christy Smith's Blog
  • rooon55's Blog
  • LLMart's Blog
  • regina from florida's Blog
  • terri's Blog
  • Canasa's Blog
  • Tberry's Blog
  • LisaMK's Blog
  • diane177432's Blog
  • Jen1978's Blog
  • GreenGal's Blog
  • Yada Yada Yada
  • Jinxie's Blog
  • SherryC's Blog
  • stjfs' Blog
  • kalimae7371's Blog
  • Kristy's Blog
  • kathieb1's Blog
  • Yavanna's Blog
  • Johnni's Blog
  • AutumnOMA's Blog
  • Will Power
  • dropsofjupiter's Blog
  • Lorrie's Blog
  • DebMV's Blog
  • FarWind's Blog
  • sallyt's Blog
  • dseefeldt's Blog
  • ladylena's Blog
  • steffie's Blog
  • Lori L's Blog
  • mysticalsusan1's Blog
  • cathy442's Blog
  • Kathy711's Blog
  • Shannonsmom's Blog
  • jack's Blog
  • Kandy66's Blog
  • mars72's Blog
  • singlesweetness33's Blog
  • michelletm's Blog
  • JC_Adair's Blog
  • Lisa-A's Blog
  • Jen3's Blog
  • tammi's Blog
  • Ramblin' Rose (Maggie's)
  • monicaroni77's Blog
  • monicaroni's Blog
  • Saz's Blog
  • alison
  • Thankful for the Journey
  • Judy from Pgh's Blog
  • Addiegirl's Blog
  • candlelite2000's Blog
  • Courtney likes to talk......
  • Tanya's Blog
  • smoketooash's Blog
  • meyerfamily8's Blog
  • Sheila1366's Blog
  • A Guide to Blogging...
  • Karen's Blog
  • barbj222222's Blog
  • Amdy's Blog
  • Jesh's Blog
  • pumpkin's Blog
  • Jazlady's Blog
  • Cristalrose's Blog
  • kikicee's Blog
  • bordergirl's Blog
  • Shelby's Blog
  • terry.t's Blog
  • CanadianGuy's Blog
  • Mar's Cushie Couch
  • leanne's Blog
  • honeybee30's Blog
  • cat lady's Blog
  • Denarea's Blog
  • Caroline's Blog
  • NatalieC's Blog
  • Ahnjhnsn's Blog
  • A journey around my brain!
  • wisconsin's Blog
  • sonda's Blog
  • Siobhan2007's Blog
  • mariahjo's Blog
  • garcia9's Blog
  • Jessie's Blog
  • Elise T.'s Blog
  • glandular-mass' Blog
  • Rachel Bridgewater's Blog
  • judycolby's Blog
  • CathyM's Blog
  • MelissaTX's Blog
  • nessie21's Blog
  • crzycarin's Blog
  • Drenfro's Blog
  • CathyMc's Blog
  • joanna27's Blog
  • Just my thoughts!
  • copacabana's Blog
  • msmith3033's Blog
  • EyeRishGrl's Blog
  • SaintPaul's Blog
  • joyce's Blog
  • Tara Lou's Blog
  • penybobeny's Blog
  • From Where I Sit
  • Questions..
  • jennsarad's Blog
  • looking4answers2's Blog
  • julie's blog
  • cushiemom's Blog
  • greydragon's Blog
  • AmandaL's Blog
  • KWDesigns: My Cushings Journey
  • cushieleigh's Blog
  • chelser245's Blog
  • melissa1375's Blog
  • MissClaudie's Blog
  • missclaudie92's Blog
  • EEYORETJBD's Blog
  • Courtney's Blog
  • Dawn's Blog
  • Lindsay's Blog
  • rosa's Blog
  • Marva's Blog
  • kimmy's Blog
  • Cheryl's Blog
  • MissingMe's Blog
  • FerolV's Blog
  • Audrey's (phil1088) Blog
  • sugarbakerqueen's Blog
  • KathyBair's Blog
  • Jenn's Blog
  • LisaE's Blog
  • qpdoll's Blog
  • blogs_blog_140
  • beach's Blog
  • Reillmommy is Looking for Answers...
  • natashac's Blog
  • Lisa72's Blog
  • medcats10's Blog
  • KaitlynElissa's Blog
  • shygirlxoxo's Blog
  • kerrim's Blog
  • Nicki's Blog
  • MOPPSEY's Blog
  • Betty's Blog
  • And the beat goes on...
  • Lynn's Blog
  • marionstar's Blog
  • floweroscotland's Blog
  • SleepyTimeTea's Blog
  • Shelly3's Blog
  • fatnsassy's Blog
  • gaga's Blog
  • Jewels' Blog
  • SusieQ's Blog
  • kayc6751's Blog
  • moonlight's Blog
  • Sick of Being Sick
  • Peggy's Blog
  • kouta5m's Blog
  • TerryC's Blog
  • snowii's Blog
  • azZ9's Blog
  • MaMaT333's Blog
  • missaf's Blog
  • libertybell's Blog
  • LyssaFace's Blog
  • suzypar2002's Blog
  • Mutley's Blog
  • superc's Blog
  • lisajo42's Blog
  • alaustin's Blog
  • Tina1962's Blog
  • Ill never complain a single word about anything.. If I get rid of Cushings disease.
  • puddingtoast's Blog
  • AmberC's Blog
  • annacox
  • justwaiting's Blog
  • RachaelB's Blog
  • MelanieW's Blog
  • My Blog
  • FLHeather's Blog
  • HollieK's Blog
  • Bonny777's Blog
  • KatieO's Blog
  • LilDickens' Mini World
  • MelissaG's Blog
  • KelseyMichelle's Blog
  • Synergy's Blog
  • Carolyn1435's Blog
  • Disease is ugly! Do I have to be?
  • A journey of a thousand miles begins with a single wobble
  • MichelleK's Blog
  • lenalee's Blog
  • DebGal's Blog
  • Needed Answers
  • Dannetts Blog
  • Marisa's Blog
  • Is this cushings?
  • alicia26's Blog
  • happymish's Blog
  • mileymo's Blog
  • It's a Cushie Life!
  • The Weary Zebra
  • mthrgonenuts' Blog
  • LoriW's Blog
  • WendyG's Blog
  • khmood's Blog
  • Finding Answers and Pissing Everyone Off Along the Way
  • elainewwjd's Blog
  • brie's Blog
  • dturner242's Blog
  • dturner242's Blog
  • dturner242's Blog
  • Stop the Violins
  • FerolV's Internal Blog
  • beelzebubble's Blog
  • RingetteLUVR
  • Eaglemtnlake's Blog
  • mck25's Blog
  • vicki11's Blog
  • vicki11's Blog
  • ChrissyL's Blog
  • tpatterson757's Blog
  • Falling2Grace's Blog
  • meeks089's Blog
  • JustCurious' Blog
  • Squeak's Blog
  • Kill Bill
  • So It Begins ! Cushings / Pituitary Microadenoma
  • Crystal34's Blog
  • Janice Barrett

Categories

  • Helpful Articles
    • Links
    • Research and News
    • Useful Information
  • Pages
  • Miscellaneous
    • Databases
    • Templates
    • Media

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests

Found 14 results

  1. Abstract N-of-1 trials can serve as useful tools in managing rare disease. We describe a patient presenting with a typical clinical picture of Cushing’s Syndrome (CS). Further testing was diagnostic of ectopic Adrenocorticotropic Hormone (ACTH) secretion, but its origin remained occult. The patient was offered treatment with daily pasireotide at very low doses (300 mg bid), which resulted in clinical and biochemical control for a period of 5 years, when a pulmonary typical carcinoid was diagnosed and dissected. During the pharmacological treatment period, pasireotide was tentatively discontinued twice, with immediate flare of symptoms and biochemical markers, followed by remission after drug reinitiation. This is the first report of clinical and biochemical remission of an ectopic CS (ECS) with pasireotide used as first line treatment, in a low-grade lung carcinoid, for a prolonged period of 5 years. In conclusion, the burden of high morbidity caused by hypercortisolism can be effectively mitigated with appropriate pharmacological treatment, in patients with occult tumors. Pasireotide may lead to complete and sustained remission of hypercortisolism, until surgical therapy is feasible. The expression of SSTR2 from typical carcinoids may be critical in allowing the use of very low drug doses for achieving disease control, while minimizing the risk of adverse events. Download PDF (2083K)
  2. Abstract (1) Background: Cushing’s disease (CD) is a serious endocrine disorder caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary neuroendocrine tumor (PitNET) that stimulates the adrenal glands to overproduce cortisol. Chronic exposure to excess cortisol has detrimental effects on health, including increased stroke rates, diabetes, obesity, cognitive impairment, anxiety, depression, and death. The first-line treatment for CD is pituitary surgery. Current surgical remission rates reported in only 56% of patients depending on several criteria. The lack of specificity, poor tolerability, and low efficacy of the subsequent second-line medical therapies make CD a medical therapeutic challenge. One major limitation that hinders the development of specific medical therapies is the lack of relevant human model systems that recapitulate the cellular composition of PitNET microenvironment. (2) Methods: human pituitary tumor tissue was harvested during transsphenoidal surgery from CD patients to generate organoids (hPITOs). (3) Results: hPITOs generated from corticotroph, lactotroph, gonadotroph, and somatotroph tumors exhibited morphological diversity among the organoid lines between individual patients and amongst subtypes. The similarity in cell lineages between the organoid line and the patient’s tumor was validated by comparing the neuropathology report to the expression pattern of PitNET specific markers, using spectral flow cytometry and exome sequencing. A high-throughput drug screen demonstrated patient-specific drug responses of hPITOs amongst each tumor subtype. Generation of induced pluripotent stem cells (iPSCs) from a CD patient carrying germline mutation CDH23 exhibited dysregulated cell lineage commitment. (4) Conclusions: The human pituitary neuroendocrine tumor organoids represent a novel approach in how we model complex pathologies in CD patients, which will enable effective personalized medicine for these patients. Keywords: organoids; neuroendocrine tumors; induced pluripotent stem cells; CDH23 1. Introduction Cushing’s disease (CD) is a serious endocrine disorder caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary neuroendocrine tumor (PitNET) that stimulates the adrenal glands to overproduce cortisol [1,2,3,4]. The WHO renamed pituitary adenomas as PitNETs [5]. While PitNETs have been defined as benign, implying that these tumors cause a disease that is not life threatening or harmful to health, in fact chronic exposure to excess cortisol has wide-ranging and detrimental effects on health. Hypercortisolism causes increased stroke rates, diabetes, obesity, depression, anxiety, and a three-fold increase in the risk of death from cardiovascular disease and cancer [4,6,7,8]. The first-line treatment for CD is pituitary surgery, which is followed by disease recurrence in 50% of patients during the 10-year follow-up period after surgery in the hands of an experienced surgeon [9,10,11]. Studies have demonstrated that surgical failures and recurrences of CD are common, and despite multiple treatments, biochemical control is not achieved in approximately 30% of patients. This suggests that in routine clinical practice, initial and long-term disease remission is not achieved in a substantial number of CD patients [7,12]. Hence, medical therapy is often considered in the following situations: when surgery is contraindicated or fails to achieve remission, or when recurrence occurs after apparent surgical remission. While stereotactic radiosurgery treats incompletely resected or recurrent PitNETs, the main drawbacks include the longer time to remission (12–60 months) and the risk of hypopituitarism [3,13,14]. There is an inverse relationship between disease duration and reversibility of complications associated with the disease, thus emphasizing the importance of identifying an effective medical strategy to rapidly normalize cortisol production by targeting the pituitary adenoma [4,7,12]. Unfortunately, the lack of current standard of care treatments with low efficacy and tolerability makes CD a medical therapeutic challenge. The overall goal of medical therapy for CD is to target the signaling mechanisms to lower cortisol levels in the body [15,16]. The drugs offered for treatment of CD vary in the mechanism of action, safety, tolerability, route of administration, and drug–drug interactions [15,16]. In the era of precision medicine [17], where it is imperative to identify effective therapies early, there is an urgent need to accelerate the identification of therapies targeted to the ACTH-secreting pituitary tumor which are tailored for each individual patient. The absence of preclinical models that replicate the complexity of the PitNET microenvironment has prevented us from acquiring the knowledge to advance clinical care by implementing therapies specifically targeting the tumor, which would have a higher efficacy and tolerability for CD patients. In this instance, organoids can replicate much of the complexity of an tumor. An “organoid” is defined as a three-dimensional cell structure, grown from primary cells of dissociated pituitary tumors in Matrigel matrix, which proliferate, and differentiate in three dimensions, eventually replicating key biological properties of the tissue [18]. While pituitary cell lines predominantly represent hormonal lineages, these cultures do not reproduce the primary pituitary tissue because of the tumor transformation and non-physiological 2D culture conditions [19,20,21]. Pituitary tissue-derived organoids have been generated from mouse models [22,23]. While several human and rat pituitary spheroid/aggregate/tumoroid models have been reported, these cultures consist of poorly differentiated cells with high replicative potential which can affect drug response and produce data that poorly translate to the clinic [24,25]. In this study, we developed an organoid model derived from human PitNETs that replicated much of the cellular complexity and function of the patient’s tumor. Organoids derived from corticotroph PitNETs retained the genetic alterations of the patient’s primary tissue. 2. Materials and Methods 2.1. Generation and Culture of Human Pituitary Neuroendocrine Tumor (PitNET) Organoids Patients with planned transsphenoidal surgery for pituitary tumors were identified in the outpatient neurosurgery clinics. Tissues were collected under the St. Joseph’s Hospital and Barrow Neurological Institute Biobank collection protocol PHXA-05TS038 and collection of outcomes data protocol PHXA-0004-72-29, with the approval of the Institutional Review Board (IRB) and patient consent. Samples were de-identified and shipped to the Zavros laboratory (University of Arizona) for processing. Pituitary tumor tissue was collected in Serum-Free Defined Medium (SFDM) supplemented with ROCK inhibitor (Y27632, 10 µM), L-glutamine (2 mM), A83-01 (activin receptor-like kinase (Alk) 4/5/7 inhibitor, 0.5 mM), penicillin/streptavidin (1%), kanamycin (1%), amphotericin/gentamycin (0.2%), CHIR-98014 (4 mM), and thiazovivin (TZV, 2.5 mM). Tissues that contained red blood cells were incubated with Red Blood Cell (RBC) Lysis Buffer according to the manufacturer’s protocol (Thermo Fisher Scientific, San Fransisco, CA, USA). Tissues were dissected into small pieces, transferred to digestion buffer (DMEM/F12 supplemented with 0.4% collagenase 2, 0.1% hyaluronic acid, 0.03% trypsin-EDTA) and incubated for 5–10 min at 37 °C with gentle shaking. Tissue was further incubated with Accutase™ (Thermo Fisher Scientific) for 5 min at 37 °C. Enzymatically dissociated cells were pelleted and washed in DPBS supplemented with antibiotics at a 400 relative centrifugal force (RCF) for 5 min. Dissociated adenoma cells were resuspended in Matrigel™, and Matrigel™ domes containing the cells were then plated in culture dishes and overlaid with pituitary growth media (Supplemental Table S1). The culture was maintained at 37 °C at a relative humidity of 95% and 5% CO2. Organoid growth medium was replenished every 3–4 days and passaged after 15 days in culture. 2.2. Generation of Induced Pluripotent Stem Cells (iPSCs) Induced pluripotent stem cell lines (iPSC lines) were generated from control individuals (no reported disease) or CD patients according to published protocols by the University of Arizona iPSC Core [26]. All human iPSC lines were tested and found to be negative for mycoplasma contamination using the Mycoalert Mycoplasma testing kits (LT07-318, Lonza), and no karyotype abnormalities were found (KaryoStat+, Thermo). 2.3. Pituitary Organoids Generated from iPSCs Six well culture plates were coated with 2 mL/well 0.67% Matrigel (diluted in E8 media, UA iPSC core, 151169-01) and incubated at 37 °C at a relative humidity of 95% and 5% CO2 overnight. The iPSC lines were reprogrammed from the blood of either a healthy donor (JCAZ001) or a CD patient (iPSC7 and iPSC1063) at the University of Arizona iPSC Core. Passage 12 iPSCs were plated onto the coated plates and incubated at 37 °C at a relative humidity of 95% and 5% CO2. At 70% confluency, cells were passaged to freshly coated 24 well plates at a ratio of 1:8 and grown to 85–90% confluency before beginning the directed differentiation schedule. From days 0 to 3, cells were cultured in E6 media supplemented with 1% penicillin/streptomycin, 10 μM SB431542, and 5 ng/mL BMP4. BMP4 was withdrawn from the culture at day 3. Starting on day 4, the cells were cultured in E6 media, supplemented with 10 μM SB431542, 30 ng/mL human recombinant SHH, 100 ng/mL FGF8b, 10 ng/mL FGF18, and 50 ng/mL FGF10. Fifteen days after culture, the cells were harvested in cold E6 media by pipetting and resuspended in Matrigel™ (20,000 cells/50 mL Matrigel™). Matrigel™ domes containing the cells were plated in culture dishes and overlaid with differentiation media containing E6 media which was supplemented with 10 μM Y-27632, 30 ng/mL human recombinant SHH, 100 ng/mL FGF8b, 10 ng/mL FGF18, and 50 ng/mL FGF10 (Supplemental Table S2). Organoids were cultured for a further 15 days at 37 °C at a relative humidity of 95% and 5% CO2. 2.4. Spectral Flow Cytometry (Cytek™ Aurora) The multicolor flow cytometry panel was designed using the Cytek® Full Spectrum Viewer online tool to calculate the similarity index (Supplemental Figure S1). The organoids were harvested in cold SFDM media and centrifuged at 400× g for 5 min. Supernatant was discarded and organoids were dissociated to single cells using Accutase® (Thermo Fisher Scientific 00-4555-56). The enzymatic reaction was stopped using prewarmed DPBS, and cells were then centrifuged at 400× g for 5 min and incubated with fluorochrome-conjugated/unconjugated primary surface or cytoplasmic antibodies (Supplemental Figure S1) at 4 °C for 30 min. Cells were then washed with Cell Staining Buffer (BioLegend # 420-201) and incubated with secondary antibodies (Supplemental Figure S1) at 4 °C for 30 min. Cells were fixed using Cytofix/Cytoperm™ Fixation/Permeabilization Solution (BD Biosciences # 554714) at 4 °C for 20 min, followed by washing with Fixation/Permeabilization wash buffer. Cells were labeled with fluorochrome-conjugated/unconjugated intracellular primary antibodies (Supplemental Figure S1) at 4 °C for 30 min, then washed and incubated with secondary antibodies at 4 °C for 30 min. Cells were resuspended in cell staining buffer and fluorescence and measured using the Cytek Aurora 5 Laser Spectral Flow Cytometer. An unstained cell sample was fixed and used as a reference control. UltraComp eBeads™, Compensation Beads (Thermo Fisher Scientific # 01-2222-42) were stained with the individual antibodies and used as single stain controls for compensation and gating. Data were acquired using the Cytek™ Aurora and analyzed using Cytobank software (Beckman Coulter, Indianapolis, IN, USA). 2.5. Whole Mount Immunofluorescence Organoids were immunostained using published protocols by our laboratory [27,28,29]. Proliferation was measured by using 5-ethynyl-2′-deoxyuridine (EdU) incorporation according to the Manufacturer’s protocol (Click-IT EdU Alexa Fluor 555 Imaging Kit, Thermo Fisher Scientific C10338). Co-staining was performed by blocking fixed organoids with 2% donkey serum (Jackson Immuno Research, # 017-000-121) diluted in 0.01% PBST for 1hr at room temperature. Organoids were then incubated overnight at 4 °C with primary antibodies, followed by secondary antibodies and Hoechst (Thermo Fisher Scientific H1399, 1:1000 in 0.01% PBST) for 1 h at room temperature. Human specific primary antibodies used included: rabbit anti-ACTH (Thermo Fisher Scientific 701293, 1:250), rabbit anti-Synaptophysin (Thermo Fisher Scientific PA5-27286, 1:100), species PIT1 (Thermo Fisher Scientific PA5-98650, 1:50), rabbit anti-LH (Thermo Fisher Scientific PA5-102674, 1:100), mouse anti-FSH (Thermo Fisher Scientific MIF2709, 1:100), mouse anti-PRL (Thermo Fisher Scientific CF500720, 1:100), Alexa Flour conjugated GH (NB500-364AF647, 1:100), and mouse anti-CAM5.2 (SIGMA 452M-95, 1:250). The secondary antibodies used included Alexa Fluor 488 Donkey Anti Rabbit IgG (H+L) (Thermo Fisher Scientific A21206, 1:100) or Alexa Fluor 647 Donkey Anti Mouse IgG (H+L) (Thermo Fisher Scientific A31571, 1:100). Organoids were visualized and images were acquired by confocal microscopy using the Nikon CrestV2 Spinning Disk (Nikon, Melville, NY, USA). Fluorescence intensity and percentage of EdU positive cells of total cells, were calculated using Nikon Elements Software (Version 5.21.05, Nikon, Melville, NY, USA). 2.6. Nuclear Morphometric Analysis (NMA) Nuclear Morphometric Analysis (NMA) using treated organoids was performed based on a published protocol that measures cell viability based on the changes in nuclear morphology of the cells, using nuclear stain Hoechst or DAPI [30]. Images of organoid nuclei were analyzed using the ImageJ Nuclear Irregularity Index (NII) plugin for key parameters, which included cell area, radius ratio, area box, aspect, and roundness. Using the published spreadsheet template [30], the NII of each cell was calculated with the following formula: NII = Aspect − Area Box + Radius Ratio + Roundness. The area vs. NII of vehicle-treated cells were plotted as a scatter plot using the template, and was considered as the normal cell nuclei. The same plots were generated for each condition, and the NII and area of treated cells were compared to the normal nuclei, and classified as one of the following NMA populations: Normal (N; similar area and NII), Mitotic (S; similar area, slightly higher NII), Irregular (I; similar area, high NII), Small Regular (SR; apoptotic, low area and NII), Senescent (LR; high area, low NII), Small Irregular (SI; low area, high NII), or Large Irregular (LI; high area, high NII). Cells classified as SR exhibited early stages of apoptosis, and cells classified as either I, SI, or LI exhibited significant nuclear damage. The percentage of cells in each NII classification category were calculated and plotted as a histogram using GraphPad Prism. 2.7. ELISA Concentration of secreted ACTH in conditioned media that was collected from organoid cultures was measured using the Human ACTH ELISA Kit (Novus Biologicals, NBP2-66401), according to the manufacturer’s protocol. The enzyme–substrate reaction was measured spectrophotometrically (BioTek Gen5 Micro Plate Reader Version 3.11, Santa Clara, CA, USA) at a wavelength of 450 nm, and the ACTH concentration (pg/mL) was interpolated by a standard curve with a 4-parameter logistic regression analysis, using GraphPad Prism (Version 9.2.0, San Diego, CA, USA). 