Jump to content

Leaderboard

Popular Content

Showing content with the highest reputation since 08/04/2010 in all areas

  1. How stressed are you? Your earwax could hold the answer. A new method of collecting and analyzing earwax for levels of the stress hormone cortisol may be a simple and cheap way to track the mental health of people with depression and anxiety. Cortisol is a crucial hormone that spikes when a person is stressed and declines when they're relaxed. In the short-term, the hormone is responsible for the "fight or flight" response, so it's important for survival. But cortisol is often consistently elevated in people with depression and anxiety, and persistent high levels of cortisol can have negative effects on the immune system, blood pressure and other bodily functions. There are other disorders which involve abnormal cortisol, including Cushing's disease (caused by the overproduction of cortisol) and Addison's disease (caused by the underproduction of cortisol). People with Cushing's disease have abnormal fat deposits, weakened immune systems and brittle bones. People with Addison's disease have dangerously low blood pressure. There are a lot of ways to measure cortisol: in saliva, in blood, even in hair. But saliva and blood samples capture only a moment in time, and cortisol fluctuates significantly throughout the day. Even the experience of getting a needle stick to draw blood can increase stress, and thus cortisol levels. Hair samples can provide a snapshot of cortisol over several months instead of several minutes, but hair can be expensive to analyze — and some people don't have much of it. Andrés Herane-Vives, a lecturer at University College London's Institute of Cognitive Neuroscience and Institute of Psychiatry, and his colleagues instead turned to the ear. Earwax is stable and resistant to bacterial contamination, so it can be shipped to a laboratory easily for analysis. It also can hold a record of cortisol levels stretching over weeks. But previous methods of harvesting earwax involved sticking a syringe into the ear and flushing it out with water, which can be slightly painful and stressful. So Herane-Vives and his colleagues developed a swab that, when used, would be no more stressful than a Q-tip. The swab has a shield around the handle, so that people can't stick it too far into their ear and damage their eardrum, and a sponge at the end to collect the wax. In a small pilot study, researchers collected blood, hair and earwax from 37 participants at two different time points. At each collection point, they sampled earwax using a syringe from one ear, and using the new self-swab method from the other. The researchers then compared the reliability of the cortisol measurements from the self-swab earwax with that of the other methods. They found that cortisol was more concentrated in earwax than in hair, making for easier analysis. Analyzing the self-swabbed earwax was also faster and more efficient than analyzing the earwax from the syringe, which had to be dried out before using. Finally, the earwax showed more consistency in cortisol levels compared with the other methods, which were more sensitive to fluctuations caused by things like recent alcohol consumption. Participants also said that self-swabbing was more comfortable than the syringe method. The researchers reported their findings Nov. 2 in the journal Heliyon. Herane-Vives is also starting a company called Trears to market the new method. In the future, he hopes that earwax could also be used to monitor other hormones. The researchers also need to follow up with studies of Asian individuals, who were left out of this pilot study because a significant number only produce dry, flaky earwax as opposed to wet, waxy earwax. "After this successful pilot study, if our device holds up to further scrutiny in larger trials, we hope to transform diagnostics and care for millions of people with depression or cortisol-related conditions such as Addison's disease and Cushing syndrome, and potentially numerous other conditions," he said in a statement. Originally published in Live Science.
    3 points
  2. YOU’RE INVITED! GoodHormoneHealth Webinar on Lifestyle Medicine for Patients with Endocrine Problems With Eddie Ramirez, MD Dr. Theodore Friedman (The Wiz) will be joined by Eddie Ramirez, MD and will discuss the 6 pillars of lifestyle medicine as applied to patients with Endocrine disorders: Nutrition Exercise Sleep Stress Reduction Good Relationships Avoiding Toxic Substances Dr. Ramirez a medical doctor, research scientist, published author and international speaker. Dr. Ramirez major research interest has been how food and lifestyle has the ability to prevent and reverse physical and mental disease. This has resulted in over 160 research which he has shared in 88 countries. His work has been featured on NBC's Texoma, Icelandic National TV and the most popular health program in Ecuador. He is the author of Pandemic Busters and the co-author of the 3rd edition of the textbook of Lifestyle Medicine with thought leaders of the American College of Lifestyle Medicine and the book Rethink Food together with Neal Barnard, Michael Greger, Hans Diehl, Joel Furhman and other lifestyle medicine experts. Sunday • January 8, 2023 • 6 PM PST Via Zoom Click here to join the meeting or https://us02web.zoom.us/j/4209687343?pwd=amw4UzJLRDhBRXk1cS9ITU02V1pEQT09 OR +16699006833,,4209687343#,,,,*111116# Slides will be available on the day of the talk here. There will be plenty of time for questions using the chat button. For more information, email us at mail@goodhormonehealth.com
    2 points
  3. Abstract Cushing’s syndrome (CS) is a diagnosis used to describe multiple causes of serum hypercortisolism. Cushing’s disease (CD), the most common endogenous subtype of CS, is characterized by hypercortisolism due to a pituitary tumor secreting adrenocorticotropic hormone (ACTH). A variety of tests are used to diagnose and differentiate between CD and CS. Hypercortisolism has been found to cause many metabolic abnormalities including hypertension, hyperlipidemia, impaired glucose tolerance, and central adiposity. Literature shows that many of the symptoms of hypercortisolism can improve with a low carb (LC) diet, which consists of consuming <30 g of total carbohydrates per day. Here, we describe the case of a patient with CD who presented with obesity, hypertension, striae and bruising, who initially improved some of his symptoms by implementing a LC diet. Ultimately, as his symptoms persisted, a diagnosis of CD was made. It is imperative that practitioners realize that diseases typically associated with poor lifestyle choices, like obesity and hypertension, can often have alternative causes. The goal of this case report is to provide insight on the efficacy of nutrition, specifically a LC diet, on reducing metabolic derangements associated with CD. Additionally, we will discuss the importance of maintaining a high index of suspicion for CD, especially in those with resistant hypertension, obesity and pre-diabetes/diabetes. Keywords: low carb; carnivore; ketogenic; Cushing syndrome; Cushing disease; glucose intolerance; hypertension; obesity; metabolic health 1. Introduction Cushing’s syndrome (CS) is a rare disorder of hypercortisolism related to exposure to high levels of cortisol (>20 mcg/dL between 0600–0800 or >10 mcg/dL after 1600) for an extended period [1,2]. CS affects 10 to 15 people per million and is more common among those with diabetes, hypertension, and obesity [3]. The metabolic derangements associated with CS include visceral obesity, elevated blood pressure, dyslipidemia, type II diabetes mellitus (T2DM) and insulin resistance [4]. CS physical exam findings include round face, dorsal fat pad, central obesity, abdominal striae, acne, and ecchymosis [3]. Other symptoms associated with CS include low libido, headache, change in menses, depression and lethargy [2,3,5]. The most common features of CS are weight gain, which is found in 82% of cases, and hypertension, which is found in 50–85% of cases [6]. CS can be caused by exogenous glucocorticoids, known as iatrogenic CS, ectopic ACTH secretion (EAS) from sources like a small cell lung cancer or adrenal adenoma, known as EAS CS, or excess production of ACTH from a pituitary tumor, known as CD [3]. In CD, ACTH subsequently causes increased production of cortisol from the adrenal glands. CD accounts for 80–85% of endogenous cases of CS [3]. Other conditions including alcoholism, depression, severe obesity, bulimia and anorexia nervosa can lead to a Cushing-like state, although are not considered true CS [3]. Many studies have demonstrated that LC diets can ameliorate some of the most common metabolic derangements seen in CD, namely hyperglycemia, weight gain, hypertension and insulin resistance. A LC diet is a general term for diets which lower the total carbohydrates consumed per day [4]. A ketogenic diet is a subtype of LC that is described as having even fewer carbohydrates, typically less than 30 g/day. By reducing carbohydrate intake and thus limiting insulin production, the body achieves ketosis by producing an elevated number of ketones including β-hydroxybutyric acid, acetoacetic acid, and acetone, in the blood [7]. A carnivore diet, a specific type of a ketogenic diet, is defined as mainly eating animal food such as meat, poultry, eggs and fish. Contrarily, a standard American diet (SAD) is defined as a diet high in processed foods, carbs, added sugars, refined fats, and highly processed dairy products [8]. There are several therapeutic applications for LC diets that are currently supported by strong evidence. These include weight loss, cardiovascular disease, T2DM, and epilepsy. LC diets have clinical utility for acne, cancer, polycystic ovary syndrome (PCOS), and neurologic deficits [9]. In this case report, the patient endorsed initially starting a LC diet to address weight gain and high blood sugars that he noted on a glucometer. The patient noted a 35 pounds (lbs.) weight loss over the first 1.5 years on his LC diet, as well as improved blood pressure and in his overall health. He then adopted a carnivore diet but found that weight loss was difficult to maintain, although his body composition continued to improveand his clothes fit better. Later, he noted that his blood pressure would at times be poorly controlled despite multiple medications and strict dietary adherence. The patient reported “being in despair” and “not trusting his doctors” because they did not understand how much his diet had helped him. Despite strict adherence, his symptoms of insulin resistance and hypertension persisted. In this report, we will describe how his symptoms of CD were ameliorated by the ketogenic diet. This case report also highlights that when patients are unable to overcome hormonal pathology, clinicians should not blame patients for lack of adherence to a diet, but instead understand the need to evaluate for complex pathology. 2. Detailed Case Description A male patient in his thirties, of Asian descent, had a past medical history of easy bruising, central obesity, headaches, hematuria, and hypertension and past family medical history of hypertension in his father and brother. In 2015, he was at his heaviest weight of 179 lbs. with a body mass index (BMI) of 28 kg/m2, placing him in the overweight category (25.0–29.9 kg/m2). At that time the patient reported he was following a SAD diet and was active throughout the day. The patient stated he ate a diet of vegetables, fruits and carbohydrates, but he was not able to lose weight. The patient stated that he switched to a LC diet, to address weight gain and hyperglycemia, and he reported that he lost approximately 35 lbs. in 1.5 years. The patient described his LC diet as eating green leafy vegetables, low carb fruits, fish, poultry, beef and dairy products. The patient then later switched to a carnivore diet. He noted despite aggressively adhering to his diet, that his weight-loss had plateaued, although his waist circumference continued to decrease. The patient noted his carnivore diet consisted of eating a variety of different meats, poultry, fish and eggs. The metabolic markers seen in Table 1 were obtained after the patient had started a carnivore diet. The patient’s blood glucose levels decreased overtime despite impaired glucose metabolism being a known side effect of hypercortisolism [4]. The patient’s high-density lipoprotein (HDL) remained in a healthy range (40–59 mg/dL) and his triglycerides stayed in an optimal range (<100 mg/dL), despite dyslipidemia being a complication of CD [4]. When the patient was consuming a SAD diet, he was not under the care of a physician and was unable to provide us with previous biomarkers. Table 1. Patient’s metabolic markers on a carnivore diet. Glucose (70 to 99 mg/dL), total cholesterol (desirable <200 mg/dL, borderline high 200–239 mg/dL, high >239 mg/dL), triglycerides (optimal: <100 mg/dL), HDL (low male: <40 mg/dL), low density lipoprotein (LDL) (Optimal: <100 mg/dL). Despite strict adherence to his diet and initial improvement in his weight, his blood pressure and his blood sugar levels, in October of 2021 the patient was admitted to the hospital for hypertensive urgency, with a blood pressure of 216/155. His complaints at the time were unexplained ecchymosis, hematuria and significant headaches that were resistant to Excedrin (acetaminophen-aspirin-caffeine) use. At the hospital, the patient underwent a computed tomography (CT) scan of the head and radiograph of the chest, and both images were negative for acute pathology. During his hospital admission, the patient denied any changes in vision, chest pain or edema of the legs. Ultimately, the patient was told to eat a low-salt diet and to follow-up with a cardiologist. At discharge, the patient was placed on hydrochlorothiazide, labetalol, amlodipine and lisinopril. The patient was then seen by his primary care physician in November of 2021 and his urinalysis at that time showed 30 mg/mL (Negative/Trace) of protein in his urine, without hematuria. The patient’s primary care physician discontinued his hydrochlorothiazide and started the patient on furosemide. Additionally, the primary care physician reinforced cutting out salt and limiting his calories to prevent any further weight gain, which his physician explained would contribute further to his hypertension. He was referred to hematology and oncology in November of 2021 for his symptoms of hematuria and abnormal ecchymosis to his abdomen, thighs and arms. The patient’s coagulation and platelet counts were normal, and his symptoms were noted to be improving. His hematuria and ecchymosis were attributed to his significant Excedrin use from the past 1–2 months, secondary to his headaches, and their anti-platelet effect. It was noted that the patient had significant hemolysis during his hospital admission. However, in his follow up examination, there were no signs of hemolysis, and it was attributed to his hypertensive urgency. Again, a low-salt, calorie-limited diet was recommended. The patient was referred to cardiology where he was evaluated for secondary hypertension, because despite his weight loss and his strict adherence to his diet, his blood pressure was still uncontrolled on multiple medications. He had a normal echocardiogram and renal ultrasound which showed no signs of renal artery stenosis bilaterally. At that time the patient’s serum renin, aldosterone and urine metanephrine levels were all normal. His cardiologist increased his lisinopril, and continued him on amlodipine, furosemide and labetalol and reinforced the recommendations of lowering his salt and preventing weight gain. The patient first contacted our office in January of 2022. At that time his blood pressure was noted to be 160/120 despite being compliant with current blood pressure medications. The patient reported strict adherence to his carnivore diet by sharing his well-documented meals on his social media accounts. Given the persistent symptoms, despite his significant change in diet and weight loss, we were concerned that a hormonal etiology may be driving his symptoms. The patient was seen in-person, in our office, in March of 2022. At the request of the patient, we again reviewed his social media profile to assess his meal choices and diet. While the patient was eager to show us his carnivore meals, what we incidentally noted in his photos was despite weight loss and strict diet adherence, he had developed moon facies (Figure 1a,b). On the physical exam, we noted his prominent abdominal striae (Figure 2). Several screening tests for Cushing’s syndrome were ordered. A midnight salivary cortisol was ordered, with values of 0.884 ug/dL (<0.122 ug/dL) and 0.986 ug/dL (<0.122 ug/dL) and a urinary free cortisol excretion (UFC) was ordered, with values of 8.8 ug/L (5–64 ug/L). At this point our suspicion was confirmed that the patient had inappropriately elevated cortisol. Figure 1. The patient’s progression of moon facies, (a) photo from 2019 after initial weight loss (b) photo from office visit in 2022. Figure 2. The arrows demonstrate early striae visualized on the lower abdomen bilaterally, unclear in image due to poor office lighting. Based on screening tests and significant physical exam findings, we referred the patient to endocrinology for a low dose dexamethasone suppression test (DST). They performed a low dose DST revealing a dehydroepiandrosterone (DHEA) of 678 ug/dL (89–427 ug/dL) and ACTH of 23.9 pg/mL (7.2–63.3 pg/mL). The low dose DST and midnight salivary cortisol were both positive indicating hypercortisolism. To begin determining the source of hypercortisolism, the plasma ACTH was evaluated and was 27.2 pg/mL (7.2–63.3 pg/mL). While ACTH was within normal range, a plasma ACTH > 20 pg/mL is suggestive of ACTH-dependent CS, so a magnetic resonance imaging (MRI) of the brain was ordered [2]. The MRI revealed a 4 mm heterogeneous lesion in the central pituitary gland which is suspicious of a cystic microadenoma. To confirm that a pituitary tumor was the cause of the patient’s increased cortisol, the patient was sent for inferior petrosal sinus sampling (IPSS). The results of the IPSS indicated an increase in ACTH in both inferior petrosal sinuses and peripheral after corticotropin-releasing hormone (CRH) stimulation (Figure 3a–c), which was consistent with hypercortisolism. Figure 3. (a) Right IPS venous sampling values for ACTH and prolactin after CRH stimulation over multiple time intervals. (b) Left IPS venous sampling values for ACTH and prolactin after CRH stimulation over multiple time intervals. (c) Peripheral sampling values for ACTH and prolactin after CRH stimulation over multiple time intervals. Lab results from the patient’s IPSS venous sampling can be seen above. The graphs depict the lab values of ACTH (7.2–63.3 pg/mL) and prolactin (PRL) (2.1–17.7 ng/mL) before and after CRH stimulation during IPSS. PRL acts as a baseline to indicate successful catheterization in the procedure [10]. Using the ACTH levels from our patient’s IPSS we calculated a ratio of inferior petrosal sinus to peripheral (IPS:P). These results can be seen below (Table 2). The right IPS:P was calculated as 3.60 at 10 min and the left IPS:P as 7.65 at 10 min. These ratios confirmed that the hypercortisolism was due to the pituitary tumor, as it is higher than the 3:1 ratio necessary for diagnosis of CD [11]. The patient is currently scheduled to undergo surgical resection of the pituitary microadenoma. Table 2. Right and left petrosal sinus to peripheral serum ACTH ratios. 3. Clinical Evaluation for CS In this case, the patient presented with uncontrolled hypertension, weight gain despite a strict diet, hyperglycemia, abdominal striae and moon facies. Despite evaluation, both inpatient and outpatient, a diagnosis of CS was not yet explored. When CS is suspected based on clinical findings, the use of exogenous steroids must first be excluded as it is the most common cause of hypercortisolism [3]. If there is still concern for CS, there are three screening tests that can be done which are sensitive but not specific for hypercortisolism. The screening tests include: a 24-h UFC, 2 late night salivary cortisol tests, low dose (1 g) DST [3]. To establish the preliminary diagnosis of hypercortisolism two screening tests must be abnormal [2]. The first step to determine the cause of hypercortisolism is to measure the plasma level of ACTH. Low values of ACTH < 5 pg/mL indicate the cause is likely ACTH-independent CS and imaging of the adrenal glands is warranted as there is a high suspicion of an adrenal adenoma [2,3]. When the serum ACTH is elevated >/20 pg/mL it is likely an ACTH-dependent form of CS [2]. To further evaluate an ACTH-dependent hypercortisolism, an MRI should be obtained as there is high suspicion that the elevated cortisol is coming from a pituitary adenoma. If there is a pituitary mass >6 mm there is a strong indication for the diagnosis of CD [2]. However, pituitary tumors can be quite small and can be missed on MRIs in 20–58% of patients with CD [2]. If there is still a high suspicion of CD with an inconclusive MRI, a high dose DST (8 g) is done. Patients with CD should not respond and their ACTH and DHEA, a steroid precursor, should remain high. Similarly, CRH stimulation test is done and patients with CD should have an increase in ACTH and/or cortisol within 45 min of CRH being given. If the patient has a positive high-dose DST, CRH-stimulation test and an MRI with a pituitary tumor >6 mm no further testing is needed as it is likely the patient has CD [2]. If either of those tests are abnormal, the MRI shows a pituitary tumor < 6 mm, or there is diagnostic ambiguity, the patient should undergo IPSS with ACTH measurements before and after the administration of CRH [4]. IPSS is the gold standard for determining the source of ACTH secretion and confirming CD. In this invasive procedure, ACTH, prolactin, and cortisol levels are sampled prior to CRH stimulation and after CRH stimulation. PRL acts as a baseline to indicate successful catheterization in the procedure [12]. To confirm CD, a ratio of IPS:P is calculated for values prior to and after CRH stimulation. A peak ratio greater than 2.0 before CRH stimulation or a peak ratio greater than 3.0 after CRH stimulation is indicative of CD. In comparing the right and left petrosal sinus sample, an IPS:P ratio greater than 1.4 suggests adenoma lateralization. However, due to high variability, IPSS should not be used for diagnosing lateralization [13]. 4. Discussion Surgical intervention remains the primary treatment for CD [4]. However, remission is not guaranteed as symptoms and metabolic diseases have been shown to persist afterwards. In the literature it has been shown that nutrition can have a powerful impact on suppressing, or even reversing metabolic disorders and comorbidities associated with CD. A LC diet has been shown to promote significant weight loss, reduce hypertension, improve dyslipidemia, reverse T2DM and improve cortisol levels (2, 14–15, 18–21). There are reports of weight loss on a LC diet in the literature. A LC significantly reduced weight and BMI of 30 male subjects [14]. In a group of 120 participants over 24 weeks who followed a LC versus low fat (LF) diet, showed a greater weight loss in the LC group vs. the LF group [15]. Patients diagnosed and treated for CD found that their weight remained largely unchanged even after treatment [6]. In many cases, surgical treatment does not always resolve the associated comorbidity of central adiposity in CD. In such cases, a LC diet can be used before, during and after treatment, as an adjunct, to decrease associated weight gain and comorbidities. Nutritional intervention can be a powerful adjunct to reduce comorbidities associated with CD. As seen in this case report, the patient’s symptoms of CD, especially hypertension and weight gain, improved with dietary changes despite him having a pituitary microadenoma. Multiple studies showed that a LC diet was able to decrease blood pressure parameters. In a group of 120 participants over 24 weeks who followed a LC versus a LF diet showed a greater decrease in both systolic and diastolic blood pressure in the LC group vs. the LF group [15]. Other literature which studied the effect of a LC diet on hypertension demonstrated the reduction of blood pressure and is thought to be due to ketogenesis. It is thought the production of ketones have a natriuretic effect on the body therefore lowering systemic blood pressure [16]. A LC diet improves lipid profiles and inflammatory markers associated with metabolic syndrome [14]. Literature shows that a LC diet has a greater impact on decreasing triglyceride levels and increasing HDL levels, when compared to a LF diet [15]. Triglyceride levels in patients in CD remission remained high [17]. Therefore, it can be hypothesized that a LC diet would be beneficial, in addition to standard CD treatment, to lower the associated comorbidity of hypertriglyceridemia and metabolic syndrome. Insulin resistance, a precursor to T2DM, is a common comorbidity of hypercortisolism which can be treated with a LC diet. One study showed that in subjects with T2DM, a decrease in A1c and a reduction in antidiabetic therapy were seen with consumption of a LC diet [18]. Additionally, a cohort of 9 participants following a LC diet were able to collectively lower their A1c on average by 1% while concurrently discontinuing various antidiabetic therapies including insulin [19]. Literature shows that a LC diet can minimize systemic cortisol levels through various mechanisms. Current treatment of CD includes medications which block cortisol production and/or cortisol secretion [2]. LC can imitate similar results seen through medication intervention for CD. Carbohydrate restriction can lower cortisol levels, as carbohydrates stimulate adrenal cortisol secretion and extra-adrenal cortisol regeneration [4]. A ketogenic diet can lower the level of ghrelin, a peptide produced in the stomach that has orexigenic properties [20,21]. Literature shows that ghrelin increases levels of serum cortisol [22]. Therefore, implementing a ketogenic diet would decrease ghrelin, and subsequently minimize the effects of increased ghrelin on serum cortisol. A LC diet decreases visceral fat which itself is an endocrine organ and can increase the synthesis of cortisol [14]. Therefore, decreasing visceral fat also decreases the production of cortisol. A LC was shown to significantly reduced weight, BMI and cortisol levels of 30 obese male subjects [14]. Further, a LC diet excludes foods with a high glycemic index which cause increased stress on the body which subsequently leads to the activation of the hypothalamic-pituitary-axis which causes increased levels of cortisol [14]. This case report illustrated how a LC diet was initially successful at ameliorating the patient’s associated symptoms of hypertension and obesity, making his diagnosis of CD go undetected. Literature shows that while the prevalence of CS on average is a fraction of a percent, it is much higher among patients with poorly controlled diabetes, hypertension and early onset osteoporosis [3]. Two hundred patients with diabetes mellitus were studied and 5.5% were found to have CS [23]. Another study discovered that in subjects with CD, 36.4% were found to have hyperlipidemia, 73.1% with hypertension, and 70.2% with impaired glucose metabolism [17]. It can be concluded that a higher index of suspicion and lower threshold for screening for CS may be necessary in obese and diabetic patient populations. A lower threshold for screening can allow for earlier diagnosis for many patients, and therefore provide better outcomes for those diagnosed with CS. It is important for clinicians to consider alternative pathology for patients combating metabolic derangements. As depicted in this case, the patient lost 35 lbs. while on a LC diet, despite having hypercortisolism, presumably for months to years prior to the diagnosis of his condition. The patient noted a tendency to gain weight, have elevated blood sugar and blood pressure which prompted him to begin self-treatment with increasingly strict carbohydrate restriction. The patient was able to keep his symptoms of hypercortisolism managed, potentially making the diagnosis difficult for his team of clinicians. From a diagnostic perspective, it’s important to understand that strict dietary adherence can have profound impacts on even the most severe hormonal pathology. Ultimately, this case serves as a reminder of the power of nutrition to address metabolic derangements and simultaneously as a reminder to diagnosticians to never rely on lack of dietary adherence as a reason for persistent metabolic symptoms. The reflexive advice to “not gain weight” and “lower salt intake” in retrospect appears both dogmatic and careless. In this case, the patient had seen several doctors and was even hospitalized and yet his disease state remained unclear and the dietary messaging cursory. 