2.8. Drug Assay Patient adenoma-derived pituitary organoids were grown in 96-well plates and treated with 147 small molecules taken from the NCI AOD9 compound library for 72 h. (https://dtp.cancer.gov/organization/dscb/obtaining/available_plates.html (accessed on 22 August 2021)). Drugs were diluted from 10 mM DMSO stock plates into 100 M DMSO working stocks with a final concentration of 1μM. All vehicle controls were treated with 0.1% DMSO. Organoid proliferation was measured using a CellTiter 96® AQueous One Solution Cell Proliferation Assay kit (MTS, Promega, G3582, Madison, WI, USA) according to the manufacturer’s instruction. Organoid death was calculated based on the absorbance readings at 490 nm, collected from the MTS assay relative to the vehicle controls. Drug screens were performed with biological replicates in the same screen. Drugs were selected based on their ability to target key signaling pathways as well as clinical relevance to the treatment. Drug sensitivity is represented by cell viability, and is significant at <0.5 suppressive effect of the drugs. The percent of cell viability relative to the vehicle control was calculated. Correlation coefficients across each organoid were calculated using the Pearson method to assess confidence in replication. The variance component was detected for each drug across all organoids. A random effect model was run with a single random factor for each drug, and estimated variance was calculated by rejecting the null hypothesis that variation was not present among samples. The drug responses were grouped by variance factor, into large (vc > 100), median (100 > vc > 50), and small (vc < 50). A heatmap was used to display the differential responses in cell viability for the drugs. Drugs that clustered together and showed response within corticotrophs were investigated further based on their mode of action. Pathways (Kegg and Reactome) and gene ontology mapping were conducted for the genes that were being targeted by the drugs, in order to evaluate the key responses in cellular processes. A network was constructed in Cytoscape v 3.8.2 (San Diego, CA, USA) for the purpose of association between the drugs and genes. 2.9. Drug Dose Responses Organoids were grown in Matrigel™ domes within 96-well round-bottom culture plates. Recombinant human SHH was removed from the pituitary organoid growth media, 24 h prior to drug treatment. Organoids were treated with either vehicle (DMSO), cabergoline (Selleckchem S5842), ketoconazole (Selleckchem S1353), roscovitine (Selleckchem S1153), GANT61 (Stemcell Technologies 73692), pasireotide (TargetMol TP2207), mifeprostone (Selleckchem S2606), etomidate (Selleckchem S1329), mitotane (Selleckchem S1732), metyropane (Selleckchem S5416), or osilodrostat (Selleckchem S7456) at concentrations of 0, 1, 10, 100, 1000, and 10,000 nM, for 72 h. The percentage of cell viability was measured using an MTS assay (Promega G3580). Absorbance was measured at 490 nm and normalized to the vehicle. Concentrations were plotted in a logarithmic scale, and a nonlinear dose response curve regression was calculated using GraphPad Prism. An IC50 value for each drug treatment was determined based on the dose response curve, using GraphPad Prism analysis software. 2.10. Calculation of Area under the Curve (AUC) AUC (area under the curve) was determined by plotting the normalized % cell viability versus transformed concentration of the drugs, using a trapezoidal approximation for the area [31]. The formula was based on splitting the curve into trapezoids with bases equal to the % viability (V) and height equal to the interval length (difference in concentrations (C), and then summing the areas of each trapezoid: ∑n0(Vn+Vn−1)2∗(Cn−Cn−1) 2.11. Quantitative RT PCR (qRT-PCR) RNA was collected from patient-derived organoid cultures using the RNeasy Mini Kit (Qiagen). cDNA was generated from the extracted RNA, and then pre-amplified using TaqMan PreAmp Master Mix (Thermo Fisher Scientific 391128). The primers used were human-specific GAPDH (Thermo Fisher Scientific, Applied Biosystems Hs02786624_g1), NR5A1 (SF1) (Thermo Fisher Scientific, Hs00610436_m1), PIT1 (Thermo Fisher Scientific, Hs00230821_m1), TPit (Thermo Fisher Scientific, Hs00193027), and POMC (Thermo Fisher Scientific, Hs01596743_m1). Each PCR reaction was performed using a final volume of 20 µL, composed of 20X TaqMan Expression Assay primers, 2X TaqMan Universal Master Mix (Applied Biosystems, TaqMan® Gene Expression Systems), and a cDNA template. Amplification of each PCR reaction was conducted in a StepOne™ Real-Time PCR System (Applied Biosystems, Foster City, CA, USA), using the following PCR conditions: 2 min at 50 °C, 10 min at 95 °C, denaturing for 15 s at 95 °C, and annealing/extending for 1 min at 60 °C, for a total of 40 cycles. Relative fold change was calculated using the 2 − ∆∆Ct method [32], where CT = threshold cycle. Results were analyzed as the average fold change in gene expression compared to the control, and GAPDH served as an internal control. 2.12. Whole Exome Sequencing WES was performed by the University of Arizona Center for Applied Genetics and Genomic Medicine. Isolated DNA from patient adenoma tissue will be quantified using the Qubit quantitation system with standard curve, as per the supplier protocol (Thermo Fisher Scientific). All samples were further tested for quality using the Fragment Analyzer (Advanced Analytical), following the manufacturer-recommended protocols. Whole exome sequencing (WES) was performed by array capture and approximately 60 Mb of exome target sequence, using the SureSelectXT Human All Exon V6 enrichment (Agilent) or equivalent (which one was used). All exome library builds were quantified via qPCR and subsequently sequenced to a minimum 20X coverage, using paired-end chemistry on the Illumina NovaSeq platform. Whole exome sequencing (WES) was performed by hybridization capture of approx. 35 Mb of the exome target sequence, using the Swift Exome Hyb Panel (Swift Biosciences 83216). All exome library builds were quantified via qPCR and subsequently sequenced to a minimum 20X coverage, using paired-end chemistry on the Illumina NextSeq500 or NovaSeq platform (Illumina). DNA reads were trimmed, filtered by quality scores and aligned to the human genome (hg38) with Burrows–Wheeler Aligner with default parameters. Picard (http://broadinstitute.github.io/picard (accessed on 22 December 2021)) was used to mark duplicates. Germline single nucleotide variants (SNV) were called using the Genome Analysis Tool Kit (GATK), using the given guidelines. Mutations were annotated using ANNOVAR for coding sequences. Variants that passed the quality filter were further investigated for similarity. Concordance between tissue and organoids was calculated using Jaccard similarity index (Jij = Mij/(Mi + Mj − Mij) where Mi is the number of variants in tissues, Mj is the number of variants in organoids, and Mij is the number of identical variants in both tissue and organoid. 2.13. Single Cell RNA Sequencing (scRNA-Seq) Cultures were collected on day 15 of the pituitary directed differentiation schedule, and cells were dissociated into a single-cell suspension using Cell Dissociation Buffer (Thermo Fisher Scientific 13151014). Cells (15,000 cells/sample) were resuspended in the sample buffer (BD Biosciences 65000062), filtered using cell strainer (40 microns), and loaded into a BD Rhapsody cartridge (BD Biosciences 400000847) for single-cell transcriptome isolation. Based on the BD Rhapsody system whole-transcriptome analysis for single-cell whole-transcriptome analysis, microbead-captured single-cell transcriptomes were used to prepare a cDNA library. Briefly, double-stranded cDNA was first generated from the microbead-captured single-cell transcriptome in several steps, including reverse transcription, second-strand synthesis, end preparation, adapter ligation, and whole-transcriptome amplification (WTA). Then, the final cDNA library was generated from double-stranded full-length cDNA by random priming amplification using a BD Rhapsody cDNA Kit (BD Biosciences, 633773), as well as the BD Rhapsody Targeted mRNA and WTA Amplification Kit (BD Biosciences, 633801). The library was sequenced in PE150 mode (paired-end with 150-bp reads) on NovaSeq6000 System (Illumina). A total of 80,000 reads were demultiplexed, trimmed, mapped to the GRCh38 annotation, and quantified using the whole transcriptome analysis pipeline (BD Rhapsody™ WTA Analysis Pipeline v1.10 rev6, San Jose, CA, USA) on the Seven Bridges Genomics platform (https://igor.sbgenomics.com (accessed on 4 April 2022)), prior to clustering analysis in Seurat. For QC and filtration, read counting and unique molecular identifier (UMI) counting were the principal gene expression quantification schemes used in this single-cell RNA-sequencing (scRNA-seq) analysis. The low-quality cells, empty droplets, cell doublets, or multiplets were excluded based on unique feature count (less than 200 or larger than 2500), as they may often exhibit either an aberrantly high gene count or very few genes. Additionally, the mitochondrial QC metrics were calculated, and the cells with >5% mitochondrial counts were filtered out, as the percentage of counts originating from a set of low-quality or dying cells often exhibit extensive mitochondrial contamination. After the removal of unwanted cells from the single cell dataset, the global-scaling normalization method LogNormalize was employed. This method normalizes the feature expression measurements for each cell by the total expression, multiplies this by a scale factor (10,000), and log-transforms the result. The molecules per gene per cell, based on RSEC error correction (RSEC_MolsPerCell file) matrix files from iPSCctrl and iPSCCDH23 samples, were imported into Seurat v4, merged, and processed (as stated above) for UMAP reduction, cluster identification, and differential marker assessment using the FindAllMarkers function within Seurat. 2.14. Statistical Analyses Sample size was based on assessment of power analysis using SigmaStat software. Data collected from each study from at least 4 in vitro technical replicates were analyzed by obtaining the mean ± standard error of the mean (SEM), unless otherwise stated. The significance of the results was then tested using commercially available software (GraphPad Prism, GraphPad software, San Diego, CA, USA). 3. Results 3.1. Generation and Validation of Human PitNET Tissue Derived Organoids Human PitNET tissue was harvested during endoscopic transsphenoidal pituitary surgery from 35 patients in order to generate organoids. These cultures are referred to as human PitNET tissue derived organoids (hPITOs). Supplementary Table S3 summarizes the neuropathology reports and clinical diagnosis from these cases. In summary, 12 corticotroph (functional, CD), and 3 silent corticotroph tumors (nonfunctional tumors), 9 gonadotroph tumors, 8 lactotroph tumors, and 3 somatotroph tumors (acromegaly) were used to generate hPITOs (Supplementary Table S3). Bright-field microscopy images of hPITOs that were generated from corticotroph adenomas from patients diagnosed with CD (Figure 1a–e). Silent/nonfunctioning tumors (Figure 1f,g) revealed morphological diversity among the organoid lines between individual patients and amongst subtypes. Confocal microscopy was used to capture a z-stack through the hPITO38, immunofluorescently stained for CAM5.2 (red), ACTH (green), and Hoechst (nuclear staining, blue) and emphasizes the 3D cellular structure of the hPITOs (Supplemental Video S1). Lactotroph, gonadotroph, and somatotroph adenomas were used to generate hPITOs, and showed the same morphological divergence amongst subtypes and between each patient line (Supplemental Figure S2). Proliferation was measured within the cultures using 5-ethynyl-2′-deoxyuridine (EdU) uptake and showed that the percentage of EdU+ve cells/total Hoechst+ve nuclei directly correlated with the pathology MIB-1 (Ki67) score (red, R2 = 0.9256) (Figure 1a–g, Supplemental Figure S2). ACTH concentration, which was measured by ELISA using organoid conditioned culture media collected from each hPITO line, showed the highest expression in the corticotroph adenoma organoids generated from CD patients (Figure 1h). Figure 1. Morphology and function of corticotroph hPITOs. (a–g) Brightfield images, immunofluorescence staining using antibodies specific for CAM5.2 (red), ACTH (green), and EdU (magenta, inset) of organoid cultures generated from patients with Cushing’s disease (hPITOs 1, 7, 10, 33, 35) or nonfunctional corticotroph adenomas (hPITO8, 12). Quantification of %EdU positive cells/total cell number is shown and compared to the Ki67 score given in the pathology report (Supplemental Table S3). An ELISA was performed using conditioned media collected from (h) corticotroph hPITO cultures and (i) lactotroph, somatotroph, and gonadotroph hPITO cultures for the measurement of ACTH secretion (pg/mL). 3.2. Characterization of Cell Lineages in Pituitary Adenoma-Derived Organoids by Spectral Cytek™ Aurora Analysis In order to validate the similarity in cell lineages identified between the organoid line and the patient’s tumor, we compared the immunohistochemistry from the neuropathology report (Supplemental Table S3) to the expression pattern of pituitary adenoma-specific markers, which were measured using Cytek™ Aurora spectral flow cytometry (Figure 2). The location of cells that are found in each cluster based on the highly expressed antigens are shown in the representative tSNE (viSNE) maps (Figure 2a). Compared to nonfunctional adenoma-derived hPITOs, organoids derived from corticotroph adenomas of CD patients highly expressed proliferating (Ki67+) T-Pit+ ACTH cells (Figure 2a). Interestingly, there was an increase in SOX2+ cells within the total cell population, associated with Crooke’s cell adenoma hPITOs (Figure 2a). Within the total cell population, cell clusters expressing CD45 and vimentin were also measured (Figure 2a). Data for the analysis of corticotroph hPITOs, derived from CD patients and individuals with nonfunctional adenomas, were summarized in a heatmap for each subtype organoid line based on quantified cell abundance (percent of total cells) using spectral flow cytometry (Figure 2b). Figure 2. Cell heterogeneity of corticotroph hPITOs. (a) viSNE maps define spatially distinct cell populations using pituitary specific cell lineage, stem cell, and transcription factor markers. Cell populations were quantified in organoids generated from CD patients with corticotroph adenomas (sparsely granulated and Crooke’s cell adenoma) or patients with nonfunctional corticotroph adenomas. (b) Quantification of the abundance of cells expressing pituitary specific markers as a percent total. viSNE maps define spatially distinct cell populations in organoid cultures generated from CD patient with (c) corticotroph adenoma (hPITO37, Crooke’s cell adenoma) and adjacent normal tissue (hPITO37N), or (d) sparsely granulated corticotroph adenomas (hPITO38) and adjacent normal tissue (hPITO38N). Organoid cultures derived from pituitary adenomas (hPITO37 and hPITO38) were compared to organoids derived from adjacent normal pituitary tissue (hPITO37N and hPITO38N) (Figure 2c,d). While Pit1 lineages including cells expressing GH and PRL, as well as SF1 lineages expressing FSH and LH, were detected in the hPITO37N and hPITO38N organoid cultures, these cell populations were significantly reduced within the patient’s matched adenoma tissue (Figure 2c,d). Overall, hPITOs derived from CD patients expressed increased stem and progenitor cell markers, including CXCR4, SOX2, and CD133 (Figure 2). Collectively, our findings of the characterization of the hPITO cultures support our prediction that this in vitro model recapitulates much of the patient’s adenoma pathophysiology. 3.3. Inherent Patient Differences to Drug Response Is Reflected in the Organoid Culture Tumor recurrence can occur in as many as 30–50% of CD patients after successful surgical treatment [10,33,34]. Unfortunately, bilateral adrenalectomy is the chosen surgical treatment for patients with persistent CD [35]. Bilateral adrenalectomy leads to the increased risk for development of Nelson’s syndrome (progressive hyperpigmentation due to ACTH secretion and expansion of the residual pituitary tumor). Although the risk of developing Nelson’s syndrome following adrenalectomy can be reduced by 50% with stereotactic radiotherapy [35], there is a need to develop medical therapies that directly target the pituitary adenoma. Thus, we established a high-throughput drug screening assay using patient-derived PitNET organoids. After 72 h of treatment, cell viability was measured using an MTS assay, and data were represented as a heatmap whereby blue indicated higher cell death, and red suggested higher cell viability. The replicates behaved consistently with the drug response, with correlation scores of >0.8 for these samples (Figure 3a). We estimated the variance component for each drug across all organoids. Variation among samples was found to be significant (p ≤ 0.05) for each of the 83 drugs. The drug responses were grouped by variance factor into large, median, and small. The larger the variance, the more variable the drug response was across the organoids. We noted a set of drugs that showed a significant differential response across the functional corticotroph organoids. Unsupervised clustering of drug responses across organoids shows a pattern that relates to our statistically calculated results (Figure 3a,c), and the replicates for each independent organoid cluster together. The drugs with higher variance components across all the functional corticotrophs cluster together as a group (Figure 3a). These drugs show cell viability of 10% to 60% across different organoids. Analyzing the pattern more closely, we observe that, within a pathologically defined group, there was a differential organoid response to drugs as well as inherent patient differences to drugs within this group. Figure 3 demonstrates a variation in drug responsiveness amongst the organoid lines generated from individual patients. Importantly, there was further divergence in drug responsiveness amongst the individual organoid lines within each pathologically defined corticotroph subtype. These data clearly demonstrate that the inherent patient difference to drug response which is often observed among CD patients is reflected in the organoid culture. Figure 3. Drug screen using hPITOs generated from CD patients. (a) High-throughput drug screening of hPITOs reveals sensitivities to a range of therapeutic agents. Cell viability with high values (indicating resistance) are depicted in red, and low values (indicating sensitivity) are in blue in the clustered heatmap. (b,c) Clusters showing response to therapeutic agents with the most variance across the organoids. (d) Network of drugs from the clusters b and c and their gene targets, showing their participation in signaling pathways and cellular processes. Drugs that clustered together and showed correlated responses were investigated further for their mode of action based on target genes (Figure 3d). The genes were analyzed for their associations in cellular pathways and gene ontology functional processes. Identified drug–gene pairs were interconnected by cellular pathways that are known to regulate cell cycle, WNT signaling, hedgehog signaling, and neuroactive ligand-receptor interaction signaling pathways (Figure 3d). These identified genes are also known to be influenced by multiple cellular functions, such as cytokine–cytokine receptor interactions and Notch signaling. Proteosome 20S subunit genes PSMAs/PSMBs and the HDAC gene family are involved in many cellular functions. The ephrin receptors (EPHs), adrenoceptor alpha receptors (ADRs), dopamine receptors (DRDs), and the 5-hydroxytryptamine serotonin receptors (HTRs) gene families influence neuronal functions and are targeted by multiple drugs in our focused cluster. These data reveal potential therapeutic pathways for CD patients. Divergent half maximal inhibitory concentration (IC50) values, as documented by an MTS cell viability assay, were observed in response to drug treatment among hPITOs lines 28, 33, 34, 35, and 37. Note that a shift of the curve to the right indicates a higher IC50 (i.e., more resistant to that drug). Cell viability assays were normalized to vehicle-treated controls in order to ensure that toxicity was specific to the drug effects (Figure 4). Dose response curves for organoid 33 and organoid 34 showed better responses at lower doses for cabergoline compared to Metyrapone and osilodrostat, but different for organoid 35, where Metyrapone and osilodrostat gave better responses than Cabergoline (Figure 4a–h). For the drugs mifepristone and GANT61, 33 and 34 had the same level of response to both the drugs. However, when the two organoid responses were compared, 34 had a better response than 33 (Figure 4a–h). Similar divergent drug responses were observed in hPITO lines 37 and 38 (Figure 4i,k). However, organoids generated from adjacent normal pituitary tissue from patients 37 and 38 were nonresponsive to the same standard of care of investigational drugs for CD (Figure 4j,l). These data were consistent with observation made in the drug screen (Figure 3a–c), and demonstrate that there was an inherent difference to drug response within the organoid cultures of the same corticotroph subtype. Figure 4. Drug dose responses by hPITOs generated from CD patients. Dose responses to mifepristone, GANT61, cabergoline, and osilodrostat. (a,e) hPITO28, (b,f) hPITO33, (c,g) hPITO34, and (d,h) hPITO35. Dose responses to cabergoline, ketoconazole, roscovitine, GANT61, pasireotide, mifepristone, etomidate, mitotane, metyrapone, and osilodrostat in (i) hPITO37, (j) organoids generated from adjacent normal pituitary tissue (hPITO37N), (k) hPITO38, (l) hPITO38N, and (m) hPITO39. (n) IC50 and integrated area under the curve in response to mifepristone, ketoconazole, and pasireotide using hPITO39 cultures. Nuclear morphometric analysis of hPITO39 cultures in response to (o,p) vehicle, (q,r) mifepristone, (s,t) pasireotide, and (u,v) ketoconazole. Morphometric classification of NII was based on the normal (N), small (S), small regular (SR), short irregular (SI), large regular (LR), large irregular (LI), and irregular (I) nuclear morphology. Representative Hoechst staining of organoids in response to drug treatments for the calculation of the nuclear irregularity index (NII) are shown in the insets in (p,r,t,v). In addition to cell viability, Nuclear Morphometric Analysis (NMA) using treated organoids was performed based on a published protocol that measures cell viability according to the changes in nuclear morphology of the cells, using nuclear stain Hoechst or DAPI [30]. Nuclear Irregularity Index (NII) was measured based on the quantification of the morphometric changes in the nuclei in response to the standard-of-care drugs mifepristone, pasireotide, and ketoconazole in hPITO39 (Figure 4o–v). The area vs. NII of vehicle-treated cells were plotted as a scatter plot using the template, and considered as the normal cell nuclei (Figure 4o). The same plots were generated for mifepristone (Figure 4q), pasireotide (Figure 4s), and ketoconazole (Figure 4u). The NII and area of treated cells were compared to those of the normal nuclei, and classified as one of the following NMA populations: Normal (N; similar area and NII), Mitotic (S; similar area, slightly higher NII), Irregular (I; similar area, high NII), Small Regular (SR; apoptotic, low area and NII), Senescent (LR; high area, low NII), Small Irregular (SI; low area, high NII), or Large Irregular (LI; high area, high NII) (Figure 4p,r,t,v). Cells classified as SR exhibited early stages of apoptosis, and cells classified as either I, SI, or LI exhibited significant nuclear damage. Data showed that mifepristone induced significant apoptosis in hPITO39 cultures (Figure 4r), compared to responses to pasireotide (Figure 4t) and ketoconazole (Figure 4v). These responses were consistent with the IC50 and the total area under the curve in response to drugs (Figure 4m,n). Measurement of NII is an approach which may be used to confirm potential drug targets identified from the drug screen. 3.4. Organoid Responsiveness to Pasireotide Correlates with SSTR2 and SSTR5 Expression Organoid lines hPITO28, 31, 33, 34, and 35 exhibited divergent IC50 values in response to SSTR agonist pasireotide (Figure 5a). hPITO34 was the most responsive to pasireotide, with a low IC50 value of 6.1 nM (Figure 5a). Organoid lines hPITO33 and hPITO35 were the least responsive, with IC50 values of 1.2 µM and 1 µM, respectively, in response to pasireotide (Figure 5a). The expression of SSTR subtypes 1–5 among the different organoid lines were measured by qRT-PCR and IHC (Figure 5b). One of the least responsive organoid lines, hPITO28, exhibited lower differential expression in SSTR2 and SSTR5 compared to the highly responsive hPITO34 line (Figure 5a,b). Gene expression levels of SSTR2 and SSTR5 within hPITO28 and 34 correlated with protein levels within the patient’s tumor tissue (Figure 5c–f). Given the greater binding affinity for SSTR5 compared to SSTR2 by pasireotide, these data were consistent with greater responsiveness to the drug by hPITO34 in comparison to hPITO28 (Figure 5a,c–f). The expression of SSTR subtypes 2 and 5 within the organoid cultures correlated with the expression patterns of the patient’s tumor tissues (Figure 5a,c–f). Figure 5. SSTR1-5 expression in hPITOs and patient’s PitNET tissue. (a) Dose response of hPITO28, 31, 33, 34, and 35 lines to pasireotide. (b) Differential expression of SSTR subtypes 1–5 (SSTR1, SSTR2, SSTR3, SSTR4, SSTR5) in hPITO28, hPITO31, hPITO33, hPITO34, and hPITO35. Immunohistochemistry of (c,e) SSTR2 and (d,f) SSTR5 expression in patient PitNET tissue (Pt28 and Pt34), from which hPITO28 and 34 were generated. 3.5. Organoids Derived from Pituitary Corticotroph Adenomas Retain the Genetic Alterations of the Patient’s Primary Tumor In order to identify the genetic features of the organoids derived from pituitary adenomas of CD patients, we performed whole-exome sequencing (WES) of hPITOs and the corresponding primary adenoma tissues. We performed WES analysis of each hPITO line, and compared the results with those for the corresponding primary adenoma tissues. We showed the concordance rate of exonic variants between the primary tumor tissues obtained from CD patients and the corresponding organoid line. We identified, on average, approximately 5000 mutations across each of the 14 paired samples of organoids and tissues. For the variants detected, all seven pairs showed a Jaccard index ranging from 0.5 to 0.8. Out of seven pairs, five (hPITO24, 25, 28 and 35) pairs had a Jaccard score of 0.8, while hPITO33 and 34 pairs had 0.7, and hPITO1 had 0.5. In order to investigate the similarity across the SNV (single nucleotide variation) sites, we calculated the Jaccard index of exon sites for synonymous and non-synonymous events, and found scores for all pairs ranging from 0.8 to 0.9. Furthermore, for only non-synonymous events, Jaccard scores also ranged from 0.8 to 0.9, except for hPITO1, which showed overall lower concordance, and had a score of 0.4 to 0.5. Figure 6 shows non-synonymous mutations found in organoid and tissue pairs for some of the key genes that are known to be involved in pituitary adenoma disease. Concordance indices between organoids and the matched patient’s adenoma tissues is reported in Figure 6. Therefore, WES data demonstrated that organoids derived from pituitary corticotroph adenomas retained the genetic alterations of the patient’s primary tumor tissue. Figure 6. Genomic landscape of hPITOs recapitulates genetic alterations commonly found PitNETs. Overview of single nucleotide variation events detected in hPITOs in genes commonly altered in PitNETs. The mutation frequency across the organoid population is depicted on the right. Color coding of the figure shows that organoid lines are derived from the same patient tumor tissue. ORG: organoid line, TIS: matched patient’s PitNET tissue. 3.6. IPSC Pituitary Organoids Generated from a CD Patients Expressing Familial Mutations Reveal Corticotroph Adenoma Pathology In Vitro Extensive research has revealed the role of somatic and germline mutations in the development of CD adenomas [36,37]. Pituitary organoids were developed from iPSCs generated from the PBMCs of CD patients and carrying germline mutations that were identified by WES (Supplemental Figure S4). Chromosomal aberrations were not found when comparing against the reference dataset in the iPSCs generated from the CD patients (Supplemental Figure S3a,b). PBMCs isolated from patients diagnosed with CD were analyzed by WES in order to determine the expression of germline mutations. WES revealed the expression of a more recently identified gene predisposing patients to CD, namely cadherin-related 23 [38] (Supplemental Figure S5). Pituitary organoids were then developed from iPSCs which were generated from the PBMCs of patients with CD (iPSCCDH23 and iPSCMEN1) and a healthy individual (iPSCctrl). Expression of PIT1 (pituitary-specific positive transcription factor 1), ACTH (adrenocorticotropic hormone), GH (growth hormone), FSH (follicle-stimulating hormone), LH (luteinizing hormone), PRL (prolactin), and synaptophysin (synaptophysin) with co-stain Hoechst (nuclei, blue) was measured by immunofluorescence, using chamber slides collected at 15 of the differentiation schedules (Supplemental Figure S6). While pituitary tissue that was differentiated from iPSCctrl expressed all major hormone-producing cell lineages (Supplemental Figure S6a), there was a significant increase in the expression of ACTH and synaptophysin, with a concomitant loss of PIT1, GH, FSH, LH, and PRL in iPSCsMEN1 (Supplemental Figure S6b,c). Interestingly, iPSCCDH23 cultures exhibited a significant increase in the expression of ACTH, GH, LH, and synaptophysin, with a concomitant loss of PIT1, FSH, and PRL (Supplemental Figure S6b,c). Immunofluorescence of iPSCs collected on the fourth day of the differentiation schedule revealed no expression of PIT1, ACTH, GH, FSH, LH, or PRL in (data not shown). Compared to control lines, iPSC lines expressing mutated CDH23 secreted significantly greater concentrations of ACTH earlier in the differentiation schedule (Supplemental Figure S7a). The upregulated expression of pituitary corticotroph adenoma-specific markers in iPSCCDH23 and iPSCMEN1 demonstrates that the iPSC-derived organoids represented the pathology of corticotroph adenomas in vitro. 3.7. ScRNA-seq Reveals the Existence of Unique Proliferative Cell Populations in iPSCCDH23 Cultures When Compared to iPSCsctrl Using Seurat to identify cell clusters, as well as Uniform Manifold Approximation and Projection 9UMAP, clustering analysis identified 16 distinct cell populations/clusters consisting of known marker genes. Clusters 1, 5, and 7 of the iPSCsCDH23 were distinct from the iPSCctrl cultures (Figure 7a,b). Pituitary stem cells were characterized in iPSCctrl and iPSCCDH23 cultures (Figure 7b). Clusters 1 and 5 expressed markers consistent with the corticotroph subtype cell lineage (Figure 5c). Markers of dysregulated cell cycles and increased proliferation were identified in cell cluster 7 (Figure 7c). Expression of the E2 factor (E2F) family of transcription factors, which are downstream effectors of the retinoblastoma (RB) protein pathway and play a crucial role in cell division control, were identified in distinct cell cluster 7, which was identified within the iPSCCDH23 cultures (Figure 7c). Stem cell markers were also upregulated in cell cluster 7, and identified within the iPSCCDH23 cultures (Figure 7c). Using Cytobank software to analyze organoids collected 30 days post-differentiation, cells were gated on live CK20 positive singlets, and 9000 events per sample were analyzed by the viSNE algorithm. ViSNE plots are shown in two dimensions with axes identified by tSNE- 1 and tSNE-2, and each dot representing a single cell positioned in the multidimensional space (Figure 7d). Individual flow cytometry standard files were concatenated into single flow cytometry standard files, from which 12 spatially distinct populations were identified (Figure 7e). Overlaying cell populations identified by traditional gating strategies onto viSNE plots identified unique cell populations within the iPSCCDH23 cultures (Figure 7e). There were distinct cell populations between the iPSCctrl and iPSCCDH23 organoids, in addition to expression of hormone and cell lineage markers such as ACTH, TPit, PRL, and PIT1 (Figure 7e). The cell populations that exhibited high expression of Ki67 within the iPSCctrl organoid cultures included SOX2+ and PIT1+ populations (Figure 7f). The highly proliferating cell populations within the iPSCCDH23 organoid cultures included those that expressed CD90+/VIM+/CXCR4+ (mesenchymal stem cells), CXCR4+/SOX2+ (stem cells), TPit+ (corticotroph cell lineage), CD133+/CD31+ (endothelial progenitor cells), and CK20+/VIM+/CXCR4+ (hybrid epithelial-mesenchymal stem cells) (Figure 7f). Overall, the iPSCCDH23 organoids were significantly more proliferative compared to the iPSCctrl cultures (Figure 7f). Immunofluorescence staining of iPSCCDH23 organoids revealed increased mRNA expression of TPit and POMC, which correlated with increased ACTH protein compared to iPSCsctrl (Supplemental Figure S6). As shown in Supplemental Figure S6b,c, iPSCCDH23 cultures also exhibited a significant increase in the expression of GH and LH (Supplemental Figure S6b,c). Figure 7. Single cell analysis of iPSCctrl and iPSCCDH23 cultures 15 and 30 days post-directed differentiation. (a) UMAP plots showing identified cell clusters 0–16 in iPSCctrl and iPSCCDH23 cultures 15 days post-directed differentiation. (b) Violin plots of representative identified markers of the corticotroph cell lineage, where 2 subpopulations were observed among iPSCctrl and iPSCCDH23 cultures. Arrows highlight clusters 1, 5, and 7. (c) Violin plots showing expression of genes representative of stem cells, Wnt, NOTCH, Hh and SST signaling, anterior pituitary (corticotroph) cell lineage, and cell cycle in clusters 1, 5, and 7 of iPSCCDH23 cultures. Plot width: cell number, plot height: gene expression. (d) viSNE maps showing concatenated flow cytometry standard files for both samples and iPSCctrl and iPSCCDH23 organoids 30 days post-directed differentiation. (e) Overlay of manually gated cell populations onto viSNE plots. (f) Fluorescent intensity of Ki67 of viSNE maps for both samples and iPSCctrl and iPSCCDH23 organoids. iPSCctrl = 22518 events; iPSCCDH23 = 17542 events. Collectively, Figure 7 demonstrates that the development of pituitary organoids generated from iPSCs of CD patients may reveal the existence of cell populations which, potentially, contribute to the support of adenoma growth and progression, as well as an expansion of stem and progenitor cells that may be the targets for tumor recurrence. 4. Discussion Our studies demonstrate the development of organoids generated from human PitNETs (hPITOs) can potentially be used to screen for the sensitivity and efficacy of responses to targeted therapies for CD patients that either fail to achieve remission or exhibit recurrence of disease after surgery. In addition, we have documented that induced pluripotent stem cells (iPSCs) generated from a CD patient expressing germline mutation CDH23 (iPSCCDH23) reveals the disease pathogenesis under directed differentiation. Many early in vitro experiments have used pituitary cell lines, spheroids, aggregates, and/or tumoroids that do not replicate the primary PitNET microenvironment [19,20,21], and lack a multicellular identity [39,40]. The development of PitNET tissue-generated organoids is limited to the use of transgenic mouse models as the source [22,23,41]. The recent organoid cultures reported by Nys et al. [42] have been generated from single stem cells isolated from PitNET tissue, and are claimed to be true organoids due to their clonality. However, multicellular complexity was not validated by the protein expression or hormone secretion from pituitary cell lineages in these cultures [42]. According to the National Cancer Institute (NCI, NIH), an ‘organoid’ is defined as “a tiny, 3-dimensional mass of tissue that is made by growing stem cells (cells from which other types of cells develop) in the laboratory” [43]. The hPITOs reported here begin from single and/or 3–4 cell clusters dissociated from the PitNET tissue that harbors the stem cells. Supplemental Video S2 demonstrates a process of ‘budding,’ as well as lumen formation as organoids grow and differentiate. We document differentiation and function by comprehensive spectral flow cytometry, ELISA, and response to standard of care drugs. The growth of PitNET organoids reported in the current study is consistent with that of gastrointestinal tissue derived cultures that begin from cell clusters, crypts, or glands [27,44,45]. Our studies report a PitNET tissue organoid culture with a multicellular identity consisting of differentiated cell lineages, stem/progenitor cells, and immune and stromal cell compartments, which replicates much of the patient’s own adenoma pathology, functionality, and complexity. We have also demonstrated that iPSCs, derived from the blood of a CD patient, can be directly differentiated into pituitary organoids that resemble similar characteristics to the tumor tissue. Many investigators have proposed the use of organoids in personalized medicine, but have focused these efforts on targeted treatment of cancers [27,46,47,48]. The findings reported in these studies are the first to implement this approach for the potential treatment of PitNETs. Collectively, we have developed a relevant human in vitro approach to potentially advance our knowledge as well as our approach to studies in the field of pituitary tumor research. Both the hPITOs and the iPSCCDH23 may be implemented in studies that strive to (1) define the molecular and cellular events that are crucial for the development of PitNETs leading to CD, and (2) accelerate the identification of effective targeted therapies for patients with CD. While published studies have advanced our understanding of the molecular mechanisms of the pathogenesis of corticotroph adenomas and elucidated candidate therapeutic targets for CD, these reports fall short of directly informing clinical decisions for patient treatment. Using organoids to screen potential drugs and compounds can potentially improve therapeutic accuracy. Figure 3 demonstrated a variation in drug responsiveness amongst the organoid lines generated from individual patients. Importantly, there was further divergence in drug responsiveness amongst the individual organoid lines within each pathologically defined corticotroph subtype. For example, hPITOs generated from patients with sparsely granulated corticotroph adenomas (hPIT0s 10, 25, 34, 35) and Crooke’s cell adenomas (hPITOs 7, 33) showed variable responses regardless of similar pathologically defined subtypes. In addition, the response of the tumor cells within the organoids to the standard of care drugs that directly target the pituitary in the body, including mifepristone and cabergoline, was only 50% in hPITO34 and hPITO35, and almost 0% in the other lines, including hPITO7, 10, and 25. These data clearly demonstrate that the inherent patient difference to drug response that is often observed among CD patients is reflected in the organoid culture. This culture system may be an approach that will provide functional data revealing actionable treatment options for each patient. Patient-derived organoids from several tumors have served as a platform for testing the efficacy of anticancer drugs and predicting responses to targeted therapies in individual patients [27,46,48,49,50]. An example of the use of organoids in identifying drug responsiveness within an endocrine gland is that of papillary thyroid cancer [51]. Organoids developed from PTC patients were used as a preclinical model for studying responsiveness to anticancer drugs in a personalized approach [51]. However, our study is the first report of the use of hPITOs for drug screening. Connecting genetic and drug sensitivity data will further categorize corticotroph subtypes associated with CD. WES analysis of each hPITO line was compared to the results for the corresponding primary adenoma tissues. We showed the concordance rate of exonic variants between the primary tumor tissues obtained from CD patients and the corresponding organoid line. On average, approximately 80% of the variants observed in the CD patients’ adenoma tissues were retained in the corresponding hPITOs. Pituitary organoids were also developed from iPSCs generated from PBMCs of a CD patient expressing a germline genetic alteration in cadherin-related 23 CDH23 (iPSCCDH23), a CD patient expressing an MEN1 mutation (iPSCMEN1), and a healthy individual (iPSCctrl). Foundational studies performed by investigators at the genome level have revealed significant knowledge regarding the pathophysiology of CD [36,37,52,53]. In some instances, CD is a manifestation of genetic mutation syndromes that include multiple endocrine neoplasia type 1 (MEN1), familial isolated pituitary adenoma (FIPA), and Carney complex [54,55]. CDH23 syndrome is clinically associated with the development of Usher syndrome, deafness, and vestibular dysfunction [56]. Several mutations in CDH23 are associated with inherited hearing loss and blindness [57]. However, none of the variants found in this study were linked to any symptoms of deafness or blindness. A possible explanation is that deafness-related CDH23 mutations are caused by either homozygous or compound heterozygous mutations [57]. In a study that linked mutations in CDH23 with familial and sporadic pituitary adenomas, it was suggested that these genetic alterations could play important roles in the pathogenesis of CD [38]. Genomic screening in a total of 12 families with familial PitNETs, 125 individuals with sporadic pituitary tumors, and 260 control individuals showed that 33% of the families with familial pituitary tumors and 12% of individuals with sporadic pituitary tumors expressed functional or pathogenic CDH23 variants [38]. Consistent with the expected pathology and function of a PitNET from a patient with CD, iPSCCDH23 organoids exhibited hypersecretion of ACTH, and expression of transcription factors and cell markers were reported in the pathology report for corticotroph PitNETs. Collectively, these findings warrant further investigation to determine whether carriers of CDH23 mutations are at a high risk of developing CD and/or hearing loss. Specifically, clinical investigation is required to determine whether pituitary MRI scans should be adopted in the screening of CDH23-related diseases, including Usher syndrome and age-related hearing loss. Pituitary organoids generated from iPSCs of a CD patient revealed the existence of cell populations that potentially contribute to the support of PitNET growth and disease progression, as well as an expansion of stem and progenitor cells that may be the targets for tumor recurrence. Organoids derived from both pituitary adenomas and iPSCs exhibited increased expression of stem cell and progenitor markers at both the protein and transcriptomic levels. Unique clusters that were proliferative in the iPSCCDH23 organoids expressed a hybrid pituitary cell population which was in an epithelial/mesenchymal state (CK20+/VIM+/CXCR4+/Ki67+). In support of our findings, a similar report of a hybrid epithelial/mesenchymal pituitary cell has been made as part of the normal developmental stages of the human fetal pituitary [58]. Previous studies have suggested that pituitary stem cells undergo an EMT-like process during cell migration and differentiation [59,60,61]. Consistent with our findings are extensive studies using single cells isolated from human pituitary adenomas to show increased expression of stem cell markers SOX2 and CXCR4 [22,23,41,62,63]. Within the clusters identified in the iPSCCDH23 culture were cell populations expressing stem cell markers, including SOX2, NESTIN, CXCR4, KLF4, and CD34. The same iPSCCDH23 cell clusters, 4, 8, 9, and 11, co-expressed upregulated genes of NOTCH, Hedgehog, WNT, and TGFβ signaling, which are pivotal not only in pituitary tumorigenesis and pituitary embryonic development, but also in ‘tumor stemness’ [22,23,41,62,63,64]. We also noted that clusters of cell populations 5 and 14 unique within the iPSCCDH23 cultures expressed upregulated genes which were indicative of high proliferation. We observed upregulated expression of the E2F family of transcription factors (E2Fs) E2F1 and E2F7. These findings are of significance, given that there is evidence to show that upregulation of E2Fs is fundamental for tumorigenesis, metastasis, drug resistance, and recurrence [65]. Within the pituitary adenoma microenvironment, whether these stem cells directly differentiate into pituitary tumors or support the growth of the adenoma is largely unknown. In addition, whether pituitary stem cell populations become activated in response to injury is also understudied. Although the role of stem cells has been identified using a mouse model through implantation of the cells within the right forebrain [66], the identification of pituitary tumor-initiating stem cells using in vivo orthotopic transplantation models is impossible in mice. Pituitary tumors harboring the stem cells may require engraftment within the environment from which the cells are derived in order to enable growth and differentiation of the tumor. However, it is technically impossible to implant cells orthotopically in the murine pituitary. The pituitary tumor organoid cultures presented in these studies may offer an approach by which isolation, identification, and characterization of this stem cell population is possible. Therefore, we