5. Conclusions Many chronic diseases, including diabetes, hypertension and obesity, are generally thought to be caused by dietary and lifestyle choices. However, as exemplified in this report underlying medical problems, such as endocrine disorders, can be the cause of such metabolic derangements. It is critical that practitioners consider other causes of metabolic derangements, as assuming that they are due to poor dietary adherence, can allow them to go undiagnosed. While there is extensive literature on LC diets and their effect on the metabolic derangements associated with hypercortisolism, there needs to be further research on LC as an adjunctive therapy to conventional CD treatment. Ultimately, nutrition can have a powerful impact on suppressing, or even reversing metabolic disorders. As depicted in this case study, a LC diet is powerful enough to temporarily suppress symptoms of CD. Author Contributions M.K.D., E.-C.P.-M. and T.K. equally contributed to this case report. All authors have read and agreed to the published version of the manuscript. Funding This research received no external funding. Institutional Review Board Statement Not applicable. Informed Consent Statement Written informed consent has been obtained from the patient to publish this paper. Data Availability Statement The data presented in this study are available in article. Acknowledgments We would like to thank our patients and the Society of Metabolic Health Practitioners. Conflicts of Interest T.K. is an unpaid member of the Board of Directors of the Society of Metabolic Health Practitioners and a producer of podcasts on health and nutrition, with all proceeds donated to humanitarian charities; his spouse has ownership interest in a food company. The other author reports no conflicts of interest. References Nieman, L.K. UpToDate. Available online: https://www.uptodate.com/contents/measurement-of-cortisol-in-serum-and-saliva?search=cortisol%20level&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1 (accessed on 27 September 2022). Feelders, R.; Sharma, S.; Nieman, L. Cushing’s Syndrome: Epidemiology and Developments in Disease Management. Clin. Epidemiol. 2015, 7, 281. [Google Scholar] [CrossRef] [PubMed] Guaraldi, F.; Salvatori, R. Cushing Syndrome: Maybe Not so Uncommon of an Endocrine Disease. J. Am. Board Fam. Med. 2012, 25, 199–208. [Google Scholar] [CrossRef] [PubMed] Guarnotta, V.; Emanuele, F.; Amodei, R.; Giordano, C. Very Low-Calorie Ketogenic Diet: A Potential Application in the Treatment of Hypercortisolism Comorbidities. Nutrients 2022, 14, 2388. [Google Scholar] [CrossRef] [PubMed] Nieman, L.K. UpToDate. Available online: https://www.uptodate.com/contents/epidemiology-and-clinical-manifestations-of-cushings-syndrome?search=cushings%20diagnosis%20symptoms&source=search_result&selectedTitle=2~150&usage_type=default&display_rank=2 (accessed on 27 September 2022). Schernthaner-Reiter, M.H.; Siess, C.; Gessl, A.; Scheuba, C.; Wolfsberger, S.; Riss, P.; Knosp, E.; Luger, A.; Vila, G. Factors Predicting Long-Term Comorbidities in Patients with Cushing’s Syndrome in Remission. Endocrine 2018, 64, 157–168. [Google Scholar] [CrossRef] [PubMed] Giordano, C.; MarchiÃ2, M.; Timofeeva, E.; Biagini, G. Neuroactive Peptides as Putative Mediators of Antiepileptic Ketogenic Diets. Front. Neurol. 2014, 5, 63. [Google Scholar] [CrossRef] Standard American Diet (SAD). Available online: https://piviohealth.com/knowledge-bank/glossary/standard-american-diet-sad/ (accessed on 2 October 2022). Paoli, A.; Rubini, A.; Volek, J.S.; Grimaldi, K.A. Beyond Weight Loss: A Review of the Therapeutic Uses of Very-Low-Carbohydrate (Ketogenic) Diets. Eur. J. Clin. Nutr. 2013, 67, 789–796. [Google Scholar] [CrossRef] [PubMed] Sharma, S.T.; Nieman, L.K. Is Prolactin Measurement of Value during Inferior Petrosal Sinus Sampling in Patients with ACTH-Dependent Cushing’s Syndrome? J. Endocrinol. Investig. 2013, 36, 1112–1116. [Google Scholar] [CrossRef] Kline, G.; Chin, A.C. Chapter 5—Adrenal disorders. In Endocrine Biomarkers: Clinical Aspects and Laboratory Determination; Elsevier: Amsterdam, The Netherlands, 2017; Available online: https://www.sciencedirect.com/science/article/pii/B9780128034125000057 (accessed on 18 October 2022). Ghorbani, M.; Akbari, H.; Griessenauer, C.J.; Wipplinger, C.; Dastmalchi, A.; Malek, M.; Heydari, I.; Mollahoseini, R.; Khamseh, M.E. Lateralization of Inferior Petrosal Sinus Sampling in Cushing’s Disease Correlates with Cavernous Sinus Venous Drainage Patterns, but Not Tumor Lateralization. Heliyon 2020, 6, e05299. [Google Scholar] [CrossRef] Knecht, L. Inferior Petrosal Sinus Sampling in the Diagnosis of Cushing’s Disease. Available online: https://csrf.net/doctors-articles/inferior-petrosal-sinus-sampling-diagnosis-cushings-disease/ (accessed on 18 October 2022). Polito, R.; Messina, G.; Valenzano, A.; Scarinci, A.; Villano, I.; Monda, M.; Cibelli, G.; Porro, C.; Pisanelli, D.; Monda, V.; et al. The Role of Very Low Calorie Ketogenic Diet in Sympathetic Activation through Cortisol Secretion in Male Obese Population. J. Clin. Med. 2021, 10, 4230. [Google Scholar] [CrossRef] [PubMed] Yancy, W.S.; Olsen, M.K.; Guyton, J.R.; Bakst, R.P.; Westman, E.C. A Low-Carbohydrate, Ketogenic Diet versus a Low-Fat Diet to Treat Obesity and Hyperlipidemia. Ann. Intern. Med. 2004, 140, 769. [Google Scholar] [CrossRef] [PubMed] Khan, S.S.; Ning, H.; Wilkins, J.T.; Allen, N.; Carnethon, M.; Berry, J.D.; Sweis, R.N.; Lloyd-Jones, D.M. Association of Body Mass Index with Lifetime Risk of Cardiovascular Disease and Compression of Morbidity. JAMA Cardiol. 2018, 3, 280–287. [Google Scholar] [CrossRef] Sun, X.; Feng, M.; Lu, L.; Zhao, Z.; Bao, X.; Deng, K.; Yao, Y.; Zhu, H.; Wang, R. Lipid Abnormalities in Patients with Cushing’s Disease and Its Relationship with Impaired Glucose Metabolism. Front. Endocrinol. 2021, 11, 600323. [Google Scholar] [CrossRef] [PubMed] Bolla, A.; Caretto, A.; Laurenzi, A.; Scavini, M.; Piemonti, L. Low-Carb and Ketogenic Diets in Type 1 and Type 2 Diabetes. Nutrients 2019, 11, 962. [Google Scholar] [CrossRef] [PubMed] Norwitz, N.G.; Soto-Mota, A.; Kalayjian, T. A Company Is Only as Healthy as Its Workers: A 6-Month Metabolic Health Management Pilot Program Improves Employee Health and Contributes to Cost Savings. Metabolites 2022, 12, 848. [Google Scholar] [CrossRef] [PubMed] Ebbeling, C.B.; Feldman, H.A.; Klein, G.L.; Wong, J.M.W.; Bielak, L.; Steltz, S.K.; Luoto, P.K.; Wolfe, R.R.; Wong, W.W.; Ludwig, D.S. Effects of a Low Carbohydrate Diet on Energy Expenditure during Weight Loss Maintenance: Randomized Trial. BMJ 2018, 363, k4583. [Google Scholar] [CrossRef] [PubMed] Marchiò, M.; Roli, L.; Lucchi, C.; Costa, A.M.; Borghi, M.; Iughetti, L.; Trenti, T.; Guerra, A.; Biagini, G. Ghrelin Plasma Levels after 1 Year of Ketogenic Diet in Children with Refractory Epilepsy. Front. Nutr. 2019, 6, 112. [Google Scholar] [CrossRef] [PubMed] Kärkkäinen, O.; Farokhnia, M.; Klåvus, A.; Auriola, S.; Lehtonen, M.; Deschaine, S.L.; Piacentino, D.; Abshire, K.M.; Jackson, S.N.; Leggio, L. Effect of Intravenous Ghrelin Administration, Combined with Alcohol, on Circulating Metabolome in Heavy Drinking Individuals with Alcohol Use Disorder. Alcohol. Clin. Exp. Res. 2021, 45, 2207–2216. [Google Scholar] [CrossRef] [PubMed] Catargi, B.; Rigalleau, V.; Poussin, A.; Ronci-Chaix, N.; Bex, V.; Vergnot, V.; Gin, H.; Roger, P.; Tabarin, A. Occult Cushing’s Syndrome in Type-2 Diabetes. Available online: https://academic.oup.com/jcem/article/88/12/5808/2661485 (accessed on 27 September 2022). Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). From https://www.mdpi.com/2218-1989/12/11/1033/htm
    2 points
  4. Somehow, things don't "count" without a big clinical trial that costs someone $$$. AARRGGHH!
    2 points
  5. Objective: This extended evaluation (EE) of the SONICS study assessed effects of levoketoconazole for an additional 6 months following open-label, 6-month maintenance treatment in endogenous Cushing’s syndrome. Design/Methods: SONICS included dose-titration (150–600 mg BID), 6-month maintenance, and 6-month EE phases. Exploratory efficacy assessments were performed at Months 9 and 12 (relative to start of maintenance). For pituitary MRI in patients with Cushing’s disease, a threshold of ≥2 mm denoted change from baseline in largest tumor diameter. Results: Sixty patients entered EE at Month 6; 61% (33/54 with data) exhibited normal mean urinary free cortisol (mUFC). At Months 9 and 12, respectively, 55% (27/49) and 41% (18/44) of patients with data had normal mUFC. Mean fasting glucose, total and LDL-cholesterol, body weight, body mass index, abdominal girth, hirsutism, CushingQoL, and BDI-II scores improved from study baseline at Months 9 and 12. Forty-six patients completed Month 12; 4 (6.7%) discontinued during EE due to adverse events. The most common adverse events in EE were arthralgia, headache, hypokalemia, and QT prolongation (6.7% each). No patient experienced ALT or AST >3× ULN, QTcF interval >460 msec, or adrenal insufficiency during EE. Of 31 patients with tumor measurements at baseline and Month 12 or follow-up, largest tumor diameter was stable in 27 (87%) patients, decreased in 1, and increased in 3 (largest increase 4 mm). Conclusion: In the first long-term levoketoconazole study, continued treatment through 12-month maintenance period sustained the early clinical and biochemical benefits in most patients completing EE, without new adverse effects. Read the whole article at https://eje.bioscientifica.com/configurable/content/journals$002feje$002faop$002feje-22-0506$002feje-22-0506.xml?t%3Aac=journals%24002feje%24002faop%24002feje-22-0506%24002feje-22-0506.xml&body=pdf-45566
    2 points
  6. Although Dr. Friedman is at the forefront of Cushing’s Disease, he was not invited to be part of the Pituitary Society Consensus Guidelines on Cushing’s Disease published in Lancet Diabetes and Endocrinology in 2021, many of his ideas on Cushing’s Disease that he has been advocating for years were included in the recent guidelines. In this informative webinar, Dr. Friedman will discuss The use of imaging for the diagnosis of Cushing’s Disease The need for multiple testing to diagnose episodic Cushing’s Disease The importance of UFC and salivary cortisol testing The use of medication trial prior to surgery The use of ketoconazole for the medication trial and longer-term treatment Dr. Friedman will also discuss new Cushing’s medications. Sunday • April 3 • 6 PM PST Via Zoom Click here to join the meeting orhttps://us02web.zoom.us/j/4209687343?pwd=amw4UzJLRDhBRXk1cS9ITU02V1pEQT09OR+16699006833,,4209687343#,,,,*111116#Slides will be available on the day of the talk here. You can also click to read the consensus guidelines There will be plenty of time for questions using the chat button. For more information, email us at mail@goodhormonehealth.com
    2 points
  7. Although Dr. Friedman is at the forefront of Cushing’s Disease, he was not invited to be part of the Pituitary Society Consensus Guidelines on Cushing’s Disease published in Lancet Diabetes and Endocrinology in 2021, many of his ideas on Cushing’s Disease that he has been advocating for years were included in the recent guidelines. In this informative webinar, Dr. Friedman will discuss The use of imaging for the diagnosis of Cushing’s Disease The need for multiple testing to diagnose episodic Cushing’s Disease The importance of UFC and salivary cortisol testing The use of medication trial prior to surgery The use of ketoconazole for the medication trial and longer-term treatment Dr. Friedman will also discuss new Cushing’s medications. Sunday • April 3 • 6 PM PST Via Zoom Click here to join the meeting orhttps://us02web.zoom.us/j/4209687343?pwd=amw4UzJLRDhBRXk1cS9ITU02V1pEQT09OR+16699006833,,4209687343#,,,,*111116#Slides will be available on the day of the talk here. You can also click to read the consensus guidelines There will be plenty of time for questions using the chat button. For more information, email us at mail@goodhormonehealth.com
    2 points
  8. Join our Rare Disease Day virtual panel discussion as BioNews columnists from a variety of our rare communities participate in a lively conversation with fellow patient advocate Liza Bernstein. This window into often overlooked aspects of life with a rare disease will provide a variety of patient perspectives. Topics will include awareness and advocacy, equity, mental health, empowerment, and more. We invite everyone to join us for this signature event and look forward to your participation in the Q and A! Panelists: Paris Dancy, Columnist, Cushing’s Disease News Michelle Gonzaba, Columnist, Myasthenia Gravis News Claire Richmond, Columnist, Porphyria News Sherry Toh, Columnist, SMA News Today Hosted by Liza Bernstein, Patient Advocate & Sr. Director Patient & Community Engagement Time Feb 28, 2022 02:00 PM in Central Time (US and Canada) Register at https://us06web.zoom.us/webinar/register/WN_dylme0wBRCyH8TfQ7B6x-w
    2 points
  9. TAMPA, Fla., Nov. 3, 2021 /PRNewswire/ -- The Carling Adrenal Center, a worldwide destination for the surgical treatment of adrenal tumors, becomes the first center to offer adrenal vein sampling and curative surgery in one visit. The novel protocol and diagnostic method for adrenal tumors will condense a 2–4-week process of localization of hyper-secreting adrenal tumors and subsequent curative surgery down to just one day. The innovative approach combines highly specialized adrenal vein sampling with rapid adrenal hormone lab testing and then consultation with the world's highest volume adrenal surgeon. If appropriate, a patient may even complete their mini-surgery during that same visit. Established by Dr. Tobias Carling in 2020, the Carling Adrenal Center located at the Hospital for Endocrine Surgery in Tampa FL, is the highest volume adrenal surgical center in the world. The Center now averages nearly 20 adrenal tumor patients every week that could benefit from this novel diagnostic and treatment approach to address a decades-long problem for patients with adrenal tumors. The Endocrine Society Clinical Practice Guideline recommends adrenal vein sampling (AVS) as the preferred method to select patients with primary hyperaldosteronism for an adrenalectomy. "The difficulty and complexity of testing and diagnosing adrenal tumors secreting excess aldosterone is the primary reason why less than 5% of these adrenal tumors are diagnosed and treated," says Dr. Carling. "By combining expertise in interventional radiology for adrenal vein sampling and rapid laboratory measurements of adrenal hormones with our unique international consulting capability, we can determine which adrenal gland is bad and whether or not the patient needs that adrenal gland removed." Adrenal vein sampling is performed through small catheters placed in very specific veins where blood samples are obtained from both adrenal veins and the inferior vena cava. In experienced centers, the bilateral adrenal veins are catheterized and sampled with a success rate exceeding 90%. Technical success is directly associated with operator experience, leading to the recommendation that the procedure only be performed by true experts or the test will very likely be of no help. Dr. Carling's very high volume of adrenal surgery for many years has allowed him to publish scientific studies demonstrating that in aldosterone-producing adenomas, there is a strong correlation between the imaging phenotype (i.e., what the tumor looks like on a CT scan), histology (what the tumor looks like under the microscope) and genotype (what gene is mutated in the tumor). This knowledge allows Dr. Carling and his team at the Hospital for Endocrine Surgery to predict who can go straight to surgery with an excellent outcome, and who may first need adrenal vein sampling to determine which adrenal gland is over-producing the hormone causing significant morbidity and mortality. With adrenal vein sampling proving lateralization, the next step is surgical removal of the adrenal tumor. Dr. Carling has more experience with all types of adrenal surgery than any surgeon in the United States, but especially with advanced, minimally invasive adrenal operations which are the best options for aldosterone-secreting adrenal tumors. A fellow of the American College of Surgeons, Dr. Carling is a member of both the American Association of Endocrine Surgeons (AAES) and the International Association of Endocrine Surgeons (IAES). Dr. Carling moved his world-renowned adrenal surgery program from Yale University to Tampa, Florida in early 2020 to start the Carling Adrenal Center. Here, patients needing adrenal surgery have access to the best practices and best techniques the world has to offer. In January 2022, the Carling Adrenal Center will unite with the Norman Parathyroid Center, the Clayman Thyroid Center and the Scarless Thyroid Surgery Center at the brand-new Hospital for Endocrine Surgery located in Tampa, Florida. About the Carling Adrenal Center: Founded by Dr. Tobias Carling, one of the world's leading experts in adrenal gland surgery, the Carling Adrenal Center is a worldwide destination for the surgical treatment of adrenal tumors. Dr. Carling spent nearly 20 years at Yale University, including 7 as the Chief of Endocrine Surgery before leaving in 2020 to open to Carling Adrenal Center, which performs more adrenal operations than any other hospital in the world. More about adrenal vein sampling for adrenal tumors can be found at the Center's website www.adrenal.com and here. (813) 972-0000. Contact: Julie Canan, Director of Marketing Carling Adrenal Center juliec@parathyroid.com SOURCE Carling Adrenal Center From https://www.prnewswire.com/news-releases/innovative-one-visit-adrenal-tumor-diagnosis-and-treatment-program-begins-in-tampa-301414465.html
    2 points
  10. https://doi.org/10.1016/j.aace.2021.10.004Get rights and content Under a Creative Commons license open access Highlights • Cushing’s Disease (CD) in pregnancy is rare, but poses many risks to the mother and fetus • Although surgery is still considered first line, this CASE highlights the successful use of metyrapone throughout pregnancy to manage CD in patients where surgery is considered high risk or low likelihood of cure • The dose of metyrapone can be titrated to a goal urinary free cortisol of < 150 ug/24 hours given the known rise in cortisol during gestation • Though no fetal adverse events have been reported, metyrapone does cross the placenta and long-term effects are unknown. ABSTRACT Background Cushing Disease (CD) in pregnancy is a rare, but serious, disease that adversely impacts maternal and fetal outcomes. As the sole use of metyrapone in the management of CD has been rarely reported, we describe our experience using it to treat a pregnant patient with CD. Case Report 34-year-old woman with hypertension who was diagnosed with adrenocorticotropic hormone-dependent CD based on a urinary free cortisol (UFC) of 290 μg/24hr (reference 6-42μg/dL) and abnormal dexamethasone suppression test (cortisol 12.4 μg/dL) before becoming pregnant. She conceived naturally 12 weeks post-transsphenoidal surgery, and was subsequently found to have persistent disease with UFC 768μg/dL. Surgery was deemed high risk given the proximity of the tumor to the right carotid artery and high likelihood of residual disease. Instead, she was managed with metyrapone throughout her pregnancy and titrated to goal UFC of <150μg/24hr due to the known physiologic rise in cortisol during gestation. The patient had diet-controlled gestational diabetes, and well-controlled hypertension. She gave birth at 37 weeks gestation to a healthy baby boy, without adrenal insufficiency in the baby or mother. Discussion This CASE highlights the successful use of metyrapone throughout pregnancy to manage CD in patients where surgery is considered high risk or low likelihood of cure. While metyrapone is effective, close surveillance is required for worsening hypertension, hypokalemia, and potential adrenal insufficiency. Though no fetal adverse events have been reported, this medication crosses the placenta and long-term effects are unknown. Conclusion We describe a CASE of CD during pregnancy that was successfully treated with metyrapone. Key words Cushing disease metyrapone pregnancy cortisol INTRODUCTION Cushing disease (CD) is caused by endogenous overproduction of glucocorticoids due to hypersecretion of adrenocorticotropic hormone (ACTH) by a pituitary adenoma. CD in pregnancy is very rare, and when it occurs, it is considered a high-risk pregnancy with many potential adverse outcomes for both the mother and fetus.1 Infertility is common in CD due to cortisol and androgen excess leading to hypogonadotropic hypogonadism.1 Due to the rarity of CD in pregnancy, there is little guidance in terms of treatment for this patient population. Similar to non-pregnant patients, the first-line treatment is transsphenoidal pituitary adenoma resection, with medical therapy as a second-line treatment option. This report presents a CASE that highlights the use of metyrapone, a steroidogenesis inhibitor, as a sole therapy in cases where surgery is deemed to be high risk and unlikely curative due to location of the tumor. CASE REPORT A 34-year-old woman with a past medical history of hypertension and infertility for six years presented to endocrinology for evaluation. Aside from difficulty conceiving, her only complaints were nausea and easy bruising. On exam she did not have clinical features of CD –abdominal violaceous striae, moon facies or a dorsocervical fat pad were absent. Her laboratory results revealed an elevated prolactin level (50-60ng/mL, reference range 1.4-24), an elevated ACTH level (61 pg/mL, reference range 0-46), and low FSH and LH levels (1.7mIU/mL and 1.76mIU/mL, respectively). Further testing demonstrated an elevated urinary free cortisol level (UFC) (290μg/24 hour, reference range 6-42) and her cortisol failed to suppress on a 1mg dexamethasone suppression test (cortisol 12.4μg/dL). Magnetic resonance imaging (MRI) of the pituitary with and without contrast showed a T2 hyperintense, hypoenhancing lesion within the right side of the sella touching the right cavernous internal carotid artery measuring 8x8x9 mm consistent with a pituitary adenoma (Figure 1). Download : Download high-res image (247KB) Download : Download full-size image Figure 1. Caption: T1 weighted post gadolinium coronal image of the pituitary gland with a small hypoenhancing lesion within the right side of the sella. After the presumed diagnosis of CD was made, she was referred to neurosurgery for transsphenoidal resection of the adenoma, which she underwent a few months later. Intra-operatively, a white friable tumor was found, and otherwise the surgery was uneventful. Three months later, however, she was found to have a persistent 8x8x9mm hypoenhancing lesion extending laterally over the right cavernous carotid artery on MRI. The mass approximated but did not contact the right intracranial optic nerve. The pathology from resected tissue was consistent with normal pituitary tissue with staining for growth hormone (80%), ACTH (30%), prolactin (40%), follicle stimulating hormone (5%), luteinizing hormone (40%) and thyroid stimulating hormone (15%), proving the surgery to have been unsuccessful. Twelve weeks post-operatively, the patient discovered she was pregnant. At 12 weeks gestation, her UFC was 768μg/24h and two midnight salivary cortisol levels were elevated at 0.175 and 0.625μg/dL (reference <0.010-0.090). She was experiencing easy bruising and taking labetalol 400 mg twice daily for hypertension. She had gained 10 pounds by 12 weeks gestation. A second transsphenoidal surgery during pregnancy was deemed high risk, with a high likelihood of residual disease due to the proximity of the tumor to the right carotid artery. The decision was made to treat the patient medically with metyrapone which was started at 250 mg twice per day at 12 weeks gestation and was eventually uptitrated based on UFC levels every 3-4 weeks (goal of <150μg /24h) to 1000 mg three times per day by the time of delivery with an eventual UFC level of 120μg/24h (Figure 2) . Morning ACTH and serum cortisol levels were monitored for potential adrenal insufficiency. Download : Download high-res image (375KB) Download : Download full-size image Figure 2. Caption: This figure depicts the patient’s 24 hour urinary cortisol levels over time as well as the titration of metyrapone dosage in mg/day. Her hypertension was well controlled throughout pregnancy on labetalol with the addition of nifedipine XL 30mg daily in the second trimester. She remained normokalemic with potassium ranging from 3.8-4.1mEq/L. She was diagnosed with gestational diabetes at 24 weeks by an abnormal two-step oral glucose tolerance test, which was diet-controlled. The patient was induced at 37 weeks gestation due to cervical insufficiency with cerclage in place, and was given stress dose steroids along with metyrapone. She delivered a healthy baby boy vaginally without complications. His Apgar scores were 9 and 9 and he weighed 6 pounds and 5 ounces. At the time of delivery and one week later, the baby’s cortisol levels were normal (6 μg/dL, normal 4-20), without evidence of adrenal insufficiency. The patient’s metyrapone dose was reduced to 500mg three times a day after pregnancy and her 2 month postpartum 24 hour UFC was 42μg/24hr. The patient stopped the metyrapone on her own four months later and her UFC was found to be elevated at 272ug/24hr (normal 6-42μg/24hr). An MRI one year postpartum revealed a 10x10x9 mm adenoma in the right sella with some suprasellar extension without compression of the optic chiasm, but with abutment of the right carotid artery. Due to the persistently elevated cortisol, large size of the tumor, and potential for cure, especially if followed by radiation therapy, a second transsphenoidal surgery was recommended. However, due to the COVID-19 pandemic the patient underwent a delayed surgery 1.5 years postpartum. The pathology was consistent with a pituitary adenoma that stained strongly and diffusely for ACTH and synaptophysin, only. Her postoperative day 2 cortisol was 1.1μg/dL (reference range 6.7-22.6) and hydrocortisone 20mg in the morning and 10mg in the afternoon was started. She remains on hydrocortisone replacement and went on to conceive again, one month after her second surgery. DISCUSSION We describe a patient with pre-existing CD who became pregnant and was managed successfully with metyrapone throughout her pregnancy. Although CD is rare in pregnancy, it can occur, and poses risks to both the mother and fetus.1,2 Potential maternal complications include hypertension, preeclampsia, diabetes, fractures and more uncommonly, cardiac failure, psychiatric disorders, infection and maternal death.1,2 There is also increased fetal morbidity including prematurity, intrauterine growth retardation and less commonly CD can lead to stillbirth, spontaneous abortion, intrauterine death and hypoadrenalism.1,2 It is, therefore, imperative that these patients receive prompt care to control cortisol levels. The treatment of CD in pregnancy is challenging as there are no large research trials studying the efficacy and safety of medications in CD during pregnancy. Pituitary surgery is first-line recommendation and should be done late in the first trimester or in the second trimester to prevent spontaneous pregnancy loss.3 In this CASE, however, it was felt that a second surgery would be high-risk given the proximity of the tumor to the right carotid artery and possibly not curative, and thus surgery was not a feasible option. She was therefore successfully managed with medical therapy with metyrapone alone throughout her pregnancy. Metyrapone use in pregnancy has been previously reported in the literature and has been shown to be effective in reducing cortisol levels.4,5,6 Although not approved for use in pregnancy, this steroidogenesis inhibitor is the most commonly used medication to treat Cushing’s syndrome in pregnant women.3,5 Due to metyrapone’s inhibition of 11-beta-hydroxylase, there is a buildup of steroidogenesis precursors such as 11-deoxycorticosterone, which can worsen hypertension, increase frequency of preeclampsia, and cause hypokalemia.3 Metyrapone also leads to elevation of adrenal androgens, which in conjunction with accumulation of 11-deoxycorticosterone, can cause hirsutism and virilization. 8 Though the use of Cabergoline has been reported in cases with Cushing disease during pregnancy, no long term safety data is available regarding it effects on pregnancy as well as the fetus. Moreover, studies assessing the effect of cabergoline in persistent or recurrent CD show a response rate of 20-30% only in cases with mild hypercortisolism. 9 There is no consensus on how to medically treat patients with CD during pregnancy. We chose a goal UFC of <150μg/24 hours because of the physiological rise of cortisol to two to three times the upper limit of normal during pregnancy.3,7 During pregnancy, there is an increase in corticotropin-releasing hormone from the placenta, which is identical in structure to the hypothalamic form.7 This leads to increased levels of ACTH which stimulates the maternal adrenal glands to become slightly hypertrophic and accounts for the rise in serum cortisol levels in pregnancy.7 Corticosteroid-binding globulin also increases in pregnancy, along with serum free cortisol, leading to urinary free cortisol increasing to 3-fold the normal range.7 We therefore aimed to keep our patient’s urinary free cortisol approximately 3 times the upper limit of normal on our assay, to maintain normal cortisol levels for pregnancy. Close surveillance of patients is required for worsening hypertension, hypokalemia, and potential adrenal insufficiency.3 Although no fetal adverse events from metyrapone have been reported, the medication does cross the placenta, leading to the potential for fetal adrenal insufficiency, and long-term effects are unknown.3 CONCLUSION This CASE demonstrates the successful use of metyrapone alone to treat CD throughout pregnancy resulting in the birth of a healthy baby without adrenal insufficiency. These cases are particularly challenging given the lack of FDA-approved therapies and the lack of consensus on directing titration of medications and the duration of therapy. Uncited reference 4., 6.. REFERENCES: 1 T. Brue, V. Amodru, F. Castinetti MANAGEMENT OF ENDOCRINE DISEASE: Management of Cushing's syndrome during pregnancy: solved and unsolved questions Eur J Endocrinol, 178 (6) (2018 Jun), pp. R259-R266, 10.1530/EJE-17-1058 Epub 2018 Mar 9. PMID: 29523633 View PDF CrossRefView Record in ScopusGoogle Scholar 2 F. Caimari, E. Valassi, P. Garbayo, C. Steffensen, A. Santos, R. Corcoy, S.M. Webb Cushing's syndrome and pregnancy outcomes: a systematic review of published cases Endocrine, 55 (2) (2017 Feb), pp. 555-563, 10.1007/s12020-016-1117-0 Epub 2016 Oct 4. PMID: 27704478 View PDF CrossRefView Record in ScopusGoogle Scholar 3 M.D. Bronstein, M.C. Machado, M.C. Fragoso MANAGEMENT OF ENDOCRINE DISEASE: Management of pregnant patients with Cushing's syndrome Eur J Endocrinol, 173 (2) (2015 Aug), pp. R85-91, 10.1530/EJE-14-1130 Epub 2015 Apr 14. PMID: 25872515 View PDF View Record in ScopusGoogle Scholar 4 Azzola A, Eastabrook G, Matsui D, Berberich A, Tirona RG, Gray D, Gallego P, Van Uum S. Adrenal Cushing Syndrome Diagnosed During Pregnancy: Successful Medical Management With Metyrapone. J Endocr Soc. 2020 Nov 5;5(1):bvaa167. doi: 10.1210/jendso/bvaa167. PMID: 33305159; PMCID: PMC7712789. Google Scholar 5 W.H. Lim, D.J. Torpy, W.S. Jeffries The medical management of Cushing's syndrome during pregnancy Eur J Obstet Gynecol Reprod Biol, 168 (1) (2013 May), pp. 1-6, 10.1016/j.ejogrb.2012.12.015 Epub 2013 Jan 8. PMID: 23305861 ArticleDownload PDFView Record in ScopusGoogle Scholar 6 Gormley MJ, Hadden DR, Kennedy TL, Montgomery DA, Murnaghan GA, Sheridan B. Cushing's syndrome in pregnancy--treatment with metyrapone. Clin Endocrinol (Oxf). 1982 Mar;16(3):283-293. doi: 10.1111/j.1365-2265.1982.tb00718.x. PMID: 7074978. Google Scholar 7 M.C. Machado, M.C.B.V. Fragoso, M.D. Bronstein Pregnancy in Patients with Cushing's Syndrome Endocrinol Metab Clin North Am, 47 (2) (2018 Jun), pp. 441-449, 10.1016/j.ecl.2018.02.004 PMID: 29754643 ArticleDownload PDFView Record in ScopusGoogle Scholar 8 Jeffcoate WJ, Rees LH, Tomlin S, Jones AE, Edwards CR, Besser GM. Metyrapone in long-term management of Cushing's disease. Br Med J. 1977 Jul 23;2(6081):215-217. doi: 10.1136/bmj.2.6081.215. PMID: 195666; PMCID: PMC1631369. Google Scholar 9 Stalldecker G, Mallea-Gil MS, Guitelman M, Alfieri A, Ballarino MC, Boero L, Chervin A, Danilowicz K, Diez S, Fainstein-Day P, García-Basavilbaso N, Glerean M, Gollan V, Katz D, Loto MG, Manavela M, Rogozinski AS, Servidio M, Vitale NM. Effects of cabergoline on pregnancy and embryo-fetal development: retrospective study on 103 pregnancies and a review of the literature. Pituitary. 2010 Dec;13(4):345-350. doi: 10.1007/s11102-010-0243-6. PMID: 20676778. Google Scholar Clinical Relevance: Cushing’s Disease (CD) in pregnancy is a rare, but serious, disease that has potential adverse effects on maternal and fetal health. Surgery is considered first line therapy, and there is little consensus on medical treatment of CD in pregnancy. This CASE demonstrates the successful use and titration of metyrapone throughout pregnancy. From https://www.sciencedirect.com/science/article/pii/S2376060521001164
    2 points
  11. By Ed Miseta, Chief Editor, Clinical Leader Follow Me On Twitter @EdClinical Sparrow Pharmaceuticals is an emerging biopharma company on a mission to help patients suffering from an excess of corticosteroids, with a focus on Cushing’s syndrome, autonomous cortisol secretion (ACS), and polymyalgia rheumatica (PMR). Cushing’s and ACS are both caused by an excess of cortisol produced by tumors. Patients with Cushing’s can present physically with a fatty hump between their shoulders, a rounded face, and pink or purple stretch marks on their skin. Cushing’s syndrome and ACS can both result in high blood pressure, bone loss, type 2 diabetes, weight gain, and mood, cognition, and sleep disorders. Any of those symptoms may be side effects for patients with conditions such as PMR who rely on long-term treatment with corticosteroid medications such as prednisone. “Cushing’s syndrome impacts around 20,000 patients in the U.S. alone,” says David Katz, Chief Scientific Officer for Sparrow. “Approximately 50% of those patients can be cured by surgery, but some will develop another tumor years later. ACS is an under-recognized condition, but it may affect up to 3 million patients in the U.S. There are also around 2 million people in the U.S. who rely on long-term use of corticosteroid medications to control autoimmune diseases and other conditions.” The treatments being developed by Sparrow are based on recognition that cortisol and corticosteroid medications are activated in certain tissues such as the liver, bone, fat, and brain, where in excess they act to cause toxicity. The company’s investigational drugs inhibit HSD-1, the enzyme responsible for that activation. Sparrow is about to launch a Phase 2 trial for Cushing’s syndrome. In early 2022 the company will also begin two additional Phase 2 trials for ACS and PMR, a common autoimmune disease in elderly patients. PMR is an arthritic syndrome characterized by a phenomenon known as claudication, which means the more you use a limb, the more it hurts and the harder it is to use. “For example, the more a PMR patient walks, the more painful and stiff their legs will become,” says Katz. “If they're trying to do anything with their arms, the arms will get stiffer and more painful. The disease is pretty debilitating in terms of physical function. The only approved treatment for PMR is steroids, which have side effects such as diabetes, hypertension, osteoporosis, and fractures.” Unknown Clinical Challenges Katz is excited about the clinical trials for ACS and PMR because no sizable interventional trials have been reported in either of those conditions. “We're going into a completely new area, and we don't know what we're going to encounter in terms of patient recruitment and retention,” says Katz. “There is also no strong precedent for how to get approval for a drug in these conditions. The only treatment indicated for PMR is steroids, and that came without any efficacy clinical trials. There are no drugs approved for ACS. It’s hard to anticipate the challenges we will face when we are in an area that is very new.” Patient centricity is a topic that is very important to Katz, and he spends a lot of time thinking about how to make trials a more pleasant experience for patients by limiting the burden placed on them. He notes that can sometimes be a difficult trade-off because of the procedures that must be performed to meet regulatory standards. “In Cushing’s syndrome clinical care and clinical trials, the standard way for someone's cortisol level to be measured is a 24-hour urine collection,” states Katz. “That involves looking at the amount of cortisol in the urine over a 24-hour period. That collection is inconvenient and burdensome, and the patient must then carry it somewhere to be analyzed.” Sparrow hopes to shift that collection to a spot urine sample, like what patients would experience during a physical. The patient would urinate into a cup and hand it off to a clinic employee for analysis. The process would be much simpler and less burdensome for the patient. Sparrow will first need to prove that in a clinical trial the spot sample will work as well or better than the 24-hour collection. Subjects in the initial clinical trials will have to contribute the 24-hour collections so that Sparrow can demonstrate that future patients will not need to do so. The Future of Endocrinology Katz has a positive outlook on the future of endocrinology. Sparrow’s leading drug candidate, SPI-62, is an oral, small-molecule HSD-1 inhibitor. In four clinical trials, it demonstrated potent targeting of HSD-1 in both the brain and liver, and significantly lowered cortisol levels in the liver. The studies also showed a favorable safety and tolerability profile. “If we are successful at developing SPI-62, I believe it will change the field of endocrinology,” says Katz. “We aim to shift the focus in Cushing’s syndrome to intracellular cortisol as the main driver of symptoms. What I mean by that is if we find that SPI-62 substantially reduces symptoms and that the degree of inhibition of our target HSD-1 correlates well with clinical improvement, then we can get to a new standard of care. We can potentially get rid of the 24-hour urine collections, which will be a big relief to patients. Additionally, many of today's drugs have a side effect called adrenal insufficiency, which results when the drugs either reduce cortisol too much or completely block activity. Many of today's drugs also require frequent monitoring and dose titration to prevent adrenal insufficiency. We believe that with HSD-1 inhibition we might avoid adrenal insufficiency as well.” Katz is hopeful patients treated with SPI-62 will not require monitoring and dose titration. That proof will take years and lots of clinical trials. Sparrow may also produce the first targeted therapy for ACS. That could improve the recognition of ACS as a prevalent form of hypercortisolism and a substantial cause of morbidity and mortality. “ACS is probably the most under-recognized condition in endocrinology based on recent epidemiological studies,” adds Katz. “It's possible that as few as 3% of patients who have ACS actually have a diagnosis. That is shocking for a condition that is associated with a lot of cardiometabolic and bone morbidity, negative effects on mood and cognition, sleep, and muscle strength, and is associated with excess mortality. We want to bring attention to this condition by bringing out a targeted therapy to treat a spectrum of symptoms by getting to the root cause of them.” From https://www.clinicalleader.com/doc/sparrow-pharmaceuticals-hopes-to-change-the-future-of-endocrinology-0001
    2 points
  12. Abstract Cushing’s disease is an abnormal secretion of ACTH from the pituitary that causes an increase in cortisol production from the adrenal glands. Resultant manifestations from this excess in cortisol include multiple metabolic as well as psychiatric disturbances which can lead to significant morbidity and mortality. In this report, 23-year-old woman presented to mental health facility with history of severe depression and suicidal ideations. During evaluation, she found to have Cushing’s disease, which is unusual presentation. She had significant improvement in her symptoms with reduction of antidepressant medications after achieving eucortisolism. Cushing syndrome can present with wide range of neuropsychiatric manifestations including major depression. Although presentation with suicidal depression is unusual. Early diagnosis and prompt management of hypercortisolsim may aid in preventing or lessening of psychiatric symptoms The psychiatric and neurocognitive disorders improve after disease remission (the normalization of cortisol secretion), but some studies showed that these disorders can partially improve, persist, or exacerbate, even long-term after the resolution of hypercortisolism. The variable response of neuropsychiatric disorders after Cushing syndrome remission necessitate long term follow up. Keywords cushing syndrome, cushing disease, hypercortisolism Introduction Endogenous Cushing syndrome is a complex disorder caused by chronic exposure to excess circulating glucocorticoids. It has a wide range of clinical signs and symptoms as a result of the multisystem effects caused by excess cortisol.1 The hypercortisolism results in several complications that include glucose intolerance, diabetes, hypertension, dyslipidemia, thromboembolism, osteoporosis, impaired immunity with increased susceptibility to infection as well as neuropsychiatric disorders.2,3 Cushing syndrome presents with a wide variety of neuro-psychiatric manifestations like anxiety, major depression, mania, impairments of memory, sleep disturbance, and rarely, suicide attempt as seen in this case.2,4 The mechanism of neuropsychiatric symptoms in Cushing’s syndrome is not fully understood, but multiple proposed theories have been reported, one of which is the direct brain damage secondary to excess of glucocorticoids.5 Case Report A 23-year-old female presented to Al-Amal complex of mental health in Riyadh, Saudi Arabia with history of suicidal tendencies and 1 episode of suicidal attempt which was aborted because of religious reasons. She reported history of low mood, having disturbed sleep, loss of interest, and persistent feeling of sadness for 4 months. She also reported history of weight gain, facial swelling, hirsutism, and irregular menstrual cycle with amenorrhea for 3 months. She was prescribed fluoxetine 40 mg and quetiapine 100 mg. She was referred to endocrinology clinic at King Fahad Medical City, Riyadh for evaluation and management of possible Cushing syndrome as the cause of her abnormal mental health. She was seen in the endocrinology clinic where she reported symptoms as mentioned above in addition to headache, acne, and proximal muscle weakness. On examination her vital signs were normal. She had depressed affect, rounded face with acne and hirsutism, striae in the upper limb, and abdomen with proximal muscle weakness (4/5). Initial investigations showed that 24 hour urinary free cortisol was more than 633 µg which is more than 3 times upper limit of normal (this result was confirmed on second sample with level more than 633 µg/24 hour), cortisol level of 469 nmol/L after low dose 1 mg-dexamethasone suppression test and ACTH level of 9.8 pmol/L. Levels of other anterior pituitary hormones tested were within normal range. She also had prediabetes with HbA1c of 6.1 and dyslipidemia. Serum electrolytes, renal function and thyroid function tests were normal. MRI pituitary showed left anterior microadenoma with a size of 6 mm × 5 mm. MRI pituitary (Figure 1). Figure 1. (A-1) Coronal T2, (B-1) post contrast coronal T1 demonstrate small iso intense T1, heterogeneous mixed high, and low T2 signal intensity lesion in the left side of anterior pituitary gland which showed micro adenoma with a size of 6 mm × 5 mm. (A-2) Post-operative coronal T2 and (B-2) post-operative coronal T1. Demonstrates interval resection of the pituitary micro adenoma with no recurrence or residual lesion and minimal post-operative changes. There is no abnormal signal intensity or abnormal enhancing lesion seen. No further hormonal work up or inferior petrosal sinus sampling were done as the tumor size is 6 mm and ACTH level consistent with Cushing’s disease (pituitary source). She was referred to neurosurgery and underwent trans-sphenoidal resection of the tumor. Histopathology was consistent with pituitary adenoma and positive for ACTH. Her repeated cortisol level after tumor resection was less than 27 and ACTH 2.2 with indicated excellent response to surgery. She was started on hydrocortisone until recovery of her hypothalamic pituitary adrenal axis documented by normal morning cortisol 3 months after surgery (Table 1). Table 1. Labs. Table 1. Labs. View larger version During follow up with psychiatry her depressive symptoms improved but not resolved and she was able to stop fluoxetine 5 months post-surgery. Currently she is maintained on quetiapine 100 mg with significant improvement in her psychiatric symptoms. Currently she is in remission from Cushing’s disease based on the normal level of repeated 24 hour urinary free cortisol and with an over-all improvement in her metabolic profile. Discussion Cushing syndrome is a state of chronic hypercortisolism due to either endogenous or exogenous sources. Glucocorticoid overproduction by adrenal gland can be adrenocorticotropic (ACTH) hormone dependent which represent most of the cases and ACTH independent.6 To the best of our knowledge this is the first case documented in Saudi Arabia. There are multiple theories behind the neuropsychiatric manifestations in Cushing syndrome. These include increased stress response leading to behavioral changes, prolonged cortisol exposure leading to decreased brain volume especially in the hippocampus, reduced dendritic mass, decreased glial development, trans-cellular shift of water and synaptic loss, and excess glucocorticoid levels inhibiting neurogenesis and promoting neuronal tendency to toxic insult.3,7 In this report, the patient presented with severe depression with suicidal attempt. She had significant improvement in her symptoms with reduction of antidepressant medications but her depression persisted despite remission of Cushing disease. A similar case has been reported by Mokta et al,1 about a young male who presented with suicidal depression as initial manifestation of Cushing disease. As opposed to the present case he had complete remission of depression within 1 month of resolution of hypercortisolism. In general, psychiatric and neurocognitive disorders secondary to Cushing syndrome improves after normalization of cortisol secretion, but some studies showed that these disorders can partially improve, persist, or exacerbate, even long-term after the resolution of hypercortisolism. This may be due to persistence hypercortisolism creating toxic brain effects that occur during active disease.2,8 Similar patients need to be followed up for mental health long after Cushing syndrome has been resolved. Conclusion Depression is a primary psychiatric illness, that is, usually not examined for secondary causes. Symptoms of depression and Cushing syndrome overlap, so diagnosis and treatment of Cushing disease can be delayed. Early diagnosis and prompt management of hypercortisolsim may aid in preventing or lessening psychiatric symptoms. The variable neuropsychiatric disorders associated with Cushing syndrome post-remission necessitates long term follow up. Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. Funding: The author(s) received no financial support for the research, authorship, and/or publication of this article. Informed Consent Written informed consent was obtained from the patient for the publication of this case and accompanying images. ORCID iD Sultan Dheafallah Al-Harbi https://orcid.org/0000-0001-9877-9371 References 1. Mokta, J, Sharma, R, Mokta, K, Ranjan, A, Panda, P, Joshi, I. Cushing’s disease presenting as suicidal depression. J Assoc Physicians India. 2016;64:82-83. Google Scholar | Medline 2. Pivonello, R, Simeoli, C, De Martino, MC, et al. Neuropsychiatric disorders in cushing’s syndrome. Front Neurosci. 2015;9:1-6. Google Scholar | Crossref | Medline 3. Pereira, AM, Tiemensma, J, Romijn, JA. Neuropsychiatric disorders in Cushing’s syndrome. Neuroendocrinology. 2010;92:65-70. Google Scholar | Crossref | Medline | ISI 4. Tang, A, O’Sullivan, AJ, Diamond, T, Gerard, A, Campbell, P. Psychiatric symptoms as a clinical presentation of Cushing’s syndrome. Ann Gen Psychiatry. 2013;12:1. Google Scholar | Crossref | Medline 5. Sonino, N, Fava, GA, Raffi, AR, Boscaro, M, Fallo, F. Clinical correlates of major depression in Cushing’s disease. Psychopathology. 1998;31:302-306. Google Scholar | Crossref | Medline 6. Wu, Y, Chen, J, Ma, Y, Chen, Z. Case report of Cushing’s syndrome with an acute psychotic presentation. Shanghai Arch Psychiatry. 2016;28:169-172. Google Scholar | Medline 7. Rasmussen, SA, Rosebush, PI, Smyth, HS, Mazurek, MF. Cushing disease presenting as primary psychiatric illness: a case report and literature review. J Psychiatr Pract. 2015;21:449-457. Google Scholar | Crossref | Medline 8. Sonino, N, Fava, GA. Psychiatric disorders associated with Cushing’s syndrome. Epidemiology, pathophysiology and treatment. CNS Drugs. 2001;15:361-373. Google Scholar | Crossref | Medline From https://journals.sagepub.com/doi/10.1177/11795476211027668