would gain knowledge on the mechanisms of pituitary tumor pathogenesis and reveal potential novel targets for therapeutic interventions by using the iPSC generated pituitary organoid culture. PitNETs associated with the development of CD cause serious morbidity due to chronic cortisol exposure that dysregulates almost every organ system in the body. Overall, existing medical therapies remain suboptimal, with negative impact on health and quality of life, including considerable risk of therapy resistance and tumor recurrence. To date, little is known about the pathogenesis of PitNETs. Here, we present a human organoid-based approach that will allow us to acquire knowledge of the mechanisms underlying pituitary tumorigenesis. Such an approach is essential to identify targeted treatments and improve clinical management of patients with CD. 5. Conclusions Cushing’s disease (CD) is a serious endocrine disorder caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary neuroendocrine tumor (PitNET), which stimulates the adrenal glands to overproduce cortisol. The absence of preclinical models that replicate the PitNET microenvironment has prevented us from acquiring the knowledge to identify therapies that can be targeted to the tumor with a higher efficacy and tolerability for patients. Our studies demonstrate the development of organoids generated from human PitNETs or induced pluripotent stem cells as an essential approach to identifying targeted therapy methods for CD patients. Supplementary Materials The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/cells11213344/s1, Figure S1: Antibodies used and Cytek® Full Spectrum Viewer showing calculated similarity indices; Figure S2: Morphology and proliferation of lactotroph, somatotroph, and gonadotroph hPITOs; Table S1: Pituitary Growth Media; Table S2: Components used for pituitary organoids generated from iPSCs; Table S3: clinical characteristics of pituitary adenoma samples used for the generation of organoids; Table S4: Average correlation of replicates reported in Figure 3; Table S5: pituitary cell lineage or stem cell markers used in the scRNA-seq analysis; Video S1: hPITO38 EdU ACTH 3. Author Contributions Conceptualization, Y.Z.; methodology, J.C., Y.Z., J.M.C., B.N.S., S.M. and K.W.P.; software, J.C., Y.Z., J.M.C., S.M., Y.C., P.M. and R.P.; validation, Y.Z., J.C., J.M.C., A.S.L., K.C.J.Y. and R.P.; formal analysis, J.C., Y.Z., J.M.C., R.P., Y.C., S.M. and P.M.; investigation, Y.Z.; resources, Y.Z., J.C., J.E., C.A.T., B.H. and A.S.L.; data curation, J.C., Y.Z., J.M.C., R.P. and S.M.; writing—original draft preparation, Y.Z., J.C, S.M., J.M.C., Y.C., B.H. and R.P.; writing—review and editing, Y.Z., J.C., J.M.C., A.S.L., K.C.J.Y., S.M., J.E., C.A.T., K.W.P., B.H., Y.C., P.M., B.N.S. and R.P.; visualization, Y.Z., J.C., J.M.C., A.S.L., K.C.J.Y. and R.P.; supervision, Y.Z.; project administration, Y.Z.; funding acquisition, Y.Z. All authors have read and agreed to the published version of the manuscript. Funding This research was supported by the Department of Cellular and Molecular Medicine (University of Arizona College of Medicine) startup funds (Zavros). This research study was also partly supported by the National Cancer Institute of the National Institutes of Health under award number P30 CA023074 (Sweasy). Institutional Review Board Statement The study was conducted in accordance with the Declaration of Helsinki and approved by the Institutional Review Board of St. Joseph’s Hospital and Barrow Neurological Institute Biobank collection protocol PHXA-05TS038, and collection of outcomes data protocol PHXA-0004-72-29, and patient consent (protocol date of approval). Informed Consent Statement Written informed consent was obtained from all subjects involved in the study. Data Availability Statement The datasets generated during the analysis of the present study are available in the ReDATA repository, https://doi.org/10.25422/azu.data.19755244.v1. The datasets generated in the current study are also available from the corresponding author on reasonable request. All data generated or analyzed during this study are included in this published article (and its Supplementary Information Files). Acknowledgments We acknowledge the technical support of Maga Sanchez in the Tissue Acquisition and Cellular/Molecular Analysis Shared Resource (TACMASR University of Arizona Cancer Center) for assistance with embedding and sectioning of organoids. We would also like to acknowledge Patty Jansma (Marley Imaging Core, University Arizona) and, Douglas W Cromey (TACMASR imaging, University of Arizona Cancer Center) for assistance in microscopy. The authors thank the patients who consented to donate pituitary tumor tissues and blood for the development of the organoids. Without their willingness to participate in the study, this work would not be possible. Conflicts of Interest The authors declare no conflict of interest. References Cushing, H. Posterior Pituitary Activity from an Anatomical Standpoint. Am. J. Pathol. 1933, 9, 539–548.19. [Google Scholar] [PubMed] Cushing, H. The basophil adenomas of the pituitary body and their clinical manifestations (pituitary basophilism) 1932. Obes. Res. 1994, 2, 486–508. [Google Scholar] [CrossRef] [PubMed] Ironside, N.; Chen, C.J.; Lee, C.C.; Trifiletti, D.M.; Vance, M.L.; Sheehan, J.P. Outcomes of Pituitary Radiation for Cushing’s Disease. Endocrinol. Metab. Clin. N. Am. 2018, 47, 349–365. [Google Scholar] [CrossRef] Loriaux, D.L. Diagnosis and Differential Diagnosis of Cushing’s Syndrome. N. Engl. J. Med. 2017, 377, e3. [Google Scholar] [CrossRef] Asa, S.L.; Mete, O.; Perry, A.; Osamura, R.Y. Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr. Pathol. 2022, 33, 6–26. [Google Scholar] [CrossRef] Nishioka, H.; Yamada, S. Cushing’s Disease. J. Clin. Med. 2019, 8, 1951. [Google Scholar] [CrossRef] [PubMed] Feelders, R.A.; Hofland, L.J. Medical treatment of Cushing’s disease. J. Clin. Endocrinol. Metab. 2013, 98, 425–438. [Google Scholar] [CrossRef] Limumpornpetch, P.; Morgan, A.W.; Tiganescu, A.; Baxter, P.D.; Nyawira Nyaga, V.; Pujades-Rodriguez, M.; Stewart, P.M. The Effect of Endogenous Cushing Syndrome on All-cause and Cause-specific Mortality. J. Clin. Endocrinol. Metab. 2022, 107, 2377–2388. [Google Scholar] [CrossRef] Ciric, I.; Zhao, J.C.; Du, H.; Findling, J.W.; Molitch, M.E.; Weiss, R.E.; Refetoff, S.; Kerr, W.D.; Meyer, J. Transsphenoidal surgery for Cushing disease: Experience with 136 patients. Neurosurgery 2012, 70, 70–80; discussion 71–80. [Google Scholar] [CrossRef] Alexandraki, K.I.; Kaltsas, G.A.; Isidori, A.M.; Storr, H.L.; Afshar, F.; Sabin, I.; Akker, S.A.; Chew, S.L.; Drake, W.M.; Monson, J.P.; et al. Long-term remission and recurrence rates in Cushing’s disease: Predictive factors in a single-centre study. Eur. J. Endocrinol. 2013, 168, 639–648. [Google Scholar] [CrossRef] Sonino, N.; Zielezny, M.; Fava, G.A.; Fallo, F.; Boscaro, M. Risk factors and long-term outcome in pituitary-dependent Cushing’s disease. J. Clin. Endocrinol. Metab. 1996, 81, 2647–2652. [Google Scholar] [CrossRef] [PubMed] Van der Pas, R.; Feelders, R.A.; Gatto, F.; De Bruin, C.; Pereira, A.M.; Van Koetsveld, P.M.; Sprij-Mooij, D.M.; Waaijers, A.M.; Dogan, F.; Schulz, S.; et al. Preoperative normalization of cortisol levels in Cushing’s disease after medical treatment: Consequences for somatostatin and dopamine receptor subtype expression and in vitro response to somatostatin analogs and dopamine agonists. J. Clin. Endocrinol. Metab. 2013, 98, E1880–E1890. [Google Scholar] [CrossRef] Kondziolka, D. Cushing’s disease and stereotactic radiosurgery. J. Neurosurg. 2013, 119, 1484–1485; discussion 1485. [Google Scholar] [CrossRef] [PubMed] Mehta, G.U.; Sheehan, J.P.; Vance, M.L. Effect of stereotactic radiosurgery before bilateral adrenalectomy for Cushing’s disease on the incidence of Nelson’s syndrome. J. Neurosurg. 2013, 119, 1493–1497. [Google Scholar] [CrossRef] [PubMed] Tritos, N.A. Adrenally Directed Medical Therapies for Cushing Syndrome. J. Clin. Endocrinol. Metab. 2021, 106, 16–25. [Google Scholar] [CrossRef] [PubMed] Gheorghiu, M.L.; Negreanu, F.; Fleseriu, M. Updates in the Medical Treatment of Pituitary Adenomas. Horm. Metab. Res. 2020, 52, 8–24. [Google Scholar] [CrossRef] Kaiser, U.B. Cushing’s disease: Towards precision medicine. Cell. Res. 2015, 25, 649–650. [Google Scholar] [CrossRef] Bissell, M.S.a.M.J. Organoids: A historical perspective of thinking in three dimensions. J. Cell Biol. 2017, 216, 31–40. [Google Scholar] [CrossRef] Danila, D.C.; Zhang, X.; Zhou, Y.; Dickersin, G.R.; Fletcher, J.A.; Hedley-Whyte, E.T.; Selig, M.K.; Johnson, S.R.; Klibanski, A. A human pituitary tumor-derived folliculostellate cell line. J. Clin. Endocrinol. Metab. 2000, 85, 1180–1187. [Google Scholar] [CrossRef] Bjoro, T.; Torjesen, P.A.; Ostberg, B.C.; Sand, O.; Iversen, J.G.; Gautvik, K.M.; Haug, E. Bombesin stimulates prolactin secretion from cultured rat pituitary tumour cells (GH4C1) via activation of phospholipase C. Regul. Pept. 1987, 19, 169–182. [Google Scholar] [CrossRef] Bjoro, T.; Sand, O.; Ostberg, B.C.; Gordeladze, J.O.; Torjesen, P.; Gautvik, K.M.; Haug, E. The mechanisms by which vasoactive intestinal peptide (VIP) and thyrotropin releasing hormone (TRH) stimulate prolactin release from pituitary cells. Biosci. Rep. 1990, 10, 189–199. [Google Scholar] [CrossRef] [PubMed] Cox, B.; Laporte, E.; Vennekens, A.; Kobayashi, H.; Nys, C.; Van Zundert, I.; Uji, I.H.; Vercauteren Drubbel, A.; Beck, B.; Roose, H.; et al. Organoids from pituitary as a novel research model toward pituitary stem cell exploration. J. Endocrinol. 2019, 240, 287–308. [Google Scholar] [CrossRef] [PubMed] Vennekens, A.; Laporte, E.; Hermans, F.; Cox, B.; Modave, E.; Janiszewski, A.; Nys, C.; Kobayashi, H.; Malengier-Devlies, B.; Chappell, J.; et al. Interleukin-6 is an activator of pituitary stem cells upon local damage, a competence quenched in the aging gland. Proc. Natl. Acad. Sci. USA 2021, 118, e2100052118. [Google Scholar] [CrossRef] [PubMed] Zhang, D.; Hugo, W.; Redublo, P.; Miao, H.; Bergsneider, M.; Wang, M.B.; Kim, W.; Yong, W.H.; Heaney, A.P. A human ACTH-secreting corticotroph tumoroid model: Novel Human ACTH-Secreting Tumor Cell in vitro Model. EBioMedicine 2021, 66, 103294. [Google Scholar] [CrossRef] [PubMed] Tsukada, T.; Kouki, T.; Fujiwara, K.; Ramadhani, D.; Horiguchi, K.; Kikuchi, M.; Yashiro, T. Reassembly of anterior pituitary organization by hanging drop three-dimensional cell culture. Acta. Histochem. Cytochem. 2013, 46, 121–127. [Google Scholar] [CrossRef] [PubMed] Narsinh, K.H.; Jia, F.; Robbins, R.C.; Kay, M.A.; Longaker, M.T.; Wu, J.C. Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat. Protoc. 2011, 6, 78–88. [Google Scholar] [CrossRef] Steele, N.G.; Chakrabarti, J.; Wang, J.; Biesiada, J.; Holokai, L.; Chang, J.; Nowacki, L.M.; Hawkins, J.; Mahe, M.; Sundaram, N.; et al. An Organoid-Based Preclinical Model of Human Gastric Cancer. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 161–184. [Google Scholar] [CrossRef] Bertaux-Skeirik, N.; Feng, R.; Schumacher, M.A.; Li, J.; Mahe, M.M.; Engevik, A.C.; Javier, J.E.; Peek, R.M.J.; Ottemann, K.; Orian-Rousseau, V.; et al. CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathog. 2015, 11, e1004663. [Google Scholar] [CrossRef] Feng, R.; Aihara, E.; Kenny, S.; Yang, L.; Li, J.; Varro, A.; Montrose, M.H.; Shroyer, N.F.; Wang, T.C.; Shivdasani, R.A.; et al. Indian Hedgehog mediates gastrin-induced proliferation in stomach of adult mice. Gastroenterology 2014, 147, 655–666.e9. [Google Scholar] [CrossRef] Filippi-Chiela, E.C.; Oliveira, M.M.; Jurkovski, B.; Callegari-Jacques, S.M.; da Silva, V.D.; Lenz, G. Nuclear morphometric analysis (NMA): Screening of senescence, apoptosis and nuclear irregularities. PLoS ONE 2012, 7, e42522. [Google Scholar] [CrossRef] Gagnon, R.C.; Peterson, J.J. Estimation of confidence intervals for area under the curve from destructively obtained pharmacokinetic data. J. Pharm. Biopharm. 1998, 26, 87–102. [Google Scholar] [CrossRef] [PubMed] Livak, K.; Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed] Hinojosa-Amaya, J.M.; Varlamov, E.V.; McCartney, S.; Fleseriu, M. Hypercortisolemia Recurrence in Cushing’s Disease; a Diagnostic Challenge. Front. Endocrinol. 2019, 10, 740. [Google Scholar] [CrossRef] [PubMed] Patil, C.G.; Prevedello, D.M.; Lad, S.P.; Vance, M.L.; Thorner, M.O.; Katznelson, L.; Laws, E.R., Jr. Late recurrences of Cushing’s disease after initial successful transsphenoidal surgery. J. Clin. Endocrinol. Metab. 2008, 93, 358–362. [Google Scholar] [CrossRef] Katznelson, L. Bilateral adrenalectomy for Cushing’s disease. Pituitary 2015, 18, 269–273. [Google Scholar] [CrossRef] Reincke, M.; Sbiera, S.; Hayakawa, A.; Theodoropoulou, M.; Osswald, A.; Beuschlein, F.; Meitinger, T.; Mizuno-Yamasaki, E.; Kawaguchi, K.; Saeki, Y.; et al. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat. Genet. 2015, 47, 31–38. [Google Scholar] [CrossRef] Chen, J.; Jian, X.; Deng, S.; Ma, Z.; Shou, X.; Shen, Y.; Zhang, Q.; Song, Z.; Li, Z.; Peng, H.; et al. Identification of recurrent USP48 and BRAF mutations in Cushing’s disease. Nat. Commun. 2018, 9, 3171. [Google Scholar] [CrossRef] Zhang, Q.; Peng, C.; Song, J.; Zhang, Y.; Chen, J.; Song, Z.; Shou, X.; Ma, Z.; Peng, H.; Jian, X.; et al. Germline Mutations in CDH23, Encoding Cadherin-Related 23, Are Associated with Both Familial and Sporadic Pituitary Adenomas. Am. J. Hum. Genet. 2017, 100, 817–823. [Google Scholar] [CrossRef] Ikeda, H.; Mitsuhashi, T.; Kubota, K.; Kuzuya, N.; Uchimura, H. Epidermal growth factor stimulates growth hormone secretion from superfused rat adenohypophyseal fragments. Endocrinology 1984, 115, 556–558. [Google Scholar] [CrossRef] Baek, N.; Seo, O.W.; Kim, M.; Hulme, J.; An, S.S. Monitoring the effects of doxorubicin on 3D-spheroid tumor cells in real-time. Onco. Targets 2016, 9, 7207–7218. [Google Scholar] [CrossRef] Laporte, E.; Nys, C.; Vankelecom, H. Development of Organoids from Mouse Pituitary as In Vitro Model to Explore Pituitary Stem Cell Biology. J. Vis. Exp. 2022. [Google Scholar] [CrossRef] [PubMed] Nys, C.; Lee, Y.L.; Roose, H.; Mertens, F.; De Pauw, E.; Kobayashi, H.; Sciot, R.; Bex, M.; Versyck, G.; De Vleeschouwer, S.; et al. Exploring stem cell biology in pituitary tumors and derived organoids. Endocr. Relat. Cancer 2022, 29, 427–450. [Google Scholar] [CrossRef] Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/organoid (accessed on 20 September 2022). Mahe, M.M.; Aihara, E.; Schumacher, M.A.; Zavros, Y.; Montrose, M.H.; Helmrath, M.A.; Sato, T.; Shroyer, N.F. Establishment of Gastrointestinal Epithelial Organoids. Curr. Protoc. Mouse Biol. 2013, 3, 217–240. [Google Scholar] [CrossRef] [PubMed] Schumacher, M.A.; Aihara, E.; Feng, R.; Engevik, A.; Shroyer, N.F.; Ottemann, K.M.; Worrell, R.T.; Montrose, M.H.; Shivdasani, R.A.; Zavros, Y. The use of murine-derived fundic organoids in studies of gastric physiology. J. Physiol. 2015, 593, 1809–1827. [Google Scholar] [CrossRef] [PubMed] Holokai, L.; Chakrabarti, J.; Lundy, J.; Croagh, D.; Adhikary, P.; Richards, S.S.; Woodson, C.; Steele, N.; Kuester, R.; Scott, A.; et al. Murine- and Human-Derived Autologous Organoid/Immune Cell Co-Cultures as Pre-Clinical Models of Pancreatic Ductal Adenocarcinoma. Cancers 2020, 12, 3816. [Google Scholar] [CrossRef] [PubMed] Boj, S.F.; Hwang, C.I.; Baker, L.A.; Chio, I.I.C.; Engle, D.D.; Corbo, V.; Jager, M.; Ponz-Sarvise, M.; Tiriac, H.; Spector, M.S.; et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 2015, 160, 324–338. [Google Scholar] [CrossRef] Tiriac, H.; Belleau, P.; Engle, D.D.; Plenker, D.; Deschenes, A.; Somerville, T.D.D.; Froeling, F.E.M.; Burkhart, R.A.; Denroche, R.E.; Jang, G.H.; et al. Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer. Cancer Discov. 2018, 8, 1112–1129. [Google Scholar] [CrossRef] Driehuis, E.; van Hoeck, A.; Moore, K.; Kolders, S.; Francies, H.E.; Gulersonmez, M.C.; Stigter, E.C.A.; Burgering, B.; Geurts, V.; Gracanin, A.; et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc. Natl. Acad. Sci. USA 2019 116, 26580–26590. [CrossRef] Jung, Y.H.; Choi, D.H.; Park, K.; Lee, S.B.; Kim, J.; Kim, H.; Jeong, H.W.; Yang, J.H.; Kim, J.A.; Chung, S.; et al. Drug screening by uniform patient derived colorectal cancer hydro-organoids. Biomaterials 2021, 276, 121004. [Google Scholar] [CrossRef] Chen, D.; Tan, Y.; Li, Z.; Li, W.; Yu, L.; Chen, W.; Liu, Y.; Liu, L.; Guo, L.; Huang, W.; et al. Organoid Cultures Derived From Patients With Papillary Thyroid Cancer. J. Clin. Endocrinol. Metab. 2021, 106, 1410–1426. [Google Scholar] [CrossRef] Reincke, M.; Theodoropoulou, M. Genomics in Cushing’s Disease: The Dawn of a New Era. J. Clin. Endocrinol. Metab. 2021, 106, e2455–e2456. [Google Scholar] [CrossRef] [PubMed] Ma, Z.Y.; Song, Z.J.; Chen, J.H.; Wang, Y.F.; Li, S.Q.; Zhou, L.F.; Mao, Y.; Li, Y.M.; Hu, R.G.; Zhang, Z.Y.; et al. Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell. Res. 2015, 25, 306–317. [Google Scholar] [CrossRef] [PubMed] Melmed, S. Pathogenesis of pituitary tumors. Nat. Rev. Endocrinol. 2011, 7, 257–266. [Google Scholar] [CrossRef] [PubMed] Stratakis, C.A.; Tichomirowa, M.A.; Boikos, S.; Azevedo, M.F.; Lodish, M.; Martari, M.; Verma, S.; Daly, A.F.; Raygada, M.; Keil, M.F.; et al. The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin. Genet. 2010, 78, 457–463. [Google Scholar] [CrossRef] Mouchtouris, N.; Smit, R.D.; Piper, K.; Prashant, G.; Evans, J.J.; Karsy, M. A review of multiomics platforms in pituitary adenoma pathogenesis. Front. Biosci. 2022, 27, 77. [Google Scholar] [CrossRef] [PubMed] Bolz, H.; von Brederlow, B.; Ramirez, A.; Bryda, E.C.; Kutsche, K.; Nothwang, H.G.; Seeliger, M.; del, C.S.C.M.; Vila, M.C.; Molina, O.P.; et al. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nat. Genet. 2001, 27, 108–112. [Google Scholar] [CrossRef] [PubMed] Zhang, S.; Cui, Y.; Ma, X.; Yong, J.; Yan, L.; Yang, M.; Ren, J.; Tang, F.; Wen, L.; Qiao, J. Single-cell transcriptomics identifies divergent developmental lineage trajectories during human pituitary development. Nat. Commun. 2020, 11, 5275. [Google Scholar] [CrossRef] Cheung, L.Y.; Davis, S.W.; Brinkmeier, M.L.; Camper, S.A.; Perez-Millan, M.I. Regulation of pituitary stem cells by epithelial to mesenchymal transition events and signaling pathways. Mol. Cell. Endocrinol. 2017, 445, 14–26. [Google Scholar] [CrossRef] Shintani, A.; Higuchi, M. Isolation of PRRX1-positive adult pituitary stem/progenitor cells from the marginal cell layer of the mouse anterior lobe. Stem Cell. Res. 2021, 52, 102223. [Google Scholar] [CrossRef] Yoshida, S.; Nishimura, N.; Ueharu, H.; Kanno, N.; Higuchi, M.; Horiguchi, K.; Kato, T.; Kato, Y. Isolation of adult pituitary stem/progenitor cell clusters located in the parenchyma of the rat anterior lobe. Stem Cell. Res. 2016, 17, 318–329. [Google Scholar] [CrossRef] Laporte, E.; Vennekens, A.; Vankelecom, H. Pituitary Remodeling Throughout Life: Are Resident Stem Cells Involved? Front. Endocrinol. 2020, 11, 604519. [Google Scholar] [CrossRef] [PubMed] Vankelecom, H.; Roose, H. The Stem Cell Connection of Pituitary Tumors. Front. Endocrinol. 2017, 8, 339. [Google Scholar] [CrossRef] [PubMed] Mertens, F.; Gremeaux, L.; Chen, J.; Fu, Q.; Willems, C.; Roose, H.; Govaere, O.; Roskams, T.; Cristina, C.; Becu-Villalobos, D.; et al. Pituitary tumors contain a side population with tumor stem cell-associated characteristics. Endocr. Relat. Cancer 2015, 22, 481–504. [Google Scholar] [CrossRef] [PubMed] Chen, H.Z.; Tsai, S.Y.; Leone, G. Emerging roles of E2Fs in cancer: An exit from cell cycle control. Nat. Rev. Cancer 2009, 9, 785–797. [Google Scholar] [CrossRef] [PubMed] Xu, Q.; Yuan, X.; Tunici, P.; Liu, G.; Fan, X.; Xu, M.; Hu, J.; Hwang, J.Y.; Farkas, D.L.; Black, K.L.; et al. Isolation of tumour stem-like cells from benign tumours. Br. J. Cancer 2009, 101, 303–311. [Google Scholar] [CrossRef] [PubMed] Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). From https://www.mdpi.com/2073-4409/11/21/3344/htm
  3. Introduction: Pasireotide (PAS) is a novel somatostatin receptor ligands (SRL), used in controlling hormonal hypersecretion in both acromegaly and Cushing’s Disease (CD). In previous studies and meta-analysis, first-generation SRLs were reported to be able to induce significant tumor shrinkage only in somatotroph adenomas. This systematic review and meta-analysis aim to summarize the effect of PAS on the shrinkage of the pituitary adenomas in patients with acromegaly or CD. Materials and methods: We searched the Medline database for original studies in patients with acromegaly or CD receiving PAS as monotherapy, that assessed the proportion of significant tumor shrinkage in their series. After data extraction and analysis, a random-effect model was used to estimate pooled effects. Quality assessment was performed with a modified Joanna Briggs’s Institute tool and the risk of publication bias was addressed through Egger’s regression and the three-parameter selection model. Results: The electronic search identified 179 and 122 articles respectively for acromegaly and CD. After study selection, six studies considering patients with acromegaly and three with CD fulfilled the eligibility criteria. Overall, 37.7% (95%CI: [18.7%; 61.5%]) of acromegalic patients and 41.2% (95%CI: [22.9%; 62.3%]) of CD patients achieved significant tumor shrinkage. We identified high heterogeneity, especially in acromegaly (I2 of 90% for acromegaly and 47% for CD), according to the low number of studies included. Discussion: PAS treatment is effective in reducing tumor size, especially in acromegalic patients. This result strengthens the role of PAS treatment in pituitary adenomas, particularly in those with an invasive behavior, with progressive growth and/or extrasellar extension, with a low likelihood of surgical gross-total removal, or with large postoperative residual tissue. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022328152, identifier CRD42022328152 Introduction Pasireotide (PAS) is a novel somatostatin receptor ligand (SRL) with a high affinity for the somatostatin receptor (SSR) type 5 (1, 2). Somatotroph adenomas are usually responsive to first-generation SRLs (octreotide and lanreotide), as they are able to reduce growth hormone (GH) secretion through SSR type 2 (3). In the flow-chart of acromegaly treatment, PAS is suggested in case of resistance to first-generation SRLs, as SSR type 5 is also abundantly expressed in GH-secreting adenomas (3). A phase III study with PAS long-acting release (LAR) proved its efficacy in first-generation SRLs-resistant acromegalic patients after 6 months (4). In the extension study (Colao A et al.), 37% of patients achieved normalization of insulin-like growth factor 1 (IGF-1) and/or GH levels <1 µg/L, considering both those performing the extension treatment and those crossing over from the first-generation SRL-control group to the PAS LAR group. Nearly two-thirds of responses were achieved after at least 6 months of treatment. Up-titration of the dose from 40 to 60 mg monthly enriched the number of responders, suggesting that the PAS LAR effect may be both time- and dose-dependent (5). Concomitant improvement in signs and symptoms has also been confirmed in other series (6–9). SSR type 5 is the predominant isoform in human corticotroph adenomas, since it is not down-regulated by high cortisol levels, as SSR type 2 does. Therefore, PAS is the only SRL available in patients with Cushing’s Disease (CD) (2). In a phase III study, subcutaneous (s.c.) PAS proved to be effective in normalizing urinary free cortisol (respectively in 13% and 25% of patients taking 600 µg or 900 µg bis-in-die for 12 months) (10), achieving significant clinical improvement (11). In the same clinical setting, PAS LAR showed similar efficacy and safety profiles (12). These benefits could be maintained for up to 5 years in an extension study (13, 14). In a recent meta-analysis, PAS treatment provided disease control in 44% of 522 patients with CD (15). Patients harbouring USP-8 mutations demonstrated an increased SSR type 5 expression in the corticotroph adenoma, increasing the likelihood of a positive response to PAS therapy (16). The safety profile of PAS is similar to that of first-generation SRLs, except for a significant worsening in glucose homeostasis (17). Despite the normalization of hormonal excess, another goal of the medical treatment in GH-secreting pituitary adenomas is the reduction of the size of the adenoma (18). First-generation SRLs proved to be effective in achieving tumor shrinkage in acromegaly: Endocrine Society clinical practice guidelines suggested their role as primary therapy in poor surgical candidates and in those with extrasellar extension without chiasmal compression (18). Cozzi et al. reported in a large prospective cohort of acromegalic patients a significant Octreotide-induced tumor shrinkage in 82% of those receiving SRL as first-line treatment; most of them exhibited an early shrinkage with a progressive trend in reduction later on (19). A meta-analysis of 41 studies reported a significant tumor shrinkage in 50% of included patients (20). Data from the primary treatment with once-monthly lanreotide in surgical naïve patients demonstrated its efficacy in reducing tumor volume, achieving significant tumor shrinkage in 63% of them (21). Hypo-intensity on T2-weighted sequences at baseline magnetic resonance imaging (MRI) seems to predict tumor volume reduction during first-generation SRLs treatment (22). Regarding patients with CD, most patients presented a microadenoma, usually not aggressive or invasive: only in selected cases tumor shrinkage is an aim to achieve in patients with corticotropinoma. As available data are scarce (or limited to selected studies), and the issue of pituitary adenoma shrinkage is of primary importance in the management of tumors that cannot be addressed through surgery, the aim of this systematic review and meta-analysis is to summarize available data regarding the effect of PAS on tumor size. Materials and Methods We used the Population-Intervention-Comparison-Outcome (PICO) model to formulate the research questions for the systematic review (23), as summarised in Figure 1. The systematic review and meta-analysis were conducted and are reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA) statement (24). We registered the protocol on the International Prospective Register of Systematic Reviews database (PROSPERO, https://www.crd.york.ac.uk/PROSPERO, number CRD42022328152). Figure 1 FIGURE 1 PICO (Population-Intervention-Comparison-Outcome) model design to our study. Search Strategy An extensive Medline search was performed for the research question by two of the authors (F.C. and A.M.) independently, discrepancies were resolved by discussion. The literature search was performed up to January 2022, no language restriction was applied. Research included the following keywords: 1) (“acromegalies” [All Fields] OR “acromegaly”[MeSH Terms] OR “acromegaly”[All Fields]) AND (“pasireotide”[Supplementary Concept] OR “pasireotide”[All Fields]); 2) (“pituitary ACTH hypersecretion”[MeSH Terms] OR (“pituitary”[All Fields] AND “ACTH”[All Fields] AND “hypersecretion”[All Fields]) OR “pituitary ACTH hypersecretion”[All Fields]) AND (“pasireotide”[Supplementary Concept] OR “pasireotide”[All Fields]). Inclusion and exclusion criteria were specified in advance and protocol-defined, in order to avoid methodological bias for post-hoc analysis. The searches were designed to select all types of studies (retrospective, observational, controlled, randomized, and non-randomized) conducted in patients with acromegaly or CD treated with PAS as monotherapy; the assessment of the proportion of significant tumor shrinkage was an inclusion criterion. Search terms were linked to Medical Subject Headings when possible. Keywords and free words were used simultaneously. Additional articles were identified with manual searches and included a thorough review of other meta-analyses, review articles, and relevant references. Consolidation of studies was performed with Mendeley Desktop 1.19.8. Study Selection We included all original research studies conducted in adult patients that underwent PAS treatment used as monotherapy (s.c. bis-in-die and intramuscular once/monthly), that provided sufficient information about tumor size reduction during treatment. In case of overlapping cohorts of patients (as clinical trials with core and extension phases), we included only the extension study, in order to select those patients with measurable tumor shrinkage after long-term treatment. Local reports regarding patients involved in multicenter trials were excluded from the analysis, as they had been already considered in the larger series. Reviewers were not blinded to the authors or journals when screening articles. Data Extraction and Quality Assessment Two authors (F.C. and A.M.) read the included papers and extracted independently relevant data, any disagreements were resolved by discussion. If data were not clear from the original manuscript, the authors of the primary study were contacted to clarify the doubts. Contents of data extraction in the selected paper included: name of the first author, year of publication, setting (referral centre, academic hospital, mono- or multi-centric collection), type of treatment, its dose schedule and duration, pituitary imaging method during follow- up, the endpoint type regarding adenoma size analysis (i.e. primary vs exploratory). When data were reported for each patient or for subgroups, a global percentage of significant tumor shrinkage was calculated considering all subjects involved in the study. To assess the risk of bias in the included studies, the critical appraisal tool from Joanna Briggs’s Institute (JBI) was adapted to evaluate those considered in our metanalysis (25). Among the items proposed, we selected the most appropriate to our setting: 1. Were the inclusion criteria clearly identified? 2. Were diagnostic criteria for acromegaly or CD well defined? 3. Were valid methods applied to evaluate tumor shrinkage? 4. Was the inclusion of participants consecutive and complete? 5. Was the reporting of baseline participants’ features (demographic and clinical) complete? 6. Was the report of the outcomes clear? 7. Was the report of demographics of the involved sites complete? 8. Was statistical analysis appropriate? For each aspect we assigned as possible choices of answer: yes, no or unclear. Data Synthesis and Analysis A qualitative synthesis was performed summarizing the study design and population characteristics (age, male to female ratio, macro- to micro-adenoma ratio, prior treatments). A random-effect model was used to estimate pooled effects. Forest plots for percentages of significant tumor size reduction were generated to visualize heterogeneity among the studies. In order to assess publication bias, despite the low number of articles considered, we performed funnel plot and asymmetry analysis adjusted for the low number of studies (an Egger’s regression test and a three-parameter selection model where two tailed p < 0.05 was considered statistically significant). The I2 test was conducted to analyze the heterogeneity between studies: an I2 >50% indicated a between-study heterogeneity. Statistical analyses were performed with R: R-4.1.2 for Windows 10 (32/64 bit) released 2021-11-01 and R studio desktop RStudio Desktop 1.4.1717 for Windows 10 64 bit (R Foundation for Statistical Computing, Vienna, Austria, URL https://www.R-project.org/). Results Study Selection The study selection process for acromegaly is depicted in Figure 2. The electronic search revealed 179 articles, with one duplicate (N = 178). After the first screening, 141 articles did not meet the eligibility criteria and were discarded. The full-text examination of the remaining studies excluded additional 31 articles: 27 did not provide adequate data about tumor size, two represented the core phase of an extension study, another one referred to a subset of patients from a larger study, and the last one did not provide sufficient data about the percentage of tumor size reduction. Thus, six studies fulfilling eligibility criteria (reported in Tables 1, 2), were selected for data extraction and analysis. Figure 2 FIGURE 2 Search strategy for acromegaly. * Petersenn S, 2010 (PAS sc, phase II) and Colao A, 2014 (PAS LAR). ** Shimon I, 2015 (PAS LAR). *** Tahara S, 2019 (PAS LAR, phase II). PAS, pasireotide, sc, subcutaneous, LAR, long-acting release. Table 1 TABLE 1 Studies considered for the metanalysis in acromegaly. Table 2 TABLE 2 Studies considered for the metanalysis in acromegaly. The study selection process for CD is depicted in Figure 3. The electronic search revealed 122 articles; an additional one had been included post-hoc, through reference analysis of selected articles (N = 123). After the first screening, 91 articles did not meet the eligibility criteria and were discarded. The full-text examination of the remaining studies excluded 29 more articles: 23 did not provide sufficient data on tumor shrinkage, two of them represented the core phase of extension studies, two referred to subsets of patients included in a larger study and two did not provide sufficient data regarding the percentage of tumor size reduction. Thus, three studies fulfilling eligibility criteria (reported in Tables 3, 4) were selected for data extraction and analysis. Figure 3 FIGURE 3 Search strategy for Cushing’s Disease. * Lacroix A, 2018 (PAS LAR, phase III) and Lacroix A, 2020 (PAS sc, phase III post-hoc analysis). ** Simeoli C, 2014 (PAS sc) and Colao A 2012 (PAS sc, phase III). *** Daniel E, 2018 (PAS sc and LAR) and Trementino L, 2016 (PAS sc). PAS, pasireotide, sc, subcutaneous, LAR, long acting release. Table 3 TABLE 3 Studies considered for the metanalysis in Cushing’s Disease. Table 4 TABLE 4 Studies considered for the metanalysis in Cushing’s Disease. Study Characteristics Four multi- and two mono-centric studies in patients with acromegaly were considered and analyzed, all presenting a prospective design. Tumor size analysis was not one of the primary endpoints in any of the considered studies; from an initial overall recruitment of 358 patients, only 265 were included for tumor size reduction analysis. Most patients had previously undergone different treatments (Table 1). All studies, except one, used PAS LAR, dose titration was allowed in all trials. Median follow-up ranged from 6 to 25 months; MRI was performed to evaluate tumor size reduction and the criteria for considering it significant was mainly based on tumor volume analysis, except for Lasolle H et al. which considered median height reduction (26). Data from the PAOLA study provided separate percentages of significant tumor shrinkage for PAS at 40 mg or 60 mg once monthly; considering that respectively 12 and 7 patients showed a reduction >25%, a significant shrinkage was reported in 19 out of 79 considered cases (24%) (4). Stelmachowska-Banás et al. described one patient with McCune-Albright’s syndrome presenting with pituitary hyperplasia, without a visible adenoma at MRI; as its pituitary volume decreased during treatment, the patient was included in the group with significant tumor shrinkage (27). No study provided information about macro- to micro-adenoma ratio. Data regarding age and male to female ratio are also reported in Table 2. Three studies including patients with CD met the eligibility criteria (Tables 3, 4); all of them presented a multicentre prospective design, recruiting 139 patients, most of them assuming PAS as a second-line treatment, after a surgical failure. For tumor shrinkage analysis, a subgroup of 34 patients was considered, taking s.c. PAS bis-in-die in two studies and PAS LAR in the third; in all cases titration was admitted. Tumor size analysis was a secondary endpoint in all three studies. Follow-up ranged from 6 to 60 months; tumor size assessment was performed with pituitary MRI. Only Pivonello et al. evaluated maximum diameter, instead of tumor volume changes (28). The population analyzed for tumor shrinkage mainly presented with a microadenoma. Data regarding age and gender are reported in Table 4. In the trial reported by Petersenn S et al., we arbitrarily fixed the criterion to define a significant tumor volume reduction (at least 25% of the baseline size of the pituitary adenoma), and the proportion of responders was calculated from the supplementary materials accordingly (3/6 = 50%) (13). Pivonello et al. separated patients exhibiting mild-moderate from those with severe hypercortisolism; we considered them together for tumor size analysis obtaining an overall proportion of significant size reduction of 21.4% (3 out of 14 subjects) (28). Risk of Bias The evaluation of the risk of bias performed with the adapted JBI tool is reported in Table 5. All studies presented clear diagnostic and inclusion criteria, except that of Lasolle H et al. (26). Although all papers reported a valid tool for tumor shrinkage analysis (MRI), two of them did not analyse tumor volume and did not provide a clear definition of significant size reduction (26, 28). Regarding other items, the majority of the considered studies did not appear to present a clear source of bias. Table 5 TABLE 5 Evaluation of the risk of bias performed with the adapted Joanna Briggs’s Institute (JBI) tool. Meta-Analysis In the six studies considered for acromegaly, 37.7% (95%CI: [18.7%; 61.5%]) of patients demonstrated a significant tumor size reduction (Figure 4). As expected, heterogeneity in tumor reduction between studies was high (I2 = 90%). We attempted to address publication bias despite the low-number of studies (Figure 6A😞 Egger’s regression test did not indicate the presence of funnel plot asymmetry (intercept = -3.15 with 95%CI: [-10.17; 3.85], t = -0.883, p = 0.427) and the three-parameter selection model performed for p < 0.05 (and p < 0.1 as a sensitivity analysis) suggested absence of publication bias (28). Figure 4 FIGURE 4 Pooled effect for the proportion of responders (i.e. presenting significant tumor shrinkage) in acromegaly. CI, confidence interval. In the three studies considered for CD, 41,2% (95%CI: [22.9%; 62.3%]) of patients overall demonstrated a significant tumor size reduction (Figure 5). The heterogeneity in tumor reduction between the studies represented by I2 amounted to 47%. Publication bias analysis (Figure 6B) was performed using Egger’s regression test (intercept = -1.828 with 95%CI: [-14.53; 10.88], t = -0.282, p = 0.825) without evidence of asymmetry. The three-parameter selection model on the contrary could not be performed due to the small number of studies. Figure 5 FIGURE 5 Pooled effect for the proportion of responders (i.e. presenting significant tumor shrinkage) in Cushing’s Disease. CI, confidence interval. Figure 6 FIGURE 6 (A) Funnel plot assessing publication bias for Acromegaly. (B) Funnel plot assessing publication bias for Cushing’s Disease. Discussion The biochemical efficacy of medical treatment with PAS in GH- or ACTH-secreting pituitary adenomas has been described in previous metanalyses for acromegaly (29, 30) and CD (15), the latter also exploring the clinical benefit. In addition to these reports, this meta-analysis shows that PAS treatment can induce an additional clinically significant tumor shrinkage in approximately 40% of patients. Acromegaly Overall, PAS treatment provided tumor shrinkage in 37.7% of the considered patients. A previous metanalysis on octreotide in acromegaly provided a higher percentage of tumor size reduction (over 50%) (20). Nevertheless, since PAS treatment is usually considered as a second- or third-line treatment in the therapeutic flow-chart of acromegaly, the population recruited is mainly composed of patients with first-generation SRL-resistant somatotroph adenomas. This bias in recruited populations of acromegalic patients may explain this difference in the outcome. In a direct comparison, although PAS LAR seemed more effective in achieving biochemical control, both the SRLs, the first- and the second-generation types, achieved similar percentages of tumor shrinkage (6, 7). Moreover, in the crossover extension, the switch from octreotide to PAS was more effective than the reverse schedule, achieving a slightly higher percentage of further significant tumor shrinkage (8). Lasolle et al. reported that the expression of SSR type 5 and the granulation pattern are of limited value for the prediction of PAS responsiveness: 5 out of 9 somatotropinomas in their series were densely granulated (two did not respond to PAS), and the expression of SSR type 5 was modest in one controlled patient (26). Other than SRLs, a further therapeutic option targeting the somatotroph adenoma is cabergoline, either as monotherapy in mild cases or as an add-on treatment for resistant adenomas (18). In a previous metanalysis, cabergoline in monotherapy resulted less effective than SRLs, achieving tumor shrinkage in about one third of the enrolled patients (31). It should also be mentioned that some studies reported an escape phenomenon from its treatment efficacy (32). Data coming from the combination of PAS LAR and pegvisomant in acromegaly were not considered in our metanalysis, due to inclusion criteria and variable combination therapy of the two drugs (33). Since some cases of adenoma growth had been reported during pegvisomant use (34, 35), this combination therapy represents a rational approach, but tumor volume analysis is less reliable, given the purpose of our study. Despite concerns regarding tumor growth, pegvisomant effectiveness in acromegaly is well documented (18, 29), although the cost of this combination treatment can limit its applicability in real-life practice. Moreover, it is worth mentioning Coopmans and collaborators’ follow-up analysis, suggesting a PAS mediated anti-tumoral effect in acromegaly. During treatment, patients exhibited a significant increase in T2-weighted sequences signal at MRI; moreover, patients exhibiting this MRI characteristic in their adenomas showed a more evident decrease in IGF-1 levels, but not a similar pattern in reduction of pituitary adenoma size (36). This finding may be related to cell degeneration or tumor cell necrosis, without necessarily determining significant tumor size reduction. Further studies, probably with more data coming from histological reports, may be necessary to better understand these findings. Cushing’s Disease Overall, PAS treatment provided significant tumor shrinkage in 41.2% of CD patients. Regarding pituitary-directed drugs, at this moment available for CD treatment, the efficacy of cabergoline has been proven in vitro studies, but its efficacy in clinical trials is still debated (15, 37). In a previous prospective study, cabergoline induced significant tumor shrinkage (defined as tumor volume reduction >20%) in 4 out of 20 (20%) of the patients recruited after 24 months (38). PAS is the only pituitary-directed treatment for this condition approved by Drug Agencies. Although few studies have been considered in this metanalysis, due to the strict inclusion criteria, PAS appears more effective in tumor size reduction versus cabergoline, resulting in a better choice in CD therapy when aiming to control the pituitary adenoma. In contrast to acromegaly, the majority of CD patients present a microadenoma, suggesting that tumor size might be a less relevant issue during medical treatment, even if the “cure” of the disease may forecast the resolution of the adenoma. Besides, up to 30% of CD patients, depending also on MRI accuracy and neuro-radiologist’s expertise, may present with negative imaging that prevents any evaluation of tumor shrinkage (39). In spite of that, endocrinologists, not so infrequently, deal with aggressive corticotroph adenomas, characterized by invasive local growth and/or resistance to conventional therapies. This challenging entity often requires multidisciplinary expertise to suggest different approaches, including PAS treatment (40). It should be mentioned that some non-pituitary targeting drugs, as inhibitors of cortisol synthesis, have been associated with tumor growth, due to cortisol-ACTH negative feedback. In particular, during osilodrostat treatment in a phase III study, four recruited patients discontinued osilodrostat after a significant increase in tumor volume (two with micro- and two with macro-adenomas 41), and this growth had also been described during ketoconazole and mitotane treatments (42). Thus, it may be speculated that PAS could provide a rational approach as an combination treatment with steroidogenesis inhibitors. Moreover, after bilateral adrenalectomy, pituitary adenoma tumor size is of the utmost importance, as patients may be at risk of developing a progression of the adenoma, the so-called Nelson’s syndrome. In a prospective study from Daniel E et al., PAS proved to be also effective in this setting, reducing ACTH levels and stabilizing the residual tumor over a treatment period of 7 months (43). Further studies, with longer treatment observation, may reveal whether PAS may achieve significant tumor shrinkage in these patients, as suggested by previous case reports in literature (44, 45). Conclusion The main limitation of our study resides in the scarce literature provided up to now (260 patients with acromegaly and 34 with CD), in the different therapy schedules and different criteria for tumor shrinkage in the selected study (largest tumor diameter