    2 points
  13. Dr. Friedman will host Tobias Carling, MD, PhD, FACS Surgeon-in-Chief & Founder Carling Adrenal Center Hospital for Endocrine Surgery www.adrenal.com Who will talk on: The 20-minute Mini Back Scope Adrenalectomy (MBSA) The Carling Adrenal Center is the world's busiest adrenal surgery center, operating on patients from all 50 states and all over the world. Dr. Carling is the most experienced adrenal surgeon in the United States, and by far the world's most knowledgeable surgeon-scientist when it comes to adrenal gland function and disease, adrenal tumors and cancer, and all forms of adrenal gland surgery. Dr. Carling has more experience with advanced minimally invasive adrenal and endocrine operations than any surgeon in the United States. A fellow of the American College of Surgeons, Dr. Carling is a significant member of both the American Association of Endocrine Surgeons (AAES) and the International Association of Endocrine Surgeons (IAES). Dr. Carling spent 17.5 years at Yale University and the Yale University School of Medicine where he served as the Chief of Endocrine Surgery, Associate Professor of Surgery, Program Director of the Yale Endocrine Surgery Fellowship and the Founder & Director of the Yale Endocrine Neoplasia Laboratory, a supreme scientific program focused on the molecular pathogenesis of tumors arising in the adrenal, thyroid and parathyroid glands. Dr. Carling moved his world-renowned adrenal surgery program to Tampa, Florida in early 2020 to start the Carling Adrenal Center. Here, patients needing adrenal surgery have access to the best practices and best techniques the world has to offer. Dr. Carling works closely with Dr. Friedman and will be able to perform a Mini Back Scope Adrenalectomy with a referral from Dr. Friedman. Sunday • November 7• 6 PM PST Via Zoom Click here to join the meeting or https://us02web.zoom.us/j/4209687343?pwd=amw4UzJLRDhBRXk1cS9ITU02V1pEQT09 OR +16699006833,,4209687343#,,,,*111116# Slides will be available before the webinar and recording after the meeting at slides Your phone/computer will be muted on entry. There will be plenty of time for questions using the chat button. For more information, email us at mail@goodhormonehealth.com
    2 points
  14. A team of scientists in Montreal and Paris has succeeded in identifying the gene responsible for the development of a food-dependent form of Cushing’s Syndrome, a rare disease affecting both adrenal glands. In their study published in The Lancet Diabetes & Endocrinology, Dr. Isabelle Bourdeau and Dr. Peter Kamenicky identify in the gene KDM1A the mutations responsible for the development of this unusual form of the disease. The scientists also show, for the first time, that the disease is genetically transmitted. Bourdeau is a researcher and a Université de Montréal medical professor practising at the CHUM Research Centre (CRCHUM), while Kamenicky works at the Hôpital de Bicêtre, part of the Assistance publique-hôpitaux de Paris network in France. Cushing’s Syndrome is caused by the overproduction of cortisol, a steroid hormone, by the two adrenal glands located above the kidneys. “When the tissues of the human body are exposed to this excess of cortisol, the effects for those with the disease are serious: weight gain, high blood pressure, depression, osteoporosis, and heart complications, for example,” said Bourdeau, co-lead author of the study with Dr. Fanny Chasseloup, a colleague from the French team. This discovery comes nearly 30 years after food-induced Cushing’s Syndrome was first described in 1992 by a research group led by Dr. André Lacroix at the CRCHUM and his colleagues Drs. Johanne Tremblay and Pavel Hamet. The form of the disease being studied by Bourdeau and her colleagues is caused specifically by the abnormal expression of the receptors of a hormone named GIP (glucose-dependent insulinotropic peptide), in both adrenal glands of patients. This hormone is produced by the small intestine in response to food intake. For people with the disease, cortisol concentrations increase abnormally every time they ingest food. The discovery of the genetic mechanism by the French and Quebec teams was made possible through the use of recent cutting-edge genetic techniques on tissues of patients including those investigated by Dr Lacroix at CHUM. Bourdeau was aided by CRCHUM researcher Martine Tétreault during the computer analyses related to the research project. Earlier diagnosis thanks to genetic analysis “In general, rare diseases are generally underdiagnosed in clinics,” said Bourdeau, the medical director of the adrenal tumors multidisciplinary team at the CHUM. “By identifying this new gene, we now have a way of diagnosing our patients and their families earlier and thus offer more personalized medicine. At the CHUM, genetic analysis is already offered in our Genetic Medicine Division.” In a remarkable demonstration of scientific cooperation, the Quebec and French teams were able to collect and study tissue specimens available in local and international biobanks in Canada, France, Italy, Greece, Belgium and the Netherlands. Blood and adrenal gland tissue samples of 17 patients—mostly women—diagnosed with GIP-dependent Cushing’s Syndrome were compared genetically with those of 29 others with non-GIP-dependent bilateral adrenal Cushing’s Syndrome. This was quite an accomplishment, given the rarity of the disease in the general population. It allowed the researchers to identify the genetic mutations of the KDM1A gene and to determine that the disease is genetically transmitted. Since 2009, the CHUM has been designated as the adrenal tumors quaternary care centre of the Quebec Cancer Program. About this study  “Loss of KDM1A in GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing’s syndrome: a multicenter retrospective cohort study,” by Drs. Fanny Chasseloup, Isabelle Bourdeau and their colleagues, was published Oct. 13, 2021, in The Lancet Diabetes & Endocrinology. Funding was provided by the Agence nationale de la recherche, the Fondation du Grand défi Pierre Lavoie, the Institut national du cancer, the Fonds de recherche du Québec-Santé, INSERM and Assistance publique-hôpitaux de Paris. About the CRCHUM The University of Montreal Hospital Research Centre (CRCHUM) is one of North America’s leading hospital research centres. It strives to improve adult health through a research continuum covering such disciplines as the fundamental sciences, clinical research and public health. Over 1,850 people work at the CRCHUM, including more than 550 researchers and more than 460 graduate students Media contact Jeff HeinrichUniversité de MontréalTel: 514 343-7593 Lucie DufresneCentre hospitalier de l’Université de MontréalTel: 514 890-8000 p. 15380
    2 points
  15. Urine Tests: These involve collecting urine, usually for periods of twenty-four hours at a time. Twenty-four Hour Urine: The doctor will give you a gallon collection jug, usually with boric acid in it. The instructions are usually printed on the side. Generally, you urinate first thing in the morning, as usual. after that, you collect the rest of the urine for the next 24 hours in the jug. The directions usually tell you to refrigerate the jug. Directions for the Twenty-four Hour Urine Test Physicians have always relied upon analysis of urine specimens in order to diagnosis and treat many disease processes. Twenty-four hour urine collections are often employed to estimate the production rates of various hormones. The accuracy of test results depends entirely on the accuracy of the urine collection technique. These instructions are provided as a guide to ensure that your 24-hour urine collection is obtained in a manner that will permit reliance upon the test results. Urine samples should be collected in a large cup, urine collection hat or other container and then poured into the large bottle. Do not try to urinate directly into the bottle. Void urine prior to bowel movements in order to avoid losing urine that might normally be passed during a bowel movement. Urine collection hats can usually be purchased at medical supply stores if not provided by your physician or lab. If you should have a bowel movement while urinating the urine collection hat should keep the urine clean if used correctly. Urine samples should be collected in a large cup or other container and then poured into the large bottle. Do not try to urinate directly into the bottle. Void urine prior to bowel movements in order to avoid losing urine that might normally be passed during a bowel movement. Some patients are asked to collect more than one consecutive 24-hour urine sample. If that is the case, you should complete the first collection as instructed. Then, begin the second collection by adding any urine made in the next 24-hours to the second bottle. You should not discard any urine when starting the second or any subsequent collections. Simply change bottles at the stop and start times after adding that last sample required to complete the previous collection. The bottles for some tests contain a weak acid as a preservative. Do not discard the acid. If you accidentally get acid or urine from the bottle on your skin or clothing, rinse the effected area immediately with plenty of cold water. Collection bottles must be refrigerated. This is best accomplished by using an ice chest, cooler, or if so inclined, your refrigerator. If you forget to collect all of the urine or perform the test improperly, discard the specimen and start again on another day. If the bottle contained an acid preservative, you will need to obtain a new bottle from the laboratory or your physician's office. Otherwise, you may reuse the bottle after rinsing it with distilled water. Finally, please remember to call your physician, medical provider or nurse if you have any questions about the proper collection of a 24-hour urine sample. This Topic on the Message Boards.
    2 points
  16. Example: Make sure the last urine is exactly 24 hours after you started the clock (when you discard the first urine). Any 24-hour period is fine. Urinate at 7:00 am Monday morning and flush. Start your clock and collect every drop of urine up to and including 7:00 am on Tuesday morning (set an alarm if necessary). If you are doing multiple tests, they should give you a new jug when you turn the first one in. Your doctor or the lab should give you a urine "hat" - this will help with collection. If not, amazon sells them:
    2 points
  17. Kate** on the Cushing’s support board (Cushing’s Help and Support) wrote this letter after having pituitary surgery… Dear friends and family: I am writing this letter to share with you some basic facts about Cushing’s Disease/Syndrome and the recovery process so that you will have sufficient information to form realistic expectations about me and my ability to engage in certain activities in light of this disease and its aftermath. As you know, Cushing’s is a rarely diagnosed endocrine disorder characterized by hypercortisolism. Cortisol is a hormone produced by the adrenal glands and is vital to regulate the body’s cardivoascular functions and metabolism, to boost the immune system and to fight inflammation. But its most important job is to help the body to respond to stress. The adrenal glands release cortisol in response to stress, so atheletes, women experiencing pregnancy, and those suffering from alcoholism, panic disorders and malnutrition naturally have higher-than-normal levels of cortisol. People with Cushing’s Syndrome live life with too much cortisol for their bodies as a result of a hormone-secreting tumor. Mine is located in the pituitary gland. Endogenous hypercortisolism leaves the body in a constant state of “fight or flight,” which ravages the body and tears down the body’s major systems including cardivascular, musculo-skeletal, endocrine, etc. Symptoms vary, but the most common symptoms include rapid, unexplained weight gain in the upper body with increased fat around the neck and face (“moon facies”); buffalo hump; facial flushing/plethora; muscle wasting in the arms and legs; purplish striae (stretch marks) on the abdomen, thighs, buttocks, arms and breasts; poor wound healing and bruising; severe fatigue; depression, anxiety disorders and emotional lability; cognitive difficulties; sleep disorders due to abnormally high nighttime cortisol production; high blood pressure and high blood sugar/diabetes; edema; vision problems; premature osteoperosis; and, in women, signs of hyperandrogenism such as menstrual irregularities, infertility, hirsutism, male-patterned balding and steroid-induced acne. Cushing's Symptoms http://www.cushings-info.com/images/1/12/Lady.gif A sketch of a typical Cushing’s patient. As you can see, the effects of the disease on the body are dramatic. Worse, the psychological and emotional effects of having a chronic, debilitating and disfiguring disease range from distressing to demoralizing. Imagine that, in the space of a year, you became unrecognizable to those around you and to yourself. You look in the mirror, but the person staring back a tyou is a stranger. You endure the stares and looks of pity from those who knew you before Cushing’s, fully aware that they believe you have “let yourself go” or otherwise allowed this to happen to your body. Nothing you can say or do will persuade them otherwise, so at some point, you stop trying and resolve to live your life in a stranger’s body. You feel increasingly sick, but when you explain your array of symptoms to your doctor, you are dismissed as a depressed hypochondriac who needs to diet and exercise more. Worse, your family members think the same thing — and are often quick to tell you how you need to “change your lifestyle” to overcome the effects of what you eventually will discover, once properly diagnosed, is a serious and rare disease. If only it were so simple! No one would choose to have Cushing’s. Those of us who have it would not wish it even on our worst enemy. Most people with Cushing’s long for the ability to do simple things, like walk a flight of stairs without having to sit for half an hour afterwards, or vacuum the house or even unload a dishwasher. One of the worst parts about this disease is the crushing fatigue and muscle wasting/weakness, which accompanies hypercortisolism. Not only do we become socially isolated because of the virilzing effects of an endocrine tumor, which drastically alters our appearance, but we no longer feel like ourselves with regard to energy. We would love to take a long bike ride, run three miles or go shopping like we used to — activities, which we took for granted before the disease struck. Those activities are sadly impossible at times for those with advanced stages of the disease. Sometimes, as with any serious illness, performing even basic tasks of daily care such as showering and dressing can exhaust the limited reserves of energy available to a Cushing’s patient. How do we explain to you what it’s like to watch our lives slip away? What response is sufficient to express the grief and frustration over losing so much of ourselves? It is often difficult to find the strength to explain how your well-meaning words of prompting and encouragement (to diet or exercise) only serve to leave us more isolated and feeling alone. Though we wouldn’t want it, we wish our disease were as well-understood as cancer so that those who love us would have a frame of reference for what we go through. With Cushing’s, there is such limited public awareness that we are left to describe the effects of the disease from a void, often with limited understanding from those who love us most, which is disheartening. The most frustrating misconception about this disease is that we somehow are “doing this to ourselves,” or delaying recovery because we need to continue steroid replacement or lack the energy to excercise often, which is sadly false. Trust me that we would love to have that much control over such a terrible disease. Fortunately, there is a good likelihood of remission from Cushing’s in the hands of a skilled pituitary surgeon. Unfortunately, the long-term remission rate is only 56%, meaning that 44% of people with Cushing’s will require a second (sometimes third) pituitary surgery, radiation or bilateraly adrenalectomy to resolve the hypercortisolism. Without successful treatment, Cushing’s leads to death. Even with successful treatment, I will have to be monitored for possible recurrence for the rest of my life. After surgery or other treatment, the recovery period can last months or even years. Because the tumor takes over control of the body’s production of cortisol, the adrenal glands, which had lain dormant prior to surgery, require time to start functioning properly again. Until this happens, we must take synthetic steroids or else risk adrenal insufficiency or adrenal crisis, which can be quickly life-threatening. Careful monitoring of our cortisol levels is critical during the weaning period. It is a rare but sad fact that some people’s adrenal glands never return to normal, and those people must continue to take hydrocortisone or prednisone — sometimes for life — simply in order for the body to perform correctly its basic systemic functions. The physical recovery from surgery can be quick, but the withdrawal from hydrocortisone can be a lengthy and extremely painful process. As I described above, Cushing’s causes a tearing-down of muscles and bone. While there is an over-abundance of cortisol in our bodies (as a result of the tumor), we often can’t feel the effects of the muscle-wasting and bone deterioration because of the anti-inflammatory action of cortisol. Upon weaning, however, these become painfully (literally!) evident. The physical pain experienced while weaning from cortisol has been described as worse than weaning from heroin. When cortisol levels are low, one experiences the symptoms akin to a really bad flu, including severe fatigue (”like a wet cement blanket laid on top of me”); weakness and exhaustion; nausea; headache; vomiting; mental confusion. It is imperative for people who are on replacement steroids after Cushing’s surgery to carry extra Cortef (or injectable Solu-Cortef) with them at all times in addition to wearing a medic alert bracelet so that medical professionals will be alerted to the possiblity of adrenal insufficiency in the event of an adrenal crisis. People who have struggled with Cushing’s Syndrome all hope to return to “normal” at some point. Though none of us want to have Cushing’s, it is often a relief finally to have a correct diagnosis and treatment plan. For many, there is a gradual resolution of many Cushing’s symptoms within a few years of surgery or other successful treatment, and a good quality of life can be achieved. But regrettably, this is not possible in every case. Depending on the severity of the disease and the length of time before diagnosis and treatment, the prognosis can be poor and lead to shortened life expectancy and diminished quality of life. This is not a choice or something we can control, but it is the reality for some people who have suffered the consequences of long-term hypercortisolism. The best support you can give someone who is suffering from Cushing’s or its aftermath is to BELIEVE them and to understand that they are not manufacturing their illness or prolonging recovery. Ask them what they are able (and not able) to do, and then be prepared to help them in ways that matter — whether that be to bring them a meal or help them to run errands, pick up prescriptions from the pharmacy or clean their house. Because it’s these little everyday tasks, which can fall by the wayside when someone has (or has had) Cushing’s, and these are the things we miss the most: doing for ourselves. Ask us questions about the disease, and then actively listen to what we say. We know you don’t know much about Cushing’s — even our doctors sometimes lack information about this rare disease. But know we appreciate the interest and will tell you everything you want to know, because those of us who have it necessarily become experts in it just in order to survive. Thank you for caring about me and for hearing what I am saying in this letter. I know you love me and are concerned about me, and I appreciate that so much. Thank you also for taking the time to read this letter. I look forward to discussing further any questions you might have. In the meantime, I am attaching a brief article written by a woman who recently was diagnosed with Cushing’s. I hope hearing another person’s experiences will help you to understand what I’m going through so that when we talk, we will be coming from a similar starting place. Endocrinologists (doctors who specialize in Cushing's Syndrome and its related issues) realize the medical aspect and know the damaging effects that Cushing's has on the body. Family and friends see their Cushie suffering and know they are hurting physically and often times mentally and emotionally. However, understanding the debilitation of Cushing's and how it can affect every aspect of a person's life can only be truly realized by those who have experienced the syndrome. Cushings Help Organization, Inc., a non-profit family of websites maintained by MaryO, a pituitary Cushing's survivor, provides this letter for patients to provide to their family and friends in hopes of providing a better understanding Cushing's and it's many aspects. We're sorry to hear that your family member or friend has Cushing's Syndrome or suspected Cushing's. A person may feel better at times then at other times. It's common for a Cushing's patient to have burst of energy and then all of a sudden they become lethargic and don't feel like moving a muscle. There are many symptoms that are associated with Cushing's. They include weight gain, fatigue, muscle weakness, shortness of breath, feeling achy all over, headaches, blurred vision, mood swings, high blood pressure, stretch marks (straie), buffalo hump, diabetes, edema and the list goes on. Hormones affect every area of the body. It is important to note that not all patients have every symptom. Even some hallmark symptoms, such as straie or the "buffalo hump", may not be noticable on every patient. Not everyone who has Cushing's will experience the same symptoms, treatment, or recovery. Because not all "Cushies" have these symptoms, it makes diagnosis even more difficult. Cushing's can cause the physical appearance change due to weight gain, hair loss, rosacea, acne, etc. This can be very disturbing when looking in the mirror. Changes in appearance can often cause the Cushing's patient to withdraw from family and friends making it a very lonely illness. Patients often feel alone or withdrawn because few others understand. Cushing's can affect affect anyone of any age although it is more commen in women. Cushing's patients need to be able to take one day at time and learn to listen to their bodies. There will most likely be times when naps are needed during the day and often times may not be able to sleep at night due to surges of cortisol. Your Cushie doesn't expect you to understand Cushing's Syndrome completely. They do need you to be there for them and try to understand to the best of your ability what they feel and not give up on them. Often a Cushing's patient may be moody and say things that they don't mean. If this should happen with your Cushie try not to take it personally and know that it's most likely caused by the elevated cortisol and disturbances in other hormone levels caused by the Cushing's and not from the heart or true feelings of your Cushie. It can be very depressing and frustrating having so many limitations and experience things in life being taken from you. Cushing's patients are sick, not lazy, not hypochondriacs or even the newer term "Cyberchondriacs". If a Cushing's patient says they don't feel like doing something or they express how bad they feel let them know that you believe them. One of the most frustrating things to someone who is sick is to have those you love not believe you or support you. Telling a Cushie to think positive thoughts will not make him/her well and will just be aggrivating. Testing procedures can be lengthy and this can become frustrating for the patient and family. Often, it takes a while for results to come back and this can be stressful. Don't look to far ahead just take one day at a time and deal with the situation that is at hand at the present time. After a diagnosis is made then it's time for treatment. Surgery is usually the best treatment option for Cushing's that is caused by tumors. Don't be surprised if the surgeon's facility wants to run even more tests or redo some of those that have already been done. Your Cushie may have to travel a ways to find a surgeon who is trained in these delicate surgeries and who has performed many of them. Once the diagnosis has been made and treatment has finished then it's time for the recovery process. Not all patients who have surgery are cured and they have to make a choice along with the advice of their doctor as to what their next treatment option will be. The recovery from the surgery itself is similar to any other surgery and will take a while to recover. The recovery process obtained from getting a cure from Cushing's is quiet different from other surgeries. A Cushing's patients body has been exposed to excess cortisol, usually for quite a long time, and has become accustomed it. When the tumor is removed that has been responsible for the excessive cortisol and the body is no longer getting it this causes the body to have withdrawal symptoms. Withdrawal can be very hard causing an array of symptoms muscle aches, weakness, bone and joint pain, emotional disturbances etc. Thank you for reading this and we hope it will help you to understand a little more about Cushing's and the dibilating affect it can have on a person. Thank you for being there and supporting your Cushie during this time in their life. We realize that when a family member has Cushing's it not only affects the individual but other family members and those around them as well. Showing your love and support will encourage a speedy recovery for your Cushie. **Note: Kate died on on June 23, 2014. Read her In Memory page here: http://cushingsbios.com/2014/06/25/in-memory-kate-meyers/