vs a selected percentage of reduction). Moreover, in none of the study tumor reduction was one of the primary endpoints, and surgery was performed before PAS in most patients (78-88% of CD and 43-96% of acromegaly). PAS is a novel compound, with a rising role in the treatment of secreting pituitary adenomas. Thus, this topic might be amplified with more data coming from further clinical studies, as real-life studies, possibly also addressing markers predictive of response to this treatment (e.g., expression of SSR type 2 and type 5 or somatic mutations in USP8 at tissue level of ACTH-secreting adenomas). Nevertheless, we can already state that PAS treatment is effective in reducing tumor size, especially in acromegaly. Our results strengthen the role of PAS treatment in somatotroph and corticotroph adenomas, especially when tumor volume is a relevant issue (i.e. tumor progression, extrasellar invasion) (18, 39), as a neoadjuvant treatment before surgery or as tailored treatment, alone or in combination, in persistent disease or when surgery is not feasible. Future research aiming to characterize markers predictive of response could help to identify optimal candidates for this treatment. Data Availability Statement The original contributions presented in the study are included in the article. Further inquiries can be directed to the corresponding author. Ethics Statement Informed consent was obtained from all subjects participating in the studies analyzed. Author Contributions Authors involved contributed to research as reported: literature search (FC, AM), preparation of original draft (FC, AM, MB, LD), literature review (CS, FC, AM, MF), manuscript editing (CS, FC, AM, MB, LD, MF) and supervision (RM, CS). All authors approved the final version of the paper. Conflict of Interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Publisher’s Note All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher. References 1. Chinezu L, Vasiljevic A, Jouanneau E, François P, Borda A, Trouillas J, et al. Expression of Somatostatin Receptors, SSTR2A and SSTR5, in 108 Endocrine Pituitary Tumors Using Immunohistochemical Detection With New Specific Monoclonal Antibodies. Hum Pathol (2014) 45(1):71–7. doi: 10.1016/j.humpath.2013.08.007 PubMed Abstract | CrossRef Full Text | Google Scholar 2. Ceccato F, Scaroni C, Boscaro M. Clinical Use of Pasireotide for Cushing's Disease in Adults. Ther Clin Risk Manage (2015) 11:425–34. doi: 10.2147/TCRM.S37314 CrossRef Full Text | Google Scholar 3. Melmed S, Colao A, Barkan A, Molitch M, Grossman AB, Kleinberg D, et al. Guidelines for Acromegaly Management: An Update. J Clin Endocrinol Metab (2009) 94(5):1509–17. doi: 10.1210/jc.2008-2421 PubMed Abstract | CrossRef Full Text | Google Scholar 4. Gadelha MR, Bronstein MD, Brue T, Coculescu M, Fleseriu M, Guitelman M, et al. Pasireotide Versus Continued Treatment With Octreotide or Lanreotide in Patients With Inadequately Controlled Acromegaly (PAOLA): A Randomised, Phase 3 Trial. Lancet Diabetes Endocrinol (2014) 2(11):875–84. doi: 10.1016/S2213-8587(14)70169-X PubMed Abstract | CrossRef Full Text | Google Scholar 5. Colao A, Bronstein MD, Brue T, De Marinis L, Fleseriu M, Guitelman M, et al. Pasireotide for Acromegaly: Long-Term Outcomes From an Extension to the Phase III PAOLA Study. Eur J Endocrinol (2020) 182(6):583. doi: 10.1530/EJE-19-0762 PubMed Abstract | CrossRef Full Text | Google Scholar 6. Colao A, Bronstein MD, Freda P, Gu F, Shen CC, Gadelha M, et al. Pasireotide Versus Octreotide in Acromegaly: A Head-to-Head Superiority Study. J Clin Endocrinol Metab (2014) 99(3):791–9. doi: 10.1210/jc.2013-2480 PubMed Abstract | CrossRef Full Text | Google Scholar 7. Sheppard M, Bronstein MD, Freda P, Serri O, De Marinis L, Naves L, et al. Pasireotide LAR Maintains Inhibition of GH and IGF-1 in Patients With Acromegaly for Up to 25 Months: Results From the Blinded Extension Phase of a Randomized, Double-Blind, Multicenter, Phase III Study. [Published Correction Appears in Pituitary]. (2015) 18(3):385–94. doi: 10.1007/s11102-014-0585-6 CrossRef Full Text | Google Scholar 8. Bronstein MD, Fleseriu M, Neggers S, Colao A, Sheppard M, Gu F, et al. Switching Patients With Acromegaly From Octreotide to Pasireotide Improves Biochemical Control: Crossover Extension to a Randomized, Double-Blind, Phase III Study. BMC Endocr Disord (2016) 16:16. doi: 10.1186/s12902-016-0096-8 PubMed Abstract | CrossRef Full Text | Google Scholar 9. Gadelha M, Bex M, Colao A, Pedroza García EM, Poiana C, Jimenez-Sanchez M, et al. Evaluation of the Efficacy and Safety of Switching to Pasireotide in Patients With Acromegaly Inadequately Controlled With First-Generation Somatostatin Analogs. Front Endocrinol (Lausanne). (2020) 10:931. doi: 10.3389/fendo.2019.00931 PubMed Abstract | CrossRef Full Text | Google Scholar 10. Colao A, Petersenn S, Newell-Price J, Findling JW, Gu F, Maldonado M, et al. A 12-Month Phase 3 Study of Pasireotide in Cushing's Disease. N Engl J Med (2012) 366(10):914–24. doi: 10.1056/NEJMoa1105743 PubMed Abstract | CrossRef Full Text | Google Scholar 11. Pivonello R, Petersenn S, Newell-Price J, Findling JW, Gu F, Maldonado M, et al. Pasireotide Treatment Significantly Improves Clinical Signs and Symptoms in Patients With Cushing's Disease: Results From a Phase III Study. Clin Endocrinol (Oxf). (2014) 81(3):408–17. doi: 10.1111/cen.12431 PubMed Abstract | CrossRef Full Text | Google Scholar 12. Lacroix A, Gu F, Gallardo W, Pivonello R, Yu Y, Witek P, et al. Efficacy and Safety of Once-Monthly Pasireotide in Cushing's Disease: A 12 Month Clinical Trial. Lancet Diabetes Endocrinol (2018) 6(1):17–26. doi: 10.1016/S2213-8587(17)30326-1 PubMed Abstract | CrossRef Full Text | Google Scholar 13. Petersenn S, Salgado LR, Schopohl J, Portocarrero-Ortiz L, Arnaldi G, Lacroix A, et al. Long-Term Treatment of Cushing's Disease With Pasireotide: 5-Year Results From an Open-Label Extension Study of a Phase III Trial. Endocrine. (2017) 57(1):156–65. doi: 10.1007/s12020-017-1316-3 PubMed Abstract | CrossRef Full Text | Google Scholar 14. Fleseriu M, Petersenn S, Biller BMK, Kadioglu P, De Block C, T'Sjoen G, et al. Long-Term Efficacy and Safety of Once-Monthly Pasireotide in Cushing's Disease: A Phase III Extension Study. Clin Endocrinol (Oxf). (2019) 91(6):776–85. doi: 10.1111/cen.14081 PubMed Abstract | CrossRef Full Text | Google Scholar 15. Simões Corrêa Galendi J, Correa Neto ANS, Demetres M, Boguszewski CL, Nogueira VDSN. Effectiveness of Medical Treatment of Cushing's Disease: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne). (2021) 12:732240. doi: 10.3389/fendo.2021.732240 PubMed Abstract | CrossRef Full Text | Google Scholar 16. Hayashi K, Inoshita N, Kawaguchi K, Ibrahim Ardisasmita A, Suzuki H, Fukuhara N, et al. The USP8 Mutational Status may Predict Drug Susceptibility in Corticotroph Adenomas of Cushing's Disease. Eur J Endocrinol (2016) 174(2):213–26. doi: 10.1530/EJE-15-0689 PubMed Abstract | CrossRef Full Text | Google Scholar 17. Samson SL, Gu F, Feldt-Rasmussen U, Zhang S, Yu Y, Witek P, et al. Managing Pasireotide-Associated Hyperglycemia: A Randomized, Open-Label, Phase IV Study. Pituitary. (2021) 24(6):887–903. doi: 10.1007/s11102-021-01161-4 PubMed Abstract | CrossRef Full Text | Google Scholar 18. Katznelson L, Laws ER Jr, Melmed S, Molitch ME, Murad MH, Utz A, et al. Acromegaly: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab (2014) 99(11):3933–51. doi: 10.1210/jc.2014-2700 PubMed Abstract | CrossRef Full Text | Google Scholar 19. Cozzi R, Montini M, Attanasio R, Albizzi M, Lasio G, Lodrini S, et al. Primary Treatment of Acromegaly With Octreotide LAR: A Long-Term (Up to Nine Years) Prospective Study of its Efficacy in the Control of Disease Activity and Tumor Shrinkage. J Clin Endocrinol Metab (2006) 91(4):1397–403. doi: 10.1210/jc.2005-2347 PubMed Abstract | CrossRef Full Text | Google Scholar 20. Giustina A, Mazziotti G, Torri V, Spinello M, Floriani I, Melmed S. Meta-Analysis on the Effects of Octreotide on Tumor Mass in Acromegaly. PloS One (2012) 7(5):e36411. doi: 10.1371/journal.pone.0036411 PubMed Abstract | CrossRef Full Text | Google Scholar 21. Caron PJ, Bevan JS, Petersenn S, Flanagan D, Tabarin A, Prévost G, et al. Tumor Shrinkage With Lanreotide Autogel 120 Mg as Primary Therapy in Acromegaly: Results of a Prospective Multicenter Clinical Trial. J Clin Endocrinol Metab (2014) 99(4):1282–90. doi: 10.1210/jc.2013-3318 PubMed Abstract | CrossRef Full Text | Google Scholar 22. Potorac I, Petrossians P, Daly AF, Alexopoulou O, Borot S, Sahnoun-Fathallah M, et al. T2-Weighted MRI Signal Predicts Hormone and Tumor Responses to Somatostatin Analogs in Acromegaly. Endocr Relat Cancer. (2016) 23(11):871–81. doi: 10.1530/ERC-16-0356 PubMed Abstract | CrossRef Full Text | Google Scholar 23. Schardt C, Adams MB, Owens T, Keitz S, Fontelo P. Utilization of the PICO Framework to Improve Searching PubMed for Clinical Questions. BMC Med Inform Decis Mak. (2007) 7:16. doi: 10.1186/1472-6947-7-16 PubMed Abstract | CrossRef Full Text | Google Scholar 24. McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM. Preferred Reporting Items for a Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement [Published Correction Appears in JAMA. 2019 Nov 26;322(20):2026]. JAMA. (2018) 319(4):388–96. doi: 10.1001/jama.2017.19163 CrossRef Full Text | Google Scholar 25. Munn Z, Barker TH, Moola S, Tufanaru C, Stern C, McArthur A, et al. Methodological Quality of Case Series Studies: An Introduction to the JBI Critical Appraisal Tool. JBI Evid Synth. (2020) 18(10):2127–33. doi: 10.11124/JBISRIR-D-19-00099 PubMed Abstract | CrossRef Full Text | Google Scholar 26. Lasolle H, Ferriere A, Vasiljevic A, Eimer S, Nunes ML, Tabarin A. Pasireotide-LAR in Acromegaly Patients Treated With a Combination Therapy: A Real-Life Study. Endocr Connect. (2019) 8(10):1383–94. doi: 10.1530/EC-19-0332 PubMed Abstract | CrossRef Full Text | Google Scholar 27. Stelmachowska-Banaś M, Czajka-Oraniec I, Tomasik A, Zgliczyński W. Real-World Experience With Pasireotide-LAR in Resistant Acromegaly: A Single Center 1-Year Observation. Pituitary. (2022) 25(1):180–90. doi: 10.1007/s11102-021-01185-w PubMed Abstract | CrossRef Full Text | Google Scholar 28. Pivonello R, Arnaldi G, Scaroni C, Giordano C, Cannavò S, Iacuaniello D, et al. The Medical Treatment With Pasireotide in Cushing's Disease: An Italian Multicentre Experience Based on "Real-World Evidence". Endocrine. (2019) 64(3):657–72. doi: 10.1007/s12020-018-1818-7 PubMed Abstract | CrossRef Full Text | Google Scholar 29. Leonart LP, Ferreira VL, Tonin FS, Fernandez-Llimos F, Pontarolo R. Medical Treatments for Acromegaly: A Systematic Review and Network Meta-Analysis. Value Health (2018) 21(7):874–80. doi: 10.1016/j.jval.2017.12.014” PubMed Abstract | CrossRef Full Text | Google Scholar 30. Qiao N, He M, Shen M, Zhang Q, Zhang Z, Shou X, et al. Comparative Efficacy Of Medical Treatment For Acromegaly: A Systematic Review And Network Meta-Analysis Of Integrated Randomized Trials And Observational Studies. Endocr Pract (2020) 26(4):454–62. doi: 10.4158/EP-2019-0528 PubMed Abstract | CrossRef Full Text | Google Scholar 31. Sandret L, Maison P, Chanson P. Place of Cabergoline in Acromegaly: A Meta-Analysis. J Clin Endocrinol Metab (2011) 96(5):1327–35. doi: 10.1210/jc.2010-2443 PubMed Abstract | CrossRef Full Text | Google Scholar 32. Giraldi EA, Ioachimescu AG. The Role of Dopamine Agonists in Pituitary Adenomas. Endocrinol Metab Clin North Am (2020) 49(3):453–74. doi: 10.1016/j.ecl.2020.05.006 PubMed Abstract | CrossRef Full Text | Google Scholar 33. Muhammad A, van der Lely AJ, Delhanty PJD, Dallenga AHG, Haitsma IK, Janssen JAMJL, et al. Efficacy and Safety of Switching to Pasireotide in Patients With Acromegaly Controlled With Pegvisomant and First-Generation Somatostatin Analogues (PAPE Study). J Clin Endocrinol Metab (2018) 103(2):586–95. doi: 10.1210/jc.2017-02017 PubMed Abstract | CrossRef Full Text | Google Scholar 34. uhk JH, Jung S, Psychogios MN, Göricke S, Hartz S, Schulz-Heise S, et al. Tumor Volume of Growth Hormone-Secreting Pituitary Adenomas During Treatment With Pegvisomant: A Prospective Multicenter Study. J Clin Endocrinol Metab (2010) 95(2):552–8. doi: 10.1210/jc.2009-1239 PubMed Abstract | CrossRef Full Text | Google Scholar 35. Marazuela M, Paniagua AE, Gahete MD, Lucas T, Alvarez-Escolá C, Manzanares R, et al. Somatotroph Tumor Progression During Pegvisomant Therapy: A Clinical and Molecular Study. J Clin Endocrinol Metab (2011) 96(2):E251–9. doi: 10.1210/jc.2010-1742 PubMed Abstract | CrossRef Full Text | Google Scholar 36. Coopmans EC, van der Lely AJ, Schneiders JJ, Neggers SJCMM. Potential Antitumour Activity of Pasireotide on Pituitary Tumours in Acromegaly. Lancet Diabetes Endocrinol (2019) 7(6):425–6. doi: 10.1016/S2213-8587(19)30113-5 PubMed Abstract | CrossRef Full Text | Google Scholar 37. Ferriere A, Cortet C, Chanson P, Delemer B, Caron P, Chabre O, et al. Cabergoline for Cushing's Disease: A Large Retrospective Multicenter Study. Eur J Endocrinol (2017) 176(3):305–14. doi: 10.1530/EJE-16-0662 PubMed Abstract | CrossRef Full Text | Google Scholar 38. Pivonello R, De Martino MC, Cappabianca P, De Leo M, Faggiano A, Lombardi G, et al. The Medical Treatment of Cushing's Disease: Effectiveness of Chronic Treatment With the Dopamine Agonist Cabergoline in Patients Unsuccessfully Treated by Surgery. J Clin Endocrinol Metab (2009) 94(1):223–30. doi: 10.1210/jc.2008-1533 PubMed Abstract | CrossRef Full Text | Google Scholar 39. Fleseriu M, Auchus R, Bancos I, Ben-Shlomo A, Bertherat J, Biermasz NR, et al. Consensus on Diagnosis and Management of Cushing's Disease: A Guideline Update. Lancet Diabetes Endocrinol (2021) 9(12):847–75. doi: 10.1016/S2213-8587(21)00235-7 PubMed Abstract | CrossRef Full Text | Google Scholar 40. Ceccato F, Lombardi G, Manara R, Emanuelli E, Denaro L, Milanese L, et al. Temozolomide and Pasireotide Treatment for Aggressive Pituitary Adenoma: Expertise at a Tertiary Care Center. J Neurooncol. (2015) 122(1):189–96. doi: 10.1007/s11060-014-1702-0 PubMed Abstract | CrossRef Full Text | Google Scholar 41. Pivonello R, Fleseriu M, Newell-Price J, Bertagna X, Findling J, Shimatsu A, et al. Efficacy and Safety of Osilodrostat in Patients With Cushing's Disease (LINC 3): A Multicentre Phase III Study With a Double-Blind, Randomised Withdrawal Phase. Lancet Diabetes Endocrinol (2020) 8(9):748–61. doi: 10.1016/S2213-8587(20)30240-0 PubMed Abstract | CrossRef Full Text | Google Scholar 42. Varlamov EV, Han AJ, Fleseriu M. Updates in Adrenal Steroidogenesis Inhibitors for Cushing's Syndrome - A Practical Guide. Best Pract Res Clin Endocrinol Metab (2021) 35(1):101490. doi: 10.1016/j.beem.2021.101490 PubMed Abstract | CrossRef Full Text | Google Scholar 43. Daniel E, Debono M, Caunt S, Girio-Fragkoulakis C, Walters SJ, Akker SA, et al. A Prospective Longitudinal Study of Pasireotide in Nelson's Syndrome. Pituitary. (2018) 21(3):247–55. doi: 10.1007/s11102-017-0853-3 PubMed Abstract | CrossRef Full Text | Google Scholar 44. Katznelson L. Sustained Improvements in Plasma ACTH and Clinical Status in a Patient With Nelson's Syndrome Treated With Pasireotide LAR, a Multireceptor Somatostatin Analog. J Clin Endocrinol Metab (2013) 98(5):1803–7. doi: 10.1210/jc.2013-1497 PubMed Abstract | CrossRef Full Text | Google Scholar 45. He X, Spencer-Segal JL. Rapid Response of Nelson's Syndrome to Pasireotide in Radiotherapy-Naive Patient. Clin Diabetes Endocrinol (2020) 6(1):22. doi: 10.1186/s40842-020-00110-7 PubMed Abstract | CrossRef Full Text | Google Scholar Keywords: pasireotide, cushing, acromegaly, tumor volume, tumor size Citation: Mondin A, Manara R, Voltan G, Tizianel I, Denaro L, Ferrari M, Barbot M, Scaroni C and Ceccato F (2022) Pasireotide-Induced Shrinkage in GH and ACTH Secreting Pituitary Adenoma: A Systematic Review and Meta-Analysis. Front. Endocrinol. 13:935759. doi: 10.3389/fendo.2022.935759 Received: 04 May 2022; Accepted: 06 June 2022; Published: 01 July 2022. Edited by: Mohammad E. Khamseh, Iran University of Medical Sciences, Iran Reviewed by: Rosa Paragliola, Catholic University of the Sacred Heart, Rome, Italy Marek Bolanowski, Wroclaw Medical University, Poland Adriana G Ioachimescu, Emory University, United States Copyright © 2022 Mondin, Manara, Voltan, Tizianel, Denaro, Ferrari, Barbot, Scaroni and Ceccato. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. *Correspondence: Filippo Ceccato, filippo.ceccato@unipd.it †ORCID: Alessandro Mondin, orcid.org/0000-0002-6046-5198 Renzo Manara, orcid.org/0000-0002-5130-3971 Giacomo Voltan, orcid.org/0000-0002-3628-0492 Irene Tizianel, orcid.org/0000-0003-4092-5107 Luca Denaro, orcid.org/0000-0002-2529-6149 Marco Ferrari, orcid.org/0000-0002-4023-0121 Mattia Barbot, orcid.org/0000-0002-1081-5727 Carla Scaroni, orcid.org/0000-0001-9396-3815 Filippo Ceccato, orcid.org/0000-0003-1456-8716 Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher. From https://www.frontiersin.org/articles/10.3389/fendo.2022.935759/full
  4. Cushing disease is caused by tumour in the pituitary gland which leads to excessive secretion of a hormone called adrenocorticotrophic (ACTH), which in turn leads to increasing levels of cortisol in the body. Cortisol is a steroid hormone released by the adrenal glands and helps the body to deal with injury or infection. Increasing levels of cortisol increases the blood sugar and can even cause diabetes mellitus. However the disease is also caused due to excess production of hypothalamus corticotropin releasing hormone (CRH) which stimulates the synthesis of cortisol by the adrenal glands. The condition is named after Harvey Cushing, the doctor who first identified the disease in 1912. Cushing disease results in Cushing syndrome. Cushing syndrome is a group of signs and symptoms developed due to prolonged exposure to cortisol. Signs and symptoms of Cushing syndrome includes hypertension, abdominal obesity, muscle weakness, headache, fragile skin, acne, thin arms and legs, red stretch marks on stomach, fluid retention or swelling, excess body and facial hair, weight gain, acne, buffalo hump, tiredness, fatigue, brittle bones, low back pain, moon shaped face etc. Symptoms vary from individual to individual depending upon the disease duration, age and gender of the patient. Get Sample Copy of this Report @ https://www.persistencemarketresearch.com/samples/14155 Disease diagnosis is done by measuring levels of cortisol in patient’s urine, saliva or blood. For confirming the diagnosis, a blood test for ACTH is performed. The first-line treatment of the disease is through surgical resection of ACTH-secreting pituitary adenoma, however disease management is also done through medications, Cushing disease treatment market comprises of the drugs designed for lowering the level of cortisol in the body. Thus patients suffering from Cushing disease are prescribed medications such as ketoconazole, mitotane, aminoglutethimide metyrapone, mifepristone, etomidate and pasireotide. Cushing’s disease treatment market revenue is growing with a stable growth rate, this is attributed to increasing number of pipeline drugs. Also increasing interest of pharmaceutical companies to develop Cushing disease drugs is a major factor contributing to the revenue growth of Cushing disease treatment market over the forecast period. Current and emerging players’ focuses on physician education and awareness regarding availability of different drugs for curing Cushing disease, thus increasing the referral speeds, time to diagnosis and volume of diagnosed Cushing disease individuals. Growing healthcare expenditure and increasing awareness regarding Cushing syndrome aids in the revenue growth of Cushing’s disease treatment market. Increasing number of new product launches also drives the market for Cushing’s disease Treatment devices. However availability of alternative therapies for curing Cushing syndrome is expected to hamper the growth of the Cushing’s disease treatment market over the forecast period. For entire list of market players, request for Table of content here @ https://www.persistencemarketresearch.com/toc/14155 The Cushing’s disease Treatment market is segment based on the product type, technology type and end user Cushing’s disease Treatment market is segmented into following types: By Drug Type Ketoconazole Mitotane Aminoglutethimide Metyrapone Mifepristone Etomidate Pasireotide By End User Hospital Pharmacies Retail Pharmacies Drug Stores Clinics e-Commerce/Online Pharmacies Cushing’s disease treatment market revenue is expected to grow at a good growth rate, over the forecast period. The market is anticipated to perform well in the near future due to increasing awareness regarding the condition. Also the market is anticipated to grow with a fastest CAGR over the forecast period, attributed to increasing investment in R&D and increasing number of new product launches which is estimated to drive the revenue growth of Cushing’s disease treatment market over the forecast period. Depending on geographic region, the Cushing’s disease treatment market is segmented into five key regions: North America, Latin America, Europe, Asia Pacific (APAC) and Middle East & Africa (MEA). North America is occupying the largest regional market share in the global Cushing’s disease treatment market owing to the presence of more number of market players, high awareness levels regarding Cushing syndrome. Healthcare expenditure and relatively larger number of R&D exercises pertaining to drug manufacturing and marketing activities in the region. Also Europe is expected to perform well in the near future due to increasing prevalence of the condition in the region. Asia Pacific is expected to grow at the fastest CAGR because of increase in the number of people showing the symptoms of Cushing syndrome, thus boosting the market growth of Cushing’s disease treatment market throughout the forecast period. Some players of Cushing’s disease Treatment market includes CORCEPT THERAPEUTICS, HRA Pharma, Strongbridge Biopharma plc, Novartis AG, etc. However there are numerous companies producing branded generics for Cushing disease. The companies in Cushing’s disease treatment market are increasingly engaged in strategic partnerships, collaborations and promotional activities to capture a greater pie of market share. The research report presents a comprehensive assessment of the market and contains thoughtful insights, facts, historical data, and statistically supported and industry-validated market data. It also contains projections using a suitable set of assumptions and methodologies. The research report provides analysis and information according to categories such as market segments, geographies, types, technology and applications.