    2 points
  18. The occurrence of different subtypes of endogenous Cushing’s syndrome (CS) in single individuals is extremely rare. We here present the case of a female patient who was successfully cured from adrenal CS 4 years before being diagnosed with Cushing’s disease (CD). The patient was diagnosed at the age of 50 with ACTH-independent CS and a left-sided adrenal adenoma, in January 2015. After adrenalectomy and histopathological confirmation of a cortisol-producing adrenocortical adenoma, biochemical hypercortisolism and clinical symptoms significantly improved. However, starting from 2018, the patient again developed signs and symptoms of recurrent CS. Subsequent biochemical and radiological workup suggested the presence of ACTH-dependent CS along with a pituitary microadenoma. The patient underwent successful transsphenoidal adenomectomy, and both postoperative adrenal insufficiency and histopathological workup confirmed the diagnosis of CD. Exome sequencing excluded a causative germline mutation but showed somatic mutations of the β-catenin protein gene (CTNNB1) in the adrenal adenoma, and of both the ubiquitin specific peptidase 8 (USP8) and the glucocorticoid receptor (NR3C1) genes in the pituitary adenoma. In conclusion, our case illustrates that both ACTH-independent and ACTH-dependent CS may develop in a single individual even without evidence for a common genetic background. Introduction Endogenous Cushing´s syndrome (CS) is a rare disorder with an incidence of 0.2–5.0 per million people per year (1, 2). The predominant subtype (accounting for about 80%) is adrenocorticotropic hormone (ACTH)-dependent CS. The vast majority of this subtype is due to an ACTH-secreting pituitary adenoma [so called Cushing´s disease (CD)], whereas ectopic ACTH-secretion (e.g. through pulmonary carcinoids) is much less common. In contrast, ACTH-independent CS can mainly be attributed to cortisol-producing adrenal adenomas. Adrenocortical carcinomas, uni-/bilateral adrenal hyperplasia, and primary pigmented nodular adrenocortical disease (PPNAD) may account for some of these cases as well (3, 4). Coexistence of different subtypes of endogenous CS in single individuals is even rarer but has been described in few reports. These cases were usually observed in the context of prolonged ACTH stimulation on the adrenal glands, resulting in micronodular or macronodular hyperplasia (5–9). A sequence of CD and PPNAD was also described in presence of Carney complex, a genetic syndrome characterized by the loss of function of the gene encoding for the regulatory subunit type 1α of protein kinase A (PRKAR1A) (10). Moreover, another group reported the case of a patient with Cushing's disease followed by ectopic Cushing's syndrome more than 30 years later (8). To our knowledge, however, we here describe the first case report on a single patient with a cortisol-producing adrenocortical adenoma and subsequent CD. Read the rest of the article at https://www.frontiersin.org/articles/10.3389/fendo.2021.731579/full
    2 points
  19. Christina Tatsi, Maria E. Bompou, Chelsi Flippo, Meg Keil, Prashant Chittiboina, Constantine A. Stratakis First published: 25 August 2021 https://doi.org/10.1111/cen.14560 Abstract Objective Diagnostic workup of Cushing disease (CD) involves imaging evaluation of the pituitary gland, but in many patients no tumour is visualised. The aim of this study is to describe the association of magnetic resonance imaging (MRI) findings with the postoperative course of paediatric and adolescent patients with CD. Patients Patients with a diagnosis of CD at less than 21 years of age with MRI evaluation of the pituitary before first transsphenoidal surgery were included. Measurements Clinical, imaging and biochemical data were analysed. Results One hundred and eighty-six patients with paediatric or adolescent-onset CD were included in the study. Of all patients, 127 (68.3%) had MRI findings consistent with pituitary adenoma, while the remaining had negative or inconclusive MRI. Patients with negative MRI were younger in age and had lower morning cortisol and adrenocorticotropin levels. Of 181 patients with data on postoperative course, patients with negative MRI had higher odds of not achieving remission after the first surgery (odds ratio = 2.6, 95% confidence intervals [CIs] = 1.1–6.0) compared to those with positive MRI. In patients with remission after first transsphenoidal surgery, long-term recurrence risk was not associated with the detection of a pituitary adenoma in the preoperative MRI (hazard risk = 2.1, 95% CI = 0.7–5.8). Conclusions Up to one-third of paediatric and adolescent patients with CD do not have a pituitary tumour visualised in MRI. A negative MRI is associated with higher odds of nonremission after surgery; however, if remission is achieved, long-term risk for recurrence is not associated with the preoperative MRI findings. Full text at https://onlinelibrary.wiley.com/doi/full/10.1111/cen.14560
    2 points
  20. SAN DIEGO, CA, USA I August 10, 2021 I Crinetics Pharmaceuticals, Inc. (Nasdaq: CRNX), a clinical stage pharmaceutical company focused on the discovery, development, and commercialization of novel therapeutics for rare endocrine diseases and endocrine-related tumors, today announced positive preliminary findings from the single ascending dose (SAD) portion of a first-in-human Phase 1 clinical study with CRN04894 demonstrating pharmacologic proof-of-concept for this first-in-class, investigational, oral, nonpeptide adrenocorticotropic hormone (ACTH) antagonist that is being developed for the treatment of conditions of ACTH excess, including Cushing’s disease and congenital adrenal hyperplasia. “ACTH is the central hormone of the endocrine stress response. Even though we’ve known about its clinical significance for more than 100 years, there has never been an ACTH antagonist available to intervene in diseases of excess stress hormones. This is an important milestone for the field of endocrinology and for our company,” said Scott Struthers, Ph.D., founder and chief executive officer of Crinetics. “I am extremely proud of our team that conceived, discovered and developed CRN04894 this far. This is the second molecule to emerge from our in-house discovery efforts and demonstrate pharmacologic proof of concept. I am very excited to see what it can do in upcoming clinical studies.” The 39 healthy volunteers who enrolled in the SAD cohorts were administered oral doses of CRN04894 (10 mg to 80 mg, or placebo) two hours prior to a challenge with synthetic ACTH. Analyses of basal cortisol levels (before ACTH challenge) showed that CRN04894 produced a rapid and dose-dependent reduction of cortisol by 25-56%. After challenge with a supra-pathophysiologic dose of ACTH (250 mcg), CRN04894 suppressed cortisol (as measured by AUC) up to 41%. After challenge with a disease-relevant dose of ACTH (1 mcg), CRN04894 showed a clinically meaningful reduction in cortisol AUC of 48%. These reductions in cortisol suggest that CRN04894 is bound with high affinity to its target receptor on the adrenal gland and blocking the activity of ACTH. CRN04894 was well tolerated in the healthy volunteers who enrolled in these SAD cohorts and all adverse events were considered mild. “We are very encouraged by these single ascending dose data which clearly demonstrate proof of ACTH antagonism with CRN04894 exposure in healthy volunteers,” stated Alan Krasner, M.D., chief medical officer of Crinetics. “We look forward to completing this study and assessing results from the multiple ascending dose cohorts. As a clinical endocrinologist, I recognize the pioneering nature of this work and eagerly look forward to further understanding the potential of CRN04894 for the treatment of diseases of ACTH excess.” Data Review Conference Call Crinetics will hold a conference call and live audio webcast today, August 10, 2021 at 4:30 p.m. Eastern Time to discuss the results of the CRN04894 SAD cohorts. To participate, please dial 800-772-3714 (domestic) or 212-271-4615 (international) and refer to conference ID 21996541. To access the webcast, please visit the Events page on the Crinetics website. The archived webcast will be available for 90 days. About the CRN04894-01 Phase 1 Study Crinetics is enrolling healthy volunteers in this double-blind, randomized, placebo-controlled Phase 1 study of CRN04894. Participants will be divided into multiple cohorts in the single ascending dose (SAD) and multiple ascending dose (MAD) phases of the study. In the SAD phase, safety and pharmacokinetics are assessed. In addition, pharmacodynamic responses are evaluated before and after challenges with injected synthetic ACTH to assess pharmacologic effects resulting from exposure to CRN04894. In the MAD phase, participants will be administered placebo or ascending doses of study drug daily for 10 days. Assessments of safety, pharmacokinetics and pharmacodynamics will also be performed after repeat dosing. About CRN04894 Adrenocorticotropic hormone (ACTH) is synthesized and secreted by the pituitary gland and binds to melanocortin type 2 receptor (MC2R), which is selectively expressed in the adrenal gland. This interaction of ACTH with MCR2 stimulates the adrenal production of cortisol, a stress hormone that is involved in the regulation of many systems. Cortisol is involved for example in the regulation of blood sugar levels, metabolism, inflammation, blood pressure, and memory formulation, and excess adrenal androgen production can result in hirsutism, menstrual dysfunction, infertility in men and women, acne, cardiometabolic comorbidities and insulin resistance. Diseases associated with excess of ACTH, therefore, can have significant impact on physical and mental health. Crinetics’ ACTH antagonist, CRN04894, has exhibited strong binding affinity for MC2R in preclinical models and demonstrated suppression of adrenally derived glucocorticoids and androgens that are under the control of ACTH, while maintaining mineralocorticoid production. About Cushing’s Disease and Congenital Adrenal Hyperplasia Cushing’s disease is a rare disease with a prevalence of approximately 10,000 patients in the United States. It is more common in women, between 30 and 50 years of age. Cushing’s disease often takes many years to diagnose and may well be under-diagnosed in the general population as many of its symptoms such as lethargy, depression, obesity, hypertension, hirsutism, and menstrual irregularity can be incorrectly attributed to other more common disorders. Congenital adrenal hyperplasia (CAH) encompasses a set of disorders that are caused by genetic mutations that result in impaired cortisol synthesis with a prevalence of approximately 27,000 patients in the United States. This lack of cortisol leads to a loss of feedback mechanisms and results in persistently high levels of ACTH, which in turn causes overstimulation of the adrenal cortex. The resulting adrenal hyperplasia and over-secretion of other steroids (particularly androgens) and steroid precursors can lead to a variety of effects from improper gonadal development to life-threatening adrenal crisis. About Crinetics Pharmaceuticals Crinetics Pharmaceuticals is a clinical stage pharmaceutical company focused on the discovery, development, and commercialization of novel therapeutics for rare endocrine diseases and endocrine-related tumors. The company’s lead product candidate, paltusotine, is an investigational, oral, selective nonpeptide somatostatin receptor type 2 agonist for the treatment of acromegaly, an orphan disease affecting more than 26,000 people in the United States. A Phase 3 program to evaluate safety and efficacy of paltusotine for the treatment of acromegaly is underway. Crinetics also plans to advance paltusotine into a Phase 2 trial for the treatment of carcinoid syndrome associated with neuroendocrine tumors. The company is also developing CRN04777, an investigational, oral, nonpeptide somatostatin receptor type 5 (SST5) agonist for congenital hyperinsulinism, as well as CRN04894, an investigational, oral, nonpeptide ACTH antagonist for the treatment of Cushing’s disease, congenital adrenal hyperplasia, and other diseases of excess ACTH. All of the company’s drug candidates are new chemical entities resulting from in-house drug discovery efforts and are wholly owned by the company. SOURCE: Crinetics Pharmaceuticals From https://pipelinereview.com/index.php/2021081178950/Small-Molecules/Crinetics-Pharmaceuticals-Oral-ACTH-Antagonist-CRN04894-Demonstrates-Pharmacologic-Proof-of-Concept-with-Dose-Dependent-Cortisol-Suppression-in-Single-Ascending-Dose-Port.html
    2 points
  21. All of our country is very encouraged by the declining rates in both COVID-19 infections and death, due mostly to President Trump’s vaccine production and trial effort called Operation Warp Speed and President Biden’s vaccine distribution efforts. As of July 2021, The United States has administered 334,600,770 doses of COVID-19 vaccines, 184,132,768 people had received at least one dose while 159,266,536 people are fully vaccinated. The pandemic is by no means over, as people are still getting infected with COVID-19 with the emergence of the Delta Variant. In fact, recently cases, hospitalizations and deaths due to COVID-19 have gone up. In Los Angeles, the increased infection rate has led to indoor mask requirements. The main reason that COVID-19 has not been eliminated is because of vaccine hesitancy, which is often due to misinformation propagated on websites and social media. One of Dr. Friedman's patients gave him a link of an alternative doctor who gave multiple episodes of misinformation subtitled “Evidence suggests people who have received the COVID “vaccine” may have a reduced lifespan” about the COVID-19 vaccine that Dr. Friedman wants to address. Almost 30% of American say they will not get the vaccine, up from 20% a few months ago. Statistics are that people who are vaccinated have a 1:1,000,000 chance of dying from COVID, while people who are unvaccinated have a 1:500 chance of dying from COVID. I think most people would take the 1:1,000,000 risk. Dr. Friedman has always been a proponent of the COVID-19 vaccine because he is a scientist and bases his decisions on peer-reviewed literature and not social media posts. As we are getting to the stage where the COVID-19 pandemic could end if vaccination rates increase, he feels that it is even more important for people to get correct information about the COVID-19 vaccine. MYTH: People are dying at high rates from the COVID-19 vaccine and the rates of complications and deaths are underreported. FACT: The rates of complications and deaths from the vaccine are overreported. It is a fact that when 200 million people get a vaccine, some of them will get blood clots, some of them will have a heart attack, some of them will have strokes, some of them will have optic neuritis and some will have Guillain-Barré syndrome. These complications may not be due to the vaccine, but people remember that they got the vaccine recently. Anti-vaccine websites seem to play up on this and give false information that COVID-19 complications are underreported and fail to note that there is no control group, so we do not know how many people would have gotten blood clots, strokes, and heart attacks if they did not get the vaccine. For example, one anti-vaccine website highlighted a Tamil (Indian) actor Vivek, who died of a massive heart attack 5 days after getting the COVID-19 vaccine and tried to make a case that the vaccine caused that. Of course, the massive heart attack was due to years of buildup of cholesterol in his coronary arteries and had nothing to do with the COVID-19 vaccine. In fact, the complications attributed to the COVID-19 vaccine occur less frequently in those vaccinated than unvaccinated. The only complication that seems to possibly be more common in people who get vaccinated is blood clots, and the rate of that is still quite low. Overwhelmingly, the COVID-19 vaccine is effective and safe. MYTH: I had COVID-19 before. I don't need a vaccine. Natural immunity is better than a vaccine immunity. FACT: Most studies have shown that the COVID-19 vaccines are more effective, with longer-lasting immunity, than only having the COVID-19 infection. The immunity after natural infection varies and may be quite minimal in patients who had mild COVID-19 and likely declines within a couple of months of infection. In contrast, those who got the vaccine seem to have high levels of immunity even months after getting the vaccine. The vaccine also protects against the COVID-19 variants. If someone had one variant, it is unlikely that their natural immunity would protect them against other variants. MYTH: The COVID-19 vaccine leads to spike proteins circulating in your body for months after the vaccine. FACT: The mRNA from the vaccine, the spike protein that it generates, and all of the products of the COVID-19 vaccine are gone within hours, if not days, and do not hang around the body. MYTH: There is likely to be long-term effects, including infertility effects, of the COVID-19 vaccine. FACT: As the viral particles and proteins are gone within a couple hours to days and the vaccine only enters the cytoplasm and does not enter the DNA, it is very unlikely that there will be long-term effects. So far, the clinical trials of the COVID-19 vaccine have not resulted in any detrimental effects, and it has been a year since the trials started. Other vaccines have been used safely and do not give long-term side effects. There is no reason to think that this vaccine would give long-term side effects, and we have not seen any evidence of long-term side effects currently. Pregnant women who received COVID-19 vaccines have similar rates adverse pregnancy and neonatal outcomes (e.g., fetal loss, preterm birth, small size for gestational age, congenital anomalies, and neonatal death) as with pregnant women who did not receive vaccines. MYTH: People with autoimmune disease should not get the vaccine. FACT: Persons with autoimmune disease are likely more susceptible to COVID-19, and they should especially get the vaccine. People with preexisting conditions, including autoimmune diseases, have been shown to be give generally excellent immune responses to the vaccine, and it should especially be given to patients with Addison’s disease or Cushing's disease who may have higher rates of getting more severe COVID-19. In fact, the CDC as well Dr. Friedman recommends EVERYONE getting the vaccine, except 1) those under 12, 2) those who had an anaphylactic reaction to their first COVID-19 vaccine. Patients with AIDS, and those on immunosuppressive therapy for cancers, organ transplants and rheumatological conditions, may not be fully protected from vaccines and should be cautious (including wearing masks and social distancing), but still should get vaccinated. MYTH: Patients with autoimmune diseases, and other conditions do not mount an adequate immune response to the vaccine and may even should get a booster shot. FACT: The only patients that have been found not to have a good immune response to the vaccine is those with AIDS or on immunosuppressive drugs that are used in people with rheumatological diseases or transplants. With these exception, patients appear to mount a good immune response to the vaccine regardless of their preexisting condition and do not need a booster shot. MYTH: Why should I bother with the vaccine if it is going to require a booster shot? FACT: It is unclear whether booster shots will be required or not. Currently, the CDC and FDA do not recommend a booster shot, but Pfizer has petitioned the FDA to consider it and is starting more studies on whether a booster shot is effective. It is currently believed that the vaccine retains effectiveness for months to years after it is given. MYTH: We are almost at herd immunity now. Why bother getting a vaccine? FACT: We are not at herd immunity as people are still getting sick and dying from COVID-19. Dr. Friedman recently lost to COVID-19 his 43-year old patient with obesity and diabetes at MLK Outpatient Center. There are pockets in the United States with low vaccine rates, especially in the South. The vaccine is spreading among unvaccinated people, while the rate of spread among vaccinated people is quite low. Approximately 98% of those hospitalized with COVID-19 are unvaccinated. It is important from a public health viewpoint for all Americans to get vaccinated. MYTH: There is nothing to be concerned with about the variants. FACT: Especially the delta variant appears to be more contagious and aggressive than the other variants currently. The vaccines do appear to be effective against the delta variant but possibly a little less so. Variants multiply and can generate new variants only if they are infected into patients who are unvaccinated. To end the emergence of new variants, it is important for all Americans to get vaccinated. MYTH: I could just be careful, and I will not get the COVID-19 vaccine. FACT: Thousands of people who were careful and got COVID-19 and either died from it or became extremely sick. The best prevention against getting COVID-19 is to get vaccinated. MYTH: I am young. I do not have to worry about getting COVID. FACT: Many young people have gotten sick and died of COVID-19 and also, they are contagious and can spread COVID-19 if they are not vaccinated. Everyone, regardless of their age, as long as they are over 12, should get vaccinated. MYTH: If children under 12 are not vaccinated, the virus will still spread. FACT: The FDA and CDC do not recommend the vaccine for those under 12. They are very unlikely to get COVID-19 and are very unlikely to transmit it to others. They are the one group that does not need to get vaccinated. MYTH: COVID-19 vaccines are an experimental vaccine. FACT: While it is true that the FDA approved COVID-19 vaccines were granted emergency use authorization in December 2020 (Pfizer and Moderna) and Johnson and Johnson in February 2021. Both Pfizer and Moderna have petitioned the FDA for full approval, but by no means are these vaccines experimental. As mentioned, over 180 million Americans and many more worldwide have received the vaccine. This is more than any other FDA approved medication. Clinical trials are still ongoing and have enrolled thousands of people and Israel has monitored the effect of COVID-19 vaccines in 7 million Israelis. MYTH: The COVID-19 vaccine is a government plot to kill or injure people or a war against G-d. FACT: Yeah right If you want the pandemic to end, please get vaccinated and encourage your friends and colleagues to get vaccinated. For more information or to schedule an appointment with Dr. Friedman, go to goodhormonehealth.com
    2 points
  22. Rachel Acree, Caitlin M Miller, Brent S Abel, Nicola M Neary, Karen Campbell, Lynnette K Nieman Journal of the Endocrine Society, Volume 5, Issue 8, August 2021, bvab109, https://doi.org/10.1210/jendso/bvab109 Abstract Context Cushing syndrome (CS) is associated with impaired health-related quality of life (HRQOL) even after surgical cure. Objective To characterize patient and provider perspectives on recovery from CS, drivers of decreased HRQOL during recovery, and ways to improve HRQOL. Design Cross-sectional observational survey. Participants Patients (n = 341) had undergone surgery for CS and were members of the Cushing’s Support and Research Foundation. Physicians (n = 54) were Pituitary Society physician members and academicians who treated patients with CS. Results Compared with patients, physicians underestimated the time to complete recovery after surgery (12 months vs 18 months, P = 0.0104). Time to recovery did not differ by CS etiology, but patients with adrenal etiologies of CS reported a longer duration of cortisol replacement medication compared with patients with Cushing disease (12 months vs 6 months, P = 0.0025). Physicians overestimated the benefits of work (26.9% vs 65.3%, P < 0.0001), exercise (40.9% vs 77.6%, P = 0.0001), and activities (44.8% vs 75.5%, P = 0.0016) as useful coping mechanisms in the postsurgical period. Most patients considered family/friends (83.4%) and rest (74.7%) to be helpful. All physicians endorsed educating patients on recovery, but 32.4% (95% CI, 27.3-38.0) of patients denied receiving sufficient information. Some patients did not feel prepared for the postsurgical experience (32.9%; 95% CI, 27.6-38.6) and considered physicians not familiar enough with CS (16.1%; 95% CI, 12.2-20.8). Conclusion Poor communication between physicians and CS patients may contribute to dissatisfaction with the postsurgical experience. Increased information on recovery, including helpful coping mechanisms, and improved provider-physician communication may improve HRQOL during recovery. Read the entire article in the enclosed PDF. bvab109.pdf
    2 points
  23. Mayela, I'm so sorry you went through COVID but glad you're on the other side of it now. And a relapse doesn't sound like any fun Thanks for the update on The GRACE trial, though. Please keep us updated on your recovery from COVID and your relapse.
    2 points
  24. Osilodrostat therapy was found to be effective in improving blood pressure parameters, health-related quality of life, depression, and other signs and symptoms in patients with Cushing disease, regardless of the degree of cortisol control, according to study results presented at the 30th Annual Scientific and Clinical Congress of the American Association of Clinical Endocrinologists (ENVISION 2021). Investigators of the LINC 3 study (ClinicalTrials.gov Identifier: NCT02180217), a phase 3, multicenter study with a double-blind, randomized withdrawal period, sought to assess the effects of twice-daily osilodrostat (2-30 mg) on signs, symptoms, and health-related quality of life in 137 patients with Cushing disease. Study endpoints included change in various parameters from baseline to week 48, including mean urinary free cortisol (mUFC) status, cardiovascular-related measures, physical features, Cushing Quality-of-Life score, and Beck Depression Inventory score. Participants were assessed every 2, 4, or 12 weeks depending on the study period, and eligible participants were randomly assigned 1:1 to withdrawal at week 24. The median age of participants was 40.0 years, and women made up 77.4% of the cohort. Of 137 participants, 132 (96%) achieved controlled mUFC at least once during the core study period. At week 24, patients with controlled or partially controlled mUFC showed improvements in blood pressure that were not seen in patients with uncontrolled mUFC; at week 48, improvement in blood pressure occurred regardless of mUFC status. Cushing Quality-of-Life and Beck Depression Inventory scores, along with other metabolic and cardiovascular risk factors, improved from baseline to week 24 and week 48 regardless of degree of mUFC control. Additionally, most participants reported improvements in physical features of hypercortisolism, including hirsutism, at week 24 and week 48. The researchers indicated that the high response rate with osilodrostat treatment was sustained during the 48 weeks of treatment, with 96% of patients achieving controlled mUFC levels; improvements in clinical signs, physical features, quality of life, and depression were reported even among patients without complete mUFC normalization. Disclosure: This study was sponsored by Novartis Pharma AG; however, as of July 12, 2019, osilodrostat is an asset of Recordati AG. Please see the original reference for a full list of authors’ disclosures. Visit Endocrinology Advisor‘s conference section for complete coverage from the AACE Annual Meeting 2021: ENVISION. Reference Pivonello R, Fleseriu M, Newell-Price J, et al. Effect of osilodrostat on clinical signs, physical features and health-related quality of life (HRQoL) by degree of mUFC control in patients with Cushing’s disease (CD): results from the LINC 3 study. Presented at: 2021 AACE Virtual Annual Meeting, May 26-29, 2021. From https://www.endocrinologyadvisor.com/home/conference-highlights/aace-2021/osilodrostat-improves-blood-pressure-hrqol-and-depression-in-patients-with-cushing-disease/
    2 points
  25. HRA Pharma Rare Diseases, an affiliate of privately-held French healthcare company HRA Pharma, has revealed data from the six-month extension of PROMPT, the first ever prospective study designed to evaluate metyrapone long-term efficacy and tolerability in endogenous Cushing’s syndrome. After confirming good efficacy and safety of metyrapone in the first phase of the study that ran for 12 weeks, the results of the six-month extension showed that metyrapone successfully maintains low urinary free cortisol (UFC) levels with good tolerability. The data will be presented at the European Congress of Endocrinology 2021 next week. Metyrapone is approved in Europe for the treatment of endogenous Cushing’s syndrome. It works by inhibiting the 11-beta-hydroxylase enzyme, the final step in cortisol synthesis. From https://www.thepharmaletter.com/in-brief/brief-metyrapone-effective-and-safe-in-endogenous-cushing-s-syndrome-in-long-term-says-hra-pharma-rare-diseases
    2 points
  26. WASHINGTON--Endogenous Cushing's syndrome, a rare hormonal disorder, is associated with a threefold increase in death, primarily due to cardiovascular disease and infection, according to a study whose results will be presented at ENDO 2021, the Endocrine Society's annual meeting. The research, according to the study authors, is the largest systematic review and meta-analysis to date of studies of endogenous (meaning "inside your body") Cushing's syndrome. Whereas Cushing's syndrome most often results from external factors--taking cortisol-like medications such as prednisone--the endogenous type occurs when the body overproduces the hormone cortisol, affecting multiple bodily systems. Accurate data on the mortality and specific causes of death in people with endogenous Cushing's syndrome are lacking, said the study's lead author, Padiporn Limumpornpetch, M.D., an endocrinologist from Prince of Songkla University, Thailand and Ph.D. student at the University of Leeds in Leeds, U.K. The study analyzed death data from more than 19,000 patients in 92 studies published through January 2021. "Our results found that death rates have fallen since 2000 but are still unacceptably high," Limumpornpetch said. Cushing's syndrome affects many parts of the body because cortisol responds to stress, maintains blood pressure and cardiovascular function, regulates blood sugar and keeps the immune system in check. The most common cause of endogenous Cushing's syndrome is a tumor of the pituitary gland called Cushing's disease, but another cause is a usually benign tumor of the adrenal glands called adrenal Cushing's syndrome. All patients in this study had noncancerous tumors, according to Limumpornpetch. Overall, the proportion of death from all study cohorts was 5 percent, the researchers reported. The standardized mortality ratio--the ratio of observed deaths in the study group to expected deaths in the general population matched by age and sex--was 3:1, indicating a threefold increase in deaths, she stated. This mortality ratio was reportedly higher in patients with adrenal Cushing's syndrome versus Cushing's disease and in patients who had active disease versus those in remission. The standardized mortality ratio also was worse in patients with Cushing's disease with larger tumors versus very small tumors (macroadenomas versus microadenomas). On the positive side, mortality rates were lower after 2000 versus before then, which Limumpornpetch attributed to advances in diagnosis, operative techniques and medico-surgical care. More than half of observed deaths were due to heart disease (24.7 percent), infections (14.4 percent), cerebrovascular diseases such as stroke or aneurysm (9.4 percent) or blood clots in a vein, known as thromboembolism (4.2 percent). "The causes of death highlight the need for aggressive management of cardiovascular risk, prevention of thromboembolism and good infection control and emphasize the need to achieve disease remission, normalizing cortisol levels," she said. Surgery is the mainstay of initial treatment of Cushing's syndrome. If an operation to remove the tumor fails to put the disease in remission, other treatments are available, such as medications. Study co-author Victoria Nyaga, Ph.D., of the Belgian Cancer Centre in Brussels, Belgium, developed the Metapreg statistical analysis program used in this study. ### Endocrinologists are at the core of solving the most pressing health problems of our time, from diabetes and obesity to infertility, bone health, and hormone-related cancers. The Endocrine Society is the world's oldest and largest organization of scientists devoted to hormone research and physicians who care for people with hormone-related conditions. The Society has more than 18,000 members, including scientists, physicians, educators, nurses and students in 122 countries. To learn more about the Society and the field of endocrinology, visit our site at http://www.endocrine.org. Follow us on Twitter at @TheEndoSociety and @EndoMedia. Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system. From https://www.eurekalert.org/pub_releases/2021-03/tes-lao031621.php
    2 points
  27. Context Late-night salivary cortisol (LNSC) measured by enzyme immunoassay (EIA-F) is a first-line screening test for Cushing’s syndrome (CS) with a reported sensitivity and specificity of >90%. However, liquid chromatography-tandem mass spectrometry, validated to measure salivary cortisol (LCMS-F) and cortisone (LCMS-E), has been proposed to be superior diagnostically. Objective, Setting, and Main Outcome Measures Prospectively evaluate the diagnostic performance of EIA-F, LCMS-F, and LCMS-E in 1453 consecutive late-night saliva samples from 705 patients with suspected CS. Design Patients grouped by the presence or absence of at least one elevated salivary steroid result and then subdivided by diagnosis. Results We identified 283 patients with at least one elevated salivary result; 45 had an established diagnosis of neoplastic hypercortisolism (CS) for which EIA-F had a very high sensitivity (97.5%). LCMS-F and LCMS-E had lower sensitivity but higher specificity than EIA-F. EIA-F had poor sensitivity (31.3%) for ACTH-independent CS (5 patients with at least one and 11 without any elevated salivary result). In patients with Cushing’s disease (CD), most non-elevated LCMS-F results were in patients with persistent/recurrent CD; their EIA-F levels were lower than in patients with newly diagnosed CD. Conclusions Since the majority of patients with ≥1 elevated late-night salivary cortisol or cortisone result did not have CS, a single elevated level has poor specificity and positive predictive value. LNSC measured by EIA is a sensitive test for ACTH-dependent Cushing’s syndrome but not for ACTH-independent CS. We suggest that neither LCMS-F nor LCMS-E improves the sensitivity of late-night EIA-F for CS. Cushing’s disease, ectopic ACTH, adrenal Cushing’s syndrome, diagnosis, assay performance Issue Section: Clinical Research Article From https://academic.oup.com/jes/advance-article/doi/10.1210/jendso/bvaa107/5876040
    2 points
  28. Presented by Georgios A. Zenonos, MD Assistant Professor of Neurological Surgery Associate Director, Center for Skull Base Surgery University of Pittsburgh Medical Center 200 Lothrop Street, Pittsburgh PA, 15217 Presbyterian Hospital, Suite B400 Register Now! After registering you will receive a confirmation email containing information about joining the Webinar. Date: Wednesday July 1, 2020 Time: 3:00 PM Pacific Daylight Time, 6:00 PM Eastern Daylight Time
    2 points
  29. Unfortunately a 4:30 pm cortisol test can't be used to diagnose or exclude Cushing's. The only useful blood measurement for cortisol would be a midnight one. You really need to do a 24 hour urinary cortisol test.
    2 points
  30. Welcome, Ellie. I can't image how hard it would be to get a diagnosis (or not!) during these COVID times. Unfortunately, results from blood tests aren't going to be the answer - just a part of an answer. You need to get UFCs (urine free cortisol) Do you need to get a referral to an endo? They are the best to diagnose Cushing's - if you get one who is familar with testing. That's the important part. Not all endos "believe in Cushing's" which is incredible to me. Unfortunately, there's no real way of speeding a Cushing's diagnosis along. And, I don't think you'd want to (although I did when I was in the diagnosis phase!) You want to be absolutely sure that this is what you have AND the source - pituitary, adrenal, ectopic, steroid-induced... Best of luck to you and please keep us posted.
    2 points
  31. Dr. Friedman will discuss topics including: Who should get an adrenalectomy? How do you optimally replace adrenal hormones? What laboratory tests are needed to monitor replacement? When and how do you stress dose? What about subcut cortisol versus cortisol pumps? Patient Melissa will lead a Q and A Sunday • May 17 • 6 PM PST Click here on start your meeting or https://axisconciergemeetings.webex.com/axisconciergemeetings/j.php?MTID=mb896b9ec88bc4e1163cf4194c55b248f OR Join by phone: (855) 797-9485 Meeting Number (Access Code): 802 841 537 Your phone/computer will be muted on entry. Slides will be available on the day of the talk here There will be plenty of time for questions using the chat button. Meeting Password: addison
    2 points
  32. Hello Mary & dear Cushies!! I’ve just discovered this article two months ago and I was very pleased to speak directly to Dr. Gerardo Burton. He and his team developed a drug (21OH-6OP) which is a SPECIFIC antagonist for cortisol receptors, unlikely mifepristone which inhibits cortisol AND progesterone with so many undesired adverse effects. Unfortunately the pharmaceutical company didn’t choose this drug to start the clinical trials and so it is resting in Dr. Burton’s lab.... since 2007. The great humanity in Dr. Burton drop tears into my eyes when he told me that he would like that his whole work could help at least somebody to improve their quality of life. As a Cushing’s disease survivor ten years ago ... and now with a relapse of Cushing’s syndrome I keep wondering how is it possible that Dr. Burton’s work remains unknown, wasted, buried and in oblivion. For any of us either with Cushing’s Disease or Syndrome this drug is like the light at the end of the tunnel... I wish I could explain all this as clearly as I intended... and the reason why I post this topic is because I promised Dr. Burton I would try to help him to make his work known specially for all of us... and if somebody can help with a FDA contact and make this story known to them... that would be of so much help!!! Thank to all of you for reading this, my best wishes for all... stay safe this pandemic Regards from Querétaro, México Mayela https://www.intramed.net/contenidover.asp?contenidoid=48298
    2 points
  33. Hello Mary!! Thank you for replying!! It was a surprise for me having a relapse... I never knew or even heard it could happen... but last year I began to feel sooooo bad... and as I’ve had so many difficulties with the doctors I consulted the first time (I visited 40 doctors in ten years ... and only 3 of them understood my symptoms)... I decided to go to the laboratory by myself and asked them to perform the tests I thought I might have needed. And so I saw the cortisol beginning to increase ... but this January I presented a tachyarrhytmia sincope and although cardiologists intended to get me through a lot of heart testing I KNEW it was high cortisol levels again which led to this condition. And that is how it was... my cortisol was twice the normal levels... and again I went to an endocrinologist and she told me ... you have Cushing again... you can imagine it’s been the worst déjà-vu in my life. The etiology of my Cushing’s Disease the first time was very uncommon, as I thankfully never had any ACTH or cortisol secreting tumor, but I presented very high levels of cortisol (over ten times normal levels) and of ACTH, beyond high levels of other pituitary hormones: prolactine , TSH, FSH, LH ( a condition known as PANHYPERPITUITARISM) besides insulin, estrogens and so on... except for somatotropin (growth hormone), almost all of my hormones were in very high levels... and I was almost dying. Ten years and forty doctors later my neurosurgeon discovered in my latest MRI that besides I had a pituitary lesion that didn’t light up in the scan, my pituitary stalk and my hypothalamus (as well as the pituitary gland -presenting empty sella) were completely compressed by a suprasellar arachnoides cyst (meninges cyst), so that the hypothalamus hormones that regulated the pituitary hormones to stop over producing were stuck and never reached the pituitary... so it (pituitary gland) was continually producing all kind of hormones (except GH) without stopping. Finally in 2009 I had a neurosurgery resecting the meninges cyst, hoping that reliefing the pituitary stalk could lead hypothalamus hormones to reach the pituitary and regulate it to a normal hormone release... and so it happened!!! A month after neurosurgery my pituitary hormones levels were totally normal as well as my cortisol... and little by little the rest of almost my other health issues released... it took me over five years to have my liver in optimal conditions (Normal oxaloacetic and pyruvic transaminases) and to leave my diabetes medication at all controlling it only with a strict diet. So the last five years I’ve just struggled with hypertension , hypoglucemia and hypotiroidism (Primary subclicinal)... until last year ... I couldn’t understand what was happening to me... I couldn’t move my muscles.. extreme fatigue and great muscle pain... so I had my doubts and was checking upon suspicious high cortisol levels. This time as well as the first time I suppress cortisol with the dexametasona test... which indicates I do not over produce cortisol because of a tumor... so the etiology is again different from what’s common. And now my latest doctor has told me that my over production of cortisol is due to my previous Cushing’s disease and panhyperpituitarism and not because any possible ACTH or cortisol tumor. I decided to investigate what could help me to stop over producing cortisol and so I found Dr. Burton’s work. After founding out his investigation was still in the dark... well I decided to help him making his work known through your Forum... but I also needed help and so I continued researching and I found Isturisa (osilodrostat - LCI-699) which had just been approved in the EU this January. And so I spoke to the Director of Recordati Rare Diseases in México City and he told me that with my diagnosis and prescription they could send me the medication. As the annual treatment is about 55K euros, they are now helping me through IMSS (Mexican Institute of Social Security) so that the Mexican Federal Government can provide me the medication at no cost for the time I need it... it’s an administrative process but we’re starting it and we expect to have good results. And by far this is how my story goes... I know it was a long reply... but I think it is important for all of us to know this uncommon etiology of the Disease... because it took me over ten years and plenty of pain and suffering to get to the point of what was causing my over production of ACTH, cortisol and almost the whole of hormones in my body... and as my neurosurgeon told me... this etiology of Cushing’s Disease doesn’t even appear in medicine books .... So I hope my medical case can help anybody that unfortunately could be in this position to find quick answers from their doctors... and maybe teach them something as I did. Thank you very much for reading this... my best wishes... stay safe ... blessings!! Regards from Querétaro México MAYELA
    2 points
  34. Thank you so much, Mayela - I'll definitely check this out. We need all the help we can get and I'm glad that Dr. Burton is trying to help Cushing's patients. 13 years is a long time to withhold a potentially helpful drug. I'm so sorry you're having a relapse Are you planning another pituitary surgery, BLA or something else?
    2 points
  35. Cushing syndrome, a rare endocrine disorder caused by abnormally excessive amounts of the hormone cortisol, has a new pharmaceutical treatment to treat cortisol overproduction. Osilodrostat (Isturisa) is the first FDA approved drug who either can’t undergo pituitary gland surgery or have undergone the surgery but still have the disease. The oral tablet functions by blocking the enzyme responsible for cortisol synthesis, 11-beta-hydroxylase. “Until now, patients in need of medications…have had few approved options, either with limited efficacy or with too many adverse effects. With this demonstrated effective oral treatment, we have a therapeutic option that will help address patients' needs in this underserved patient population," said Maria Fleseriu, MD, FACE, professor of medicine and neurological surgery and director of the Pituitary Center at Oregon Health Sciences University. Cushing disease is caused by a pituitary tumor that releases too much of the hormone that stimulates cortisol production, adrenocorticotropin. This causes excessive levels of cortisol, a hormone responsible for helping to maintain blood sugar levels, regulate metabolism, help reduce inflammation, assist in memory formulation, and support fetus development during pregnancy. The condition is most common among adults aged 30-50 and affects women 3 times more than men. Cushing disease can lead to a number of medical issues including high blood pressure, obesity, type 2 diabetes, blood clots in the arms and legs, bone loss and fractures, a weakened immune system, and depression. Patients with Cushing disease may also have thin arms and legs, a round red full face, increased fat around the neck, easy bruising, striae (purple stretch marks), or weak muscles. Side effects of osilodrostat occurring in more than 20% of patients are adrenal insufficiency, headache, nausea, fatigue, and edema. Other side effects can include vomiting, hypocortisolism (low cortisol levels), QTc prolongation (heart rhythm condition), elevations in adrenal hormone precursors (inactive substance converted into hormone), and androgens (hormone that regulated male characteristics). Osilodrostat’s safety and effectiveness was evaluated in a study consisting of 137 patients, of which about 75% were women. After a 24-week period, about half of patients had achieved normal cortisol levels; 71 successful cases then entered an 8-week, double-blind, randomized withdrawal study where 86% of patients receiving osilodrostat maintained normal cortisol levels, compared with 30% who were taking a placebo. In January 2020, the European Commission also granted marketing authorization for osilodrostat. From https://www.ajmc.com/newsroom/patients-with-cushing-have-new-nonsurgical-treatment-option
    2 points
  36. The U.S. Food and Drug Administration today approved Isturisa (osilodrostat) oral tablets for adults with Cushing's disease who either cannot undergo pituitary gland surgery or have undergone the surgery but still have the disease. Cushing's disease is a rare disease in which the adrenal glands make too much of the cortisol hormone. Isturisa is the first FDA-approved drug to directly address this cortisol overproduction by blocking the enzyme known as 11-beta-hydroxylase and preventing cortisol synthesis. "The FDA supports the development of safe and effective treatments for rare diseases, and this new therapy can help people with Cushing's disease, a rare condition where excessive cortisol production puts them at risk for other medical issues," said Mary Thanh Hai, M.D., acting director of the Office of Drug Evaluation II in the FDA's Center for Drug Evaluation and Research. "By helping patients achieve normal cortisol levels, this medication is an important treatment option for adults with Cushing's disease." Cushing's disease is caused by a pituitary tumor that releases too much of a hormone called adrenocorticotropin, which stimulates the adrenal gland to produce an excessive amount of cortisol. The disease is most common among adults between the ages of 30 to 50, and it affects women three times more often than men. Cushing's disease can cause significant health issues, such as high blood pressure, obesity, type 2 diabetes, blood clots in the legs and lungs, bone loss and fractures, a weakened immune system and depression. Patients may have thin arms and legs, a round red full face, increased fat around the neck, easy bruising, striae (purple stretch marks) and weak muscles. Isturisa's safety and effectiveness for treating Cushing's disease among adults was evaluated in a study of 137 adult patients (about three-quarters women) with a mean age of 41 years. The majority of patients either had undergone pituitary surgery that did not cure Cushing's disease or were not surgical candidates. In the 24-week, single-arm, open-label period, all patients received a starting dose of 2 milligrams (mg) of Isturisa twice a day that could be increased every two weeks up to 30 mg twice a day. At the end of this 24-week period, about half of patients had cortisol levels within normal limits. After this point, 71 patients who did not need further dose increases and tolerated the drug for the last 12 weeks entered an eight-week, double-blind, randomized withdrawal study where they either received Isturisa or a placebo (inactive treatment). At the end of this withdrawal period, 86% of patients receiving Isturisa maintained cortisol levels within normal limits compared to 30% of patients taking the placebo. The most common side effects reported in the clinical trial for Isturisa were adrenal insufficiency, headache, vomiting, nausea, fatigue and edema (swelling caused by fluid retention). Hypocortisolism (low cortisol levels), QTc prolongation (a heart rhythm condition) and elevations in adrenal hormone precursors (inactive substance converted into a hormone) and androgens (hormone that regulates male characteristics) may also occur in people taking Isturisa. Isturisa is taken by mouth twice a day, in the morning and evening as directed by a health care provider. After treatment has started, a provider may re-evaluate dosage, depending upon the patient's response. Isturisa received Orphan Drug Designation, which is a special status granted to a drug intended to treat a rare disease or condition. The FDA granted the approval of Isturisa to Novartis. Media Contact: Monique Richards, 240-402-3014 Consumer Inquiries: Email, 888-INFO-FDA The FDA, an agency within the U.S. Department of Health and Human Services, protects the public health by assuring the safety, effectiveness, and security of human and veterinary drugs, vaccines and other biological products for human use, and medical devices. The agency also is responsible for the safety and security of our nation's food supply, cosmetics, dietary supplements, products that give off electronic radiation, and for regulating tobacco products. SOURCE U.S. Food and Drug Administration Related Links http://www.fda.gov From https://www.prnewswire.com/news-releases/fda-approves-new-treatment-for-adults-with-cushings-disease-301019293.html
    2 points
  37. MENLO PARK, Calif., Aug. 28, 2019 (GLOBE NEWSWIRE) -- Corcept Therapeutics Incorporated (NASDAQ: CORT) announced today that the United States Patent and Trademark Office has issued a Notice of Allowance for a patent covering the administration of Korlym® with food. The patent will expire in November 2032. “This patent covers an important finding of our research – that for optimal effect, Korlym must be taken with food,” said Joseph K. Belanoff, MD, Corcept’s Chief Executive Officer. “Korlym’s label instructs doctors that ‘Korlym must always be taken with a meal.’” Upon issuance, Corcept plans to list the patent, entitled “Optimizing Mifepristone Absorption” (U.S. Pat. App. 13/677,465), in the U.S. Food and Drug Administration’s Approved Drug Products with Therapeutic Equivalence Evaluations (the “Orange Book”). Korlym is currently protected by ten patents listed in the Orange Book. Hypercortisolism Hypercortisolism, often referred to as Cushing’s syndrome, is caused by excessive activity of the hormone cortisol. Endogenous Cushing’s syndrome is an orphan disease that most often affects adults aged 20-50. In the United States, an estimated 20,000 patients have Cushing’s syndrome, with about 3,000 new patients diagnosed each year. Symptoms vary, but most people with Cushing’s syndrome experience one or more of the following manifestations: high blood sugar, diabetes, high blood pressure, upper-body obesity, rounded face, increased fat around the neck, thinning arms and legs, severe fatigue and weak muscles. Irritability, anxiety, cognitive disturbances and depression are also common. Hypercortisolism can affect every organ system in the body and can be lethal if not treated effectively. About Corcept Therapeutics Incorporated Corcept is a commercial-stage company engaged in the discovery and development of drugs that treat severe metabolic, oncologic and psychiatric disorders by modulating the effects of the stress hormone cortisol. Korlym® (mifepristone) was the first treatment approved by the U.S. Food and Drug Administration for patients with Cushing’s syndrome. Corcept has discovered a large portfolio of proprietary compounds, including relacorilant, exicorilant and miricorilant, that selectively modulate the effects of cortisol but not progesterone. Corcept owns extensive United States and foreign intellectual property covering the composition of its selective cortisol modulators and the use of cortisol modulators, including mifepristone, to treat a variety of serious disorders. Forward-Looking Statements Statements in this press release, other than statements of historical fact, are forward-looking statements, which are based on Corcept’s current plans and expectations and are subject to risks and uncertainties that might cause actual results to differ materially from those such statements express or imply. These risks and uncertainties include, but are not limited to, Corcept’s ability to generate sufficient revenue to fund its commercial operations and development programs; the availability of competing treatments, including generic versions of Korlym; Corcept’s ability to obtain acceptable prices or adequate insurance coverage and reimbursement for Korlym; and risks related to the development of Corcept’s product candidates, including regulatory approvals, mandates, oversight and other requirements. These and other risks are set forth in Corcept’s SEC filings, which are available at Corcept’s website and the SEC’s website. In this press release, forward-looking statements include those concerning Corcept’s plans to list the patent “Optimizing Mifepristone Absorption” in the Orange Book; Korlym’s current protection by ten patents listed in the Orange Book; and the scope and protective power of Corcept’s intellectual property. Corcept disclaims any intention or duty to update forward-looking statements made in this press release. CONTACT: Christopher S. James, MD Director, Investor Relations Corcept Therapeutics 650-684-8725 cjames@corcept.com www.corcept.com