  5. Lacroix A, et al. Pituitary. 2019;doi:10.1007/s11102-019-01021-2. January 7, 2020 Andre Lacroix Most adults with persistent or recurrent Cushing’s disease treated with the somatostatin analogue pasireotide experienced a measurable decrease in MRI-detectable pituitary tumor volume at 12 months, according to findings from a post hoc analysis of a randomized controlled trial. “Pasireotide injected twice daily during up to 12 months to control cortisol excess in patients with residual or persistent Cushing's disease was found to reduce the size of pituitary tumors in a high proportion of the 53 patients in which residual tumor was still visible at initiation of this medical therapy,” Andre Lacroix, MD, FCAHS, professor of medicine at the University of Montreal Teaching Hospital in Montreal, Canada, told Healio. “Pituitary tumors causing Cushing's syndrome which cannot be removed completely by surgery have the capacity to grow in time, and a medical therapy that can reduce tumor growth in addition to control excess cortisol production should be advantageous for the patients.” Lacroix and colleagues analyzed data from 53 adults with persistent or recurrent Cushing’s disease, or those with newly diagnosed Cushing’s disease who were not surgical candidates, who had measurable tumor volume data (78% women). Researchers randomly assigned participants to 600 g or 900 g subcutaneous pasireotide (Signifor LAR, Novartis) twice daily. Tumor volume was assessed independently at 6 and 12 months by two masked radiologists and compared with baseline value and urinary free cortisol response. Most adults with persistent or recurrent Cushing’s disease treated with the somatostatin analogue pasireotide experienced a measurable decrease in MRI-detectable pituitary tumor volume at 12 months. Source: Shutterstock Researchers found that reductions in tumor volume were both dose and time dependent. Tumor volume reduction was more frequently observed at month 6 in the 900 g group (75%) than in the 600 g group (44%). Similarly, at month 12 (n = 32), tumor volume reduction was observed more frequently in the 900 g group (89%) than in the 600 g group (50%). Results were independent of urinary free cortisol levels. The researchers did not observe a relationship between baseline tumor size and change in tumor size. “Taken together, the results of the current analysis demonstrate that treatment with pasireotide, a pituitary-directed medical therapy that targets somatostatin receptors, can frequently lead to radiologically measurable reductions in pituitary tumor volume in patients with Cushing’s disease,” the researchers wrote. “Tumor volume reduction is especially relevant in patients with larger microadenomas, suggesting that pasireotide is an attractive option for these patients, especially in cases in which patients cannot undergo transsphenoidal surgery or do not respond to surgical management of disease.” – by Regina Schaffer For more information: Andre Lacroix, MD, FCAHS, can be reached at the University of Montreal Teaching Hospital, Endocrine Division, 3840 Saint-Urbain, Montreal, H2W 1T8, Canada; email: andre.lacroix@umontrael.ca. Disclosures: Novartis supported this study and provided writing support. Lacroix reports he has received funding from Novartis Pharmaceuticals to conduct clinical studies with pasireotide and osilodrostat in Cushing’s disease and served as a consultant, advisory board member or speaker for EMD Serono, Ipsen and Novartis. Please see the study for all other authors’ relevant financial disclosures. From https://www.healio.com/endocrinology/neuroendocrinology/news/online/%7B8e4d31fb-d61a-4cf8-b4c4-7d0bdf012fbd%7D/pasireotide-reduces-pituitary-tumor-volume-in-cushings-disease
  6. Written by Kathleen Doheny with Maria Fleseriu, MD, FACE, and Vivien Herman-Bonert, MD Cushing's disease, an uncommon but hard to treat endocrine disorder, occurs when a tumor on the pituitary gland, called an adenoma—that is almost always benign—leads to an overproduction of ACTH (adrenocorticotropic hormone), which is responsible for stimulating the release of cortisol, also known as the stress hormone. Until now, surgery to remove the non-cancerous but problematic tumor has been the only effective treatment. Still, many patients will require medication to help control their serum cortisol levels, and others cannot have surgery or would prefer to avoid it. Finally, a drug proves effective as added on or alternative to surgery in managing Cushing's disease. Photo; 123rf New Drug Offers Alternative to Surgery for Cushing's Disease Now, there is good news about long-term positive results achieved with pasireotide (Signifor)—the first medication to demonstrate effectiveness in both normalizing serum cortisol levels and either shrinking or slowing growth of tumors over the long term.1,2 These findings appear in the journal, Clinical Endocrinology, showing that patients followed for 36 months as part of an ongoing study had improved patient outcomes for Cushing’s disease.2 "What we knew before this extension study was—the drug will work in approximately half of the patients with mild Cushing's disease," says study author Maria Fleseriu, MD, FACE, director of the Northwest Pituitary Center and professor of neurological surgery and medicine in the division of endocrinology, diabetes and clinical nutrition at the Oregon Health and Sciences University School of Medicine. “Pasireotide also offers good clinical benefits," says Dr. Fleseriu who is also the president of the Pituitary Society, “which includes improvements in blood pressure, other signs and symptoms of Cushing’s symptom], and quality of life.”2 What Symptoms Are Helped by Drug for Cushing's Disease? Among the signs and symptoms of Cushing’s disease that are lessened with treatment are:3 Changes in physical appearance such as wide, purple stretch marks on the skin (eg, chest, armpits, abdomen, thighs) Rapid and unexplained weight gain A more full, rounder face Protruding abdomen from fat deposits Increased fat deposits around the neck area The accumulation of adipose tissue raises the risk of heart disease, which adds to the urgency of effective treatment. In addition, many individuals who have Cushing’s disease also complain of quality of life issues such as fatigue, depression, mood and behavioral problems, as well as poor memory.2 As good as the results appear following the longer term use of pasireotide,2 Dr. Fleseriu admits that in any extension study in which patients are asked to continue on, there are some built-in limitations, which may influence the findings. For example, patients who agree to stay on do so because they are good responders, meaning they feel better, so they’re happy to stick with the study. “Fortunately, for the patients who have responded to pasireotide initially, this is a drug that can be continued as there are no new safety signals with longer use," Dr. Fleseriu tells EndocrineWeb, "and when the response at the start is good, very few patients will lose control of their urinary free cortisol over time. That's a frequent marker used to monitor patient's status. For those patients with large tumors, almost half of them had a significant shrinkage, and all the others had a stable tumor size." What Are the Reasons to Consider Drug Treatment to Manage Cushing’s Symptoms The extension study ''was important because we didn't have any long-term data regarding patient response to this once-a-month treatment to manage Cushing's disease," she says. While selective surgical removal of the tumor is the preferred treatment choice, the success rate in patients varies, and Cushing's symptoms persist in up to 35% of patients after surgery. In addition, recurrent rates (ie, return of disease) range from 13% to 66% after individuals experience different durations remaining in remission.1 Therefore, the availability of an effective, long-lasting drug will change the course of therapy for many patients with Cushing’s disease going forward. Not only will pasireotide benefit patients who have persistent and recurrent disease after undergoing surgery, but also this medication will be beneficial for those who are not candidates for surgery or just wish to avoid having this procedure, he said. Examining the Safety and Tolerability of Pasireotide This long-acting therapy, pasireotide, which is given by injection, was approved in the US after reviewing results of a 12-month Phase 3 trial.1 In the initial study, participants had a confirmed pituitary cause of the Cushing's disease. After that, the researchers added the optional 12-month open-label, extension study, and now patients can continue on in a separate long-term safety study. Those eligible for the 12-month extension had to have mean urinary free cortisol not exceeding the upper limit of normal (166.5 nanomoles per 24 hour) and/or be considered by the investigator to be getting substantial clinical benefit from treatment with long-action pasireotide, and to demonstrate tolerability of pasireotide during the core study.1 Of the 150 in the initial trial, 81 participants, or 54% of the patients, entered the extension study. Of those, 39 completed the next phase, and most also enrolled in another long-term safety study—these results not yet available).2 During the core study, 1 participants were randomly assigned to 10 or 30 mg of the drug every 28 days, with doses based on effectiveness and tolerability. When they entered the extension, patients were given the same dose they received at month.1,2 Study Outcomes Offer Advantages in Cushing’s Disease Of those who received 36 months of treatment with pasireotide, nearly three in four (72.2%) had controlled levels of urinary free cortisol at this time point.2 Equally good news for this drug was that tumors either shrank or did not grow. Of those individuals who started the trial with a measurable tumor (adenoma) as well as those with an adenoma at the two year mark (35 people), 85.7% of them experienced a reduction of 20% or more or less than a 20% change in tumor volume. No macroadenomas present at the start of the study showed a change of more than 20% at either month 24 or 36.2 Improvements in blood pressure, body mass index (BMI) and waist circumference continued throughout the extension study.1 Those factors influence CVD risk, the leading cause of death in those with Cushing's.4 As for adverse events, most of the study participants, 91.4%, did report one or more complaint during the extension study—most commonly, it was high blood sugar, which was reported by nearly 40% of participants.2. This is not surprising when you consider that most (81.5%) of the individuals participating in the extension trial entered with a diagnosis of diabetes or use of antidiabetic medication, and even more of them (88.9%) had diabetes at the last evaluation.1 This complication indicates the need for people with Cushing’s disease to check their blood glucose, as appropriate. Do You Have Cushing’s Disese? Here's What You Need to Know Women typically develop Cushing’s disease more often than men. What else should you be aware of if you and your doctor decide this medication will help you? Monitoring is crucial, says Dr. Fleseriu, as you will need to have your cortisol levels checked, and you should be on alert for any diabetes signals, which will require close monitoring and regular follow-up for disease management. Another understanding gained from the results of this drug study: "This medication works on the tumor level," she says. "If the patient has a macroadenoma (large tumor), this would be the preferred treatment." However, it should be used with caution in those with diabetes given the increased risk of experiencing high blood sugar. The researchers conclude that "the long-term safety profile of pasireotide was very favorable and consistent with that reported during the first 12 months of treatment. These data support the use of long-acting pasireotide as an effective long-term treatment option for some patients with Cushing's Disease."1 Understanding Benefits of New Drug to Treat Cushing's Diseease Vivien S. Herman-Bonert, MD, an endocrinologist and clinical director of the Pituitary Center at Cedars-Sinai Medical Center in Los Angeles, agreed to discuss the study findings, after agreeing to review the research for EndocrineWeb. As to who might benefit most from monthly pasireotide injections? Dr. Herman-Bonert says, "any patient with Cushing's disease that requires long-term medical therapy, which includes patients with persistent or recurrent disease after surgery." Certainly, anyone who has had poor response to any other medical therapies for Cushing's disease either because they didn't work well enough or because the side effects were too much, will likely benefit a well, she adds. Among the pluses that came out of the study, she says, is that nearly half of the patients had controlled average urinary free cortisol levels after two full years, and 72% of the participants who continued on with the drug for 36 months were able to remain in good urinary cortisol control .1 As the authors stated, tumor shrinkage was another clear benefit of taking long-term pasireotide. That makes the drug a potentially good choice for those even with large tumors or with progressive tumor growth, she says. It’s always good for anyone with Cushing’s disease to have an alterative to surgery, or a back-up option when surgery isn’t quite enough, says Dr. Herman-Bonert. The best news for patients is that quality of life scores improved,1 she adds. Dr Herman-Bonert did add a note of caution: Although the treatment in this study is described as ''long-term, patients will need to be on this for far longer than 2 to 3 years," she says. So, the data reported in this study may or may not persist, and we don’t yet know what the impact will be 10 or 25 years out. Also, the issue of hyperglycemia-related adverse events raises a concern, given the vast majority (81%) of patients who have both Cushing’s disease and diabetes. Most of those taking this drug had a dual diagnosis—having diabetes, a history of diabetes, or taking antidiabetic medicine. If you are under care for diabetes and you require treatment for Cushing’s disease, you must be ver mindful that taking pasireotide will likely lead to high blood sugar spikes, so you should plan to address this with your healthcare provider. Dr. Fleseriu reports research support paid to Oregon Health & Science University from Novartis and other 0companies and consultancy fees from Novartis and Strongbridge Biopharma. Dr. Herman-Bonert has no relevant disclosures. The study was underwritten by Novartis Pharma AG, the drug maker. From https://www.endocrineweb.com/news/pituitary-disorders/62449-cushings-disease-monthly-injection-good-alternative-surgery
  7. For patients with persistent or recurring Cushing’s disease, monthly pasireotide therapy was safe and effective, leading to normal urinary free cortisol levels in 47% of patients after 2 years, according to findings published in Clinical Endocrinology. Maria Fleseriu “The management of Cushing’s syndrome, and particularly Cushing’s disease, remains challenging,” Maria Fleseriu, MD, FACE, professor of neurological surgery and professor of medicine in the division of endocrinology, diabetes and clinical nutrition in the School of Medicine at Oregon Health & Science University and director of the OHSU Northwest Pituitary Center, told Endocrine Today. “Long-acting pasireotide provided sustained biochemical improvements and clinical benefit in a significant proportion of patients with Cushing’s disease who elected to continue in this extension study. There were many adverse events reported overall, but no new safety signals emerging over long-term treatment.” In the last decade, medical treatment for Cushing’s disease has progressed from a few steroidogenesis inhibitors to three novel drug groups: new inhibitors for steroidogenic enzymes with possibly fewer adverse effects, pituitary-directed drugs that aim to inhibit the pathophysiological pathways of Cushing’s disease, and glucocorticoid receptor antagonists that block cortisol’s action, Fleseriu, who is also an Endocrine Today Editorial Board member, said. In an open-label extension study, Fleseriu and colleagues analyzed data from 81 adults with confirmed Cushing’s disease with mean urinary free cortisol not exceeding the upper limit of normal, who transitioned from a 12-month, randomized controlled trial where they were assigned 10 mg or 30 mg once-monthly intramuscular pasireotide (Signifor LAR, Novartis). During the main study, researchers recruited participants with mean urinary free cortisol level concentration 1.5 to five times the upper limit of normal, normal or greater than normal plasma and confirmed pituitary source of Cushing’s disease. Participants who elected to continue in the extension were considered biochemical responders or benefited from the study drug per the clinical investigator, Fleseriu said. “As in all extension studies, the bias is inherent that patients deemed responders tend to continue, but for any type of treatment for pituitary tumors, and particularly Cushing’s disease, long-term, robust data on efficacy and safety parameters is essential,” Fleseriu said. Median overall exposure to pasireotide at the end of the extension study was 23.9 months, with nearly half of patients receiving at least 1 year of treatment during the extension phase. Researchers found that improvements in clinical signs of hypercortisolism were sustained throughout the study and median urinary free cortisol remained within normal range. Overall, 38 participants (47%) had controlled urinary free cortisol at month 24 (after 12 months of treatment during the extension phase), with researchers noting that the proportion of participants with controlled or partially controlled urinary free cortisol was stable throughout the extension phase. “Interestingly, the median salivary cortisol level decreased but remained above normal (1.3 times upper limit of normal) at 3 years,” Fleseriu said. As seen in other pasireotide studies, and expected based on the mechanism of action, researchers observed hyperglycemia-related adverse events in 39.5% of participants, with diabetes medications initiated or escalated in some patients, Fleseriu said. However, mean fasting glucose and HbA1c were stable during the extension phase, after increasing in the main study. Within the cohort, 81.5% had type 2 diabetes at baseline (entering extension phase) and 88.9% patients had type 2 diabetes at last assessment. “Pasireotide acts at the tumor level, and tumor shrinkage is seen in many patients,” Fleseriu said. “In this study, 42% and 32.1% had a measurable microadenoma or macroadenoma, respectively, on MRI at the start of pasireotide treatment; an adenoma was not visible in almost a quarter of patients at 2 years.” Among patients with a measurable adenoma at baseline and at month 24 (n = 35), 85.7% experienced a reduction of at least 20% or a 20% change in tumor volume between the two time points. Improvements in median systolic and diastolic blood pressure, BMI and waist circumference were sustained during the extension, Fleseriu said. “The long-term safety profile of pasireotide was favorable and consistent with that reported during the first 12 months of treatment,” the researchers wrote. “These data support the use of long-acting pasireotide as an effective long-term treatment option for some patients with [Cushing’s disease].” Fleseriu said individualized treatment selecting patients who will derive benefit from therapy will be crucial, balancing both efficacy and the potential risks and costs. – by Regina Schaffer Disclosures: Fleseriu reports she has received consultant fees and her institution has received research support from Novo Nordisk and Pfizer. Please see the study for all other authors’ relevant financial disclosures. From https://www.healio.com/endocrinology/neuroendocrinology/news/online/%7B5da4611f-34b2-4306-80b8-46babd2aad4a%7D/long-acting-pasireotide-provides-sustained-biochemical-improvements-in-cushings-disease?page=2
  8. LOS ANGELES — More than a century has passed since the neurosurgeon and pathologist Harvey Cushing first discovered the disease that would eventually bear his name, but only recently have several key discoveries offered patients with the condition real hope for a cure, according to a speaker here. There are several challenges clinicians confront in the diagnosis and treatment of Cushing’s disease, Shlomo Melmed, MB, ChB, FRCP, MACP, dean, executive vice president and professor of medicine at Cedars-Sinai Medical Center in Los Angeles, said during a plenary presentation. Patients who present with Cushing’s disease typically have depression, impaired mental function and hypertension and are at high risk for stroke, myocardial infarction, thrombosis, dyslipidemia and other metabolic disorders, Melmed said. Available therapies, which range from surgery and radiation to the somatostatin analogue pasireotide (Signifor LAR, Novartis), are often followed by disease recurrence. Cushing’s disease is fatal without treatment; the median survival if uncontrolled is about 4.5 years, Melmed said. “This truly is a metabolic, malignant disorder,” Melmed said. “The life expectancy today in patients who are not controlled is apparently no different from 1930.” The outlook for Cushing’s disease is now beginning to change, Melmed said. New targets are emerging for treatment, and newly discovered molecules show promise in reducing the secretion of adrenocorticotropic hormone (ACTH) and pituitary tumor size. “Now, we are seeing the glimmers of opportunity and optimism, that we can identify specific tumor drivers — SST5, [epidermal growth factor] receptor, cyclin inhibitors — and we can start thinking about personalized, precision treatment for these patients with a higher degree of efficacy and optimism than we could have even a year or 2 ago,” Melmed said. “This will be an opportunity for us to broaden the horizons of our investigations into this debilitating disorder.” Challenges in diagnosis, treatment Overall, about 10% of the U.S. population harbors a pituitary adenoma, the most common type of pituitary disorder, although the average size is only about 6 mm and 40% of them are not visible, Melmed said. In patients with Cushing’s disease, surgery is effective in only about 60% to 70% of patients for initial remission, and overall, there is about a 60% chance of recurrence depending on the surgery center, Melmed said. Radiation typically leads to hypopituitarism, whereas surgical or biochemical adrenalectomy is associated with adverse effects and morbidity. Additionally, the clinical features of hypercortisolemia overlap with many common illnesses, such as obesity, hypertension and type 2 diabetes. “There are thousands of those patients for every patient with Cushing’s disease who we will encounter,” Melmed said. The challenge for the treating clinician, Melmed said, is to normalize cortisol and ACTH with minimal morbidity, to resect the tumor mass or control tumor growth, preserve pituitary function, improve quality of life and achieve long-term control without recurrence. “This is a difficult challenge to meet for all of us,” Melmed said. Available options Pituitary surgery is typically the first-line option offered to patients with Cushing’s disease, Melmed said, and there are several advantages, including rapid initial remission, a one-time cost and potentially curing the disease. However, there are several disadvantages with surgery; patients undergoing surgery are at risk for postoperative venous thromboembolism, persistent hypersecretion of ACTH, adenoma persistence or recurrence, and surgical complications. Second-line options are repeat surgery, radiation, adrenalectomy or medical therapy, each with its own sets of pros and cons, Melmed said. “The reality of Cushing’s disease — these patients undergo first surgery and then recur, second surgery and then recur, then maybe radiation and then recur, and then they develop a chronic illness, and this chronic illness is what leads to their demise,” Melmed said. “Medical therapy is appropriate at every step of the spectrum.” Zebrafish clues Searching for new options, Melmed and colleagues introduced a pituitary tumor transforming gene discovered in his lab into zebrafish, which caused the fish to develop the hallmark features of Cushing’s disease: high cortisol levels, diabetes and cardiovascular disease. In the fish models, researchers observed that cyclin E activity, which drives the production of ACTH, was high. Melmed and colleagues then screened zebrafish larvae in a search for cyclin E inhibitors to derive a therapeutic molecule and discovered R-roscovitine, shown to repress the expression of proopiomelanocortin (POMC), the pituitary precursor of ACTH. In fish, mouse and in vitro human cell models, treatment with R-roscovitine was associated with suppressed corticotroph tumor signaling and blocked ACTH production, Melmed said. “Furthermore, we asked whether or not roscovitine would actually block transcription of the POMC gene,” Melmed said. “It does. We had this molecule (that) suppressed cyclin E and also blocks transcription of POMC leading to blocked production of ACTH.” In a small, open-label, proof-of-principal study, four patients with Cushing’s disease who received roscovitine for 4 weeks developed normalized urinary free cortisol, Melmed said. Currently, the FDA Office of Orphan Products Development is funding a multicenter, phase 2, open-label clinical trial that will evaluate the safety and efficacy of two of three potential doses of oral roscovitine (seliciclib) in patients with newly diagnosed, persistent or recurrent Cushing disease. Up to 29 participants will be treated with up to 800 mg per day of oral seliciclib for 4 days each week for 4 weeks and enrolled in sequential cohorts based on efficacy outcomes. “Given the rarity of the disorder, it will probably take us 2 to 3 years to recruit patients to give us a robust answer,” Melmed said. “This zebrafish model was published in 2011, and we are now in 2019. It has taken us 8 years from publication of the data to, today, going into humans with Cushing’s. Hopefully, this will light the pathway for a phase 2 trial.” ‘ Offering optimism’ Practitioners face a unique paradigm when treating patients with Cushing’s disease, Melmed said. Available first- and second-line therapy options often are not a cure for many patients, who develop multimorbidity and report a low quality of life. “Then, we are kept in this difficult cycle of what to do next and, eventually, running out of options,” Melmed said. “Now, we can look at novel, targeted molecules and add those to our armamentarium and at least offer our patients the opportunity to participate in trials, or at least offer the optimism that, over the coming years, there will be a light at the end of the tunnel for their disorder.” Melmed compared the work to Lucas Cranach’s Fons Juventutis (The Fountain of Youth). The painting, completed in 1446, shows sick people brought by horse-drawn ambulance to a pool of water, only to emerge happy and healthy. “He was imagining this ‘elixir of youth’ (that) we could offer patients who are very ill and, in fact, that is what we as endocrinologists do,” Melmed said. “We offer our patients these elixirs. These Cushing’s patients are extremely ill. We are trying with all of our molecular work and our understanding of pathogenesis and signaling to create this pool of water for them, where they can emerge with at least an improved quality of life and, hopefully, a normalized mortality. That is our challenge.” – by Regina Schaffer Reference: Melmed S. From zebrafish to humans: translating discoveries for the treatment of Cushing’s disease. Presented at: AACE Annual Scientific and Clinical Congress; April 24-28, 2019; Los Angeles. Disclosure: Melmed reports no relevant financial disclosures. From https://www.healio.com/endocrinology/neuroendocrinology/news/online/%7B585002ad-640f-49e5-8d62-d1853154d7e2%7D/new-discoveries-offer-possible-cushings-disease-cure
  9. The chemotherapy temozolomide partially improved a case of an aggressive pituitary tumor that caused symptoms of Cushing’s disease (CD), according to a new study in Poland. However, after tumor mass and cortisol levels were stabilized for a few months, the patient experienced rapid progression, suggesting that new methods for extending the effects of temozolomide are needed. The study, “Temozolomide therapy for aggressive pituitary Crooke’s cells corticotropinoma causing Cushing’s Disease: A case report with literature review,” appeared in the journal Endokrynologia Polska. Aggressive pituitary tumors are usually invasive macroadenomas, or benign tumors larger than 10 mm. A very rare subset of pituitary adenoma — particularly corticotropinoma, or tumors with excessive secretion of corticotropin (ACTH) — exhibit Crooke’s cells. These tumors are highly invasive, have a high recurrence rate, and are often resistant to treatment. Information is not widely available about the effectiveness of treating aggressive pituitary tumors, particularly those that cause Cushing’s disease. The management of these tumors usually requires neurosurgery, followed by radiotherapy, and pharmacotherapy. However, the chemotherapy medication temozolomide has been increasingly used as a first-line treatment after initial evidence of its effectiveness in treating glioblastoma, the most common form of brain cancer. In this study, researchers at the Jagiellonian University, in Poland, discussed the case of a 61-year-old man with ACTH-dependent Cushing’s syndrome caused by Crooke’s cell corticotropinoma. The patient first presented with symptoms of severe hypercorticoidism — the excessive secretion of steroid hormones from the adrenal cortex — in December 2011. He also showed advanced heart failure, severe headaches, and impaired vision, which had started two or three years before diagnosis. Examinations revealed osteoporosis and a fracture in the Th5 vertebra. His morning ACTH levels were high. The same was observed for mean cortisol levels even after dexamethasone treatment, which was suggestive of a pituitary tumor secreting ACTH. MRIs showed the existence of a tumor mass, later identified as a macroadenoma with high cell polymorphism, the presence of Crooke’s cells, and ACTH secretion. The patient was referred for transsphenoidal nonradical neurosurgery, performed through the nose and the sphenoid sinus, and bilateral adrenalectomy, or the surgical removal of the adrenal glands, in 2012-2013. However, he developed fast, postoperative recurrence of hypercorticoidism and tumor regrowth. This led to three additional transsphenoidal neurosurgeries and radiotherapy. The patient’s clinical status worsened as he developed severe cardiac insufficiency. Doctors began temozolomide treatment in April 2015, which did not result in adverse effects throughout treatment. The initial standard dose (150–200 mg/m2) was given once daily in the morning for five consecutive days, in a 28-day cycle. The patient also received 600 mg of ketoconazole, an antifungal medication. Ondansetron was administered to prevent nausea and vomiting. Subsequent examinations revealed clinical and biochemical improvements, including a reduction in ACTH and cortisol levels. In addition, the patient also showed reduced cardiac insufficiency, less frequent and less severe headaches, visual field improvements, and better physical fitness and mood. However, clinical symptoms worsened after the eighth temozolomide cycle. The tumor size also suddenly increased after the ninth cycle, reaching the inner ear. Temozolomide was then discontinued and ACTH levels increased by 28 percent one month later. The patient also demonstrated deteriorated vision, hearing loss, and strong headaches. Clinicians then decided to start treatment with the Cushing’s disease therapy Signifor (pasireotide), but a worsening of diabetes was observed, and the patient died in February 2016. “The most probable reason for death was compression of the brainstem, which had been observed in the last MRI of the pituitary,” the researchers wrote, adding that “due to the very short duration of treatment, any conclusions on the treatment with Signifor cannot be drawn.” Overall, “the results of the presented case suggest that [temozolomide] treatment monotherapy could have only partial response in aggressive corticotroph adenoma causing Cushing’s disease, followed by sudden progression,” the investigators wrote. This contrasts with mostly responsive cases reported in research literature, they noted. “Therefore, further research on the factors of responsiveness and on novel methods to extend the duration of the effect of [temozolomide] should be carried out,” they wrote. From https://cushieblog.com/2018/02/10/temozolomide-may-partially-improve-aggressive-pituitary-tumors-causing-cushings-disease/
  10. November 7, 2012 The US Food and Drug Administration's (FDA) Endocrinologic and Metabolic Drugs Advisory Committee (EMDAC) voted unanimously in support of the use of Signifor® (pasireotide) for the treatment of patients with Cushing's disease who require medical therapeutic intervention. The recommendation was based on data from clinical trials of pasireotide, including PASPORT-CUSHINGS (PASireotide clinical trial PORTfolio - CUSHING'S disease), the largest randomized Phase III study to evaluate a medical therapy in patients with Cushing's disease. Patient Assistance for SIGNIFOR support for patients includes: - Therapy-specific support programs for out-of-pocket costs - Alternative assistance searches and referrals to Federal and State assistance programs - Referrals to Independent Charitable Foundations for assistance with co-pay costs - Patient assistance for low-income and uninsured patients For more information, or to speak to a Patient Assistance NOW Endocrinology representative, please call 1-877-503-3377 (select option #3 for SIGNIFOR) Monday to Friday 8 am - 8 pm ET.