    2 points
  38. It sure sounds like you're on the right track!
    2 points
  39. I received my dictation from Doctor F.. I pray that I am on the road to a diagnosis. I don’t know how much more of this I can take.
    2 points
  40. Metoclopramide, a gastrointestinal medicine, can increase cortisol levels after unilateral adrenalectomy — the surgical removal of one adrenal gland — and conceal adrenal insufficiency in bilateral macronodular adrenal hyperplasia (BMAH) patients, a case report suggests. The study, “Retention of aberrant cortisol secretion in a patient with bilateral macronodular adrenal hyperplasia after unilateral adrenalectomy,” was published in Therapeutics and Clinical Risk Management. BMAH is a subtype of adrenal Cushing’s syndrome, characterized by the formation of nodules and enlargement of both adrenal glands. In this condition, the production of cortisol does not depend on adrenocorticotropic hormone (ACTH) stimulation, as usually is the case. Instead, cortisol production is triggered by a variety of stimuli, such as maintaining an upright posture, eating mixed meals — those that contain fats, proteins, and carbohydrates — or exposure to certain substances. A possible treatment for this condition is unilateral adrenalectomy. However, after the procedure, some patients cannot produce adequate amounts of cortisol. That makes it important for clinicians to closely monitor the changes in cortisol levels after surgery. Metoclopramide, a medicine that alleviates gastrointestinal symptoms and is often used during the postoperative period, has been reported to increase the cortisol levels of BMAH patients. However, the effects of metoclopramide on BMAH patients who underwent unilateral adrenalectomy are not clear. Researchers in Japan described the case of a 61-year-old postmenopausal woman whose levels of cortisol remained high after surgery due to metoclopramide ingestion. The patient was first examined because she had experienced high blood pressure, abnormal lipid levels in the blood, and osteoporosis for ten years. She also was pre-obese. She was given medication to control blood pressure with no results. The lab tests showed high serum cortisol and undetectable levels of ACTH, suggesting adrenal Cushing’s syndrome. Patients who have increased cortisol levels, but low levels of ACTH, often have poor communication between the hypothalamus, the pituitary, and the adrenal glands. These three glands — together known as the HPA axis — control the levels of cortisol in healthy people. Imaging of the adrenal glands revealed they were both enlarged and presented nodules. The patient’s cortisol levels peaked after taking metoclopramide, and her serum cortisol varied significantly during the day while ACTH remained undetectable. These results led to the BMAH diagnosis. The doctors performed unilateral adrenalectomy to control cortisol levels. The surgery was successful, and the doctors reduced the dose of glucocorticoid replacement therapy on day 6. Eight days after the surgery, however, the patient showed decreased levels of fasting serum cortisol, which indicated adrenal insufficiency — when the adrenal glands are unable to produce enough cortisol. The doctors noticed that metoclopramide was causing an increase in serum cortisol levels, which made them appear normal and masked the adrenal insufficiency. They stopped metoclopramide treatment and started replacement therapy (hydrocortisone) to control the adrenal insufficiency. The patient was discharged 10 days after the surgery. The serum cortisol levels were monitored on days 72 and 109 after surgery, and they remained lower than average. Therefore she could not stop hydrocortisone treatment. The levels of ACTH remained undetectable, suggesting that the communication between the HPA axis had not been restored. “Habitual use of metoclopramide might suppress the hypothalamus and pituitary via negative feedback due to cortisol excess, and lead to a delayed recovery of the HPA axis,” the researchers said. Meanwhile, the patient’s weight decreased, and high blood pressure was controlled. “Detailed surveillance of aberrant cortisol secretion responses on a challenge with exogenous stimuli […] is clinically important in BMAH patients,” the study concluded. “Caution is thus required for assessing the actual status of the HPA axis.” From https://cushingsdiseasenews.com/2019/05/07/metoclopramide-conceals-adrenal-insufficiency-after-gland-removal-bmah-patients-case-report/
    2 points
  41. This is such great news, Donna - the endo sounds fantastic. Can you please share his info with others so that they might have a faster diagnosis, too? Hopefully, surgery will be soon and on to remission!
    2 points
  42. I never had a hump but still had Cushing's. Unfortunately your symptoms (and most Cushing's symptoms) can also be caused by other medical conditions so it's important to test everything and if you're concerned about Cushing's I would do some cortisol testing if you haven't already. Have you done any 24 hour urinary free cortisol tests? or had your ACTH checked?
    2 points
  43. Abstract Summary This case report describes a rare presentation of ectopic Cushing’s syndrome (CS) due to ectopic corticotropin-releasing hormone (CRH) production from a medullary thyroid carcinoma (MTC). The patient, a 69-year-old man, presented with symptoms of muscle weakness, facial plethora, and easy bruising. An inferior petrosal sinus sampling test (IPSS) demonstrated pituitary adrenocorticotrophic hormone (ACTH) secretion, but a whole-body somatostatin receptor scintigraphy (68Ga-DOTATOC PET/CT) revealed enhanced uptake in the right thyroid lobe which, in addition to a grossly elevated serum calcitonin level, was indicative of an MTC. A 18F-DOPA PET/CT scan supported the diagnosis, and histology confirmed the presence of MTC with perinodal growth and regional lymph node metastasis. On immunohistochemical analysis, the tumor cell stained positively for calcitonin and CRH but negatively for ACTH. Distinctly elevated plasma CRH levels were documented. The patient therefore underwent thyroidectomy and bilateral adrenalectomy. This case shows that CS caused by ectopic CRH secretion may masquerade as CS due to a false positive IPSS test. It also highlights the importance of considering rare causes of CS when diagnostic test results are ambiguous. Learning points Medullary thyroid carcinoma may secrete CRH and cause ectopic CS. Ectopic CRH secretion entails a rare pitfall of inferior petrosal sinus sampling yielding a false positive test. Plasma CRH measurements can be useful in selected cases. Keywords: Adult; Male; White; Denmark; Pituitary; Pituitary; Thyroid; Error in diagnosis/pitfalls and caveats; September; 2023 Background The common denominator of Cushing’s syndrome (CS) is autonomous hypersecretion of cortisol (1) and it is subdivided into ACTH-dependent and ACTH-independent causes. The majority of CS cases are ACTH-dependent (80–85%) with a pituitary corticotroph tumor as the most prevalent cause (Cushing’s disease), and less frequently an ectopic ACTH-producing tumor (2). The gold standard method to ascertain the source of ACTH secretion in CS patients is inferior petrosal sinus sampling (IPSS) with measurement of plasma ACTH levels in response to systemic corticotropin-releasing hormone (CRH) stimulation (3). The IPSS has a very high sensitivity and specificity of 88–100% and 67–100%, respectively (4), but pitfalls do exist, including the rare ectopic CRH-producing tumor, which may yield a false positive test result (3). Here, we describe a very rare case masquerading as CS including a positive IPSS test. Case presentation A 69-year-old man presented at a local hospital with a 6-month history of progressive fatigue, muscle weakness and wasting, easy bruising, facial plethora, and fluid retention. His serum potassium level was 2.6 mmol/L (reference range: 3.5–4.2 mmol/L) without a history of diuretics use. His previous medical history included spinal stenosis, benign prostatic hyperplasia, and hypertension. An electromyography showed no sign of polyneuropathy and an echocardiography showed no signs of heart failure with an ejection fraction of 55%. MRI of the spine revealed multiple compression fractures, and the patient underwent spinal fusion and decompression surgery; during this admission he was diagnosed with type 2 diabetes (HbA1c: 55 mmol/mol). After spine surgery, the patient developed a pulmonary embolism and initiated treatment with rivaroxaban. Establishing the diagnosis of ACTH-dependent CS Six months after his spine surgery, the patient was referred to the regional department of endocrinology for osteoporosis management. Blood tests revealed a low serum testosterone level with non-elevated luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels (Table 1). An overnight 1 mg dexamethasone suppression test was positive with a morning cortisol level of 254 nmol/L and three consecutive 24-h urinary cortisol levels were markedly elevated with mean level of ≈600 nmol/24 h (reference range: 12–150 nmol/24 h). A single plasma ACTH was 37 ng/L (Table 1). Table 1 Baseline endocrine assessment. Parameters Patient’s values Reference range ACTH, ng/L 37 7–64 UFC, nmol/day 588 12–150 Urinary cortisol, nmol/L 600 171–536 OD, nmol/L 254 <50 Free testosterone, nmol/L 0.061 0.17–0.59 HbA1c, mmol/mol 55 <48 FSH, IU/L 7.4 1.2–15.8 LH, IU/L 2.2 1.7–8.6 ACTH, adrenocorticotropin; FSH, follicle-stimulating hormone; IU, international units; LH, luteinizing hormone; OD, plasma cortisol levels after a 1 mg overnight dexamethasone suppression test; UFC, urine free cortisol hormone. Differential diagnostic tests The patient was referred to a tertiary center for further examinations. Ketoconazole treatment was started to alleviate the consequences of hypercortisolism. A pituitary MRI revealed an intrasellar microtumor with a maximal diameter of 6 mm and an IPSS was ordered. A whole-body somatostatin receptor scintigraphy (68Ga-DOTATOC PET/CT) was also performed to evaluate the presence of a potential neuroendocrine tumor. This revealed multiple areas of enhanced uptake including the right thyroid lobe and cervical lymph nodes in the neck (with CT correlates), as well as in the duodenum (with no CT correlate). Concomitantly, a grossly elevated serum calcitonin level of 528 pmol/L (reference range <2.79 pmol/L) was measured. Subsequently, the IPSS revealed pituitary ACTH secretion with a central-to-peripheral ACTH ratio >3 (Table 2). The right petrosal sinus was not successfully catheterized; thus, lateralization could not be determined. To corroborate the diagnosis MTC, a 18F-DOPA PET/CT scan (FDOPA) was performed (5), which showed pathologically enhanced uptake in the right thyroid lobe and regional lymph nodes (Fig. 1). An ultrasound-guided core needle biopsy from the thyroid nodule was inconclusive; however, the patient underwent total thyroidectomy and regional lymph node resection, from which histology confirmed the diagnosis of disseminated MTC. Standard replacement with levothyroxine, calcium, and vitamin D was initiated. A blood sample was collected, and genomic DNA was extracted. The DNA analysis for RET germline mutation was negative. View Full Size Figure 1 18F-DOPA PET/CT scan with pathologically enhanced uptake in the right thyroid lobe (large blue arrow on the left side) and regional lymph nodes (small blue arrows). Citation: Endocrinology, Diabetes & Metabolism Case Reports 2023, 3; 10.1530/EDM-23-0057 Download Figure Download figure as PowerPoint slide Table 2 Results from the inferior petrosal sinus sampling.* Time (min) Left IPSS Peripheral L/P -5 42 36 1.2 -1 116 33 3.5 2 120 32 3.8 5 209 28 7.5 7 180 43 4.2 10 529 34 15.6 15 431 37 11.6 *Data represents ACTH levels in ng/L. IPSS Inferior petrosal sampling ACTH Adrenocorticotropin hormone CRH Corticotropin-releasing hormone, L/P Ratio of left (L) inferior petrosal sinus to peripheral venous ACTH concentrations. Pathology Total thyroidectomy and bilateral cervical lymph node dissection (level six and seven) were performed. Macroscopic evaluation of the right thyroid lobe revealed a 24 mm, irregular solid yellow tumor. Microscopically the tumor showed an infiltrating architecture with pseudofollicles and confluent solid areas. Calcification was prominent, but no amyloid deposition was seen. The tumor cells were pleomorphic with irregular nuclei and heterogenic chromatin structure. No mitotic activity or necrosis was observed. On immunohistochemical analysis, the tumor cells expressed thyroid transcription factor 1 and stained strongly for carcinoembryonic antigen and calcitonin; tumor cells were focally positive for cytokeratin 19. The tumor was completely negative for ACTH, thyroid peroxidase, and the Hector Battifora mesothelial-1 antigen. Further analysis revealed positive immunostaining for CRH (Fig. 2). The Ki-67 index was very low (0–1%), indicating a low cellular proliferation. Molecular testing for somatic RET mutation was not performed. View Full Size Figure 2 Histopathological findings and immunohistochemical studies of MTC. (A) Microscopic features of medullary thyroid carcinoma. (B) Polygonal tumor cells (hematoxylin and eosin, ×40). (C) Tumor cells stain for calcitonin (×20). (D) Immunohistochemical stain (×400) for CRH showing cells being positive (brown). (E) Pituitary tissue from healthy control staining positive for ACTH in comparison to (F) ACTH-negative cells MTC tissue from the patient (×20). Citation: Endocrinology, Diabetes & Metabolism Case Reports 2023, 3; 10.1530/EDM-23-0057 Download Figure Download figure as PowerPoint slide No malignancy was found in the left thyroid lobe and there was no evidence of C-cell hyperplasia. Regional lymph node metastasis was found in 13 out of 15 nodes with extranodal extension. Outcome and follow-up Follow-up Serum calcitonin levels declined after neck surgery but remained grossly elevated (118 pmol/L 3 weeks post surgery) and cortisol levels remained high. Ketoconazole treatment was poorly tolerated and not sufficiently effective. Plasma levels of CRH were measured by a competitive-ELISA kit (EKX-KIZI6R-96 Nordic BioSite), according to the instructions provided by the manufacturer. The intra- and interassay %CV (coefficient of variability) were below 8% and 10%, respectively, and the assay sensitivity was 1.4 pg/mL. The plasma CRH was distinctly elevated compared to in-house healthy controls both before and after thyroid surgery (Fig. 3). View Full Size Figure 3 Plasma CRH levels before and after total thyroidectomy compared to three healthy controls. Citation: Endocrinology, Diabetes & Metabolism Case Reports 2023, 3; 10.1530/EDM-23-0057 Download Figure Download figure as PowerPoint slide The patient subsequently underwent uneventful bilateral laparoscopic adrenalectomy followed by standard replacement therapy with hydrocortisone and fludrocortisone. The symptoms and signs of his CS gradually subsided. Pathology revealed bilateral cortical hyperplasia as expected. The patient continues follow-up at the Department of Oncology and the Department of Endocrinology and Internal Medicine. At 13-month follow-up, 68Ga-DOTATOC shows residual disease with pathologically enhanced uptake in two lymph nodes, whereas the previously described focal DOTATOC uptake in the duodenum was less pronounced (still no CT correlate). Serum calcitonin was 93 pmol/L at the 13-month follow-up. Discussion Diagnostic challenges remain in the distinction between pituitary and ectopic ACTH-dependent CS, and several diagnostic tools are used in combination, none of which is infallible, including IPSS (6). Our case and others illustrate that ectopic CRH secretion may yield a false positive IPSS test result (3). Measurement of circulating CRH levels is relevant if an ectopic CRH producing tumor is suspected, but the assay is not routinely available in clinical practice (Lynnette K Nieman M. Measurement of ACTH, CRH, and other hypothalamic and pituitary peptides https://www.uptodate.com/contents/measurement-of-acth-crh-and-other-hypothalamic-and-pituitary-peptides: UpToDate; 2019). In our case, the presence of elevated plasma CRH levels after thyroidectomy strengthened the indication for bilateral adrenalectomy. The most common neoplasm causing ectopic CS is small-cell lung cancer, whereas MTC accounts for 2–8% of ectopic cases (7). The development of CS in relation to MTC is generally associated with advanced disease and poor prognosis of an otherwise relatively indolent cancer (8), and the clinical progression of CS is usually rapid, why an early recognition and rapid control of hypercortisolemia and MTC is necessary to decrease morbidity and mortality (7, 9). Our case does have residual disease; however, he remains progression-free with stable and relatively low calcitonin levels within 1-year follow-up. Only a very limited number of cases of ectopic tumors with either combined ACTH and CRH secretion or isolated CRH secretion have been reported, with ectopic CRH secretion accounting for less than 1% of CS (9). An ACTH- or CRH-producing tumor can be difficult to localize and may include gastric ACTH/CRH-secreting neuroendocrine tumors (9). In our case, the 68Ga-DOTATOC identified a possible duodenal site, in addition to the MTC, but an upper gastrointestinal endoscopy revealed no pathological findings and there was no CT correlate. Thus, we concluded that the most likely and sole source of ectopic CRH was the MTC and its metastases. To our knowledge, no official guidelines for managing ectopic ACTH-dependent CS have been established. In a recent publication by Alba et al. (10), the authors demonstrated a clinical algorithm (The Mount Sinai Clinical Pathway, MSCP) and recommendation for the management of CS due to ectopic ACTH secretion. Essentially, our approach in this particular case followed these recommendations, including source location by CT and 68Ga-DOTATATE PET/CT imaging, acute management with ketoconazole, and finally, bilateral adrenalectomy as curative MTC surgery was not possible. In retrospect, performance of the IPSS could be questioned in view of the MTC diagnosis. In real time, however, a pituitary MRI performed early in the diagnostic process revealed a microadenoma, which prompted the IPSS. In parallel, a somatostatin receptor scintigraphy (68Ga-DOTATOC PET/CT) was also done, which raised the suspicion of an MTC. Conclusion We report a very rare case of an ectopic CS caused by a CRH-secreting MTC. Although IPSS has stood the test of time in the differential diagnosis of ACTH-dependent CS, this case illustrates a rare pitfall. Declaration of interest The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported. Funding This research did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector. Patient consent Written informed consent for publication of their clinical details was obtained from the patient. Author contribution statement JOJ and MJO are the physicians responsible for the patient. LR performed the thyroidectomy and bilateral adrenalectomy. SHM and SLA assessed and reassessed the histopathology and the immunohistochemical analysis. MB measured plasma CRH. VM, JOJ, and MJO drafted the manuscript. All authors contributed to critical revision of the manuscript. References 1↑ Raff H, & Carroll T. Cushing's syndrome: from physiological principles to diagnosis and clinical care. Journal of Physiology 2015 593 493–506. (https://doi.org/10.1113/jphysiol.2014.282871) PubMed Search Google Scholar Export Citation 2↑ Hatipoglu BA. Cushing's syndrome. Journal of Surgical Oncology 2012 106 565–571. (https://doi.org/10.1002/jso.23197) PubMed Search Google Scholar Export Citation 3↑ Vassiliadi DA, Mourelatos P, Kratimenos T, & Tsagarakis S. Inferior petrosal sinus sampling in Cushing’s syndrome: usefulness and pitfalls. Endocrine 2021 73 530–539. (https://doi.org/10.1007/s12020-021-02764-4) PubMed Search Google Scholar Export Citation 4↑ Zampetti B, Grossrubatscher E, Dalino Ciaramella P, Boccardi E, & Loli P. Bilateral inferior petrosal sinus sampling. Endocrine Connections 2016 5 R12–R25. (https://doi.org/10.1530/EC-16-0029) PubMed Search Google Scholar Export Citation 5↑ Treglia G, Rufini V, Salvatori M, Giordano A, & Giovanella L. PET imaging in recurrent medullary thyroid carcinoma. International Journal of Molecular Imaging 2012 2012 324686. (https://doi.org/10.1155/2012/324686) PubMed Search Google Scholar Export Citation 6↑ Fasshauer M, Lincke T, Witzigmann H, Kluge R, Tannapfel A, Moche M, Buchfelder M, Petersenn S, Kratzsch J, Paschke R, et al.Ectopic Cushing' syndrome caused by a neuroendocrine carcinoma of the mesentery. BMC Cancer 2006 6 108. (https://doi.org/10.1186/1471-2407-6-108) PubMed Search Google Scholar Export Citation 7↑ Chrisoulidou A, Pazaitou-Panayiotou K, Georgiou E, Boudina M, Kontogeorgos G, Iakovou I, Efstratiou I, Patakiouta F, & Vainas I. Ectopic Cushing's syndrome due to CRH secreting liver metastasis in a patient with medullary thyroid carcinoma. Hormones 2008 7 259–262. (https://doi.org/10.1007/BF03401514) PubMed Search Google Scholar Export Citation 8↑ Corsello A, Ramunno V, Locantore P, Pacini G, Rossi ED, Torino F, Pontecorvi A, De Crea C, Paragliola RM, Raffaelli M, et al.Medullary thyroid cancer with ectopic Cushing's syndrome: a case report and systematic review of detailed cases from the literature. Thyroid 2022 32 1281–1298. (https://doi.org/10.1089/thy.2021.0696) PubMed Search Google Scholar Export Citation 9↑ Sharma ST, Nieman LK, & Feelders RA. Cushing's syndrome: epidemiology and developments in disease management. Clinical Epidemiology 2015 7 281–293. (https://doi.org/10.2147/CLEP.S44336) PubMed Search Google Scholar Export Citation 10↑ Alba EL, Japp EA, Fernandez-Ranvier G, Badani K, Wilck E, Ghesani M, Wolf A, Wolin EM, Corbett V, Steinmetz D, et al.The Mount Sinai clinical pathway for the diagnosis and management of hypercortisolism due to ectopic ACTH syndrome. Journal of the Endocrine Society 2022 6 bvac073. (https://doi.org/10.1210/jendso/bvac073) PubMed Search Google Scholar Export Citation From https://edm.bioscientifica.com/view/journals/edm/2023/3/EDM23-0057.xml
    1 point