  11. Basel Monday, December 17, 2012, 16:00 Hrs [iST] The US Food and Drug Administration (FDA) has approved Novartis' Signifor (pasireotide) injection for the treatment of adult patients with Cushing's disease for whom pituitary surgery is not an option or has not been curative. Signifor is the first medicine to be approved in the US that addresses the underlying mechanism of Cushing's disease, a serious, debilitating endocrine disorder caused by the presence of a non-cancerous pituitary tumour which ultimately leads to excess cortisol in the body. This approval follows a unanimous recommendation from the FDA Endocrinologic and Metabolic Drugs Advisory Committee (EMDAC) in support of the use of Signifor. "The FDA approval of Signifor for Cushing's disease brings a novel pituitary-directed therapy to patients with limited treatment options," said Hervé Hoppenot, president, Novartis Oncology. "Today's milestone reinforces Novartis' commitment to addressing unmet needs and advancing treatments for rare pituitary-related disorders." Cushing's disease most commonly affects adults as young as 20 to 50 years and affects women three times more often than men. It may present with weight gain, central obesity, a round, red full face, severe fatigue and weakness, striae (purple stretch marks), high blood pressure, depression and anxiety. Cushing's disease can cause severe illness and death with mortality up to four times higher than in the healthy population. The approval is based on data from PASPORT-CUSHINGS (PASireotide clinical trial PORTfolio - CUSHING'S disease), the largest randomized Phase III study to evaluate a medical therapy in patients with Cushing's disease. Results from the PASPORT-CUSHINGS study found that a decrease in mean urinary-free cortisol (UFC), the key measure of biochemical control of the disease, was sustained during the treatment period in most patients with a subset of patients reaching normal levels. The study also showed that certain clinical manifestations of Cushing's disease tended to improve. "Patients with Cushing's disease may suffer from debilitating manifestations, and there are many serious health complications associated with the disease," said Mary Andrews, CEO and Co-Founder of the US non-profit, The MAGIC Foundation. "The FDA approval of Signifor offers the option of a medical therapy that may help certain patients with Cushing's disease." In April 2012, the European Commission approved Signiforfor the treatment of adult patients with Cushing's disease for whom surgery is not an option or for whom surgery has failed. Other worldwide regulatory filings for pasireotide for this use are also underway. Signifor (pasireotide) is approved in the US for the treatment of adult patients with Cushing's disease for whom pituitary surgery is not an option or has not been curative, and in the European Union for the treatment of adult patients with Cushing's disease for whom surgery is not an option or for whom surgery has failed. For the treatment of Cushing's disease, Signifor has been studied as a twice-daily subcutaneous (sc) injection and is currently being evaluated as a long-acting release (LAR), once-monthly intramuscular (IM) injection as part of a global Phase III program in Cushing's disease and acromegaly. Signifor is a multireceptor targeting somatostatin analog that binds with high affinity to four of the five somatostatin receptor subtypes (sst 1, 2, 3 and 5). From http://pharmabiz.com/NewsDetails.aspx?aid=72752&sid=2
  12. Committee votes unanimously in favor of Signifor (pasireotide) as the first medication to treat US patients with Cushing's disease Pasireotide represents the first targeted approach for this potentially debilitating endocrine disorder caused by a pituitary tumor that triggers excess cortisol[1],[2] Majority of patients in the Phase III clinical trial experienced a rapid and sustained decrease in mean cortisol levels with subset of patients achieving normalization[3] Basel, November 7, 2012 - The US Food and Drug Administration's (FDA) Endocrinologic and Metabolic Drugs Advisory Committee (EMDAC) has voted unanimously in support of the use of Signifor®(pasireotide) for the treatment of patients with Cushing's disease who require medical therapeutic intervention. "We are encouraged by today's favorable advisory committee recommendation for pasireotide in Cushing's disease and will work closely with the FDA as it completes its review of our application," said Hervé Hoppenot, President, Novartis Oncology. "There is a significant unmet medical need for Cushing's disease patients and Novartis is committed to providing the endocrinology community with a novel therapeutic approach for this rare and debilitating endocrine disorder." The recommendation was based on data from clinical trials of pasireotide, including PASPORT-CUSHINGS (PASireotide clinical trialPORTfolio - CUSHING'S disease), the largest randomized Phase III study to evaluate a medical therapy in patients with Cushing's disease. Although not obliged to follow the recommendation, the FDA can seek the advice of its advisory committees as it reviews and decides whether to approve treatments[1],[4]. Results from the PASPORT-CUSHINGS study found that mean urinary-free cortisol (UFC), the key measure of biochemical control of the disease, was rapidly decreased and sustained in a majority of patients, with a subset of patients reaching normalized levels. The study also showed that, on average, as UFC levels were reduced, clinical manifestations of Cushing's disease improved. The most frequently reported adverse events (AEs) (>10%) by investigators for pasireotide were diarrhea, nausea, hyperglycemia, cholelithiasis, abdominal pain, diabetes mellitus, injection site reactions, fatigue and increased glycosylated hemoglobin (HbA1c), with most events being Grade 1-2. The safety profile of pasireotide was similar to that of other somatostatin analogs (SSA) with the exception of the greater degree of hyperglycemia[3]. Cushing's syndrome is an endocrine disorder caused by excessive cortisol, a vital hormone that regulates metabolism, maintains cardiovascular function and helps the body respond to stress. Cushing's disease is a form of Cushing's syndrome, in which excess cortisol production is triggered by an adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma. It is a rare but serious disease that affects approximately one to two patients per million per year. Cushing's disease most commonly affects adults as young as 20 to 50 years and affects women three times more often than men. It may present with weight gain, central obesity, a round, red full face, severe fatigue and weakness, striae (purple stretch marks), high blood pressure, depression and anxiety. The first line and most common treatment approach for Cushing's disease is surgical removal of the tumor[1],[2],[5],[6],[7]. About pasireotide Pasireotide is a multireceptor targeting somatostatin analog (SSA) that binds with high affinity to four of the five somatostatin receptor subtypes (sst 1, 2, 3 and 5)[2]. In April 2012, the European Commission approved pasireotide under the brand name Signiforfor the treatment of adult patients with Cushing's disease for whom surgery is not an option or for whom surgery has failed. Other worldwide regulatory filings for pasireotide for this use are also underway. For the treatment of Cushing's disease, pasireotide has been studied as a twice-daily subcutaneous (sc) injection and is currently being evaluated as a long-acting release (LAR), once-monthly intramuscular (IM) injection as part of a global Phase III program in Cushing's disease and acromegaly[8],[9]. There is no guarantee that pasireotide will become commercially available anywhere else in the world. As an investigational compound, the safety and efficacy profile of pasireotide has not yet been established in all countries for the treatment of Cushing's disease or any other indications. Access to pasireotide outside of the approved indications has been carefully controlled and monitored in clinical trials designed to better understand the potential benefits and risks of the compound. Information about Novartis clinical trials for pasireotide can be obtained by healthcare professionals at www.pasporttrials.com. Disclaimer The foregoing release contains forward-looking statements that can be identified by terminology such as "recommended," "potentially," "encouraged," "will," "committed," "recommendation," "underway," "potential," or similar expressions, or by express or implied discussions regarding potential marketing approvals for Signifor or regarding potential future revenues from Signifor. You should not place undue reliance on these statements. Such forward-looking statements reflect the current views of management regarding future events, and involve known and unknown risks, uncertainties and other factors that may cause actual results with Signifor to be materially different from any future results, performance or achievements expressed or implied by such statements. There can be no guarantee that Signifor will be approved for sale in any market, or at any particular time. Nor can there be any guarantee that Signifor will achieve any particular levels of revenue in the future. In particular, management's expectations regarding Signifor could be affected by, among other things, unexpected regulatory actions or delays or government regulation generally; unexpected clinical trial results, including unexpected new clinical data and unexpected additional analysis of existing clinical data; government, industry and general public pricing pressures; competition in general; unexpected manufacturing issues; the company's ability to obtain or maintain patent or other proprietary intellectual property protection; the impact that the foregoing factors could have on the values attributed to the Novartis Group's assets and liabilities as recorded in the Group's consolidated balance sheet, and other risks and factors referred to in Novartis AG's current Form 20-F on file with the US Securities and Exchange Commission. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those anticipated, believed, estimated or expected. Novartis is providing the information in this press release as of this date and does not undertake any obligation to update any forward-looking statements contained in this press release as a result of new information, future events or otherwise.
  13. This study is currently recruiting participants. Verified August 2012 by Novartis First Received on June 14, 2011. Last Updated on August 23, 2012 History of Changes Sponsor: Novartis Pharmaceuticals Information provided by (Responsible Party): Novartis ( Novartis Pharmaceuticals ) ClinicalTrials.gov Identifier: NCT01374906 Purpose This is a randomized, double-blind, multicenter, phase III study to evaluate the safety and efficacy of 2 dosing regiments of Pasireotide long acting release (LAR) in patients with Cushing's disease. Condition Intervention Phase Cushing's Disease Drug: SOM230 LAR 30 mg Drug: SOM230 LAR 10 mg Phase 3 Study Type: Interventional Study Design: Allocation: Randomized Intervention Model: Parallel Assignment Masking: Double Blind (Subject, Investigator, Outcomes Assessor) Primary Purpose: Treatment Official Title: A Randomized, Double-blind, Multicenter, Phase III Study to Evaluate the Efficacy and Safety of Pasireotide LAR in Patients With Cushing's Disease Resource links provided by NLM: Genetics Home Reference related topics: Cushing disease MedlinePlus related topics: Cushing's SyndromeU.S. FDA Resources Further study details as provided by Novartis: Primary Outcome Measures: Proportion of responders in each of the two Pasireotide LAR (long acting release)regimens independently [ Time Frame: 7 months ] [ Designated as safety issue: No ] To assess the efficacy of two Pasireotide LAR (long acting release) regimens independently in patients with Cushing's disease after 7 months of treatment regardless of up titration at month 4. A responder is defined as a patient who attains Mean Urinary Free Cortisol (mUFC) ≤ 1.0 X Upper Limit of Normal (ULN) at month 7 regardless of dose-titration. Secondary Outcome Measures: Proportion of responders in each of the Pasireotide LAR (long acting release) 10 mg and 30 mg doses independently in patients with Cushing 's disease after 7 months of treatment who did not up titrate the doses of Pasireotide at month 4. [ Time Frame: 7 months ] [ Designated as safety issue: No ] A responder is defined as a patient who attains mUFC ≤1.0 X ULN and had not had a dose increase at Month 4. Change in mean urinary free cortisol from baseline at every month in the core and every 3 months in extension within the two Pasireotide LAR regimens [ Time Frame: 26 months ] [ Designated as safety issue: Yes ] Proportion of responders in the two Pasireotide LAR regimens at every month in the core and every 3 months in the extension phases [ Time Frame: 26 months ] [ Designated as safety issue: No ] Proportion of responders in the two Pasireotide LAR regimens as measured by controlled and partially controlled mUFC(mean urinary free cortisol) combined responders at every month in the core and every 3 months in the extension [ Time Frame: 26 months ] [ Designated as safety issue: No ] Controlled mUFC (mean urinary free cortisol)response of the two Pasireotide regimens by month 7 and 12 [ Time Frame: 12 months ] [ Designated as safety issue: Yes ] To evaluate the frequency of controlled mUFC response of the two Pasireotide regimens by month 7 and 12. Estimated Enrollment: 148 Study Start Date: November 2011 Estimated Study Completion Date: January 2016 Estimated Primary Completion Date: November 2015 (Final data collection date for primary outcome measure) Arms Assigned Interventions Experimental: 10 mg LAR dose Drug: SOM230 LAR 10 mg starting does of SOM230 LAR 10 mg i.m. administered once every 28 days for 4 months, followed by dose up-titration or continuation of the starting dose. Experimental: 30 mg LAR dose Drug: SOM230 LAR 30 mg starting dose of 30 mg i.m. administered once every 28 days for 4 months, followed by dose up-titration or continuation of starting dose. [/url] Eligibility Ages Eligible for Study: 18 Years and older Genders Eligible for Study: Both Accepts Healthy Volunteers: No Criteria Inclusion Criteria: Karnofsky performance status ≥ 60 (i.e. requires occasional assistance, but is able to care for most of their personal needs) For patients on medical treatment for Cushing's disease the following washout periods must be completed before screening assessments are performed Inhibitors of steroidogenesis (ketoconazole, metyrapone): 1 week Pituitary directed agents: Dopamine agonists (bromocriptine, cabergoline) and PPARγ agonists (rosiglitazone or pioglitazone): 4 weeks Octreotide LAR, Lanreotide SR and Lanreotide autogel: 14 weeks Octreotide (immediate release formulation): 1 week Exclusion Criteria: Patients who are considered candidates for surgical treatment at the time of study entry Patients who have received pituitary irradiation within the last ten years prior to visit 1 Patients who have had any previous pasireotide treatment Patients who have been treated with mitotane during the last 6 months prior to Visit 1 Diabetic patients on antihyperglycemic medications with poor glycemic control as evidenced by HbA1c >8% Patients with risk factors for torsade de pointes, i.e. patients with a baseline QTcF >470 ms, hypokalemia, uncontrolled hypothyroidism, family history of long QT syndrome, or concomitant medications known to prolong QT interval Female patients who are pregnant or lactating, or are of childbearing potential (defined as all women physiologically capable of becoming pregnant) and not practicing an effective method of contraception/birth control. Sexually active males must use a condom during intercourse while taking the drug and for 2 months after the last dose of study drug and should not father a child in this period. A condom is required to be used also by vasectomized men in order to prevent delivery of the drug via seminal fluid Contacts and Locations Please refer to this study by its ClinicalTrials.gov identifier: NCT01374906 Contacts Contact: Novartis Pharmaceuticals +1(800)340-6843 Show 73 Study Locations Sponsors and Collaborators Novartis Pharmaceuticals Investigators Study Director: Novartis Pharmaceuticals Novartis Pharmaceuticals More Information No publications provided Responsible Party: Novartis ( Novartis Pharmaceuticals ) ClinicalTrials.gov Identifier: NCT01374906 History of Changes Other Study ID Numbers: CSOM230G2304 Study First Received: June 14, 2011 Last Updated: August 23, 2012 Health Authority: United States: Food and Drug Administration Netherlands: Medicines Evaluation Board (MEB) United Kingdom: Medicines and Healthcare Products Regulatory Agency Russia: Ministry of Health and Social Development of the Russian Federation Turkey: Ministry of Health China: State Food and Drug Administration Belgium: Federal Agency for Medicinal Products and Health Products Germany: Federal Institute for Drugs and Medical Devices France: Afssaps - Agence française de sécurité sanitaire des produits de santé (Saint-Denis) Italy: The Italian Medicines Agency Spain: Spanish Agency of Medicines Canada: Ministry of Health & Long Term Care, Ontario Brazil: Ministry of Health Argentina: Administracion Nacional de Medicamentos, Alimentos y Tecnologia Medica Poland: Office for Registration of Medicinal Products, Medical Devices and Biocidal Products Thailand: Food and Drug Administration Japan: Ministry of Health, Labor and Welfare Keywords provided by Novartis: Cushing's Disease Mean Urinary Free Cortisol Pasireotide Additional relevant MeSH terms: Cushing Syndrome Pituitary ACTH Hypersecretion Adrenocortical Hyperfunction Adrenal Gland Diseases Endocrine System Diseases Hyperpituitarism Pituitary Diseases Hypothalamic Diseases Brain Diseases Central Nervous System Diseases Nervous System Diseases ClinicalTrials.gov processed this record on September 06, 2012 Locations United States, California UCLA/ University of California Los Angeles UCLA Tiverton Recruiting Los Angeles, California, United States, 90095 Contact: Brittany Sumerel 310-825-5874 bsumerel@mednet.ucla.edu Principal Investigator: Anthony P. Heaney United States, Maryland Sidney Kimmel Comprehensive Cancer Center/Johns Hopkins Med. Sidnney Kimmel J Hopkins Not yet recruiting Baltimore, Maryland, United States, 21231 Contact: Thomas Mitchell 410-502-0033 tmitche2@jhmi.edu Principal Investigator: Roberto Salvatori United States, Ohio Cleveland Clinic Foundation CCF - Euclid Loc Withdrawn Cleveland, Ohio, United States, 44195 United States, Oregon Oregon Health & Sciences University OHSU Withdrawn Portland, Oregon, United States, 97201 United States, Pennsylvania University of Pennsylvania - Clinical Studies Unit Unniv SC Not yet recruiting Philadelphia, Pennsylvania, United States, 19104 Contact: Kenneth Rockwell, Jr. 215-898-5664 rockwelk@mail.medd.upenn.edu Principal Investigator: Peter J. Snyder United States, Texas University of Texas Southwestern Medical Center UT southwest Withdrawn Dallas, Texas, United States, 75390-8527 United States, Washington Swedish Medical Center Swedish Terminated Seattle, Washington, United States United States, Wisconsin Medical College of Wisconsin MCW 2 Recruiting Milwaukee, Wisconsin, United States, 53226 Contact: Gerard Coly 414-456-7468 gcoly@mcw.edu Principal Investigator: James W. Findling Argentina Novartis Investigative Site Withdrawn Capital Federal, Buenos Aires, Argentina, 1425EKP Novartis Investigative Site Not yet recruiting Buenos Aires, Argentina, C1232AAC Novartis Investigative Site Not yet recruiting Cordoba, Argentina, X5009BSN Belgium Novartis Investigative Site Recruiting Bruxelles, Belgium, 1200 Novartis Investigative Site Recruiting Bruxelles, Belgium, 1070 Novartis Investigative Site Recruiting Edegem, Belgium, 2650 Novartis Investigative Site Recruiting Gent, Belgium, 9000 Novartis Investigative Site Recruiting Jette, Belgium, 1090 Novartis Investigative Site Recruiting Leuven, Belgium, 3000 Novartis Investigative Site Recruiting Liège, Belgium, 4000 Brazil Novartis Investigative Site Not yet recruiting Fortaleza, CE, Brazil, 60020-181 Novartis Investigative Site Not yet recruiting Rio de Janeiro, RJ, Brazil, 21941-913 Novartis Investigative Site Not yet recruiting Porto Alegre, RS, Brazil, 90035-903 Novartis Investigative Site Not yet recruiting Ribeirao Preto, SP, Brazil, 14048-900 Novartis Investigative Site Recruiting São Paulo, SP, Brazil, 05403 000 Canada, Nova Scotia Novartis Investigative Site Recruiting Halifax, Nova Scotia, Canada, B3H 1V7 Canada, Quebec Novartis Investigative Site Recruiting Montreal, Quebec, Canada, H2L 4M1 Novartis Investigative Site Recruiting Sherbrooke, Quebec, Canada, J1N 5N4 France Novartis Investigative Site Recruiting Besancon cedex, France, 25030 Novartis Investigative Site Recruiting Caen Cedex9, France, 14033 Novartis Investigative Site Recruiting Grenoble Cédex 9, France, 38043 Novartis Investigative Site Recruiting Le Kremlin Bicetre, France, 94275 Novartis Investigative Site Recruiting LILLE Cedex, France, 59037 Novartis Investigative Site Recruiting Marseille cedex 05, France, 13385 Novartis Investigative Site Recruiting Paris, France, 75006 Novartis Investigative Site Recruiting Pessac Cedex, France, 33604 Germany Novartis Investigative Site Recruiting Berlin, Germany, 10117 Novartis Investigative Site Not yet recruiting Erlangen, Germany, 91054 Novartis Investigative Site Recruiting Hamburg, Germany, 22559 Novartis Investigative Site Recruiting München, Germany, 80336 Novartis Investigative Site Recruiting Würzburg, Germany, 97080 Italy Novartis Investigative Site Recruiting Ancona, AN, Italy, 60126 Novartis Investigative Site Recruiting Milano, MI, Italy, 20162 Novartis Investigative Site Recruiting Milano, MI, Italy, 20149 Novartis Investigative Site Recruiting Padova, PD, Italy, 35128 Novartis Investigative Site Recruiting Napoli, Italy, 80131 Japan Novartis Investigative Site Recruiting Maebashi, Gunma, Japan, 371-8511 Novartis Investigative Site Recruiting Kyoto-city, Kyoto, Japan, 612-8555 Novartis Investigative Site Recruiting Suita-city, Osaka, Japan, 565-0871 Novartis Investigative Site Recruiting Hamamatsu, Shizuoka, Japan, 431-3192 Novartis Investigative Site Recruiting Bunkyo-ku, Tokyo, Japan, 113-8655 Novartis Investigative Site Recruiting Bunkyo-ku, Tokyo, Japan, 113-8603 Novartis Investigative Site Recruiting Minato-ku, Tokyo, Japan, 105-8470 Novartis Investigative Site Recruiting Shinjuku-ku, Tokyo, Japan, 162-8666 Netherlands Novartis Investigative Site Recruiting Rotterdam, Netherlands, 3015 CE Peru Novartis Investigative Site Not yet recruiting Jesus Maria, Lima, Peru, 11 Novartis Investigative Site Not yet recruiting Miraflores, Lima, Peru, 18 Poland Novartis Investigative Site Not yet recruiting Poznan, Poland, 60-355 Novartis Investigative Site Not yet recruiting Warszawa, Poland, 01-809 Novartis Investigative Site Recruiting Wroclaw, Poland, 50-367 Russian Federation Novartis Investigative Site Not yet recruiting Moscow, Russian Federation, 117036 Novartis Investigative Site Not yet recruiting St.- Petersburg, Russian Federation, 199034 Spain Novartis Investigative Site Recruiting Sevilla, Andalucía, Spain, 41013 Novartis Investigative Site Recruiting Barcelona, Cataluña, Spain, 08025 Novartis Investigative Site Recruiting Alzira, Comunidad Valenciana, Spain, 46600 Novartis Investigative Site Recruiting Pamplona, Navarra, Spain, 31002 Thailand Novartis Investigative Site Recruiting Bangkok, Thailand, 10700 Novartis Investigative Site Recruiting Bangkok, Thailand, 10330 Turkey Novartis Investigative Site Not yet recruiting Diskapi / Ankara, Turkey, 06110 Novartis Investigative Site Not yet recruiting Istanbul, Turkey, 34303 Novartis Investigative Site Not yet recruiting Izmir, Turkey, 35340 United Kingdom Novartis Investigative Site Recruiting Salford, Manchester, United Kingdom, M6 8HD Novartis Investigative Site Recruiting Norwich, United Kingdom, NR4 7UY Novartis Investigative Site Recruiting Sheffield, United Kingdom, S5 7AU Novartis Investigative Site Recruiting Southampton, United Kingdom, SO16 6YD
×
×
  • Create New...