  44. What Is the Role of “Growth Hormone” When You Have Stopped Growing? Growth hormone clearly plays a key role in development during youth, but research in adults implicates it as an agent in cellular aging processes. Shlomo Melmed, MD, ChB, the first recipient of the Transatlantic Alliance Award, co-sponsored by the Endocrine Society and the European Society of Endocrinology, discusses the misconceptions of administering growth hormone in adults. Children need growth hormone to grow into their adult height, but the hormone’s function among adults is unclear. The pituitary secretes less growth hormone as a person ages, but new research is elucidating a potentially important role for nonpituitary growth hormone generated in the periphery in regulating cellular proliferation associated with aging. AT A GLANCE Growth hormone levels decline with age — which may be a protective mechanism in slowing some of the effects of aging. Nonpituitary growth hormone in the colon epithelium has been shown to inhibit the tumor suppressor gene p53, resulting in pro-proliferative effects. Low levels of growth hormone in adulthood appear to be associated with greater longevity, whereas higher levels are associated with the adverse effects of aging. Unraveling the effects of this mysterious hormone has been a focus of the work of Shlomo Melmed, MB ChB, dean of the faculty of medicine at Cedars-Sinai in Los Angeles. Melmed is the inaugural winner of the Transatlantic Alliance Award, an honor co-sponsored by the Endocrine Society and the European Society of Endocrinology to recognize an international leader who has made significant advancements in endocrine research on both sides of the Atlantic. As part of the award, Melmed gave a presentation at both ENDO 2022 in Atlanta in June, and at the European Congress of Endocrinology 2022 in Milan entitled, “Growth Hormone: An Adult Endocrine Misnomer?” Dangers of Too Little or Too Much The growth hormone level declines dramatically with age such that it is barely detectable in the circulation by age 80, but even at low levels it is clearly playing an important role. “Adults deficient in pituitary growth hormone have a unique phenotype,” Melmed says. “They develop central obesity and may have high blood pressure and lethargy. Growth hormone in adulthood is needed to maintain body homeostasis, i.e., the appropriate ratio between lean body mass and fat mass. When these GH-deficient adults [receive] very low doses of growth hormone, body changes are recalibrated and homeostatic changes that occur with hormone deficiency may be reversed.” On the other hand, the deleterious effects of too much growth hormone from an over-secreting pituitary adenoma are well-known. “Patients with acromegaly have phenotypic features often associated with aging,” Melmed says. “They have heart disease, diabetes, hypertension, and osteoporosis, and may develop tumors. Many afflictions of aging are present, and the linkage of too much growth hormone with adverse effects on the aging process is clinically intuitive.” Nonpituitary Growth Hormone However, evidence is mounting that growth hormone that originates not from the pituitary but in the periphery could have significant effects. Melmed and others have been conducting cellular, animal, and human studies on the effects of autocrine and paracrine growth hormone. For example, the hormone appears to be produced by the epithelial cells of the colon and neighboring cells, where it acts locally to activate the growth hormone receptor, to engender cell cycle changes and DNA damage, and to promote pro-proliferative changes, Melmed says. One of its most important actions may be to inhibit the tumor suppressor gene p53, which is a powerful constraint on cell proliferation and tumor formation. “We found that growth hormone locally suppresses p53, thereby unleashing the cell to become more pro-proliferative,” Melmed says. “We performed a series of cellular and animal experiments to show that the molecular profile of aging may be accelerated by increasing growth hormone signaling, and if you block growth hormone action you may suppress deleterious aging effects on the cell cycle, including attenuation of DNA repair,” Melmed says. For example, their experiments showed that the drug pegvisomant, a growth hormone receptor inhibitor used to treat patients with acromegaly, can elevate p53 levels and enable a protective environment in the colon epithelium. “The role of growth hormone in regulating proliferation of colon cells could explain why patients with acromegaly have an abundance of colon polyps,” he tells Endocrine News. Evidence from Families Melmed says that other tantalizing clues implicating growth hormone in aging include the pioneering work of Endocrine Society Koch Awardee Anderzj Bartke, who showed that GH-deficient mice live longer. Furthermore, a Netherlands study of the relatives of centenarians found that these long-lived individuals and their family members have very low growth hormone levels. There have also been studies of several families around the world who have inactivating growth hormone receptor mutations with short stature and an extremely low incidence of cancer. “We re-introduced a normal growth hormone receptor into the mutated fibroblasts, and down-regulated their high p53 expression, another proof of principle in humans that local growth hormone may enable a pro-proliferative micro-environment,” Melmed says. “We propose, based upon the body of cellular, animal, and human data that have been generated by other colleagues and ourselves, that blocking growth hormone action may protect from adverse cellular effects of aging. We have no evidence that aging could be reversed, but blocking growth hormone signaling could mitigate pro-proliferative cell cycle events and DNA damage associated with aging,” Melmed says. “Adults deficient in pituitary growth hormone have a unique phenotype. They develop central obesity and may have high blood pressure and lethargy. Growth hormone in adulthood is needed to maintain body homeostasis, i.e., the appropriate ratio between lean body mass and fat mass. When these GH-deficient adults [receive] very low doses of growth hormone, body changes are recalibrated and homeostatic changes that occur with hormone deficiency may be reversed.” He notes that these findings have an immediate practical application as a counter to the large illicit market in which people, especially athletes, are taking growth hormone as a performance-enhancing drug “in an attempt to enhance athletic performance or to improve their longevity” when the evidence indicates that “the opposite is true, and growth hormone may in fact be harmful.” Seaborg is a freelance writer based in Charlottesville, Va. He wrote about the Endocrine Society’s latest Clinical Practice Guideline, “Management of Hyperglycemia in Hospitalized Adult Patients in Non-Critical Care Settings: An Endocrine Society Guideline,” in the July issue. From https://endocrinenews.endocrine.org/an-adult-endocrine-misnomer/?fbclid=IwAR0EIssqVRbv9SYloB5tHVIqIeQ6J7xjYYFgbszWVTX4eWS0uUWJShWPVKA
    1 point
  45. Abstract Cushing's syndrome is a rare entity in children. Adrenal tumour is the common cause of this syndrome in young children, whereas, iatrogenic causes are more common among older children. We report a 4 year old male child diagnosed with Cushing syndrome due to a right adrenal adenoma; the child presented with obesity and increase distribution of body hair. After thorough investigation and control of hypertension and dyselectrolytemia, right adrenalectomy was performed. The patient had good clinical recovery with weight loss and biochemical resolution of Cushing's syndrome. 1. Introduction Cushing's syndrome (CS) is rarely encountered in children. The overall incidence of Cushing syndrome is approximately 2–5 new cases per million people per year. Only approximately 10% of the new cases each year occur in children [1]. Unlike in adults, a male-to-female predominance have been observed in infants and young toddlers [[1], [2], [3]]. Although iatrogenic causes are common in children above seven years of age, adrenal causes (adenoma, carcinoma or hyperplasia) are common in children of younger age [4]. We report a 4 year old boy diagnosed with Cushing syndrome caused by a right adrenal adenoma, who had presented with obesity and increase distribution of body hair. Right adrenalectomy was performed and clinical stabilization resulted in weight loss and biochemical resolution of Cushing's syndrome. (see Fig. 5) 2. Case report A 4 years old boy presented with complaints of excessive weight gain of 5 months duration and increase frequency of micturition and appearance of body hair for 4 months. There was no history of any other illness, medication or steroid intake. The child was first born at term by normal vaginal delivery and birth weight of 3 kg. Physical examination revealed a chubby boy with moon face, buffalo hump, protruding abdomen, increase body hair and appearance of coarse pubic hair (Fig. 1). His intelligent quotient (IQ) was appropriate for his age and sex. His younger sibling was in good health and other family members did not have any metabolic or similar problems. Download : Download high-res image (710KB) Download : Download full-size image Fig. 1. The child with moon face, protruded abdomen and coarse body hair. The patient's body length was 92cm (between -2SD to -3SD), weight 20kg (between 1 SD and 2 SD), weight for height >3SD, and BMI was 23.6 (BMI for age >3 SD). His blood pressure on right arm in lying position was 138/76 mm Hg (above 99th percentile for height and age). Investigations: Morning 8am serum cortisol level - 27.3 μg/dl (normal: 6–23 μg/dl). with a concurrent plasma ACTH level of < 5 pg/ml (n value < 46 pg/ml). His serum cortisol following low dose dexamethasone suppression test (1mg dexamethasone at 11pm) at 8 am next morning was 22.1 μug/dl and his 24 hours urine catecholamine fraction was within normal limit. HB % -- 10.3 gm/dl; LDDST -- 25 μg/dl; FBS -- 106 mg/dl. Serum Na+ - 140.6mmol/l; K+ - 2.83mmol/l; Ca+ - 8.7 mg/dl. S. Creatinine −0.3 mg/dl. Ultrasonography of abdomen revealed a heterogenous predominantly hypoechoic right supra renal mass. Contrast enhanced CT abdomen revealed well defined soft tissue density lesion (size −5.2 cm × 5.2 cm x 5.7cm) in right adrenal gland with calcifications and fat attenuations showing mild attenuation on post contrast study (Fig. 2). Download : Download high-res image (703KB) Download : Download full-size image Fig. 2. CECT shows right adrenal mass with calcification and mild attenuation on post-contrast study. The child was started on oral amlodipine 2.5mg 12hourly; after 5days blood pressure became normal. For hypokalemia oral potassium was given @20 meq 8 hourly and serum potassium value became normal after 4 days. Right laparoscopic adrenalectomy was planned. but due to intra operative technical problems it was converted to an open adrenalectomy with right subcostal incision. A lobulated mass of size 9 cm × 5 cm x 4 cm with intact capsule was excised. The tumour weighed 230 gm. There was no adhesion with adjacent organs, three regional nodes were enlarged but without any tumour tissue. Inferior vena cava was spared. Histopathology report was consistent with adrenal adenoma (Fig. 3) (see Fig. 4). Download : Download high-res image (427KB) Download : Download full-size image Fig. 3. Cut section of tumour shows fleshy mass with fatty tissue. Download : Download high-res image (618KB) Download : Download full-size image Fig. 4. Microphotograph (100 × 10) showing intact capsule and adrenal tumour cells, which are larger in size with nuclear pleomorphism, inconspicuous nucleoli, cytoplasm of the tumour cells are abundant, eosinophilic and vacuolated. Download : Download high-res image (593KB) Download : Download full-size image Fig. 5. Physical appearance 4 months after adrenalectomy. Post operative management: during post operative period hypokalemia and flaxuating blood sugar level was managed with oral potassium and oral glucose supplement. patient developed mild cough and respiratory distress on post op day 2, it was managed with salbutamol nebulization and respiratory physio therapy. Patient developed minor ssi and discharged on 10 th post operative day with oral prednisolone supplementation. Follow up: the patient was followed up 2week after discharge and then every monthly, the oral prednisolone was gradually tapered and completely withdrawn on 2nd month after surgery.The patient experienced no post-surgical complications. After 4 months of surgery he reduces 6 kgs of his body weight with BMI of 16.5 (between median and 1SD) & BP 100/74 mm hg (within normal range), the moon face, buffalo hump, central obesity disappeared, morning 8am serum cortisol level was found within normal range 14 μg/dl (n value 6–23 μg/dl). 3. Discussion Cushing's syndrome is caused by prolonged exposure to supraphysiological levels of circulating glucocorticoids, which may be endogenously or exogenously derived. During infancy, CS is usually associated with McCune-Albright syndrome; adrenocortical tumours most commonly occur in children under four years of age and Cushing's disease (ACTH dependent) is the commonest cause of CS after five years of age [5]. Primary adrenocortical tumours (ACTs) account for only 0.3–0.4% of all childhood neoplasms. Almost a third of these tumours manifests as Cushing syndrome and over 70% of the unilateral tumours in young children are often malignant [2,3,6,7]. There seems to be a bimodal incidence of these tumours, with one peak at under 5 years of age and the second one in the fourth or fifth decades of life. ACTs may be associated with other syndromes, such as, Li-Fraumeni syndrome, Beckwith-wiedemann syndrome, isolated hemihypertrophy, or even a germline point mutation of P53 tumour suppressor gene as reported in a series from Brazil [8]. In comparison to adult CS, growth failure with associated weight gain is one of the most reliable indicators of hypercortisolaemia in pediatric CS. The parents often fail to notice facial changes and growth failure and hence the diagnosis is often delayed. In one study, the mean time from appearing symptoms to diagnosis in 33 children with Cushing's disease was 2.5 years [5]. More recently the comparison of height and BMI SDS measurements provided a sensitive diagnostic discriminator in pediatric patients with CD and those with simple obesity [9]. In the present case, the parents observed noticeable changes in his face and presence of body hair, which made them to bring the child to medical attention. A review of 254 children on the International Pediatric Adrenocortical Tumour Registry identified virilization as the most common manifestation [10]. About 10% of the tumours can be non-functional at presentation, and approximately one third of pediatric patients present with hypertension. Majority of patients (192/254) in the Registry had localized disease and metastatic disease was found in less than 5% of cases. Older children with CS or mixed androgen and cortisol secreting adrenocortical tumours had a worse prognosis compared to younger children [10]. The present case had mild hypertension as well as dyselectrolytemia at presentation, which could be controlled with medication. He had a single adenoma confined to the adrenal gland and there was no evidence of malignancy. After surgical excision of the tumour and the right adrenal gland, the patient made rapid improvement in clinical condition and has been on follow up for last 7 months. 4. Conclusion Pediatric adrenocortical tumours (ACTs) are most commonly encountered in females and in children less than four years. But our case being an 4-year-old boy forms a rare presentation of endogenous Cushing's syndrome due to adrenal adenoma. Cushing's syndrome in this child was controlled after right adrenalectomy. Patient consent Informed written consent was taken. Funding No funding or grant support. Authorship All authors attest that they meet the current ICMJE criteria for authorship. Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. References [1] M.A. Magiakou, G. Mastorakos, E.H. Oldfield, et al. Cushing's syndrome in children and adolescents. Presentation, diagnosis, and therapy N Engl J Med, 331 (10) (1994), pp. 629-636 [PubMed: 8052272] [2] C. Tsigos, G.P. Chrousos Differential diagnosis and management of Cushing's syndrome Annu Rev Med, 47 (1996), pp. 443-461 [PubMed: 8712794] [3] D.N. Orth Cushing's syndrome N Engl J Med, 332 (12) (1995), pp. 791-803 [PubMed: 7862184] [4] C.J. Migeon, R. Lanes (fifth ed.)F. Lifshitz (Ed.), “Adrenal cortex: hypo and hyper_x0002_function,” in Pediatric Endocrinology, vol. 8, Informa Healthcare, London, UK (2007), p. 214 [5] L.F. Chan, H.L. Storr, A.B. Grossman, M.O. Savage Pediatric Cushing's syndrome: clinical features, diagnosis, and treatment Arq Bras Endocrinol Metabol, 51 (8) (2007), pp. 1261-1271, 10.1590/S0004-273 [6] C.A. Stratakis, L.S. Kirschner Clinical and genetic analysis of primary bilateral adrenal diseases(micro- and macronodular disease) leading to Cushing syndrome Horm Metab Res, 30 (6–7) (1998), pp. 456-463 [PubMed: 9694579] [7] W.L. Miller, J.J. Townsend, M.M. Grumbach, S.L. Kaplan An infant with Cushing's disease due to anadrenocorticotropin-producing pituitary adenoma J Clin Endocrinol Metabol, 48 (6) (1979), pp. 1017-1025 [8] R.C. Ribeiro, F. Sandrini, B. Figueiredo, G.P. Zambetti, E. Michalkiewicz, A.R. Lafferty, et al. An inherited P53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma Proc Natl Acad Sci U S A, 98 (16) (2001), pp. 9330-9335 [9] J.E. Greening, H.L. Storr, S.A. McKenzie, K.M. Davies, L. Martin, A.B. Grossman, et al. Linear growth and body mass index in pediatric patients with Cushing's disease or simple obesity J Endocrinol Invest, 29 (10) (2006), pp. 885-887 [10] E. Michalkiewicz, R. Sandrini, B. Figueiredo, E.C. Miranda, E. Caran, A.G. Oliveira-Filho, et al. Clinical and outcome characteristics of children with adrenocortical tumors: a report from the international pediatric adrenocortical tumor Registry J Clin Oncol, 22 (5) (2004), pp. 838-845 From https://www.sciencedirect.com/science/article/pii/S2213576620303833
    1 point
  46. Dexamethasone, a cheap and widely used steroid, has become the first drug shown to be able to save lives among Covid-19 patients in what scientists hailed as a “major breakthrough”. Results of trials announced on Tuesday showed dexamethasone, which is used to reduce inflammation in other diseases, reduced death rates by around a third among the most severely ill Covid-19 patients admitted to hospital. The results suggest the drug should immediately become standard care in patients with severe cases of the pandemic disease, said the researchers who led the trials. “This is a result that shows that if patients who have Covid-19 and are on ventilators or are on oxygen are given dexamethasone, it will save lives, and it will do so at a remarkably low cost,” said Martin Landray, an Oxford University professor co-leading the trial, known as the RECOVERY trial. “It’s going to be very hard for any drug really to replace this, given that for less than 50 pounds ($63.26), you can treat eight patients and save a life,” he told reporters in an online briefing. His co-lead investigator, Peter Horby, said dexamethasone was “the only drug that’s so far shown to reduce mortality - and it reduces it significantly.” “It is a major breakthrough,” he said. “Dexamethasone is inexpensive, on the shelf, and can be used immediately to save lives worldwide.” There are currently no approved treatments or vaccines for Covid-19, the disease caused by the new coronavirus which has killed more than 431,000 globally. Saving ‘countless lives’ The RECOVERY trial compared outcomes of around 2,100 patients who were randomly assigned to get the steroid, with those of around 4,300 patients who did not get it. The results suggest that one death would be prevented by treatment with dexamethasone among every eight ventilated Covid-19 patients, Landray said, and one death would be prevented among every 25 Covid-19 patients that received the drug and are on oxygen. Among patients with Covid-19 who did not require respiratory support, there was no benefit from treatment with dexamethasone. “The survival benefit is clear and large in those patients who are sick enough to require oxygen treatment, so dexamethasone should now become standard of care in these patients,” Horby said. Nick Cammack, a expert on Covid-19 at the Wellcome Trust global health charity, said the findings would “transform the impact of the Covid-19 pandemic on lives and economies across the world”. “Countless lives will be saved globally,” he said in a statement responding to the results. The RECOVERY trial was launched in April as a randomised clinical trial to test a range of potential treatments for Covid-19, including low-dose dexamethasone and the malaria drug hydoxycholoroquine. The hydroxychloroquine arm was halted earlier this month after Horby and Landray said results showed it was “useless” at treating Covid-19 patients. Global cases of infection with the novel coronavirus have reached over 8 million, according to a Reuters tally, and more than 434,000 people have died after contracting the virus, the first case if which was reported in China in early January. From https://www.cnbc.com/2020/06/16/steroid-dexamethasone-reduces-deaths-from-severe-covid-19-trial.html
    1 point
  47. Dr. Theodore Friedman hosts Jay Khorsandi, DDS and Barbara Burggraaff, MD from Snore Experts for an important webinar on insomnia Topics to be discussed include: • What are the causes of insomnia? • How do hormone imbalances lead to insomnia? • What lifestyle changes can you do to help with insomnia? • What supplements are helpful for insomnia? • What medicines are helpful for insomnia? Sunday • June 2nd • 6 PM PST Click here on start your meeting.or https://axisconciergemeetings.webex.com/axisconciergemeetings/j.php?MTID=m2f7d9547a80ec47e43869517ef006f34 OR Join by phone: (855) 797-9485 Meeting Number (Access Code): 807 924 444 Meeting Password: hormones Your phone/computer will be muted on entry. There will be plenty of time for questions using the chat button. For more information, email us at mail@goodhormonehealth.com
    1 point
  48. This must be so devastating for his family, but I'm glad they are bringing this disease to public view. It makes me more thankful that I saw a GP who was able to put all my symptoms together & immediately referred me. This is not always the case over here. Most GP's treat symptoms, they do not look for an underlying cause, that's the way it is over here, they are constantly under pressure to reduce the costs to the NHS, so any referral to a specialist has to be for a DAMNED GOOD REASON! For diagnosis they look for the lowest common denominator, this goes for all diseases, the simplest illness is the one they DX. My father was DX'd with asthma at 62, he went on to have a stroke, then passed away suddenly with a heart-attack at 69. It turned out, when he was opened-up, he didn't have asthma at all, his lungs were fine, his arteries were clogged which caused his breathing difficulties, and he could have had an operation to resolve this. My father-in-law died from pneumonia, because when he had a chest x-ray, they said he had a massive cancerous lung tumour which was inoperable, so didn't offer any kind of treatment. When he was opened up, there was no tumour, he also died needlessly. That's just the way it is over here, it varies from region to region though, we call it the Postcode Lottery, it's difficult to see how it will ever change. Melanie XXX
    1 point
×
×
  • Create New...